美国莱斯大学开发4.37高折射率黄铁矿材料光学薄膜
美国莱斯大学的工程师团队制作了光学级黄铁矿薄膜。在实验中,所述材料的显示折射率达到4.37。
美国莱斯大学的工程师正在努力提高虚拟现实、3D显示和光学技术的屏幕性能。他们的目标之一是打破长期以来的光学困扰:材料的光学吸收和折射光之间的权衡。 据报道,电气和计算机工程副教授古鲁拉·奈克(Gururaj Naik),以及出自应用物理研究生项目的克洛伊·多伊隆(Chloe Doiron)发现,黄铁矿可以为可穿戴设备提供更好、更薄的显示器。同时,他们开发了一种用于识别高折射率电介质的公式。 高折射率电介质实现了光学组件的纳米级集成,几乎没有吸收损耗。所以,高折射率电介质在纳米光子学中存在众多的新兴应用前景。然而,缺乏完整的高折射率介电材料库对理解介电纳米光子学的全部潜力构成了重大挑战。 目前,半导体的吸收率和折射率表现出刚性权衡,亦即所谓的Moss Rule。因此,Moss Rule似乎设定了给定工作波长下电介质折射率的上限。然而,自然存在一系列超过Moss Rule的电介质材料,亦即super-Mossian电介质。 古鲁拉·奈克和克洛伊·多伊隆等人探讨了super-Mossian电介质的一般特征及其物理起源,以便于寻找高折射率电介质。作为一个例子,黄铁矿是一种出色的super-Mossian材料,其指数比Moss Rule预测高出近40%。 他们在实验中观察了黄铁矿纳米谐振器中的局部介电共振,并证明了super-Mossian材料对纳米光子学的影响。 他们已经把研究发表在《Advanced Optical Materials》。其中,他们认为黄铁矿可以为可穿戴设备提供更好、更薄的显示器。 值得注意的是,他们已经建立了一种方法来寻找超越Moss Rule的材料,并为显示器和传感应用提供有用的光处理性能。奈克表示:“在光学领域,我们依然局限于极少数材料。但自然存在非常多未知的材料,只是我们尚没有找到任何关于如何找到它们的洞察。” 例如,硅的折射率约为3.4,但我们开始思考是否可以超越这一限制,将指数提高到5或10。这促使他们寻找其他光学选项。为此,他们开发了一种公式来识别super-Mossian电介质。 研究人员将他们的理论应用到1056种化合物的数据库中,并开始搜索折射率最高的化合物,然后确定了黄铁矿实验。与黄铁矿一起的三种化合物确定为super-Mossian候选物,但黄铁矿的低成本,以及在光伏和催化应用中的长期使用使其成为实验的最佳选择。 因此,团队制作了光学级黄铁矿薄膜。在实验中,所述材料的显示折射率达到4.37。 然而,黄铁矿只是一个开始,团队计划继续寻找高性能的材料。电气和计算机工程副教授古鲁拉·奈克评论道:“这太棒了。但是,我们或许可以,而且很可能会找到更好的材料。有非常多的候选材料,其中一些甚至还没有制作出来。” |
1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn