简介
d%t]:41=Z ,^26.p$ 傅里叶变换光谱仪(FTS)是利用干涉仪与一个平移反射镜来产生干涉图样的
光学仪器。干涉图的傅里叶变换提供了
光源的频谱。由于FTS提高了测量速度、分辨率的提升和简洁的机械结构性[1],FTS方法通常优于单色仪。在FRED中模拟FTS并不复杂。在本案例中,在FRED中将会使用一个嵌入式脚本来创建和运行FTS模型。将会使用该模型分析三种不同的光谱。
d=oOMXYa bjm`u3
A 在FRED中建立光谱仪
,RCjfXa B
0 K2Uw 为了简化过程,使用一个理想的点光源、理想的
透镜和理想的分束表面(图1)。详细的扩展光源、真实的
镜头、分束器或线栅分束器可以纳入其中使之用于更加实际的分析。
%b\xRt[0v7 K[~Wj8W0 图1 简单的傅里叶变换光谱仪模型,由一个点光源、理想透镜和具有可移动反射镜的迈克尔逊干涉仪组成。来自光源的准直光束被送入到50/50的分束器上。反射光传播到一个固定的反射镜(绿色),透射光传播到一个平移反射镜(蓝色)。来自两个路径的光经过分束器后重新组合,收集到的能量在(黑色)探测器处测量。
'x+0
yd FRED模型的第一步是创建一个相干的点光源对象。接着,创建一个光谱并分配给光源。光谱可以从文本文件导入、图片的数字化取样或者由特定的函数(高斯或黑体)计算得到。使用FRED“lens Module”表面类型构成的“自定义元件”对象,可以创建理想透镜,透镜位于距离点光源10mm处。“lens Module”表面具有10mm的
焦距和5mm的半孔径。接下来,使用与准直光束成45度角的平面表面创建理想分束表面。创建了自定义“50/50”分束涂层(图2)并应用到该表面。
reu[}k ~ 0WF(Ga/o +GP"9S2%R 图2 自定义50/50分束涂层规格。如果指定一个单一波长,则涂层将同样适用于光源的所有波长。
k5!k3yI 系统中的两个反射镜是通过两个FRED的“Mirror”对象,它们都具有“反射”涂层和“反射所有”
光线追迹控件。每个反射镜位于距离分束器20mm处,一个在+y方向上平移,另一个在+z方向上。最后,在垂直于分束器的组合光束方向上,添加一个吸收表面和对应的分析面,模型就完成了。
eb9qg.9Z &0(2Z^Z>fw 运行光谱仪重现光源光谱
sn5N9=\+T +}m j6I 在初始结构中,干涉仪两光束路径具有相同的路径长度,即光程差(OPD)为零。为了收集光源的光谱信息,一个反射镜必须移动一些距离来改变OPD。在反射镜的移动的每一步中,落到探测器上的功率将会被收集。由此产生的探测器功率和OPD的图像,称为干涉图,并将会经过一个快速傅里叶变换(FFT)来确定光源功率和光空间频率。为了自动运行这一过程,可以创建一个嵌入式脚本(写在FRED内置BASIC中)来移动反射镜和收集探测器的值。
^}/YGAA k`oXo% 在下面的例子中,平移反射镜用1024步移动了总距离为0.04mm。由于FFT算法的缘故,步数必须为2的幂次。分辨率越高,产生的频谱越准确。低分辨率的反射镜扫描会有干涉图欠采样的风险。欠采样的干涉图会导致FFT中的低频混淆。光谱作为“均匀间隔、根据光谱加权”分配给光源,充分的采样光谱同样重要。在这个例子中,使用的波长采样的最大数目为256。欠采样的光源光谱在重现的光谱中会产生余弦条纹。
xBgf)'W_Z 1yX&iO^d 例1:单波长光源
RVI],O R&ou4Y:DG 给定光源1.5μm的单一波长。该波长对应666.7(1/mm)的空间频率。单波长的干涉图是一个简单的余弦函数。(图3)
&=$8
v"&^ Ic#+*W\ZW Zr}`W\ 图3 由FTS获得的单波长光源光谱。左上:绘制的初始光源光谱vs.波长(μm)。右上:探测器功率vs. OPD的干涉图。左下:重现光源光谱vs.空间频率(1/mm)。右下:重现光源光谱vs波长(μm)。
Y1`. 例2:高斯光谱
*9PS2*n Sw5H+! 光源给定为高斯光谱,具有0.555μm的中心波长和0.0589μm的半极大半宽。中心波长对应于1801.8(1/mm)的空间频率。注意到重现的光谱具有明显的不对称性(图4)。这是因为光谱是波长的高斯函数,空间频率是波长的倒数。较短的空间频率间隔对应于较大的波长范围;因此,重现的频谱的左半将出现更多的压缩(图4)。
}[LK/@h B1nb23SY T 图4 由FTS获得的高斯光源光谱。左上:初始光源光谱vs.波长(μm)。右上:探测器功率vs OPD的干涉图。左下:重现光源光谱vs.空间频率(1/mm)。右下:重现光源光谱vs波长(μm)。
s3J T1TX 2i,Jnv=sR 例3:白光
LED光谱
aj(M{gFq~ PDD` eK}Fj 给定光源一个白色荧光LED的光谱特性。该光谱在波长= 0.45μm处有一个尖峰,在波长= 0.65μm处有一个宽峰。蓝色峰对应于2222.2(1/mm)的空间频率。红色峰对应于1538.5(1/mm)的空间频率。注意重现的光谱形状被水平翻转(图5)。这是因为光谱是波长的函数,空间频率是波长的倒数。另外,相对于原光谱的红色峰,重现的光谱显示出更高的低空间频率值。这是因为低空间频率的间隔对应于一个较大的波长范围,在这些空间频率处,更多的光功率将被收集。
{E 6W]Mno U-WrZ|- ngm7Vs 图5 由FTS获得的白色LED光源光谱。左上:初始光源光谱vs.波长(μm)。右上:探测器功率vs. OPD的干涉图。左下:重现光源光谱vs空间频率(1/mm)。右下:重现光源光谱vs.波长(μm)。
.*Hv^_ [1] “Introduction to Fourier Transform Infrared Spectrometry.” Thermo Nicolet Corporation. 2001. Accessed December 8, 2015.
http://mmrc.caltech.edu/FTIR/FTIRintro.pdf