>_o} #bMuvaP~ 纳米孔径激光器出射光场分布(数值仿真)
7N-w eX 采用异形孔径和纳米结构表面等离子增强设计后,在光斑尺寸基本保持不变的条件下,纳米孔径激光器的出射最大光强峰值可以提高3-4数量级,总输出功率也极大提高。
y=`2\L" O {7 $c8i 新型纳米孔径的提出-
IIg^FZ*]_ L形平面结构纳米孔径设计:光学分辨率达到15nm,场增强因子为568,通光效率大于1.5
O$IEn/%+ l%?T2Fm3> OlAs'TE^ Au膜上的L孔( W1=L2=80nm, W2=70nm, L1=210nm,d=130nm)及距孔径出射表面35nm的光场分布
,=tD8@a< ?**+e%$$ 非平面三维纳米孔径设计-
?*E'^~,H) dE:+k/ 设计了方形、三角形以及矩形与三角形两种形状相结合的三维纳米孔径阶梯结构,理论计算表明这种三维纳米孔径结构具有强烈的局域场增强效应,有可能发展为纳米孔径结构设计的新方向。
IqC]! H0 %F!1 U4gF(Q Au膜上的矩形与三角形孔径结合的阶梯型纳米孔径及距孔径出射表面35nm的光场分布
odPL{XFj 微孔激光器的制作-
6xWe=QGE !OBEM1~
1 基于普通的边发射LD成功地设计并制作了不同形状纳米孔径激光器。所制作的微孔激光器能够实现激光振荡并正常工作。
VCn{mp*h {P{bOe 0Uz\H0T1 纳米孔径光场分布测量结果(近场光学方法)
%1O;fQL ?\$#L^;b} 方孔和C形孔径出射光场分布初步测量结果