激光作为工业化工具在光伏行业是一种关键的技术。它能确保低成本的制造工艺,生产出高效的太阳能电池。激光器就是实现此目标的理想选择,并且比起其它的工艺它更高效,因为它一方面提高了生产流程中的工艺可靠性,另一方面降低了生产成本。这些优势在生产晶硅太阳能电池和薄膜太阳能电池中得到了充分的体现。 5 52U~t
[)S7`K;
大规模生产的趋势正推动着激光技术的发展。这是因为在激光技术上的投资能快速得到回报,特别是当今已经安装的那些每年产能在60-100MW的生产线。通常来说,激光器能发挥其潜在优势。 8+=-!":]
iFBH;O_~
·激光作为工具被使用,因为在光伏行业中针对不同材料(硅,金属,电介质)的吸收可以选择正确波长。 S`?L\R.:
·短波或脉冲激光能保证较低的光热效度。 m_;<7W&p]
·对于易碎材料的加工,通过非接触式的方法减小机械冲击是建立可靠的工艺生产线的基础。 CG397Y^
·在更换工具后昂贵的工艺调整过程就不必要了,因此减少了生产过程中的停机时间。 YZllfw$9
\fjr`t]
在晶硅太阳能电池生产中,激光器被用于切割硅片和边缘绝缘。电池边缘的掺杂是为了防止前电极和背电极的短路。在这一应用上,激光已完胜其它传统的工艺。例如等离子刻蚀未能满足自动化要求,破损率很高。 7sglqf>
y'#i'0eeL
激光器越来越多地用于掺杂工艺,因为它能在太阳能电池上提高局部掺杂浓度得分布从而改善载流子的移动性,特别是接触栅极。至少六个不同的工艺在市场上互相竞争,几乎所有的工艺都是基于激光技术。例如,经过特殊设计的激光装量可以毫无损伤在磷硅玻璃把磷扩散到硅片的表面,从而提高晶圆和接触电极之间的导电率。 3l?-H|T
+@5@`"Jry
激光器未的另一个应用包括在晶硅太阳能电池上选择性烧蚀钝化层。超短脉冲和高脉冲能量的激光器特别合适,因为它们具有绝佳的光束质量,这些条件都只能通过碟片激光技术才能实现。由于激光输出功率的可扩展性,从而达到更高的生产能力,超短脉冲中的高光束质量显著提高太阳能电池的转换效率。这样就可以大大减少太阳能电池每瓦特的成本。 ~V`F5B
|w)S
&+
根据不同的膜层,激光刻划由碲化镉或非晶硅薄膜制成的导电和光敏涂层。通过这种工艺,涂在玻璃基板上的涂层被分割成互相串联的电池。这样,电池的宽度决定了电池和模块的电压。准确的,有选择地和非接触的激光加工工艺可以可靠地集成到生产线上。所谓的刻线是将30-80μm大小的单个光脉冲串联起来,而在P1中采用几十纳秒脉宽(10到80ns)的脉冲来刻蚀。当加工到膜层的边缘时,材料的一部分被升华,蒸汽压力可以吹走被刻蚀的材料。因此,加工的能量小了,底部材料的热影响也会减少。 |(Q !$
_W +
由Cu(In,Ga)(S,Se)2组成的薄膜电池也被称为CI(G)S对激光加工提出了特别大的挑战。其所使用的材料是最大的挑战。如果基板是玻璃,那么钼薄膜在一开始刻线的阶段就要加工。然而钼沸点高,导热性好,热容量高。如果热被应用到钼层上,就会导致裂缝和剥落。用纳秒激光脉冲加工不可避免这些缺点,从而导致质量的降低。光敏材料也会对导入的高热易受影响的。硒比其他材料例如铜、铟、镓的沸点低,因此在低温时可以从混合物中脱离。通过“长”激光脉冲加工会导致边缘区短路因为没有硒的半导体会转换成合金。 k'b'Ay(<
-q6d&D'B+
为了保护薄膜太阳能电池免于不利环境的影响,特别是防潮,在电池模块的四周需要清除大约1厘米宽度的膜层,然而通过层压保护。这能保护太阳能电池免于腐蚀以及长期防止短路。喷砂法目前被广泛使用。尽管喷砂设备投资成本低,但在加工过程中会由于磨损、清除沙子以及相关检测而产生的高昂后需费用。因此,激光器是再适合不过的了。