第一章:MTF概论 oUNuM%g9Dy
S!6 ? b5
1-1 MTF的定义 HF;$Wf+=J
q<Z`<e
Modulation的定义 }BN!Xa
kR/Etm5_
在这一个课程中,我们要进行的是有关镜头的MTF量测介绍。 MTF 的`Modulation Transfer Function,翻译成中文就是光学调制传递函数,它有另外一个名称叫做 Contrast Transfer Function,也就是:对比度转换函数。从名称来看,我们可以知道MTF有光学对比的概念在里面。现在就先来看Modulation (M)的定义:Modulation是 I的maximum减去I的minimum除以I的maximum加上I的minimum;也就是(光的最亮度减去光的最暗度)与(光的最亮度加上光的最暗度)的比值,所得出来的结果M,就是光的对比度。 我们举例来看,假设有一个标靶,它的黑白条纹中最亮的光强度值 (Imax )为1000,最暗的光强度值 (Imin)为2,我们可以得到Imax - Imin =1000-2=998, Imax + Imin =1000+2=1002,这两个值相比等于998除以1002,也就等于0.996。所以这个测试标靶中,黑白条纹的modulation (M)的值为0.996,我们可以把它看成是测试标靶中黑白条纹的对比值。 Modulation基本上可以看成是经过归一化的对比值。何谓归一化?归一化指的是normalize,意思是它的最大值为1。怎么说呢?就一般投影机 测试而言,对比度的定义是Imax除以Imin ,如果以这个例子来看, Imax=1000 , Imin =2,那么它的对比度就是(Imax/Imin )=1000/2=500。由此例,我们可以看出归一化的对比度(Modulation)与一般的对比度(Contrast)的定义上的不同。然而,相同的是--它们都是对比度的表示方式。 a%XF"*^v
N;mJHr3[F
MTF的定义 G:4'')T
9YEE.=]T
在物空间,有物的Modulation。在像空间,有成像的Modulation,我们知道Modulation其实代表的就是对比度(contrast)。为什么两者的Modulation会有所差异呢?这是因为透镜有像差,成像品质不见得非常好的关系。在测试标靶上,黑白分明的条纹经过透镜投射出来的成像会比较模糊。在这里,物的Modulation指的就是测试标靶的黑白条纹对比度,而像的Modulation指的就是测试标靶经过透镜成像后之黑白条纹对比度。我们称物的Modulation为Mo,像的Modulation为Mi,而MTF就是Mi比上Mo的值。 举例而言,测试标靶的Modulation为0.8(我们以Mo表示),经过镜头成像后所得的modulation为0.4(我们以Mi来表示)。 那么,根据定义,MTF值就是(Mi/Mo)=(0.4/0.8)=0.5。所以,我们可以将MTF看成是镜头品质好坏的评估条件。如果说,测试标靶经过某个镜头A成像后,它的成像品质与原先的测试标靶一样清晰,那么以此例而言,原先测试标靶的 Modulation值(Mo)=0.8, 成像最好的情况下,Modulation值(Mi)也只能达到0.8,此时,MTF将可达到1.0。然而,一般的情况下,镜头因为本身拥有像差的先天不良条件,使得成像品质受限,因此成像后的Modulation值(Mi)低于原先测试标靶的Modulation值(Mo),如果测试标靶经过另一个镜头B成像后,Mi=0.5,那么MTF=(Mi/Mo)=(0.5/0.8)=0.625。如果有个仪器,事先就设定好测试标靶的Modulation值(Mo),并且可以侦测出经由镜头成像后的影像,并计算求得标靶成像的Modulation值(Mi) ,那么,镜头的MTF值就可以被计算出来了。对于镜头而言,像差愈大,镜头的光学品质愈差,MTF值愈低。所以,对于成像用之镜头设计,均以MTF值为设计分析指针。 1-2 MTF的重要相关概念 yBkcYHT
\m%Z;xKG
MTF vs. 空间频率 Cc}3@Nf{/
./i5VBP5
MTF和黑白条纹线对的分布密度关系十分密切。图A为测试标靶。但透过光学系统成像,看到的不再是清楚的黑白条纹,我们以图A来解释空间频率。空间频率(ν)指的就是黑白条纹线对的密度,单位为 lp/mm,其中,lp代表line pair,mm代表per mini-meter,表示1mm内含有多少组的黑白线对。要如何计算黑白条纹的宽度呢?假设1个mm内含有N组黑白线对,那么,我们称这个测试标靶的黑白线对之空间频率(ν)=N lp/mm,每组黑白条纹的宽度则为 (1/N) mm,每条黑色条纹之宽度则为 (1/2N) mm,每条白色条纹之宽度亦为 (1/2N)mm。从图C中我们可以看出每组黑白条纹经过光学系统成像后,变得较为模糊。一般而言,条纹愈细,对比度愈低,MTF相对的也就愈低。此代表MTF值随着黑白线对之空间频率改变而有所差异。事实上,MTF本身就是空间频率的函数MTF(ν)。 至于为何黑白线对条纹愈密,MTF值愈低? 此乃因为光线在黑白线对边缘造成的绕射、散射或漫射效应。也就是少数通过白线区域的边缘光线会偏折、跑向黑色区域,造成影像区域里面黑不够黑(也就是暗区不够暗 )、白不够白(也就是亮区不够亮)的成像问题,条纹愈密集愈造成此黑白对比度下降之情况,进而造成MTF值下降。 ,vs# (d6 G
WWgJ !Uz
MTF vs. 系统解像力需求 }CGA)yK~3
o>75s#=
b=
这是系统MTF需求图,横轴为空间频率,纵轴为MTF值,MTF之最大值为1。蓝色虚线代表系统要求规格,也就是说,在多少line pair的时候,必须达到多少MTF值,才能符合系统要求。假设A曲线是某镜头的MTF表现,那么,我们可以从图中看出,在空间频率为N lp/mm、MTF值在0.2以上的时候,该镜头才符合系统标准。 现在我们来看另一张图。假设有两个镜头:A和B。从图中可看出在低频的时候,A镜头的表现比B镜头来的好,然而,在高频的时候,B镜头反而表现得比A镜头来的好。但以图中蓝色虚线的系统要求规格来看,也就是在空间频率为N lp/mm ,MTF值必须在0.2以上,这两个镜头其实都在符合标准之内,都是可用的。只是在高频的部分,镜头A的对比度会比镜头B的对比度来得低。 再来看另一个例子。曲线A和曲线B代表两个不同的镜头。如果以N1的需求来看,空间频率为N1 lp/mm ,MTF值要求在0.2以上,这两个镜头都符合标准;但是,如果有另一个需求是N2 lp/mm , MTF值要求在0.3以上。那么,就只有镜头B达到合格标准了。 b-?d(-
e#!,/pE
镜头对光源之扩散函数效应 vf0
fa46
Ev]oPCeA
之前我们提到,对象经过光学系统,其成像会较为模糊,光源亦是如此。 当点光源通过光学镜头之后,由于光学镜头的像差品质等因素,使得点光源之成像为点光晕成像。由CCD侦测其点光晕成像之光强度讯号,取其光强度讯号之截面图,再与原先未经过光学镜头之光源讯号截面图相比较,可了解点光源之光强度讯号经过光学镜头之后就被扩散了,因此我们可以说光学镜头对于这个光源有扩散效应,由光源与光源影像的光强度分布曲线,可计算求得镜头对于此光源的扩散函数效应。 当光源透过镜头成像,点光源或线光源会有光晕的影像,而非清晰的点或线,我们将这个光源成像的光强度做一个剖面而得到一个函数,统称为光源的扩散函数。镜头对点光源成像的函数,我们叫做点扩散函数Point Spread Function,镜头对线光源成像的函数,我们叫做线扩散函数Line Spread Function。 1-3 MTF的计算 (MzThGJK_
/C6$B)w_*{
MTF的计算是一个复杂的计算公式,必须搭配不同的光源做不同的计算,例如:雷射光源与白光光源的MTF计算方式就有差异。同时,MTF值又与空间频率有关。在这里我们将之简化,只以它的物理特性来探讨。假设我们今天使用的是狭缝光源,经过待测镜头,会成为一个狭缝光源影像。我们以侦测器侦测它的光讯号,然后计算出光源的线性扩散函数,最后,经过光学傅立叶函数的转换运算而得到OTF值的结果。OTF为光学传递函数,此值包含实数与虚数两个部份。取其实数部分即为MTF值,取其虚数部分则为PTF值。MTF值与空间频率的关系可由傅立叶公式转换计算而得,详细的计算方式与推演过程较为繁复,不在这里介绍。 6(8zt"E
{&uN q^Ch
第二章:MTF量测系统架构 >41K>=K
DDBf89$\
2-1 Infinite Conjugate =<[M$"S7d6
XDyFe'1I
各种光学镜头(组) 之 架构 K_GqM9
ZfVw33z
在进行MTF量测之前,必须先了解待测镜头所使用之光学系统安排。依照其设计需求安排好量测架构,方能进行后续的量测动作。 光学镜头系统设计,基本上架构的安排可分为三种:第一种是无穷共轭系统(Infinite Conjugate),光线从无穷远的方向射入镜头,然后聚焦到某一点,典型的例子就是照相机镜头对远方物体拍照的使用情况。第二种是有限共轭系统(Finite Conjugate),表示镜头的物、像都在有限的距离范围内。典型的例子是投影机光学镜头,它的物指的是LCD面板,它的像--就是我们所看到的屏幕画面,是在有限的数公尺范围内。最后一种是无焦系统(Afocus System),无穷远的平行光射入镜头,经过此无焦镜头系统之后,也是平行光射出,并没有一个聚焦点,最好的例子就是天文望远镜。我们在测量MTF值时,就必须考虑不同的光学系统架构以安排符合此光学系统设计之量测架构。 zT+ "Z(oz,
s)~Wcp'+M:
Infinite - Conjugate 量测架构 AB=Wj*fr
P X>>h}%
这是实际的MTF量测系统架构。 我们先来看Infinite Conjugate(无穷共轭系统)的量测架构。光源经过反射镜1反射到准直拋物面镜2,经过拋物面镜2反射而出的光源成为平行光,此平行光入射至反射镜3,再被反射面镜3反射进入待测镜头,然后聚焦成像。我们可经由显微镜系统观察其成像,此时,显微镜利用侦测器侦测光源成像的光亮度和分布图,经过计算转换,即可得到MTF值。 [oG
Sy5bB
OMm'm\+/
Infinite - Conjugate 量测架构图标 [Wn6d:
4Ul*`/d
我们以图标再做一次说明。狭缝光源位于离轴拋物面镜的焦点上,狭缝光源将光入射至小的反射镜(M1),然后反射到离轴的拋物面反射镜(M2),经由此离轴拋物面镜反射后之光源为平行光,再反射到大的平面反射镜(M3),光源通过待测镜头,成像到显微物镜上,之后,利用光侦测器侦测光讯号强度,再经过一些数学计算得到MTF值。 nj=nSD
*0/%R{+S
2-2 Two-Finite Conjugate F@<^
1
&-%<o
Two-Finite Conjugate 量测架构 -- 现在我们再来看有限共轭系统(2-finite Conjugate)的架构是如何安排的呢?狭缝光源入射至待测镜头,此时之狭缝光源为一个发散光源,并没有经过拋物面镜,所以入射至镜头之狭缝光源为发散之线光源,而非平行光源。此狭缝光源与镜头之间的距离必须依照设计值而安排。狭缝光源通过镜头之后成像,再经由显微物镜放大倍率成像于CCD光侦测器上。我们以CCD侦测器侦测光讯号强度,经过计算机的公式转换运算,即可得到MTF值。 ;7U"wI_~c
&UIS