核磁共振(1946) =1B;<aZH!
Edward Purcell和Felix Bloch分别用共振吸收和核磁感应法测量核磁矩,实现了核磁共振。二人因此获得1952年Nobel物理学奖。 JKYl
Lamb位移(1947) zBrqh9%8e
由Willis Lamb和Robert Retherford发现。Lamb位移是量子电动力学的第一个实验证据。其说明即便最简单的氢原子,量子力学也不能完整描述,而需要用量子电动力学。Lamb因此获得1955年Nobel物理学奖。 ]tK<[8Y
电子反常磁矩(1947) J(,gLl
反常磁矩包括电子和μ子的反常磁矩。前者由Polykarp Kusch精确测量,并因此获1955年Nobel物理学奖。反常磁矩同Lamb位移一起,是量子电动力学的最重要的实验支柱。 ^?0WE
π介子(1947) [9CBTSr
由Cecil Powell等人在宇宙线中发现。Powell因此获得1950年Nobel物理学奖。而在1949年,汤川秀树则因为理论预测π介子存在获得Nobel奖。π介子是最轻也是最重要的介子,对研究低能强相互作用有重要作用。 Y5IQhV.
晶体管(1947) a!x?Apww
由Bell实验室的John Bardeen、Walter Brattain和William Shockley发明。三人因此获得1956年Nobel物理学奖。没有晶体管就没有现代文明。 |oOA;JC)(
全息摄影(1947) tN;~.\TKg
Dennis Gabor于电子显微镜技术中发现全息技术的原理,并因此获得1971年Nobel物理学奖。全息技术在激光发明后才有实质进展。Yuri Denisyuk在1962年拍摄了世界上第一张全息照片。 ;x{J45^
微波激射器(1953,1955) 8+_e= _3R
即激光的前身,和激光的区别是前者为可见光,后者是微波。由美国的Charles Hard Townes和前苏联Nikolay Basov和Aleksandr Prokhorov两组人各自独立实现。三人因此分享1964年Nobel物理学奖。 z{>
)'A/
反质子(1955) [py/\zkn
是继正电子之后,发现的第二个反粒子。由Owen Chamberlain和Emilio Gino Segrè发现,二人因此获得1959年Nobel物理学奖。 ;2eZa|M*q
反中子(1956) 8`w#)6(V
由Bruce Cork发现。因为中子整体不带电,反中子指的是内部的三个夸克与中子内部的三个夸克相反。 F,GG>(6c
中微子(1956) -Ze2]^#dl
中微子由W. Pauli于1930年理论上提出。1956年,Clyde Cowan和Frederick Reines在β衰变中首次证实电子型中微子的存在。 a,*|*Cv
弱相互作用中宇称不守恒(1957) c30kb
由杨振宁、李政道1956年理论上提出,吴健雄等人于1957年1月做出实验验证。前二位得了同年的Nobel奖。「宇称」是指波函数/场在空间坐标反号下的变换性质。电磁和强相互作用不改变这种变换性质,被称作「宇称守恒」;弱相互作用改变,被称作「宇称不守恒」。 @2A&eLwLH
半导体/超导体量子隧道效应(1957,1960) N*hx;k9
量子力学中物体有一定概率穿过经典上无法穿过的势垒,即量子隧道效应。1957年Sony公司的江崎玲於奈在高频晶体管中发现负电阻现象,1960年Ivan Giaever证实超导体中存在隧道效应。二人因此与Josephson效应的提出者B. Josephson分享了1973年Nobel物理学奖。 [ 3SbWwg
M猀猀戀愀甀攀爀效应(1958) #5IfF~*i
由Rudolf M戀愀甀攀爀发现,并因此获得1961年Nobel物理学奖。M猀猀戀愀甀攀爀效应是Gamma射线的无反冲共振吸收,本质上也是一种核磁共振。其可用于研究原子核与周围环境的超精细相互作用,是一种非常精确的测量手段。 D
z>7.'3
Pound-Rebka实验(1959) ,n{|d33
广义相对论最早的精确实验、同时也是三大经典验证(另两个是水星进动和光线偏折)之一。Robert Pound及其研究生Glen Rebka通过测量哈佛大学Jefferson塔顶端和底端两个辐射源频率,得到了与广义相对论预言一致的相对论红移。 Q;p%
VQ
光泵(1950s) \" =@uqar2
光泵即是用光将原子或分子中的电子从低能级激发到高能级。由Alfred Kastler在1950年代发展,并因此获得1966年的Nobel物理学奖。 &