一、光学显微镜的发展历史 (tO4UI5!
早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。 ")ys!V9
1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。 :V$\y up
17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。 Na`>
pH
1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。 1.%|Er 4
19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。 a2?@OJ
在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。 ;/NC[:'$D
古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。 (e_<~+E
目前全世界最主要的显微镜厂家主要有:奥林巴斯、蔡司、徕卡、尼康。国内厂家主要有:江南、麦克奥迪等。 r5[pT(XT]
h@JX?LzZS
二、 显微镜的基本光学原理 7.2G}O6$
(一) 折射和折射率 NPv.7,
光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现象,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。 '<,Dz=
(二) 透镜的性能 {1=|H$wKg
透镜是组成显微镜光学系统的最基本的光学元件,物镜目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。 U6|T<bsOl
当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称"焦点",通过交点并垂直光轴的平面,称"焦平面"。焦点有两个,在物方空间的焦点,称"物方焦点",该处的焦平面,称"物方焦平面";反之,在象方空间的焦点,称"象方焦点",该处的焦平面,称"象方焦平面"。 v`L]dY4,
光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。 qu#xc0?
(三) 凸透镜的五种成象规律 D]>Z5nr |
1. 当物体位于透镜物方二倍焦距以外时,则在象方二倍焦距以内、焦点以外形成缩小的倒立实象; Yt =)=n
2. 当物体位于透镜物方二倍焦距上时,则在象方二倍焦距上形成同样大小的倒立实象; Rkg)yme!N
3. 当物体位于透镜物方二倍焦距以内,焦点以外时,则在象方二倍焦距以外形成放大的倒立实象; M_+W5Gz<
4. 当物体位于透镜物方焦点上时,则象方不能成象; dHAT($QG
5. 当物体位于透镜物方焦点以内时,则象方也无象的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚象。 #Rfcp!
o%-KO? YW
三、 光学显微镜的成象(几何成象)原理 ho6hjhS|u
只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε。在最佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1’。为易于观测,一般将该量加大到2’,并取此为平均目镜分辨率。 h$sOJs~6h
物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关。有公式y=lε jLn#%Ia}
距离l不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳。对于标准(正视)而言,最佳的视距规定为250mm(明视距离)。这意味着,在没有仪器的条件下,目视分辨率ε=2’的眼睛,能清楚地区分大小为0.15mm的物体细节。 gT+wn-3
在观测视角小于1’的物体时,必须使用放大仪器。放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。 ,%A|:T]
96;5
A#K<5%U{Mv
+VQD'
(一) 放大镜的成像原理 trjpq{,[U
表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。位于物方焦点f以内的物ab,其大小为y,它被放大镜成一大小为y’的虚像a’b’。 >h:'Z*9
放大镜的放大率 i/C%
1<
γ=250/f’ V=&M\58
式中250--明视距离,单位为mm `<~=6H
f’--放大镜焦距,单位为mm Vp1ct06^
该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值。 Yh^8
!
<-'
!I&
(二) 显微镜的成像原理 h|PC?@jp
显微镜和放大镜起着同样的作用,就是把近处的微小物体成一放大的像,以供人眼观察。只是显微镜比放大镜可以具有更高的放大率而已。 x8C\&ivn
图2是物体被显微镜成像的原理图。图中为方便计,把物镜l1和目镜l2均以单块透镜表示。物体ab位于物镜前方,离开物镜的距离大于物镜的焦距,但小于两倍物镜焦距。所以,它经物镜以后,必然形成一个倒立的放大的实像a’b’。 a’b’位于目镜的物方焦点f2上,或者在很靠近f2的位置上。再经目镜放大为虚像a’’b’’后供眼睛观察。虚像a’’b’’的位置取决于f2和a’b’之间的距离,可以在无限远处(当a’b’位于f2上时),也可以在观察者的明视距离处(当a’b’在图中焦点f2之右边时)。目镜的作用与放大镜一样。所不同的只是眼睛通过目镜所看到的不是物体本身,而是物体被物镜所成的已经放大了一次的像。 6`6 / 2C$%
+w.$"dF!
(三) 显微镜的重要光学技术参数 yEjiMtQll]
在镜检时,人们总是希望能清晰而明亮的理想图象,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系。只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果。 <@GO]vY
显微镜的光学技术参数包括:数值孔径、分辨率、放大率、焦深、视场宽度、覆盖差、工作距离等等。这些参数并不都是越高越好,它们之间是相互联系又相互制约的,在使用时,应根据镜检的目的和实际情况来协调参数间的关系,但应以保证分辨率为准。 _OjZ>j<B.
{9{X\|
1. 数值孔径 N.q*jY=X|
数值孔径简写na,数值孔径是物镜和聚光镜的主要技术参数,是判断两者(尤其对物镜而言)性能高低的重要标志。其数值的大小,分别标刻在物镜和聚光镜的外壳上。 A15Kj#Oy
数值孔径(na)是物镜前透镜与被检物体之间介质的折射率(n)和孔径角(u)半数的正弦之乘积。用公式表示如下:na=nsinu/2 |By[ev"Kh%
孔径角又称"镜口角",是物镜光轴上的物体点与物镜前透镜的有效直径所形成的角度。孔径角越大,进入物镜的光通亮就越大,它与物镜的有效直径成正比,与焦点的距离成反比。 ,W[J@4.
显微镜观察时,若想增大na值,孔径角是无法增大的,唯一的办法是增大介质的折射率n值。基于这一原理,就产生了水浸物镜和油浸物镜,因介质的折射率n值大于1,na值就能大于1。 mj9sX^$dE
数值孔径最大值为1.4,这个数值在理论上和技术上都达到了极限。目前,有用折射率高的溴萘作介质,溴萘的折射率为1.66,所以na值可大于1.4。 (K8Ob3zN_
这里必须指出,为了充分发挥物镜数值孔径的作用,在观察时,聚光镜的na值应等于或略大于物镜的na值。 <b *sn]l
数值孔径与其他技术参数有着密切的关系,它几乎决定和影响着其他各项技术参数。它与分辨率成正比,与放大率成正比,与焦深成反比,na值增大,视场宽度与工作距离都会相应地变小。 gd7r9yV
-n[(0n3c
2. 分辨率 Wq+GlB*
显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距,又称"鉴别率"。其计算公式是σ=λ/na iSoQ1#MP)2
式中σ为最小分辨距离;λ为光线的波长;na为物镜的数值孔径。可见物镜的分辨率是由物镜的na值与照明光源的波长两个因素决定。na值越大,照明光线波长越短,则σ值越小,分辨率就越高。 A-uIZ
zC
要提高分辨率,即减小σ值,可采取以下措施 }Md;=_TP
(1) 降低波长λ值,使用短波长光源。 !Tv3WQ@
(2) 增大介质n值以提高na值(na=nsinu/2)。 (57!{[J
(3) 增大孔径角u值以提高na值。 ILAn2W
(4) 增加明暗反差。 <>{m+=gA
WG6
0
3. 放大率和有效放大率 9`N5$;NzY
由于经过物镜和目镜的两次放大,所以显微镜总的放大率γ应该是物镜放大率β和目镜放大率γ1的乘积: 7mdd}L^h
Z
γ=βγ1 Kw?3joy
显然,和放大镜相比,显微镜可以具有高得多的放大率,并且通过调换不同放大率的物镜和目镜,能够方便地改变显微镜的放大率。 EZ|v,1`e
放大率也是显微镜的重要参数,但也不能盲目相信放大率越高越好。显微镜放大倍率的极限即有效放大倍率。 7p Y :.iVO
分辨率和放大倍率是两个不同的但又互有联系的概念。有关系式:500na<γ<1000na I-r+1gty
当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。 e*lL.
4. 焦深 `q<W %'Tb$
焦深为焦点深度的简称,即在使用显微镜时,当焦点对准某一物体时,不仅位于该点平面上的各点都可以看清楚,而且在此平面的上下一定厚度内,也能看得清楚,这个清楚部分的厚度就是焦深。焦深大, 可以看到被检物体的全层,而焦深小,则只能看到被检物体的一薄层,焦深与其他技术参数有以下关系: /A-WI x
(1) 焦深与总放大倍数及物镜的数值孔径成反比。 /qIl)+M
(2) 焦深大,分辨率降低。 "#o..?K
由于低倍物镜的景深较大,所以在低倍物镜照相时造成困难。在显微照相时将详细介绍。 ]nB|8k=J
/IRXk[
5. 视场直径(field of view) Qw'905;(
观察显微镜时,所看到的明亮的圆形范围叫视场,它的大小是由目镜里的视场光阑决定的。 Px=@Tw N,
视场直径也称视场宽度,是指在显微镜下看到的圆形视场内所能容纳被检物体的实际范围。视场直径愈大,愈便于观察。 I@9'd$YY
有公式 f=fn/β I6f/+;E
式中f: 视场直径,fn:视场数(field number, 简写为fn,标刻在目镜的镜筒外侧),β:物镜放大率。 ]$lt
由公式可看出: ^r&)@R$V
(1) 视场直径与视场数成正比。 W~ET/h
(2) 增大物镜的倍数,则视场直径减小。因此,若在低倍镜下可以看到被检物体的全貌,而换成高倍物镜,就只能看到被检物体的很小一部份。 s||" } l
tWIJ,_8l
6. 覆盖差 v wEbGx
显微镜的光学系统也包括盖玻片在内。由于盖玻片的厚度不标准,光线从盖玻片进入空气产生折射后的光路发生了改变,从而产生了相差,这就是覆盖差。覆盖差的产生影响了显微镜的成响质量。 [ncK+rGAc
国际上规定,盖玻片的标准厚度为0.17mm,许可范围在0.16-0.18mm,在物镜的制造上已将此厚度范围的相差计算在内。物镜外壳上标的0.17,即表明该物镜所要求的盖玻片的厚度。 pqfX}x
}<0N)dpT
7. 工作距离wd Y/FPkH4
工作距离也叫物距,即指物镜前透镜的表面到被检物体之间的距离。镜检时,被检物体应处在物镜的一倍至二倍焦距之间。因此,它与焦距是两个概念,平时习惯所说的调焦,实际上是调节工作距离。 c lB K
在物镜数值孔径一定的情况下,工作距离短孔径角则大。 R{H[< s+n
数值孔径大的高倍物镜,其工作距离小。 @m#OhERv
Tf86CH=)5
(四) 物镜 xmvE*q"9]
物镜是显微镜最重要的光学部件,利用光线使被检物体第一次成象,因而直接关系和影响成象的质量和各项光学技术参数,是衡量一台显微镜质量的首要标准。 tR|dnC4U
物镜的结构复杂,制作精密,由于对象差的校正,金属的物镜筒内由相隔一定距离并被固定的透镜组组合而成。物镜有许多具体的要求,如合轴,齐焦。 /D&&7;jJ
齐焦既是在镜检时,当用某一倍率的物镜观察图象清晰后,在转换另一倍率的物镜时,其成象亦应基本清晰,而且象的中心偏离也应该在一定的范围内,也就是合轴程度。齐焦性能的优劣和合轴程度的高低是显微镜 质量的一个重要标志,它是与物镜的本身质量和物镜转换器的精度有关。 i3,IEN
现代显微物镜已达到高度完善,其数值孔径已接近极限,视场中心的分辨率与理论值之区别已微乎其微。但继续增大显微物镜视场与提高视场边缘成象质量的可能性仍然存在,这种研究工作,至今仍在进行。 -^xbd_'
显微物镜与目镜在参于成象这点上是有区别的。物镜是显微镜最复杂和最重要的部分,在宽光束中工作(孔径大),但这些光束与光轴的倾角较小(视场小);目镜在窄光束中工作,但其倾角大(视场大)。当计算物镜与目镜,在消除象差上有很大差别。 G@k]rwub
与宽光束有关的象差是球差、慧差以及位置色差;与视场有关的象差是象散、场曲、畸变以及倍率包差。 4#B'pJMw9
显微物镜是一消球差系统。这意味着:就轴上的一对共轭点而言,消除了球差并且实现了正弦条件时,每一物镜仅有两个这种消球差点。因此,物体与象的计算位置的任何改变均导致象差变大。 aj1]ZT\
1. 物镜的主要参数 eThaH0
(1) 放大率β Qq<@;4
(2) 数值孔径na . 5(YL8d
(3) 机械筒长l:在显微镜中,物镜支承面到目镜支承面之间的距离称为机械筒长。对于一台显微镜来说,机械筒长是固定的。我国规定机械筒长是160毫米。 <&3P\aM>
(4) 盖玻片厚度d f4"UI-8;n
(5) 工作距离wd 8W\yM;'
这些参数,大多刻在物镜筒上,如图3所示。 M^o_='\bE
有一种所谓筒长无限的显微物镜,这种物镜的后方一般带有辅助物镜(也叫补偿物镜或镜筒物镜),被观察物体位于物镜前焦点上,经过物镜以后,成像在无限远,再经过辅助物镜成像在辅助物镜的焦平面上,如图4所示。在物镜和辅助物镜之间是平行光,所以中间距离比较自由一些,可以加入棱镜等光学元件。 kFn/dQ4|
0[MYQl`
2. 物镜的基本类型 AE0uBv
(1) 按显微镜镜筒长度(以mm计):透射光用160镜筒,带0.17mm厚或更厚的盖玻片;反射光用190镜筒,不带盖玻片;透射光与反射光用镜筒,筒长无限大。 94"+l@K
(2) 按浸法特征:非浸式(干式)、浸式(油浸、水浸、甘油浸及其它浸法)。 .^Sglo
(3) 按光学装置:透射式、反射式以及折反射式。 g+ c*VmY
(4) 按数值孔径和放大倍数:低倍(na≤0.2与β≤10x),中倍(na≤0.65与β≤40x),高倍(na>0.65与β>40x)。 vI{aF-
#
(5) 按校正象差的情况不同,通常分为消色差物镜,半复消色差物镜,复消色差物镜,平视场消色差物镜,平视场复消色差物镜和单色物镜。 >'*%wf[{
a. 消色差物镜(achromatic objective) {&=+lr_h?
这是应用最广泛的一类显微物镜,外壳上常有"ach"字样。它校正了轴上点的位置色差(红,蓝二色)、球差(黄绿光)和正弦差,保持了齐明条件。轴外点的象散不超过允许值(-4属光度),二级光谱未校正。 TN(Vzs%
数值孔径为0.1~0.15的低倍消色差物镜一般由两片透镜胶合在一起的双胶物镜构成。数值孔径至0.2的消色差物镜由两组双胶透镜构成。当数值孔径增大到0.3时,再加入一平凸透镜,该平凸透镜决定着物镜的焦距,而其它透镜则补偿由其平面与球面产生的象差。高倍物镜的平面象差可用浸法消除。高倍消色差物镜一般均为浸式,由四部分构成:前片透镜、新月形透镜及两个双胶透镜组。 mmTpF]t
?`
b. 复消色差物镜(apochromatic objective) Jo5B mh0
这类物镜的结构复杂,透镜采用了特种玻璃或萤石等材料制作而成,物镜的外壳上标有"apo"字样。它对两个色光实现了正弦条件,要求严格地校正轴上点的位置色差(红,蓝二色)、球差(红,蓝二色)和正弦差,同时要求校正二级光谱(再校正绿光的位置色差)。其倍率色差并不能完全校正,一般须用目镜补偿。 \^!;r 9z=A
由于对各种象差的校正极为完善,比响应倍率的消色差物镜有更大的数值孔径,这样不仅分辨率高,象质量优而且也有更高的有效放大率。因此,复消色差物镜的性能很高,适用于高级研究镜检和显微照相。 V8^la'_j
c. 半复消色差物镜(semi apochromatic objective) `6Bx8CZ'I
半复消色差物镜又称氟石物镜,物镜的外壳上标有"fl"字样。在结构上透镜的数目比消色差物镜多,比复消色差物镜少,成象质量上,远较消色差物镜为好,接近于复消色差物镜。 }[AaI #
d. 平视场物镜(plan objective ) JrzPDb`m
平场物镜是在物镜的透镜系统中增加一快半月形的厚透镜,以达到校正场曲的缺陷,提高视场边缘成像质量的目的。平场物镜的视场平坦,更适用于镜检和显微照相。对于平视场消色差物镜,其倍率色差不大,不必用特殊目镜补偿。而平视场复消色差物镜,则必须用目镜来补偿它的倍率色差。 YuK+N
e. 单色物镜 G:AA>t
这类物镜由石英、荧石或氟化锂制的一组单片透镜构成。只能在紫外线光谱区的个别区内使用(宽度不超过20mm),可见光谱区不能采用单色物镜。这类物镜均制成反射式与折反射式系统。主要缺点是相当大一部分光束在中心被遮蔽(入瞳面积的25%)。在新型折反射系统中,由于采用半透明反射镜以及物镜的胶合结构,使这一缺点大为减轻,从而可以取消反射镜框的遮光。并且两同轴反射镜的残余象差是互相补偿的,同时用透镜组来增大数值孔径。若系统的校正满意,孔径达到na=1.4时,中心遮蔽可不超过入瞳面积的4%。 J(7#yg%5
f. 特种物镜 ,mHME~
所谓"特种物镜"是在上述物镜的基础上,专门为达到某些特定的观察效果而设计制造的。主要有以下几种: F@BpAl
(a) 带校正环物镜(correction collar objective) 6"&cQ>$xh
在物镜的中部装有环装的调节环,当转动调节环时,可调节物镜内透镜组之间的距离,从而校正由盖玻片厚度不标准引起的覆盖差。调节环上的刻度可从0 .11--.023,在物镜的外壳上也标科有此数字,表明可校正盖玻片从0.11-0.23mm厚度之间的误差。 Gv-VDRS
(b) 带虹彩光阑的物镜(iris diaphragm objective) 586P~C[ic
在物镜镜筒内的上部装有虹彩光阑,外方也可以旋转的调节环,转动时可调节光阑孔径的大小,这种结构的物镜是高级的油浸物镜,它的作用是在暗视场镜检时,往往由于某些原因而使照明光线进入物镜,使视场背景不够黑暗,造成镜检质量的下降。这时调节光阑的大小,使背景变黑,使被检物体更明亮,增强镜检效果。 y )QLR<wf
(c) 相衬物镜(phase contrast objective) 4V@%Y,:ee
这种物镜是由于相衬镜检术的专用物镜,其特点是在物镜的后焦平面处装有相板。 y]db]pP5
(d) 无罩物镜(no cover objective) F&d!fEHU
有些被检物体,如涂抹制片等,上面不能加用盖玻片,这样在镜检时应使用无罩物镜,否则图象质量将明显下降,特别是在高倍镜检时更为明显。这种物镜的外壳上常标刻nc,同时在盖玻片厚度的位置上没有0.17的字样,而标刻着"0"。 O_FB^BB
(e) 长工作距离物镜 ,'8%'xit
这种物镜是倒置显微镜的专用物镜,它是为了满足组织培养,悬浮液等材料的镜检而设计。 B)0/kY7c
uNyU]@R<W
(五) 目镜 \+
se%O
目镜的作用是把物镜放大的实象(中间象)再放大一级,并把物象映入观察者的眼中,实质上目镜就是一个放大镜。已知显微镜的分辨率能力是由物镜的数值孔径所决定的,而目镜只是起放大作用。因此,对于物镜不能分辨出的结构,目镜放的再大,也仍然不能分辨出。 Qit&cnO
\Zj%eW!m
(六) 聚光镜 )U&9d
聚光镜装在载物台的下方。小型的显微镜往往无聚光镜,在使用数值孔径0.40以上的物镜时,则必须具有聚光镜。聚光镜不仅可以弥补光量的不足和适当改变从光源射来的光的性质,而且将光线聚焦于被检物体上,以得到最好的照明效果。 @{/)k%U
聚光镜的的结构有多种,同时根据物镜数值孔径的大小,相应地对聚光镜的要求也不同 。 irt9%w4"
1. 阿贝聚光镜(abbe condenser) wWl?c
这是由德国光学大学大师恩斯特.阿贝(ernst abbe)设计。阿贝聚光镜由两片透镜组成,有较好的聚光能力,但是在物镜数值孔径高于0.60时,则色差,球差就显示出来。因此,多用于普通显微镜上。 PmuG(qg
2. 消色差聚光镜(achromatic aplanatic condenser ) |AYii-g
这种聚光镜又名"消球差聚光镜"和"齐明聚光镜",它由一系列透镜组成,它对色差球差的校正程度很高,能得到理想的图象,是明场镜检中质量最高的一种聚光镜,其na值达1.4 。因此,在高级研究显微镜常配有此种聚光镜。它不适用于4 x以下的低倍物镜,否则照明光源不能充满整个视场。 wm5&5F4:
3. 摇出式聚光镜(swing out condenser) "N+4TfXy
在使用低倍物镜时(如4x),由于视场大,光源所形成的光锥不能充满真整个视场,造成视场边缘部分黑暗,只中央部分被照亮。要使视场充满照明,就需将聚光镜的上透镜从光路中摇出。 )D8op;Fn
4. 其它聚光镜 <Lb LMV
聚光镜除上述明场使用的类型外,还有作特殊用图的聚光镜。如暗视场聚光镜,相衬聚光镜,偏光聚光镜,微分干涉聚光镜等,以上聚光镜分别适用于相应的观察方式。 Ip
t;NlR
(七) 照明方法 Rhc:szDU
显微镜的照明方法按其照明光束的形成,可分为"透射式照明",和"落射式照明"两大类。前者适用于透明或半透明的被检物体,绝大数生物显微镜属于此类照明法;后者则适用于非透明的被检物体,光源来自上方,又称""反射式照明"。主要应用与金相显微镜或荧光镜检法。 ,rB(WKU
1. 透射式照明 !>48`o^
生物显微镜多用来观察透明标本,需要以透射光来照明。有两种照明方式 9D3W _eIc
(1) 临界照明(critical illumination) 光源经过聚光镜后,成像于物平面上,如图5所示。若忽略光能的损失,则光源像的亮度与光源本身相同,因此,这种方法相当于在物平面上放置光源。显然,在临界照明中,如果光源表面亮度不均匀,或明显地表现出细小的结构,如灯丝等,那么就要严重影响显微镜观察效果,这是临界照明的缺点。其补救的方法是在光源的前方放置乳白和吸热滤色片,使照明变得较为均匀和避免光源的长时间的照射而损伤被检物体。用透射光照明时,物镜成像光束的孔径角,被聚光镜像方光束的孔径角所决定,为使物镜的数值孔径得到充分利用,聚光镜应有与物镜相同或稍大的数值孔径。 UC`h o%OBF
(2) 柯拉照明 临界照明中物面光照度不均匀的缺点,在柯拉照明中可以消除。在光源1与聚光镜5之间加一辅助聚光镜2,如图6所示。可见,由于不是直接把光源,而是把被光源均匀照明了的辅助聚光镜2(也称为柯拉镜)成像在标本6上,所以物镜的视场(标本)得到均匀的照明。
2E*=EjGV
2. 落射式照明 9\8ektq}Z
在观察不透明物体时,例如通过金相显微镜观察金属磨片,往往是采用从侧面或者从上面加以照明的方式。此时,被观察物体的表面上没有盖玻璃片,标本像的产生是靠进入物镜的反射或散射光线。如图7所示。 Cy-p1s
3. 用暗视场来观察微粒的照明方法 S{^x]h|?
Ii0\Skb
Snkb^Kt
RP~nLh3=\
用暗视场方法可以观察超显微质点。所谓超显微质点,是指那些小于显微镜分辨极限的微小质点。暗视场照明的原理是:不使主要的照明光线进入物镜,能够进入物镜成像的只是由微粒所散射的光线。 ]L3U2H`7
因此,在暗的背景上给出了亮的微粒的像,视场背景虽暗,但衬度(对比)很好,可以使分辨率提高。 DOWWG!mx
暗视场照明又有单向和双向之分 F_079~bJ
(1) 单向暗视场照明 图8是单向暗视场照明示意图。由图可见,由照明器2发出的光线,经不透明的标本片1反射后,主要的光线都没有进入物镜3,进入物镜的光线主要是由微粒或凸凹不平的细部所散射的光线。显然,这种单向的暗视场照明,对观察微粒的存在和运动是有效的,但对物体细节的再现不是有效的,即存在"失真"的现象。 _hY6NMw
(2) 双向暗视场照明 双向暗视场照明,可以消除单向所产生的失真缺点。在普通的三透镜聚光镜前面,安置一个环形光阑,如图9即可实现双向暗视场照明。在聚光镜的最后一片与载物玻璃片之间浸以液体,而盖玻璃片与物镜之间是干的。于是,经过聚光镜的环形光束,在盖玻璃片内全反射而不能进入物镜,形成如图中的回路。进入物镜的只是由标本上的微粒所散射的光线,形成了双向暗视场照明。 4)iP%%JH
"](Q2
四、 光学显微镜的组成结构 k|OM?\
光学显微镜包括光学系统和机械装置两大部分,而数码显微镜还包括数码摄像系统,现分述如下: QGN+f)
(一) 机械装置 &4OOW;,?<
1. 机架 显微镜的主体部分,包括底座和弯臂。 ;Z*rY?v
2. 目镜筒 位于机架上方,靠圆形燕尾槽与机架固定,目镜插在其上。根据有否摄像功能,可分为双目镜筒和三目镜筒;根据瞳距的调节方式不同,可分为铰链式和平移式。 ,$`}Rf<
3. 物镜转换器 它是一个旋转圆盘,上有3~5个孔,分别装有低倍或高倍物镜镜头。转动物镜转换器就可让不同倍率的物镜进入工作光路。 YeCnk:_ kg
4. 载物台 是放置玻片的平台,其中央具有通光孔。台上有一个弹性的标本夹,用来夹住载玻片。右下方有移动手柄,使载物台面可在xy双方向进行移动。 #?)6^uTW
5. 调焦机构 利用调焦手轮可以驱动调焦机构,使载物台作粗调和微调的升降运动,从而使被观察物体对焦清晰成像。 !SuflGx,q
6. 聚光器调节机构 聚光器安装在其上,调节螺旋可以使聚光器升降,用以调节光线的强弱。 ZV{C9S&
(二) 光学系统 18X?CoM~
1. 目镜 它是插在目镜筒顶部的镜头,由一组透镜组成,可以使物镜成倍地分辨、放大物像,例如10x、15x等。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。较高档显微镜的目镜上还装有视度调节机构,操作者可以方便快捷地对左右眼分别进行视度调整;此外,在这些目镜上可以加装测量分划板,测量分划板的象总能清晰地调焦在标本的焦面上;并且,为了防止目镜被取走以及减少运输中被损坏的可能性,这些目镜可以被锁定。 [pU(z'caS
2. 物镜 它安装在转换器的孔上,也是由一组透镜组成的,能够把物体清晰地放大。物镜上刻有放大倍数,主要有10x、40x、60x、100x等。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体(如杉木油),它能显著的提高显微观察的分辨率。 H!Gw@u]E
3. 光源 有卤素灯、钨丝灯、汞灯、荧光灯、金属卤化物灯等。 @PM<pEve
4. 聚光器 包括聚光镜、孔径光阑。聚光镜由透镜组成,它可以集中透射过来的光线,使更多的光能集中到被观察的部位。孔径光阑可控制聚光器的通光范围,用以调节光的强度。 5&%M L
(三) 数码摄像系统 ^?{&v19m
1. 摄像头 g7323m1=
2. 图像采集卡 0d2RB^"i
3. 软件 T^!Q(`*
4. 微机 tD`^qMua
rhLhFN{h
五、 光学显微镜的分类 i\lvxbp
光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。 8(j]=n6r
1. 双目体视显微镜 l!}gWd,H
双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它具有如下特点: oi`L ;w|]
(1) 利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。 e!0xh
(2) 象是直立的,便于操作和解剖,这是由于在目镜下方的棱镜把象倒转过来的缘故。 d7BpmM
(3) 虽然放大率不如常规显微镜,但其工作距离很长。 z~f;}`0
(4) 焦深大,便于观察被检物体的全层。 hpQ #`rhn
(5) 视场直径大。 41/civX>V
目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(zoom-stereo microscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。 #}fvjJ{
2. 金相显微镜 j&dCP@G
金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。 EwcFxLa!F
3. 偏光显微镜(polarizing microscope) n<|8Onw
偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。 ommW
(1) 偏光显微镜的特点 AHr^G'
c|:EMYS
将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。 DNj<:Pdd)
(2) 偏光显微镜的基本原理 1\Bh-tzB
偏光显微镜的原理比较复杂,在此不作过多介绍,偏光显微镜必须具备以下附件:起偏镜,检偏镜,补偿器或相位片,专用无应力物镜,旋转载物台。 _"F=4`lJ
(3) 偏光镜检术的方式 1c/<2 xO~
正相镜检(orthscope):又称无畸变镜检,其特点是使用低倍物镜,不用伯特兰透镜(bertrand lens), 被研究对象可直接用偏振光研究。同时为使照明孔径变小,推开聚光镜的上透镜。正相镜检用于检查物体的双折射性。 qPi $kecx
b. 锥光镜检(conoscope):又称干涉镜检,研究在偏振光干涉时产生的干涉图样,这种方法用于观察物体的单轴或双轴性。在该方法中,用强会聚偏振光束照明。 ?0u"No52m
(4) 偏光显微镜在装置上的要求 ;s~xS*(C
a. 光源:最好采用单色光,因为光的速度,折射率,和干涉现象由于波长的不同而有差异。一般镜检可使用普通光。 b"@-9ke5I
b. 目镜:要带有十字线的目镜。 _`C|K>:
c. 聚光镜:为了取得平行偏光,应使用能推出上透镜的摇出式聚光镜。 g<~ODMCO?W
d. 伯特兰透镜:聚光镜光路中的辅助部件,这是把物体所有造成的初级相放大为次级相的辅助透镜。它可保证用目镜来观察在物镜后焦平面中形成的平涉图样。 n9
bp0#K
(5) 偏光镜检术的要求 {|%^'lS
a. 载物台的中心与光轴同轴。 (j:[<U
b. 起偏镜和检偏镜应处于正交位置。 \{rhHb\|h
c. 制片不宜过薄。 )y!gApNs"
4. 荧光显微镜 )jwovS?V
荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。 8>|4iT
(1) 荧光显微镜一般分为透射和落射式两种类型。 ?st}rJ_
a. 透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。
j AoI`J
b. 落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。 j^Qk\(^#IV
(2) 荧光镜检术的注意事项 Z@m5hx&
a. 激发光长时间的照射,会发生荧光的衰减和淬灭现象,因此尽可能缩短观察时间,暂时不观察时,应用挡板遮盖激发光。 ho#<?rh_
b. 作油镜观察时,应用"无荧光油"。 x`p908S^
c. 荧光几乎都较弱,应在较暗的室内进行。 vGH]7jht
d. 电源最好装稳压器,否则电压不稳不仅会降低汞灯的寿命,也会影响镜检的效果。 9l[C&0w#\
目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(fish)等等。 w4^$@GtN
5. 相衬显微镜(phase contrast microscope) &B+_#V=X@
在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 %"E!E1_Sv
H93ug1,
KB\ri&bF
ykx13|iR
相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。 %0u5d$b q
相衬镜检法在装置上与明场不同,有一些特殊要求: ~T._v;IT
a. 环状光阑(ring slit): 装在聚光镜的下方,而与聚光镜组合为一体---相衬聚光镜。它是由大a. 小不同的环形光阑装在一圆盘内,外面标有10x、20x、40x、100x等字样,与相对应倍数的物镜配合使用。 q` |E9
b. 相板(phase plate): 装在物镜的后焦平面处,它分为两部分,一是通过直射光的部分,为半透明的环状,叫共轭面;另一是通过衍射光的部分,?quot;补偿面"。有相板的物镜称"相衬物镜",外壳上常有"ph"字样。 :-2sKD y
相衬镜检法是一种比较复杂的镜检方法,想要得到好的观察效果,显微镜的调试非常重要。除此之外还应注意以下几个方面: Vn^8nS
a. 光源要强,全部开启孔径光阑; W"~"R
b. 使用滤色片,使光波近于单色。 *rm[\
6. 微分干涉对比显微镜(differential interference contrast dic) :K \IS `
微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。 d|
{<SRAI
(1) 原理 -S@ ys
微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。 >^f]Lgp
(2) 微分干涉对比镜检术所需的特殊部件: Pl|*+g
a. 起偏镜 li`
b. 检偏镜 P6'0:M@5
c. 渥拉斯顿棱镜2 块 5B{Eg?
(3) 微分干涉对比镜检时的注意事项 +jGUp\h%9;
a. 因微分干涉灵敏度高,制片表面不能有污物和灰尘。 ,y7X>M2
b. 具有双折射性的物质,不能达到微分干涉对比镜检的效果。 "W}+~Sn
c. 倒置显微镜应用微分干涉时,不能用塑料培养皿。 /5XdZu6k`h
7. 倒置显微镜(inverted microscope) \7(OFT\u:
倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。 *ul-D42!U
由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。 ]`@<I'?,X
由于工作距离的限制,倒置显微镜物镜的最大放大率为60x。一般研究用倒置显微镜都配置有4x、10x、20x、及40x 相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。 (>om.FM
目见倒置显微镜广泛应用于patch-clamp ,transgene icsi 等领域。 m?)F@4]
8. 数码显微镜 Nu}Zsb|{
数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。 VB+y9$Y'
VBu6,6
.18MMzdN
XCO;t_%
3_Re>i
六、 光学显微镜的使用规程 T
"t%>g
(一) 实验时要把显微镜放在座前桌面上稍偏左的位置,镜座应距桌沿 6~7 cm左右。 z0tm3ovp
(二) 打开光源开关,调节光强到合适大小。 A@ G%*\UZ
(三) 转动物镜转换器,使低倍镜头正对载物台上的通光孔。先把镜头调节至距载物台1~2cm左右处,然后用左眼注视目镜内,接着调节聚光器的高度,把孔径光阑调至最大,使光线通过聚光器入射到镜筒内,这时视野内呈明亮的状态。 L8KMMYh[
(四) 将所要观察的玻片放在载物台上,使玻片中被观察的部分位于通光孔的正中央,然后用标本夹夹好载玻片。 :LR>U;2
(五) 先用低倍镜观察(物镜10x、目镜10x)。观察之前,先转动粗动调焦手轮,使载物台上升,物镜逐渐接近玻片。需要注意,不能使物镜触及玻片,以防镜头将玻片压碎。然后,左眼注视目镜内,同时右眼不要闭合(要养成睁开双眼用显微镜进行观察的习惯,以便在观察的同时能用右眼看着绘图),并转动粗动调焦手轮,使载物台慢慢下降,不久即可看到玻片中材料的放大物像。 Y{dj~}mM+
(六) 如果在视野内看到的物像不符合实验要求(物像偏离视野),可慢慢调节载物台移动手柄。调节时应注意玻片移动的方向与视野中看到的物像移动的方向正好相反。如果物像不甚清晰,可以调节微动调焦手轮,直至物像清晰为止。 %y\
(七) 如果进一步使用高倍物镜观察,应在转换高倍物镜之前,把物像中需要放大观察的部分移至视野中央(将低倍物镜转换成高倍物镜观察时,视野中的物像范围缩小了很多)。一般具有正常功能的显微镜,低倍物镜和高倍物镜基本齐焦,在用低倍物镜观察清晰时,换高倍物镜应可以见到物像,但物像不一定很清晰,可以转动微动调焦手轮进行调节。 2o`L^^
(八) 在转换高倍物镜并且看清物像之后,可以根据需要调节孔径光阑的大小或聚光器的高低,使光线符合要求(一般将低倍物镜换成高倍物镜观察时,视野要稍变暗一些,所以需要调节光线强弱)。 &;%LTF@I,
(九) 观察完毕,应先将物镜镜头从通光孔处移开,然后将孔径光阑调至最大,再将载物台缓缓落下,并检查零件有无损伤(特别要注意检查物镜是否沾水沾油,如沾了水或油要用镜头纸擦净),检查处理完毕后即可装箱。 09HqiROw
* @'N/W/8
七、 光学显微镜的维护 Bjsg!^X7
(一) 必须熟练掌握并严格执行使用规程。 s `
+cQ
(二) 取送显微镜时一定要一手握住弯臂,另一手托住底座。显微镜不能倾斜,以免目镜从镜筒上端滑出。取送显微镜时要轻拿轻放。 6t`cY
(三) 观察时,不能随便移动显微镜的位置。 /.[78:G\,
(四) 凡是显微镜的光学部分,只能用特殊的擦镜头纸擦拭,不能乱用他物擦拭,更不能用手指触摸透镜,以免汗液玷污透镜。 IdWFG?b3
(五) 保持显微镜的干燥、清洁,避免灰尘、水及化学试剂的玷污。 kR;Hb3hb
(六) 转换物镜镜头时,不要搬动物镜镜头,只能转动转换器。 S8)6@ECC
(七) 切勿随意转动调焦手轮。使用微动调焦旋钮时,用力要轻,转动要慢,转不动时不要硬转。 C.9l${QU
(八) 不得任意拆卸显微镜上的零件,严禁随意拆卸物镜镜头,以免损伤转换器螺口,或螺口松动后使低高倍物镜转换时不齐焦。 |jTRIMj%,_
(九) 使用高倍物镜时,勿用粗动调焦手轮调节焦距,以免移动距离过大,损伤物镜和玻片。 r/mKuGa]
(十) 用毕送还前,必须检查物镜镜头上是否沾有水或试剂,如有则要擦拭干净,并且要把载物台擦拭干净,然后将显微镜放人箱内,并注意锁箱。