摘要 T6rjtq jAFJ?L( 在光栅-透镜光谱分裂设计中,平面透射光栅设置在平凸
透镜的入口处。入射太阳光谱的一部分在偏离透镜法线15-30°处衍射。衍射光谱区域在离轴点处聚焦,而未衍射光谱在透镜的光轴上聚焦。由于衍射波是平面的和离轴的,离轴焦点受像差影响,增加了系统损耗。场曲、色差和球差使用散焦和弯曲焦平面(用每个光伏接收器近似)来补偿。通过修改在构造全息图中使用的离轴波前来校正彗差。在本文中,我们分析了通过共轭对象光束修正离轴波前记录的非平面透射光栅的使用。发散源用作共轭对象和参考光束。球面波入射在透镜处,并且光栅被记录在
太阳能集中器的入口孔处。调整轴上
光源,在全息图平面上产生轴上平面波前。离轴光源近似为在全息图平面上产生非平面离轴波前的衍射受限光斑。基于平面AM1.5光谱的
照明在焦平面上再现离轴衍射受限点。本文介绍了光线追迹和耦合波理论仿真,用于量化通过像差校正实现的损失减少。
H:
;S1D 关键词:光谱分裂;全息;太阳能;聚焦光伏;像差补偿;光管理;损耗减少
|SsmVW$B| hcD.-(-;) 1. 简介 ukXKUYNm8 图1.多能隙结构(a)串联(堆栈或垂直)和横向:(b)色散(c)反射 4kLTKm:G
Q mz3GH@wg 在单光伏(PV)结器件中,低于能隙的
光子能量不能被吸收。相反,超过能隙的光子能量被部分地转换成电功率,其余能量在PV器件内被热化。入射到能隙能量的不匹配从根本上限制了(Shockley-Queisser单个能隙极限)单结系统的效率[1]。频谱分裂技术可以根据光谱匹配能隙将入射光子分配到多个结来达到更高的效率[2]。使用光谱分裂系统(SSS),
光学系统将入射光子空间上分布到光谱匹配的能隙,以减少入射到能隙能量失配损失。
*5'l"YQ@1 E+aE5wmr 多结系统通常利用能隙的串联或堆栈(单片)布置来实现,如图1(a)[3]所示。以能隙能量降低的顺序堆叠结,在顶部具有最高的能隙(第一个入射)。上层结作为下层单元的红色通带滤波器。由于结之间的物理接触,串联方法需要子单元的晶格匹配。此外,串联方法具有串联连接的结,将结构限制为具有最低短路电流的能隙。这些约束限制了功率输出并增加了制造的复杂性。
|fWR[\NU m3b?f B 横向SSS在物理上分离了结(如图1(b)和(c)所示),并避免串联结构的限制。
光学系统将入射的太阳光分成不同的光谱带来
优化每个能隙单元的光谱响应。没有晶格匹配限制,可以使用更广泛类型的PV材料(包括有机物),以便更有效地利用太阳光谱。 此外,结优化可以集中于光谱带的完全吸收而不是晶格匹配条件。
7!,
p,|K 图2.用于光谱分裂的全息光栅-透镜CPV几何结构。原理图(a)、台面和室外(可见光范围)演示原型(分别为b和c)
\o!B:Vb< V_Y2 @4 光栅-透镜光谱分离结构由位于平凸透镜的入口孔径处的平面透射光栅组成。入射光谱的一部分离轴(在15-30°)衍射到透镜中。未被全息衍射的光在轴上进入透镜,并在近轴焦点处会聚。衍射光谱分量进入透镜离轴并且分散在这样一个表面(对应透镜的场曲和全息图的色散特性的表面上)[4]。
M#]URS2h<O E'_$?wWn5 光谱分裂系统可以使用具有高光学效率以及良好的反射和透射光谱特性的反射滤波器来实现,如图1(a)所示。尽管已经展示了具有二向色性[5,6]和全息反射滤波器[7]的系统,但是它们具有以下缺点:
{B\lk:"X 反射方法需要至少N-1个N结滤波器[5,6],增加了系统复杂性,追迹灵敏度降低了可靠性。
9O#?r82 反射方法需要频谱分裂滤波器在集中照明下操作,以最小化滤波器的所需面积和成本。
fL R.2vJ 二向色滤波器用于聚光结构的性能随着非垂直入射光束而降低[8]。
^F$iD (f &
Mf nH 使用图2(a)中所示的光栅-透镜几何结构可以避免这些问题,用单个宽带滤波器进行聚光之前分离光谱,从而减小了滤波器上的入射角和功率密度。此外,大型全息光学元件可以使用廉价的材料制造,例如重铬酸盐明胶(DCG)[9,10]和光聚合物[11]。
|G>Lud 6?jSe<4x 2. 光谱分裂评价函数 HFf9^ ,Z]4`9c 在本节中,定义了评估整个系统及其各个组件的频谱性能的度量。
Q-S5(" 2.1 光谱转换效率
"/U~j4O 每个能隙的效率用光谱转换效率(SCE)定义:
;!N_8{
7r (1)
xHdv?69, 其中有光谱响应(SR)、开路电压(VOC)和填充因子(FF)(
电池参数)[12]。SCE在AM1.5太阳光谱的所有波长上的积分,可得到给定电池总的光-电转换效率:
2Y{r2m|o (2)
N u9+b"Wr 其中ηi*是全光谱(未滤光)照明EAM1.5下的电池的效率[3]。随着入射光谱被滤波器过滤,SCE可以计算出来和并根据以下公式计算指定能隙的效率:
lF1ieg"i M (3)
q1o)l 其中Ti(λ)是滤波器的透射率,ηi是系统的第i个能隙的能隙/滤波器组合得到的效率。
|-k~Fa bG9$ &, 2.2 最佳单能隙上整个系统的效率和改进 V4
Wn
w4p<q68 对于具有N个能隙的系统,系统总效率由以下表达式给出:
* d[sja+ (4)
lilF _y 其中ηsystem是整个频谱分裂系统的效率,ηi在表达式(3)中定义。
~f>km|Q{u f0lK,U@P 根据表达式1至4,显然与全光谱的单结性能相比,光谱分裂将降低单个能隙的效率。由于SSS的目标是使总效率ηsystem大于系统中的最有效能隙,因此有必要定义一个参数以评估对全光谱单能隙电池性能的改进。在本文中,对最佳能隙(IoBB)的改进定义为光谱分裂系统的效率与其最佳(最大全光谱效率)能隙的比率,用以下表达式所描述:
'uA$$~1 (5)
#~88[i-6 其中η1*,η2* ...ηi*是在全光谱AM1.5照明下系统中各个能隙的效率。
Gj([S17\0: ;;l-E>X0 2.3 滤波器光谱重叠 E#cZM> dy*CDRU4 在小节2.1的分析中的透射率项(T)仅考虑带内理想滤波器的透射率(在关注的能隙光谱范围中的滤波器效率)。比较下面图3中的理想滤波器和实验滤波器,有必要定义频带内和带外性能(与其他系统能隙的串扰)的评估度量。对于本文,使用了实验和理想(方形)滤波器之间的加权SCE频谱重叠。该加权重叠度量随着来自系统中其他光谱滤波器的串扰而减小。对于双能隙系统,该度量描述如下:
#EdsB (6)
eMC0
)B 其中O是上述重叠度量,T1是滤波器对于感兴趣的能隙(SCE1)的透射率,T2是导致串扰的滤波器的透射率。在感兴趣的能隙两个滤波器的透射率评估使用同样的Δλ1波长范围。
#>\+6W17U 图3.光谱分裂的全息光栅-透镜CPV几何结构
0?nm`9v6 -( ,iwFb 3. 建模和原型系统结果 LK[%}2me CK+_T}+- 设计平面透射光栅使用物理光学软件对其进行数值建模,以获得AM1.5照明的光谱和角度性能数据。然后将光栅数值模型放入Photon Engineering FRED®Optimum光线追迹软件中,对整个系统进行建模,并考虑光学和追迹损耗。类似地,用实验测试的光栅的衍射效率替代数值模型。
-%x9^oQwY 图4.在可见光中的一个能隙和在近红外中的两个能隙的SSS的模拟。插入记录显示追迹误差分析。
+'!vm6 KUqD<Jj? 使用高性能PV电池数据[3,5,6,13,14]和遵循表达式1至6,具有在可见光(<0.9μm)中一个能隙和在NIR中两个能隙的结构(系统1)。另外一个结构是在可见光范围内两个能隙和在NIR中一个能隙(系统2)。
BWN[>H %S 2r=A' 经计算,系统1的总效率为33%。考虑菲涅耳反射、衍射、串扰和CPC(复合抛物面聚光器)的损耗,转换效率降低到29%。 如果还考虑±1.5°追迹误差,则会产生额外的1%的损耗。对于系统1,发现最差情况IoBB为17%。
\;smH;m 图5.太阳的光谱辐照度,累积辐照度(∞能量)已经归一化为1kW / m2。
+b]+5! *aF<#m v 在图5(红色)中检查累积光谱太阳辐射,约80%的可用太阳能波长范围低于硅的能隙(>1.1μm)。光谱分裂系统在此波长范围中IoBB比率大于NIR。通过比较表1中系统1和系统2的结果,表明具有较大可见光谱覆盖的系统的最坏情况IoBB为47%,超过系统1的IoBB的2.5倍。
6+[7UH~pm^ 表1 (左)NIR光谱分裂系统(右)可见光光谱分裂系统分析
q9&d24| 若要获得表1的模拟值,实验滤波器需要O = 0.55(系统1)和O = 0.76(系统2)的权重叠值。已经获得具有O = 0.35的原型滤波器(系统2),产生的IoBB > 10%。
KzC`*U[
mT2Fn8yC1 3.1 追迹和光学损耗 GM<r{6Qy _:tisr{ 全息光栅的衍射效率性能的数值模拟包括AM1.5照明下的离轴入射角,偏离法线的角度最高达到±1.5°,以模拟追迹误差。
z2lEHa?w UE9r1g`z 追迹误差分析总结在图6中。对于通过光栅条纹和非垂直入射(达到+1.5°)的正方向的追迹误差,衍射角和透镜场曲耦合的变化产生最坏情况损耗(>1%净效率下降)。当追迹误差朝向法线(-1.5°)时,发生相反的情况(衍射角变化补偿透镜场曲)。衍射和场曲的耦合/补偿可以在上面的表1中的“Loss due to Tracking”值中看到。追迹误差引起的损耗对于沿着光栅条纹方向的角度变化是类似的。
&ii3V