|
概述 Zvhsyz| 我们将进行一项高级的镜头设计任务,该任务将利用您在前几章中学到的许多强大工具。 ylUrLQ\ 镜头要求在0.38-0.9μm的波长范围内工作,镜头F/#为0.714。其他要求: !*/*8re 1.物距无限远,0.8 度半场,1.26 毫米半孔径。 7.-V-?i 2.光谱范围0.38 - 0.9 微米。 w _u\p a 3.F/number 0.714。 |$+3a 4.总长小于25 毫米。 k=2Lo 5.畸变校正良好。 LU+3{O5y 6.像方远心。 <i<J^-W 7.没有羽状边缘,中心厚度不超过 8 毫米。 2:*w~|6>}5 Y4%:7mw~= Pih tf4i 设置工作目录 m9)p-1y@5 选择Dbook工作目录
7;u
e h}-3\8 > 参考DonaldDilworth《Lens Design Automatic and quasi-autonomouscomputational methods and techniques》第35章 +O'3|M "B8Q: )W|w C# Dsearch优化 Gk967pC 我们预估要达到设计要求,可能需要十片透镜,但是想逐步增加透镜数量。设DSEARCH 的输入,搜索八片透镜的结构。 这将为您提供一些潜在的初始结构,一旦知道进度的情况,就可以根据需要增加设置。由于光谱范围很宽,因此请设定五个波长而不是设置常用的三个波长,以避免中间波长处的大焦点误差。运行MACro(C35M1),模拟退火(50,2,50) "-y-iJ )Z[ft yZd +^QN "vA}FV%tRq s.EI`*xylY GSEARCH准备 O[# 27_dH 色差校正是一项大挑战,下一步是找到一些有可能制造宽光谱的玻璃。 我们将通过两种方式做到这一点:首先使用超消色差理论,然后通过让 GSEARCH 自动发现玻璃的组合。 保存此版本,以便后面可以再次调用: STORE 1 M-\Y"]sW 接下来,创建两个文件。第一个是一个普通的优化文件。使用 DSEARCH 创建的宏,只需稍微编辑一下:如果任何组合最初都不追迹(很可能追迹),请优化程序运行自动 ray-failure 修复例程(C35M2);折射率的大变化会使光线向不同的方向发射,从而导致失败): nv ca."5 y S(QpM.9* Yi
.u"sh] WJ)z6m] M]<?k]_p GSEARCH优化 832v"kCD 将C35M2使用名称 GSOPT.MAC 保存,然后创建第二个 MACro(C35M3),优化GSEARCH ,经过优化和模拟退火后 \Fl+\?~D wU8Mt#D! =nz}XH%= soPLA68 g$n7CXoT *?o{9v5}( 进一步优化 8'n/?.7cX 这是一个相当不错的设计,因为超消色差理论只适用于超薄透镜,而这些透镜显然并不薄。看看如果 GSEARCH 自己找到玻璃会发生什么。 回到您保存的版本,然后编辑您的MACro,以便 GSEARCH 搜索光明玻璃库中三个玻璃最接近的组合,而不是我们在上面选择的三个玻璃的组合(注意 SKIP 指令,它忽略了 EOS 命令行的输入; 使用NEAREST 选项时,USE 指令不适用): aF8fqu\ WegtyO !GOM5z, ,_|]Ufr!a lT4Hn;tnN `/_o!(Z` Gn&-X]Rrl Z.d7U~_ 精简删除镜片 )iq-yjO6 结果更好。GSEARCH不使用薄透镜假设,而使用超消色差理论的数值方法。 这种方法可以超越传统的技术方法。 pqUCqo!m\ 这款镜头基本上是完美的。 但是:我们可以用更少的透镜来实现吗? 使用自动透镜删除功能很容易找到可以被删除的透镜。 使用模型玻璃返回您保存的版本,并在优化MACro (C35M2)的顶部添加一个新行: R=.4 AED 3 QUIET 1 16. ?MXejEC Hip&8NW t'9*R7= *+'x~a Rfn9s(m MTF图 6W@UJx}w5 让我们看看 MTF 在这个视场的情况。 键入 MMF,选择“Multicolor”,然后单击“Execute”。 -r#X~2tPzD 0ph{ *ohL& |