第 三 章 约 定 和 定 义 sAD P~xvU
Oz#EGjz
介绍 [
4Y
`O
这一章对本手册的习惯用法和术语进行说明。ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。 97]a-)SA
(&P0la1
活动结构 !G"9xrr1
活动结构是指当前在镜头数据编辑器中显示的结构。详见“多重结构”这一章。 VM]GYz|#]
iy.%kHC
角放大率 IzGB
像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。 _D2bGZN
D _bkUR1
切迹 [*?_
切迹指系统入瞳处照明的均匀性。默认情况下,入瞳处是照明均匀的。然而,有时入瞳需要不均匀的照明。为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。 8pq-nuf|K
有三种类型的切迹:均匀分布,高斯型分布和切线分布。对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。在“系统菜单”这一章中有关于切迹类型和因子的讨论。 eb.cq"C
ZEMAX也支持用户定义切迹类型。这可以用于任意表面。表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。 @`kiEg'Q
RFn0P)9&
后焦距 jqX@&}3@
ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。 \Sw+]pr~
HL(U~Q6JQ
基面 s7.p$r
基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。 2%{YYT
除焦平面外,所有的基面都对应一对共轭面。比如,像空间主面与物空间主面相共轭,等等。如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。 rZ!Yi*? f
ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。 s?@)a,C%k
gaw4NZd)0
主光线 d@D;'2}Yc
如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。 ,\S pjE
如果使用了渐晕系数,主光线被认为是通过有渐晕入瞳中心的光线,这意味着主光线不一定穿过光阑的中央。 _Vo)<--+I
如果有瞳面像差(这是客观存在的),主光线可能会通过近轴入瞳中心(如果没有使用光线瞄准)或光阑中央(如果使用光线瞄准),但一般说来,不会同时通过二者中心。 I NPYJ#%
如果渐晕系数使入瞳减小,主光线会通过渐晕入瞳中心(如果不使用光线瞄准)或者渐晕光阑中心(如果使用光线瞄准)。 FM9X}%5nu9
常用的是主光线通过渐晕入瞳的中心,基本光线通过无渐晕的光阑中心。ZEMAX不使用基本光线。大部分计算都是以主光线或者中心光线作为参考。优先使用中心光线,因为它是基于所有照射到象面的光线聚合效应,而不是基于选择某一条特殊光线。 $/, BJ/9
4{*tn"y
坐标轴(系) SvX=isu!.
光轴为Z轴,正方向为光线由物方开始传播的方向。反射镜可以使传播方向反转。坐标系采用右手坐标。在标准系统图中,弧矢面内的X轴指向显示器以里。子午面内的Y轴垂直向上。 oTF^<I-C
通常传播方向沿着Z轴正方向从左至右。当有奇数个反射镜时,光束的物理传播沿-Z方向。因此,经过奇数反射镜之后,所有的厚度是负值。 0~Iu7mPY
9RCO|J
衍射极限 l- 1]w$
y
衍射极限指光学系统产生象差的原因不是设计和制造缺陷,而是由于衍射物理效应。要判断系统是否是衍射极限,可以计算或者测量光程(OPD)。如果OPD的峰—谷差值小于波长的四分之一,那么就说系统处于衍射极限。 X/E7o92\
有很多其他的方法来判断一个系统是否是衍射极限,例如:斯特列尔比数(在同一系统里形成的有象差点像的衍射图峰值与无象差 (@KoqwVWc
的峰值亮度之比。用于像质的评价)。RMS OPD;标准偏差,最大梯度误差,等等。当使用一种方法评价系统为衍射极限时,运用另外一种方法可能不是衍射极限,这是可能的。 %_b^!FR
在一些ZEMAX的图,例如,MTF或Diffraction Encircled energy(衍射能量圈图)等,衍射极限可以选择显示出来。这些数据通常是通过追迹某视场角指定参考点的光线得到的。计算过程考虑了光瞳切迹;渐晕;F/#数;表面孔径;透射率等等因数,但不考虑实际存在的误差,光程差都定为0。 $>'" )7z
对于包含X和Y方向视场角都为0的系统(比如0.0X,0.0Y),参考视场位置为坐标轴上点。如果没有(0,0)视场,定义的第一个视场对应的坐标用于参考坐标。 lJ:M^.Em0
XdGpW
边缘厚度 XDpfpJ,z"}
对于边缘厚度,ZEMAX使用两种不同的定义。通常来说,要计算一个特定表面的边缘厚度,采用下面的公式: ${eY9-r_%
%ezb^O_6v
Zi为表面+y方向半口径对应的矢高, S]e j=6SP
Zi+1是下一面在+y方向半口径的矢高, t_I\P.aMA
Ti是表面在轴向的厚度。 m/YH^N0
注意,边缘厚度计算时,使用的矢高是个表面在半口径矢高对应的各自的矢高,一般情况下都是不一样的。 zd*3R+>U'>
边缘厚度计算时由于一般采用+y方向口径,如果表面不是旋转对称,或者表面口径为指定时,这样的方法就不适用了。 UTDcX
当采用边缘厚度求解时,情况则不同。因为边缘厚度求解可以改变中心厚度,也能改变光线在下一表面的入射点,这表示下一表面的半口径也可以改变。如果计算边缘厚度时使用下一表面的半口径,会出现无限循环或者循环定义。 6%gB
E
正由于此,边缘厚度求解计算边缘厚度时,对两个面都严格采用第一表面的半口径。第二表面的半口径不再被使用,虽然表面的曲率或者面型还要使用。 $5TepH0D
)YzH k ;(
有效焦距 ~|CJsD/
指从后主面(象方主面)到近轴象面的距离。这是无限远物的共轭距离。主面的计算通常是基于近轴光线数据。有效焦距一般以折射率为1进行计算,即使象空间的折射率不是1。 >
$w^%I
0T9@,scY
入瞳直经 =zeFK_S!
光阑在物空间的近轴象的口径。 }O,U2=Hw`]
LbJtpwz>z
入瞳位置 yaH
Trh%
以与系统第一面的距离来衡量的入瞳近轴位置。第一面一般是“面1”,而不是物面,物面是“面0”。 XYqpI/s
3[0w+{(Q
出瞳直径 uQGz;F x
光阑在象空间的近轴象的口径。 Ni2]6U
I?_E,.)[ I
出瞳位置 a'@-"qk
以象面位置衡量的近轴出瞳位置。 lpl8h4d
}Vvsh3
附加数据 Q~fwWp-J
附加数据被用来定义特定的非标准面型。比如,用来定义衍射光学面的位相(比如Binary 1面型)。在“面型”这一章“额外数据” u.Mqj"o\
部分,有关于额外数据的完整讨论。 _Kc1
.A3DFm3 t
视场角和物高 X^zYQ6t
视场可以用角度、物高(用于有限距离共轭系统)、近轴象高或者实际象高来表示。 UF@IBb}0
视场角一般用角度表示。角度的测量是以物空间Z轴上近轴入瞳位置作为测量点来衡量的。正视场角表示这一方向上的光线有正斜率,对应的物方坐标为负。 n?'d|h
ZEMAX运用一下公式将X、Y视场角转换为光线的方向余弦: `IEq@Wr#$!
%ZujCZn
这里,1、m、n分别代表x、y、z方向的方向余弦。 Ya}T2VX
如果用物高或者象高来定义视场,则高度用透镜单位来表示。当用近轴象高定义视场时,高度是指主光线在象面上的近轴象高,在系统存在畸变时,实际的主光线位置会不同。 :{[<g](
当用实际象高来定义视场时,高度为主光线在象面上的实际高度。 f>.4-a?
+"]oc{W!
光阑位移
MKU7fFN.
光阑位移是ZEMAX支持的一种系统孔径类型。这是指入瞳位置、物空间数值孔径、象空间F/#数、光阑面半径中只要有一个确定。其他的也都确定下来了。所以,设定号孔径光阑半径,其他值无需再定义了,是定义系统孔径的非常有效的方法。当光阑面为实际的不变光阑时,比如设计无焦度校正板光学系统时,这种方法更为方便。 c]A
Y
G1}~.%J
玻璃 ^9&b+u=X
玻璃的输入是在“玻璃”这一栏中输入玻璃名称。可以查看玻璃名称,也可以通过玻璃库工具输入新玻璃。详见“使用玻璃库”这一章 >|wKXz
8@E8!w&~
六边环(Hexapolar rings) o_iEkn
在诸如点列图的计算时,ZEMAX通常选用一种光线分布。光线分布指入瞳处光线的分布形式。六边形式是一种以旋转对称来分布光线的方式。具体而言是在中心光线周围有一圈一圈的光环。第一环包括6根光线,围绕入瞳按每两根之间60度分布,第一根 光线始于0度(即瞳面X轴方向)。第二环有12根光线(此时,光线总数为19,因为中心光线可以认为是第零环)。第三环有18根光线。每下一环都比上一环多6根光线。 f#@S*^%V$
很多需要确定取样光线的功能(比如点列图)都使用六边环数来确定光线的树目。如果六边环样本密度为5,不是指使用5根光线,而是指1+6+12+18+24+30=91根光线。 h^}_YaT\
}<vvxi
像空间F/# `vudS?
像空间F/#是与无限远共轭的近轴有效焦距与近轴入瞳直径之比。注意。即使透镜不是用于无限远共轭,这一量还是使用无限远共轭的方法。 A#<vG1
q1 H=/[a
像空间数值孔径(NA) xN6>2e
像空NA是象空间折射率乘上近轴轴上主光线与近轴轴上+y边缘光线之间夹角的正弦值,是在指定共轭距离处,按基准波长来计算的。 zQ ,f5x
fD'/#sA#'
透镜长度单位 :`D'jF^S
透镜长度单位是透镜系统测量的基本单位。透镜单位用于半径、厚度、孔径和其他量,可以是毫米、厘米、英寸、米。 brb[})}
X]qCS0GD'
边缘光线 5N\+@grp
边缘光线是从物体开始,通过入瞳边缘,最终入射到象面上的光线。 Ba<ngG
!
p~h4\.*`
最大视场 [M4xZHd#o
如果“视场角”被选择,用度数显示最大视场角;如果选择“物高”,用透镜单位显示最大径向物体坐标;如果“象高”被选择,则用透镜单位显示最大径向象高。视场模式在“系统”菜单下的视场数据对话框中进行设置。 VsEGX@;tO
UmJUt|
非近轴系统 NdZ)[f:2
非近轴系统指那些不能完全用近轴光线数据描述的光学系统。通常包括:有倾斜或者平移的系统(哟坐标转换平面)、全息、光栅、理想透镜组、三维样条曲线、ABCD矩阵、渐变折射率或者衍射元件等。 V|TA:&:7
对于旋转对称系统的折反射元件,有很多的光线象差理论。包括Seidel象差,畸变,高斯光束数据,以及几乎所有的近轴参数,比如焦距,F/#,瞳面尺寸和位置等。所有这些数值都是由近轴光线数据计算的。 'f 3HKn<L
如果系统包含上述任意非近轴元件,则按照近轴光线追迹计算得到的数据是不可信的。 9hy'DcSy,
tyB)HF
非顺序光线追迹 ;TtaH
非顺序光线追迹是光线沿着自然可实现的路径进行追迹,直到被物体拦截,然后折射、反射、或者被吸收,这取决于物体的特性。光线继续沿着新的路径前进。在非顺序光线追迹中,光线可以按任意顺序入射到任意一组物体上,也可以重复入射到同一物体上,这取决于物体的几何形状和特性。可参照顺序光线追迹。 5? Wg%@
]GNh)
归一化视场和瞳面坐标 J==}QEhQ{
归一化视场和瞳面坐标在ZEMAX程序和文档中经常用到。有四个归一化坐标:Hx,Hy,Px,and Py。Hx和Hy为归一化视场坐标,Px和 Py是归一化瞳面坐标。 )]73S@P(=
归一化视场和瞳面坐标代表单位圆上的点。视场径向大小(如果视场用物高定义,则为物高)用来对归一化视场进行放大。入瞳半经用来放大归一化瞳面坐标。例如,假如最大物高是10mm,如果定义了3个场域, 分别在:0、7、10mm。坐标(Hx=0,Hy=1)表示此光线始于物体最顶端(x=0mm,y=10mm);坐标(Hx=-1,Hy=0)表示此条光线始于物面上(x=-10mm,y=0mm)。 ozU2
瞳面坐标也是同样。假如入瞳半径(不是直径)是8mm,那么(Px=0,Py=1)表示此光线通过入瞳顶端。如果光线在入瞳面上,光线坐标是(x=0,y=8)。 T)8p:}P!
注意:归一化坐标总是位于-1到+1之间,所以 L/BHexOB
yr5NRs
Hx2 + Hy2 ≤1 , Px2 + Py2 ≤1 6z Ay)~
采用归一化坐标的优点是,某一些光线通常有相同的坐标,不论物体或者入瞳大小和位置如何。例如,边缘光线是从物体中心到入瞳边缘的光线,归一化坐标为(Hx=0,Hy=0,Px=0,Py=1)。主光线从视场顶端到入瞳中心,归一化坐标为(Hx=0,Hy=1, Px=0,Py=1)。 QO2Ut!Y
另一个优点是:即使瞳面大小和位置改变了。光线坐标仍然有用。假如在优化透镜之前,您定义了光线设置来计算系统绩效函数。如果使用归一化坐标,即使优化后入瞳大小和位置或者物体的大小和位置改变了,光线坐标仍然不变。在优化的过程中也不会改变。 T8U[xu.>
当视场位置用角度来定义时,归一化坐标也起作用。例如:假定将y-field的角度选为0;7;10度,这表示角度空间中的最大视场“半径”为10度。则归一化视场坐标(Hx=0,Hy=1)表示x-field是0度,y-field是10度。归一化视场坐标(Hx=-0.5,Hy=0.4)表示x-field是-5度,y-field是4度。注意:即使没有定义x-field,光线追迹时也可以使用Hx的非零值。Hx和 Hy值一般指物方角度空间内圆上点,圆的半径由最大径向视场决定。如果定义单个视场点X向视场角为10度;y-field是 6度,则最大圆形区域是11.66度,接着Hx和 Hy将按此半径进行归一化。 V7:\q^$
注意:如果用视场角定义物体,坐标为归一化视场角;如果用物高定义,则Hx和 Hy为归一化物高。 K5{{:NR$
.:8[wI_f
物方数值孔径 /jR8|sb
物空间数值孔径是衡量从物从物面出射光线的发散率。数值孔径定义为折射率乘上近轴边缘光线角都正弦值,以物空间为测试空间。边缘光线为从物点发射的光锥的边缘光线。 }t\
10nQ
p'}lN|"{O
参数数据 (-\]A|
参数数据用来定义非标准面型。例如,参数数据可能包括非球面系数,光栅间隔,倾斜和平移数据。对参数数据值的讨论可以参看“面型”一章中“参数数据”部分。 8'KMxR
YZ<
NP
近轴和旁轴光线 'j }g
近轴的含义是“在轴附件”。近轴光学是由斯涅尔定理线性形式描述的光线。斯涅尔定理是: hfg
O
n•sin= nˊ•sinˊ MI\]IQU
对于小角度可改写为: `gI~|A4
n•= nˊ•ˊ !N1J@LT5h
uN9e:;
光线中很多的定义是基于线性假设的。象差是由于不符合线性而产生的,所以一个光学系统的近轴特性通常被认为是系统没有象差时的特性。 ;1@C_5C
虽然有很多的简单公式可用来计算近轴参数,比如焦距,F/#,放大率,等等。但ZEMAX通常不用这些公式。ZEMAX通过追迹实际的旁轴光线(指符合斯涅尔定理的光线)来计算,这些光线与基准光线(通常为光轴或者主光线)之间有一个小的角度。 \n_3Bwd~
ZEMAX之所以采用旁轴光线而不采用近轴公式追迹光线,是因为很多的光学系统包含非近轴的元件。非近轴元件是指这些元件不 jB!W2~Z
能用初级象差理论很好地描述。这包括倾斜和离轴系统、全息系统、衍射光学和渐变折射率镜头等。 a%E8(ms37y
ZEMAX计算很多的近轴参数,但在系统具有非标准元件时,使用这些参数值要十分注意。通常情况下。使用旁轴光线是可行的,但对于非常特别的系统,描述成像特性时仅仅使用一些初级象差数值就不够了。 /ERNS/w
"R23Pi
近轴像高 @0|nq9l1
近轴理想像平面上对应全视场的近轴径向像尺寸,用镜头单位表示。 Ihg~Q4t
Rboof`pVt
近轴放大率 @^!\d#/M
径向放大率,即近轴像高和物高的比,近轴放大率在理想平面上测量。对于无限共轭的系统,近轴放大率为0。 Ukc'?p,*
E_3r[1l
近轴工作F/# '00J~j~
近轴工作F/#由下式定义: e\r7BW\Y
W=1/(2ntanθ) &dRjqn^&X
Θ为象空间近轴边缘光线角度,n为象空间介质折射率。近轴边缘光线按特定的共轭关系进行追迹,对于非轴对称系统,这一参数以轴向光线为基准,在入瞳处均匀分布的。近轴工作F/#是完全忽略象差的有效F/#数。详见有关工作F/#的定义。 ^wJEfac
-2 xE#r
主波长 vU}: U)S
主波长用微米表示,用来计算大部分近轴和系统参数,比如入瞳位置。 Sph*1c(R
@8zT'/$
曲率半径 <Y>3
每一面的曲率半径用透镜单位进行度量。如果曲率中心在表面顶点的右面(沿Z轴正距离),则半径为正;如果曲率中心在表面顶点左边(沿Z轴为负距离),则半径为负。这与系统中反射镜的个数无关。 | 3giZ{
6R2uWv
弧矢与子午 )~}PgbZ^
子午面参数指在子午面内计算的数据,子午面是由一条直线和一个点定义的平面;直线即系统的对称轴,点即是物空间的轴外物点。弧矢面是指与子午面垂直的平面,他与子午面在入瞳处相交于入瞳中心。 E*k([ZL
这一定义对非旋转对称的系统并不通用。为统一起见,不管轴外点在哪里,ZEMAX规定YZ平面为子午面;计算子午面数据时沿物空间y向进行计算。弧矢面于YZ面垂直,二者在入瞳中心相交,计算弧矢面数据时在物空间沿X轴计算。 x>
\Bxa8
这一规定基于下面的理论:如果系统是旋转对称的,沿Y轴的轴外点确定系统的成像质量,此时,两种定义是完全一致的。如果系统不是旋转对称的,则不存在对称轴,参考平面的选择就是任意的。 p+[}Hxx=
43L|QFo
半口径 6e#wR/
每一面的大小通过设置半口径来描述。默认的设置是允许所有实际光线通过孔径光阑的径向口径。如果在半口径一栏中输入数值,在数值右侧会显示一个“U”,这个字母表示这一半口径是用户定义的。用户可以定义一个具有折射本领表面的口径(如前所述,用键入数值的方法就可以实现用户定义),如果没有定义表面口径,ZEMAX会自动将这一表面设为可变的口径。可变口径是圆形口径,径向最大坐标通常等于这一表面的半口径。表面口径类型可参见“表面特性口径”。 ;&kn"b}G;
对于轴对称系统,只要表面不在光束的散焦面(通常在象面附近),任一表面的半口径都是精确计算的。ZEMAX通过追迹入瞳边缘的光线来计算轴对称系统的半口径。对于非轴对称系统,ZEMAX运用固定数目的光线或者使用迭代方法来计算半口径,采用迭代方法较慢,但更为精确。详见“快速半口径”。需要注意的是,ZEMAX自动计算的半口径只是一个近似值,当然通常都是比较准确的。 Pbe7SRdr^
一些表面的口径比较大,表面Z的坐标会出现多值。比如,一个很深的椭球面对于同样的X、Y会有很多个Z轴坐标。对球面,这种情况称为超半球,而且在ZEMAX中,即使表面不是球面,也采用这一名称。超半球表面在半径口径这一栏用“*”号表示。这说明半口径是此面的外边缘口径,他比最大径向孔径要小。 ?E7=:h(@t
9|=nV|R'6
顺序光线追迹 {y6C0A*
顺序光线追迹指按照预先给定的顺序从一表面追迹到另一表面。ZEMAX对表面进行顺序安排,起始面为物面,序号为“0”。物面后的第一面序号为“1”,之后是“2”、“3”,以此类推,一直到象面。顺序追迹光线意味着一条光线起始于0表面,追迹到1表面,然后到2表面,等等。不会出现从第5面追迹到第3面的情况,即使这些表面的实际位置可能出现这种情况。可参见“非顺序光线追迹”。 U:n*<l-k}
:B.G)M\
斯特利尔比例数 A"4@L*QV
斯特利尔比例数是对要求非常高的成像系统进行成像质量评价的一种方法。斯特利尔数是实际点扩散函数(PSF)峰值与不考虑象差时的点扩散函数(PSF)峰值的比值。ZEMAX计算有象差和物象差两种情况下的PSF,并得到两者峰值的比值。当象差很大,PSF的峰值很模糊时,斯特利尔数没有作用,因为这种情况下比值小于0.1。 S?4KC^Y5
dIJGB==
表面口径 l.oBcg[
表面口径包括:圆形;矩形;椭圆形和蜘蛛网孔形(可产生渐晕)。同时还允许用户自己定义口径类型。可变口径也是以当前半口径值为基础进行变化的。表面口径不影响光线追迹,除非光线不能通过这一口径。表面口径对系统口径没有影响。 V#J"c8n
ffk4mhH
系统孔径 a#y{pT2 b
系统的孔径指整个系统的F/#;入瞳直径;数值孔径或光阑尺寸。对于一个特定的光学系统,这4个参量中的任一个确定下来后,另外3个也确定了。系统的孔径用来确定物方入瞳直径,从而确定所有光线的范围。系统孔径总是圆形的。光线在通过不同的表面口径时可能会形成渐晕而不能全部通过。虽然一个系统中可能很有多种表面口径,但只有一个系统孔径。 g$w6kz_[
X NE+(Bt
厚度 8l23%iWxe
厚度指的是到下一表面顶点的相对距离,单位是透镜单位。厚度不是累积厚度,每一个厚度只代表从前以顶点沿Z轴方向的偏离值。 v=p0 +J>
如果有反射镜,厚度通常会改变符号。通过奇数个反射镜后的所有厚度是负的。这一符号规则则反射镜个数及有无坐标变换无关。坐标转180度后,仍然要使用这一符号规则。 "w&/m}E,[
{eR9 ;2!
全反射(TIR) J=*K"8Qr
当光线与表面法线间的夹角过大,不能满足斯涅尔定理的折射条件时,就发生了全反射。这种情况发生在光线入射角交大、光线从折射率高的介质传播到折射率低的介质中的时候,比如从玻璃到空气。当进行顺序光线追迹时,如果遇到全反射,系统认为错误,并会中止。从物理上来说,光线会从介质分界面反射回来,但ZEMAX在进行顺序追迹时不考虑这一效应。非顺序追迹时,对发生全反射的光线还必须考虑。 m}5q]N";x
2~FPw{]j
总长度 _~A~+S}
总长度是光学系统最左边表面到最右边表面的顶点间隔。计算的起始面是第1面,从第1面到象面的距离都包含在内,不考虑坐标旋转。最右面的表面指系统中Z向坐标最大的表面,最左边表面的Z向坐标值最小。在非轴对称系统中,总长度的用处不大。 tjxvN 4l
? )_7U
渐晕系数 0d4cE10
渐晕系数是描述入瞳大小和不同视场点光线的位置。ZEMAX有五个渐晕系数:VDX;VDY;VCX;VCY;VAY。这5个因子分别代表了X向偏心、Y向偏心、X向渐晕系数、Y向渐晕系数和渐晕的角度。5个因子默认值都是0,表示没有渐晕。 G{o+R]Us
一个光学系统的视场和入瞳可以看坐是一个单位圆。在这一章前面定义的归一化视场和瞳面坐标,指的就是这两个单位圆上的坐标。比如,瞳面坐标(px=0,py=1)代表的光线是从视场中的某一点追迹到入瞳的顶端。如果系统不存在渐晕,ZEMAX在进行大部分计算时,会对整个入瞳进行光线追迹。 j=ihbR^]Tl
很多光学系统都有意识地采用渐晕。这表示除光阑挡光外,还有一部分光线被表面口径遮挡。使用渐晕有两个常见的原因:第一、渐晕能使透镜尺寸减小,这一点对于广角透镜更为重要;第二、渐晕可以将一部分象差非常大的光线挡掉。渐晕通常会随着视场角的增大尔使F/#增加(这会使象面变暗),但如果大部分大象差光线被遮挡后,象面成像质量会提高。 31}W6l88c
渐晕因子为特定的视场点重新定义了入瞳。归一化入瞳坐标通过两个相关的变换进行修正。首先,通过下式进行坐标缩放和平移: /U*yw5
Px’= VDX + Px (1-VCX) "={L+di:M
Py’= VDY + Py (1-VCY) GN%(9N'W
然后,已经缩放平移的坐标通过渐晕角度进行旋转: >^3zU
Px“= Px’cosθ-Py’sinθ FH*RU1Z
Py“= Px’sinθ+Py’cosθ }bMWTT
式中,θ是渐晕角度VAN。VDX使光瞳左右移动,VCX使光瞳在X方向扩大或者缩小。对于VDY和VCY,意思也是一样的。注意,如果渐晕系数都为0,光瞳坐标不会被修正。渐晕系数为光学设计提供了一种使用渐晕的简便方法。但是,必须知道,使用渐晕系数也是有限制的。 Df@/cT
ZEMAX的一些功能可以从任意一个没有指定渐晕系数的视场点出发追迹光线,但这些功能提供的各种数据可能不如从一个确定的视场出发那样精确。一些功能在计算数据时通过在每一面上放置一个透明光阑,使光线具有相同的渐晕,而不采用渐晕系数。有关自动去除渐晕系数的功能在“分析“这一章中有详细介绍。 d(S}NH
ZEMAX也有一些功能对中间视场不会自动去除渐晕系数,比如在优化评价函数中的光线操作数(如REAX,可以追迹一条光线在个表面的X方向位置)或者ZPL宏。如果渐晕系数没有被排除,ZEMAX在计算时会将渐晕系数考虑在内。对于旋转对称系统,ZEMAX使用最接近的已经视场点来决定一个任意视场点的渐晕系数。 #DUh(:E'`
一旦渐晕系数被确定下来,就需要设计者确定超出光瞳外面的光线是否实际上被遮挡。如果渐晕系数用来减小透镜尺寸,则透镜不会大于使光瞳边缘外的光线能够穿过所要求的尺寸。如果让超出渐晕孔径的光线也能够通过实际光学系统,那么透镜的性能将会与计算机模拟的情况不一致。 V;93).-$
相同或者近似相同的视场坐标不会被定义不同的渐晕系数,如果相邻的两个视场要使用不同的渐晕系数,他们的视场坐标必须相差最大视场坐标的1E-06次方以上。这是因为ZEMAX必须对所有视场坐标具有不同的渐晕系数,这是没有物理意义的。要建立这类系统的正确方法是使用多重结构,通过多重结构编辑器设置渐晕系数。 %
{Q-8w!
渐晕系数在有没有光线瞄准定位时都可以设定,如果不进行光线瞄准定位,则按照上述公式,在近轴入瞳面上对孔径进行重描;如果进行光线瞄准定位,则在光阑面上进行重描。 <&U!N'CE
渐晕系数可以代替光线瞄准应用于计算光瞳象差。这对于广角系统来说,可以加快光线追迹的速度。 C) .2gQ
G
渐晕系数可以在“视场数据”对话框中定义。详见“系统菜单”这一章。渐晕系数也可以是一个变焦参数,参见“多重结构”一章。要获得渐晕系数作为设计工具的更详细的使用方法,可参考第一章中提到的任意一本书。 frqJN
Of`c`-<j
波长数据 "H1:0p
波长数据通常在当前系统温度、气压条件下进行测量,以微米为测量单位。默认系统温度为20摄氏度,空气压力为一个大气压。如果系统温度和、或者气压改变了,或者由多重结果操作数所控制,必须注意相应调整新的温度和气压下的波长。 ``9 GY
波长数据在“波长数据”对话框中输入,参见“波长”部分说明。 gX,9Gh
波长数据通常在当前系统温度、气压条件下进行测量,以微米为测量单位。 U9#WN.noG
,%hj cGX11
工作F/# %&<W(|U1<
工作F/#定义为: D$nK`r
W=1/(2nsinθ) V`k8j-*s
式中,θ指像空间边缘光线角度,n是象空间折射率。边缘光线 X/+OF'po
在指定的共轭面上进行追迹。 U)[ty@zyF
对于非共轴系统,这一参数指轴向光线,而且是通过四条光线平均得到的。这四条光线是:渐晕光瞳的顶部光线、底部光线、左边光线和右边光线。通过计算四条光线数值孔径平方的平均值,可以得到数值孔径的均方根RMS,并转化为F/#。 8#59iQl
工作F/#通常比象空间F/#有用,因为它是基于透镜的实际共轭面的实际光线数据的。可以参考近轴工作数F/#的定义。 (vQ+e
如果边缘光线由于光线的误差不能被追迹,那么会临时使用一个较小的光瞳来估算工作数F/#。