| him2008 |
2006-10-29 23:58 |
精密加工和超精密加工的影响因素
精密加工和超精密加工的影响因素 bO2?DszT5 -p&u= 影响精密加工和超精密加工的因素很多,主要有加工机理、被加工材料、加工设备及其基础元部件、加工工具、检测与误差补偿、工作环境、工艺过程设计、夹具设计、人的技艺等。 @wgd
3BU 1 加工机理 OQ&N]P2p (l)新工艺新方法。近年来,新工艺新加工方法不断出现,应充分注意寻求新的加工手段。在传统加工方法中,金刚石刀具超精密切削、金刚石微粉砂轮超精密磨削、精密高速切削、精密砂带研抛和磨料加工等已占有重要地位;在非传统加工中,出现了电子束、离子束、激光束等高能束加工、微波加工、超声加工、蚀刻、电火花加工、电化学加工等多种方法;特别是复合加工,如电解研磨、超声珩磨等,都是在加工机理上有所创新的,新的加工机理出现,标志着一种技术突破,往往是新技术的生长点。 7bzm5w@v (2)加工、处理的新概念。在加工机理上的突破表现在明确提出了去除加工、结合加工和变形加工,特别是以快速成形制造为代表的“堆积”加工的出现,在加工技术的思路上具有里程碑意义。 x{SlJ%V (3)极薄加工具有无限生命力。越精密加工的目标和追求就是要寻求和探讨加工极限,目前的极薄切削水平是纳米级,随着科学技术的发展,这个极限将逐步前移,值得研究的问题还很多。 ^~;ia7V&2 (4)进化加工原则值得提倡。利用精度低于工件精度要求的机床设备,借助工艺手段、特殊工具、计算机技术、传感器技术等,直接或间接加工出所需工件,这种进化加工原则将影响精密加工和超精密加工的全局。 iyl
i/3| 从上述几点可以看出,加工机理研究是精密加工和超精密加工的理论基础和新技术产生的源泉。加工机理是加工方法的本质,是加工方法成败、发展的关键。 k?14'X*7yu _ \6v@ 2 被加工材料 Dz: +.
@k 精密加工和超精密加工应该用相应的精密加工和超精密加工用的材料,才能保证加工质量,用一般加工用的材料或不合要求的材料进行精密加工和超精密加工是不能达到预期效果的。 z~pp7 用于精密加工和超精密加工的材料,在化学成分、物理力学性能、加工工艺性能上均有严格要求;应该质地均匀,成分准确,性能稳定、一致,无外部和内部微观缺陷。其化学成分的误差应在10-2~10-3数量级,且应控制其杂质含量或不含杂质;其物理力学性能,如抗拉强度、硬度、伸长率、弹性模量、热导率、膨胀系数等,应达 10-5~10-6数量级。冶炼、铸造、轧辗、热处理等工艺过程均应严格控制,温度、熔渣过滤、晶粒大小、均匀性及方向性等对材料在物理、化学、力学、加工等性能方面均有很大影响。 h6
{vbYj 例如,高密度硬磁盘的片基是用专门的铝合金材料,在冶炼过程中,采用特殊的熔渣过滤装置,防止表面生成氧化层;在轧制时,采用两个方向交替滚轧,以防止晶粒产生纤维状态,影响物理力学性能的均匀性,使磁盘最终在磁记录性能上受到影响。 5,1<A@H w'2FYe{wj 3 加工设备及其元部件 VTu#)I7A^@ 精密加工和超精密加工所用的加工设备范围很广,如各种精密机床、越精密机床、激光加工机、精密电火花加工机床、离子束加工机,以及镀膜、涂敷等加工设备。对切削加工设备来说,代表性的机床有超精密车床,用来加工各种轴类、盘套类和带曲面的零件等;超精密铣床配有精密回转工作台,用于加工平面和多面体零件;研磨机和抛光机仍然是重要的精密加工设备,用于加工外圆、孔、平面等,按加工需求有精密类型的。 Nnl3r@ 归纳起来,精密加工和超精密加工用的加工设备应有以下一些要求: #m.e9MU 1)高精度。包括高的静精度和动精度,主要的性能指标有几何精度、运动精度(定位精度、重复定位精度)和分辨力等,如主轴回转精度、导轨运动精度、分度精度等。当前,超精密车床的主轴回转精度大多在0.02~0.03μm,导轨直线度为0.025/1000000,定位精度为0.013μm,重复定位精度为0.006μm,进给分辨力为0.003μm,分度精度为0.5″。现代的精密机床和超精密机床大多采用液体静压轴承或空气静压轴承的主轴和导轨,精密滚珠丝杠传动,配有微动工作台、误差补偿装置,实现微位移。对于高速回转的零件、部件都应进行动平衡。 z#GZb (2)高刚度。包括静刚度和动刚度,除零、部件本身的刚度外,还应注意接触刚度,同时应考虑由工件、机床、刀具、夹具所组成的工艺系统刚度。精密机床和超精密机床虽然切削力不大,但机床受力变形将会造成精度上的很大影响。 8|i'~BFHs (3)高稳定性和保持性。设备在经过运输、仓储、安装调试后,在规定的工作环境下,使用过程中应能长时间保持精度、抗干扰、稳定地工作。因此,加工设备应有良好的耐磨性、抗振性、热稳定性。 +-^>B%/&Z (4)高自动化。为了保证加工质量,减少人为因素影响,现代精密机床和超精密机床多配置精密数控系统以实现自动控制,或采用计算机控制来实现适应控制、优化等以保证零件生产加工要求。 2K91E} 精密加工和超精密加工设备与其基础元、部件关系密切,一方面,只有优良的基础元、部件才能有优良的加工设备,因此世界各国均十分重视基础元、部件的开发和研究,以便不断提高精密加工和超精密加工设备的水平,扩展其应用范围;另一方面,优良系列的基础元部件可以快速响应市场需求,缩短精密加工和超精密加工设备的开发周期。当前,基础元、部件的发展十分迅速,主要有主轴及其轴承、导轨及其滚动组合体(滚动直线导轨)、滚珠丝杠、光栅、激光检测装置、微位移装置、分度转台等,而且已经出现主轴单元、进给单元等部件形式。主轴单元包含了主轴、轴承、电动机及主轴箱,形成一个独立体,甚至主轴与电动机轴成为一体,电动机为变频电动机,可进行无级调速,代替了整个主轴部件;进给单元是将导轨、滚珠丝杠、伺服电动机、位置检测等合在一起,成为独立体;新近,又出现了直线电动机进给伺服单元,简称直线单元,将直线电动机、滚动导轨、光栅检测装置等合在一起,形成一个独立体,直接得到直线运动,免去了由转动换为直线运动的环节,不仅结构简单,又提高了精度,可广泛用于各种机床、加工中心上。 ;>v.(0FE6 V.P<>~W 4 加工工具 .J)TIc__|A 加工工具主要是指刀具、磨具及刃磨、修整装置。 1.cP3kl 对于超精密切削,首先是超硬刀具问题,目前的超硬刀具材料主要有金刚石、立方氮化硼、陶瓷等,用得比较广泛的是人造金刚石,即聚晶金刚石。最好的材料是天然金刚石,但价格昂贵。金刚石刀具有切削刃形面和几何角度设计、晶体定向、晶面选择、刃磨、切削时对刀等问题,其中如刃磨应在专门的研磨机上进行,要有高超的技艺,刃口钝圆半径是一个关键参数,若极薄切削厚度欲达10nm,则刃口钝圆半径应为2nm;切削时精确方便地对刀将直接影响加工精度、表面粗糙度和加工效率,至今是一个难题。 'RMUjJ-! 对于超精密磨削,当前主要的磨具是金刚石、立方氯化棚等微粉砂轮,这种砂轮有磨料粒度选择、粘接剂选择、修整方法等问题,通常金刚石微粉砂轮多采用粒度为W20~W0.5的金刚石微粉,采用树脂、铜、纤维铸铁等粘结剂,以铜为粘结剂居多。金刚石砂轮的修整分为整形和修锐两个阶段,前者是修出几何形状,后者是修出锋利刃口,实际上是突出金刚石颗粒。由于金刚石微粉砂轮易堵塞,在使用中应采用在线修整。常用的修整方法有电解法、电火花法、磨削法和软弹性法等。 G;l7,1;MU: 对于超精密研磨和抛光,可采用铸铁、锡、聚酯、呢毡等材料作研具或抛光器,采用金刚石、立方氯化硼、锆刚玉、铬刚玉、氧化铝、碳化硅等磨料,进行非接触研磨抛光、软质粒子研磨抛光、液中研磨抛光等,获得高精度和低表面粗糙度。 Af;Pl|Zh[ 刀具、磨具材料的选择是一个关键,刀具磨具的发展史基本上可用刀具磨具材料的发展来代表,从碳钢、合金钢(高速钢)、硬质合金、陶瓷、立方氮化硼到金刚石,以及采用多元共渗、镀膜、沉积等技术、提高了耐用度,超硬材料的出现给精密加工和超精密加工的发展提供了条件。目前,由于金刚石是由碳原子组成,与铁碳构成的黑色金属有较大的亲和力,故不宜切削黑色金属,多用于切削有色金属,现正在研究利用保护气氛、低温等措施来切削黑色金属,或用立方氮化硼、陶瓷等材料。 hy*{{f; a:)FWdp?9 5 检测与误差补偿 [s>3xWZ+a 精密和越精密加工必须具备相应的检测技术和手段,不仅要检测零件的精度和表面粗糙度,而且要检测加工设备及基础元、部件的精度。 R+M =)Z 高精度的尺寸、几何形状及位置尺寸等可采用分辨力为0.l~0.01μm的电子测微计、分辨力为0.01~0.001μm的电感测微仪、电容测微仪,以及自准直仪、双频激光干涉仪、圆度仪等来检测。 {Yj5Mj|# 轴系回转精度低速时静态检测可用电感测微仪、电容测微仪与基准球来测量;高速动态检测可用电容测微仪和同步示波器按测量定点峰值变化的方法来测量。 ETdXk&AN 导轨直线度可采用电子水平仪、自准直仪和激光干涉仪等角度测量的方法来检测,也可用基准平尺与电子测微计分离平尺误差的方法来检测。 \X8b!41 表面形貌和表面粗糙度的检测分为接触式和非接触式两类。接触式测量多用触针式的表面轮廓仪或表面形貌仪来检测,所用传感器多为电感式、压电晶体式等,接触式测量最大的缺点是检测时会划伤被测表面;非接触测量可用气动法、光纤法、电容法、超声微波法、隧道显微镜法、激光光斑法等。 !CGX \cvW 表面层的应力状态、变质层深度、微裂纹等缺陷可用X光衍射法、激光干涉法等来进行测量。 );gY8UL^ 精密检测和自动化检测是检测技术的两个重要方面,精密检测寻求检测精度的极限,自动化检测寻求非接触在线测量和误差分离、补偿技术。误差分离技术是用多个传感器在多处多个方位上同时进行检测,利用计算机硬软件进行处理,分离各种误差成分并分析造成误差的原因,为误差补偿创造条件。可见,误差分离与误差补偿关系密切,可以说,误差分离是误差补偿的先决条件,也可说误差分离是误差检测的重要组成部分。误差补偿又可分为静态误差补偿和动态误差补偿两类。静态误差补偿是事先测出误差值,按需要的误差补偿值设计制造出补偿装置,用硬件(如校正尺等)或计算机软件建模,在加工时进行误差补偿。动态误差补偿是在在线检测的基础上,通过计算机建模和反馈控制系统进行实时补偿,因此,需要建立一个闭环自适应误差补偿系统。 Tn}`VW~ 误差预防、误差补偿、误差预报是精密加工和超精密加工中提高加工精度的重要有效举措。误差预防是通过提高工艺系统精度、保证工作环境的条件等来减少误差源、减少误差的影响,具有治本性;误差补偿是通过修正来抵消或消除误差,具有治标性;而误差预报是根据误差出现的发展趋势,得出预测值,进行相应的补救措施,并可真正做到无滞后的实时补偿,具有主动性。 $N=&D_Q < | |