| 200833 |
2017-11-26 22:33 |
利用MATLAB光学仿真(1)
利用菲涅尔公式计算光波在两种介质表面折反射率及折反射能流密度 >taC_f06 .@Z-<P" 1、光疏射向光密 >k6RmN ^<0azza/( clear Z;^UY\&X K%) K$/A close all p&nIUx" J~0_ n1=1,n2=1.45; 'g8~ uP xZ*.@Pkr theta=0:0.1:90; [jD.l;jF /
M(A
kNy a=theta*pi/180; 2d,q?VH$ AwhXCq|k rp=(n2*cos(a)-n1*sqrt(1-(n1/n2*sin(a)).^2))./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); D Hkmn hhTM-D1Ehs rs=(n1*cos(a)-n2*sqrt(1-(n1/n2*sin(a)).^2))./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); zCdQI ~aK@M4 tp=2*n1*cos(a)./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); n\Z&sc &ACM:&Ob ts=2*n1*cos(a)./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); TSQ/{=r HWFI6N figure(1) By| y: OY'490 subplot(1,2,1); IK%fX/tDyc :%M[|Fj plot(theta,rp,'-',theta,rs,'--',theta,abs(rp),':',theta,abs(rs),'-.','LineWidth',2) &;~x{q]3 |2 2~.9S legend('r_p','r_s','|r_p|','|r_s|') w l.#{@J]< ?fB}9(6 xlabel('\theta_i') i-(^t1c 8Y.25$ ylabel('Amplitude') #C+""qm 6Q&R,"!$p title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) 2TN+ (B#Z! 2k,!P6fgl axis([0 90 -1 1]) fmDU Sri,sZv grid on :NL.#!>/ 6~Y-bn"%D5 subplot(1,2,2); 9kcp( zG_e= plot(theta,tp,'-',theta,ts,'--',theta,abs(tp),':',theta,abs(ts),'-.','LineWidth',2) t_@xzt10y >gAq/'.Q legend('t_p','t_s','|t_p|','|t_s|')
WH F>J $:I~y|
!1 xlabel('\theta_i') .6Swc? |k~\E|^ ylabel('Amplitude') $gsn@P>" GdFTKOq title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) &j}\ZD R v61*F4 axis([0 90 0 1]) Hcw@24ic $O*rxQ} grid on F&}>2QiL Z~}=q Rp=abs(rp).^2; c?i=6CdD' J]8nbl Rs=abs(rs).^2; -(FVTWi0 Ds|/\cI$%a Rn=(Rp+Rs)/2; HFD5*Z~M A~ugx~S0 Tp=1-Rp; _5I" %E;S .d:sQ\k~= Ts=1-Rs; OM!CP'u#{ Sr)rKc Tn=(Tp+Ts)/2; y0vo-)E]-] >#z*gCO5, figure(2) wy5vn?T@ 0Zkb}F2- subplot(1,2,1); uX*H2"A zR2'xE* plot(theta,Rp,'-',theta,Rs,'--',theta,Rn,':','LineWidth',2) 5?),6o); riqv v1Nce legend('R_p','R_s','R_n') mjbr}9 nA%H`/O{ xlabel('\theta_i') Ilvz@= 0eY$K7
U ylabel('Amplitude') +Ok R7bl J2_D P title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) :.B};;N wXf_2qB9 axis([0 90 0 1]) K1O0/2O d_BO&k | |