cyqdesign |
2016-06-21 11:24 |
Speckle Phenomena in Optics: Theory and Applications
Speckle Phenomena in Optics: Theory and Applications 8:(e~?
f6 n<>/X_m Joseph W. Goodman O0#9D'{ 3P2L phW Contents ~C2[5r{So 1 Origins and Manifestations of Speckle 1 0(dXU\Y 1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ni 5Su 1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2 ^c]lEo 1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Lv?e[GA 2 Random Phasor Sums 7 {VrjDj+Xy 2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8 #AUz.WHD 2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9 at `\7YfQp 2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12 wNm~H 2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 QZ51}i 2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16 0?nm`9v6 2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17 %phv <AW 3 First-Order Statistical Properties of Optical Speckle 23 LK[%}2me 3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 A `n:q;my 3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24 zmMz6\ $ 3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 )Dq/fW 3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27 YV0K&d 3.2.3 Finite Number of Equal-Length Phasors . . . . . . . . . . . . . . . . . . . . . . . . 31 Fps.Fhm 3.3 Sums of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ?rn#S8nNx< 3.3.1 Sums on an Amplitude Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 -=D6[DjU< 3.3.2 Sum of Two Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . 34 \;smH;m 3.3.3 Sum of N Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . 37 +b]+5! 3.3.4 Sums of Correlated Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . . . 40 7&z`N^dz{ 3.4 Partially Polarized Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6-@n$5W0 3.5 Partially Developed Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7EAkY`Op 3.6 Speckled Speckle, or Compound Speckle Statistics . . . . . . . . . . . . . . . . . . . . . . 47 mT2Fn8yC1 3.6.1 Speckle Driven by a Negative Exponential Intensity Distribution . . . . . . . . . . . 48 W=T}hA#` 3.6.2 Speckle Driven by a Gamma Intensity Distribution . . . . . . . . . . . . . . . . . . 50 lx&ME#~ 3.6.3 Sums of Independent Speckle Patterns Driven by a Gamma Intensity Distribution . . 51 UE9r1g`z 4 Higher-Order Statistical Properties of Optical Speckle 55 &ii3V | |