首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, qOVs9'R  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, aT$q1!U`j2  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? "K5n|{#  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? % < D  
eN fo8xUG  
PsU.dv[  
7^P!@o$v!  
$m]~d6  
function z = zernfun(n,m,r,theta,nflag) Qctm"g|  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. RbKAB8  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :[ z=u  
%   and angular frequency M, evaluated at positions (R,THETA) on the H)(@A W+-  
%   unit circle.  N is a vector of positive integers (including 0), and ^o}!=aMr  
%   M is a vector with the same number of elements as N.  Each element R| [mp%Q  
%   k of M must be a positive integer, with possible values M(k) = -N(k) i% 19|an  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, vi')-1Y KM  
%   and THETA is a vector of angles.  R and THETA must have the same SV}q8z\  
%   length.  The output Z is a matrix with one column for every (N,M)  m/gl7+  
%   pair, and one row for every (R,THETA) pair. *9 M 5'  
% rT9<_<  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )F4H'  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /Aoo h~  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral Q]9H9?}N?  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, i$gm/ZO  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized &;S.1tg  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. OQ;'Xo  
% `VX]vumG  
%   The Zernike functions are an orthogonal basis on the unit circle. Vui5ZK  
%   They are used in disciplines such as astronomy, optics, and 0l#gS;  
%   optometry to describe functions on a circular domain. e0Cr>I5/e  
% *jM~VTXwt  
%   The following table lists the first 15 Zernike functions. p!BZTwP  
% :M)B#@ c=  
%       n    m    Zernike function           Normalization A ^@:Ps  
%       -------------------------------------------------- (dn(:<_$  
%       0    0    1                                 1  5 fY\0  
%       1    1    r * cos(theta)                    2 _Bm/v^(  
%       1   -1    r * sin(theta)                    2 Se7NF@>9_  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) ${Cb1|g>j  
%       2    0    (2*r^2 - 1)                    sqrt(3) RO?5WJpPj  
%       2    2    r^2 * sin(2*theta)             sqrt(6) :c3}J<Z  
%       3   -3    r^3 * cos(3*theta)             sqrt(8)  F* "  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) %SuEfCM  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) S'm&Ll2i@  
%       3    3    r^3 * sin(3*theta)             sqrt(8) 8##-fv]  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) t<s:ut)Q!  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o"dX3jd  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) MT9c:7}[&  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) EEFM1asJf  
%       4    4    r^4 * sin(4*theta)             sqrt(10) .|`J S?L[  
%       -------------------------------------------------- +>mbBu!7  
% aZEi|\VU  
%   Example 1: +InAK>NZ'  
% GADbXp3  
%       % Display the Zernike function Z(n=5,m=1) )\#w=P  
%       x = -1:0.01:1; Qz/o-W;  
%       [X,Y] = meshgrid(x,x); S~fURn  
%       [theta,r] = cart2pol(X,Y); KLD)h,]  
%       idx = r<=1; 5>+>=)*  
%       z = nan(size(X)); V)#se"GV  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); .O! JI"?  
%       figure o&}!bq]  
%       pcolor(x,x,z), shading interp _V\rs{ 5  
%       axis square, colorbar P @N7g`u3}  
%       title('Zernike function Z_5^1(r,\theta)') 1M+o7HO.mG  
% %&m/e?@%I  
%   Example 2: C5oslP/@  
% nI4Kuz`dF  
%       % Display the first 10 Zernike functions 1FCqkwq[  
%       x = -1:0.01:1; 1%~yb Q  
%       [X,Y] = meshgrid(x,x); HnU; N S3J  
%       [theta,r] = cart2pol(X,Y); ?u.&BP  
%       idx = r<=1; _Kdqa%L !  
%       z = nan(size(X)); NFq&a i  
%       n = [0  1  1  2  2  2  3  3  3  3]; >xQgCOi  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; N>qOiw[  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; 8q9HQ4dsL  
%       y = zernfun(n,m,r(idx),theta(idx)); ~ED8]*H|`  
%       figure('Units','normalized') ArWMbT>Zqw  
%       for k = 1:10 -U/"eVM  
%           z(idx) = y(:,k); |hBX"  
%           subplot(4,7,Nplot(k)) h8@8Q w  
%           pcolor(x,x,z), shading interp eF+:w:\h  
%           set(gca,'XTick',[],'YTick',[]) d 7vD  
%           axis square ^uB9EP*P  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +-tvNX%IJ  
%       end OUCL tn\  
% 0kxo  
%   See also ZERNPOL, ZERNFUN2. )p*I(y  
M#o.$+Uh  
7u[U%yd  
%   Paul Fricker 11/13/2006 Y_m/? [:  
wh4ik`S 1  
x\taG.'zX  
$:IOoS|e  
^Ud1 ag!-  
% Check and prepare the inputs: }uWIF|h~  
% ----------------------------- zbQ-l1E  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) AX6z4G  
    error('zernfun:NMvectors','N and M must be vectors.') 7|4t;F!  
end J2A+x\{<  
{ FVLH:{U^  
>YP6/w,e  
if length(n)~=length(m) g'2'K  
    error('zernfun:NMlength','N and M must be the same length.') _dOR-<  
end K_/-mwA v  
eeKErpj8A  
VB 53n'  
n = n(:); nx{_^sK  
m = m(:); )1 ]P4  
if any(mod(n-m,2)) 0($@9k4!/  
    error('zernfun:NMmultiplesof2', ... >6fc` 3*!  
          'All N and M must differ by multiples of 2 (including 0).') b4NUx)%ln  
end hcWYz  
R9=K/  
cuv?[ M  
if any(m>n) n~~0iU )  
    error('zernfun:MlessthanN', ... 5=< y%VF  
          'Each M must be less than or equal to its corresponding N.') \:>GF-Z(  
end Ns?qLSN  
>q W_%  
XLwmXi  
if any( r>1 | r<0 ) 5:3%RTLG  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') -+1_ 1!  
end tJ:]ne   
Hn~=O8/2  
]/byz_7]  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) lw/zgR#|  
    error('zernfun:RTHvector','R and THETA must be vectors.') Qs v3`c  
end 5R^e  
y3!r;>2k=  
-nBb - y  
r = r(:); >%qk2h>  
theta = theta(:); h7],/? s  
length_r = length(r); KDx~^OO  
if length_r~=length(theta) oW0A8_|9  
    error('zernfun:RTHlength', ... 6yDc4AX  
          'The number of R- and THETA-values must be equal.') 9  Vn  
end )8BGN'jyi  
%V40I{1  
l,z# : k  
% Check normalization: SZ/}2_;  
% -------------------- k7o49Y(#  
if nargin==5 && ischar(nflag) )C?bb$  G  
    isnorm = strcmpi(nflag,'norm'); PwF 1Pr`r  
    if ~isnorm NO(^P+s  
        error('zernfun:normalization','Unrecognized normalization flag.') q. i2BoOd  
    end R^_7B(  
else PvmmyF  
    isnorm = false; FG-v71!h#  
end , 7` /D  
z ^e99dz  
+sN'Y/-  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Yd} Jz  
% Compute the Zernike Polynomials u\L=nCtLby  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zDEX `~c  
KyQO>g{R  
;3 N0)  
% Determine the required powers of r: {2|[7oNT6  
% ----------------------------------- [73 \jT  
m_abs = abs(m); <K^{36h  
rpowers = []; uc0 1{t0,  
for j = 1:length(n) HR.^ y$IE  
    rpowers = [rpowers m_abs(j):2:n(j)]; Z%h _g-C  
end <>gX'te  
rpowers = unique(rpowers); M @|n"(P  
_J|TCm  
Xv1 SRP#  
% Pre-compute the values of r raised to the required powers, &m=GkK  
% and compile them in a matrix: 2#<)-Cak  
% ----------------------------- pQQN8Y~^Y  
if rpowers(1)==0 O9+Dd%_KS#  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bc+~g>o  
    rpowern = cat(2,rpowern{:}); _*tU.x|DP  
    rpowern = [ones(length_r,1) rpowern]; goE \C  
else {6_M$"e.  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GJu[af  
    rpowern = cat(2,rpowern{:}); >GbCRN~  
end 4tQ~Z6Jn;  
:i{Svb*_'  
Y/%(4q*'  
% Compute the values of the polynomials: qocN:Of1  
% -------------------------------------- q <, b  
y = zeros(length_r,length(n)); 9.:]eL  
for j = 1:length(n) `l#|][B)g$  
    s = 0:(n(j)-m_abs(j))/2; =:w]EpH"  
    pows = n(j):-2:m_abs(j); $;4y2?E  
    for k = length(s):-1:1 w5C$39e\G  
        p = (1-2*mod(s(k),2))* ... PRdyc+bf  
                   prod(2:(n(j)-s(k)))/              ... &oz^dlw  
                   prod(2:s(k))/                     ... Z[ NO`!<  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cuw 7P  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); Ipp#{'Do  
        idx = (pows(k)==rpowers); xj ?#]GR  
        y(:,j) = y(:,j) + p*rpowern(:,idx); [NxC7p:Lo  
    end <W>T!;4!  
     gwA+%]  
    if isnorm EZ"n3#/  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3j I rB%  
    end A^2n i=b  
end yb-1zF|  
% END: Compute the Zernike Polynomials c\Z.V*o  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6YHQ/#'G~  
 &x":  
3P.v#TEst  
% Compute the Zernike functions: @QN(ouqQ  
% ------------------------------ ~E8L,h~  
idx_pos = m>0; #`HY"-7m_  
idx_neg = m<0; &'V1p4'  
PM?F;mj  
h 7P<3m}  
z = y; xg^Z. q)d  
if any(idx_pos) f}!Eu  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); <hV%OrBz-  
end @^2?97i c  
if any(idx_neg) FwjmC%iY  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); N|rB~  
end 1_jd1 UT  
5r)]o'? s  
SSAf<44e  
% EOF zernfun x+;a2yE~  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  xl ]1TB@  
1W'0h$5^"  
DDE还是手动输入的呢? 'w8p[h (,  
'\% Kd+k  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计