首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, GtI6[ :1t  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, :_dICxaLZT  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? bNzqls$  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Yig0/ "  
msTB'0  
9|:^k.  
FY;+PY@I{  
(hZ:X)E>  
function z = zernfun(n,m,r,theta,nflag) JSMPyj  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. yDd[e]zS`  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N V/#v\*JHFc  
%   and angular frequency M, evaluated at positions (R,THETA) on the E%k7wM {  
%   unit circle.  N is a vector of positive integers (including 0), and 4B O %{  
%   M is a vector with the same number of elements as N.  Each element * crw^e  
%   k of M must be a positive integer, with possible values M(k) = -N(k) !)H*r|*[  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, @] .VQ<X|0  
%   and THETA is a vector of angles.  R and THETA must have the same r)l`  
%   length.  The output Z is a matrix with one column for every (N,M) H"YL k  
%   pair, and one row for every (R,THETA) pair. ?s{C//  
% ?AsDk~3  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D,W\ gP/h%  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), mb\t/p  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral $-pbw@7  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0g(6r-2)7  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized (ppoW  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. /#q")4Mf  
% bejGfc  
%   The Zernike functions are an orthogonal basis on the unit circle. hH4o;0rqJ  
%   They are used in disciplines such as astronomy, optics, and =Lw3 \5l  
%   optometry to describe functions on a circular domain. ,?b78_,2  
% -Ds|qzrN%  
%   The following table lists the first 15 Zernike functions. ;~tsF.=  
% _-a|VTM  
%       n    m    Zernike function           Normalization Yw"P)Zp  
%       -------------------------------------------------- ;h+q  
%       0    0    1                                 1 @W9H9 PWv&  
%       1    1    r * cos(theta)                    2 D9,! %7i  
%       1   -1    r * sin(theta)                    2 zHFTCL>"  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) h(:<(o@<  
%       2    0    (2*r^2 - 1)                    sqrt(3) P>htQ  
%       2    2    r^2 * sin(2*theta)             sqrt(6) i,OKf Xp  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) !kh{9I>M  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) _g6wQdxT  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ~/c5 hyTx  
%       3    3    r^3 * sin(3*theta)             sqrt(8) KS! iL=i  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) l P0k:  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) r{"uv=,`  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9s $PrF  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0eA5zFU7  
%       4    4    r^4 * sin(4*theta)             sqrt(10) .~<]HAwq  
%       -------------------------------------------------- &:auB:b  
% u9>6|w+  
%   Example 1: SI_?~Pf3k  
% a/e\vwHLv  
%       % Display the Zernike function Z(n=5,m=1) ?'+8[OHiF^  
%       x = -1:0.01:1; #:W%,$ 9\P  
%       [X,Y] = meshgrid(x,x); AF[>fMI  
%       [theta,r] = cart2pol(X,Y); +u#Sl)F  
%       idx = r<=1; q!2<=:f  
%       z = nan(size(X)); YX `%A6  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); 0^iJlR2  
%       figure .;Z.F7{q  
%       pcolor(x,x,z), shading interp uHrb:X!q  
%       axis square, colorbar q] ZSj J  
%       title('Zernike function Z_5^1(r,\theta)') bA+[{  
% nt`<y0ta  
%   Example 2: ?H0m<jO8~  
% | XLFV  
%       % Display the first 10 Zernike functions [D9:A  
%       x = -1:0.01:1; |$Xf;N37t  
%       [X,Y] = meshgrid(x,x); P'FKk<  
%       [theta,r] = cart2pol(X,Y); x~(y "^ph  
%       idx = r<=1; @YNGxg~*g  
%       z = nan(size(X)); kpT>G$s~gy  
%       n = [0  1  1  2  2  2  3  3  3  3]; iE+6UK  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; /fC\K_<N  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; H oS|f0  
%       y = zernfun(n,m,r(idx),theta(idx)); =VCQ*  
%       figure('Units','normalized') w=$'Lt!  
%       for k = 1:10 q-uLA&4  
%           z(idx) = y(:,k); x!`KhTu`_A  
%           subplot(4,7,Nplot(k)) TRCI\  
%           pcolor(x,x,z), shading interp j #es2;  
%           set(gca,'XTick',[],'YTick',[]) 777rE[\@b  
%           axis square X=#It&m%s  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) P09,P  
%       end f:FpyCo=9  
% G)4SWu0<t  
%   See also ZERNPOL, ZERNFUN2. ytob/tc  
F b2p(.  
ip674'bq7R  
%   Paul Fricker 11/13/2006 VB's  
:OX$LCi  
lkN'uZ  
[DL|Ht>  
+qZc} 7rJF  
% Check and prepare the inputs: PgTDjEo  
% ----------------------------- h/{8bC@bi  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) AW62~*  
    error('zernfun:NMvectors','N and M must be vectors.') 8}9Ob~on  
end [Q=4P*G}X  
`L;OY 4  
uh1S 7!^  
if length(n)~=length(m) e-jw^   
    error('zernfun:NMlength','N and M must be the same length.') 6VGo>b;  
end cL ae=N  
@,GjeF]!  
=_uol8v  
n = n(:); "TUPYFK9  
m = m(:); 4xpj<  
if any(mod(n-m,2)) J/= +r0c  
    error('zernfun:NMmultiplesof2', ... `fLfT'  
          'All N and M must differ by multiples of 2 (including 0).') #*\Ry/9Q  
end a&8l[xe1  
cJ2y)`  
i5Eeg`NMl  
if any(m>n) i{P%{hVb  
    error('zernfun:MlessthanN', ... cu:-MpE  
          'Each M must be less than or equal to its corresponding N.') e7h\(`J0lj  
end  w}"!l G  
|iAEDZn  
fHLFeSfH  
if any( r>1 | r<0 ) S'|lU@P Cl  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') BU'Ki \  
end $m{{,&}k  
oO8]lHS?@  
*1i?6$[ "  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /#@LRN<oCq  
    error('zernfun:RTHvector','R and THETA must be vectors.') ?{?Vy9'B  
end ]}_p3W "Y9  
&^AzIfX}Gw  
rtcJ=`)0`  
r = r(:); vi^z5n  
theta = theta(:); JThk Wx  
length_r = length(r); D\n>*x  
if length_r~=length(theta) <\+Po<)3j  
    error('zernfun:RTHlength', ... 3e#x)H/dr  
          'The number of R- and THETA-values must be equal.') 1V#0\1sj  
end PkjT&e)  
:fl*w""V@  
m=#aHF  
% Check normalization: RA! x  
% --------------------  ~WzMK  
if nargin==5 && ischar(nflag) }<E sS  
    isnorm = strcmpi(nflag,'norm'); loml.e=87  
    if ~isnorm aeLBaS  
        error('zernfun:normalization','Unrecognized normalization flag.') 5T7_[{  
    end MacL3f  
else f S(^["*G  
    isnorm = false; yjeqv-7  
end B 9%yd*SJ  
.%|OGl ?  
kt;}]O2%R  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7Ntjx(b$"h  
% Compute the Zernike Polynomials "K9vm^xP  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rOs)B21/  
/+Wb6{lY  
y.L|rRe@P  
% Determine the required powers of r: cpP.7ZR  
% ----------------------------------- B)_!F`9  
m_abs = abs(m); P c/.*kOT  
rpowers = [];  "Nk`RsW  
for j = 1:length(n) ?FkQe~FN{  
    rpowers = [rpowers m_abs(j):2:n(j)]; #p11D= @[  
end 8:;u v7p  
rpowers = unique(rpowers); *?EjYI  
-U/I'RDLEz  
 f'7 d4  
% Pre-compute the values of r raised to the required powers, -`<6=[QUO  
% and compile them in a matrix: 7vB9K_wCI  
% ----------------------------- SQz$kIZR  
if rpowers(1)==0 'XC&BWJ  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); p{\qSPK  
    rpowern = cat(2,rpowern{:}); sDz)_;;%  
    rpowern = [ones(length_r,1) rpowern]; l4R<`b\Jt  
else iKR8^sj7S  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3j[w -Lfp  
    rpowern = cat(2,rpowern{:}); p,_6jdz  
end O=4c eE mz  
e<: 4czh8  
G}Qk!r  
% Compute the values of the polynomials: Z<$E.##  
% -------------------------------------- +35)=Uov  
y = zeros(length_r,length(n)); Q6s5#7h'"  
for j = 1:length(n) E@\d<c.  
    s = 0:(n(j)-m_abs(j))/2; Z7m GC`>  
    pows = n(j):-2:m_abs(j); Mp DdJ,  
    for k = length(s):-1:1 f4A4  
        p = (1-2*mod(s(k),2))* ... `\WcF7  
                   prod(2:(n(j)-s(k)))/              ... y~4SKv $  
                   prod(2:s(k))/                     ... &deZ  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... oF 1W}DtA  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); UIm[DYMS  
        idx = (pows(k)==rpowers); .f?qUg  
        y(:,j) = y(:,j) + p*rpowern(:,idx); $Hl+iF4j<  
    end d~P<M3#>  
     YokZar2a0  
    if isnorm auyKLT3C  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); VDb,$i.Z0  
    end Mo?t[]L   
end FBwncG$]F*  
% END: Compute the Zernike Polynomials buxI-wv  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,&zjOc_v  
r=iMo7q  
`K@df<}%*,  
% Compute the Zernike functions: ib""Fv7{  
% ------------------------------ e!2%ku  
idx_pos = m>0; 9FIe W[  
idx_neg = m<0; R|Q_W X  
7am/X.  
jmk*z(}#:  
z = y; N.Wdi  
if any(idx_pos) vS24;:f  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _L `N^I.  
end ?( dYW7S  
if any(idx_neg) 3Q!J9t5dc  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); q|]0on~ ]  
end |)72E[lL  
7S~9E2N  
h3;o!FF  
% EOF zernfun 6Qzu-  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  h3d\MYO)B  
xjhAAM  
DDE还是手动输入的呢? 548 [! p4  
]20 "la5  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计