首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 8qYGlew,  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, $HCAC 4  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? jc~*#\N  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? [W\atmd"  
iXS-EB/  
I4X+'fW,  
XoQk'7"f  
Jq<`j<'9  
function z = zernfun(n,m,r,theta,nflag) KY34 'Di  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. S9#N%{8P  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N o^"3C1j  
%   and angular frequency M, evaluated at positions (R,THETA) on the {s'_zS z  
%   unit circle.  N is a vector of positive integers (including 0), and Qg$Nj=Cw  
%   M is a vector with the same number of elements as N.  Each element }' 0Xz9/ l  
%   k of M must be a positive integer, with possible values M(k) = -N(k) A*U'SCg(G  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ~ 2oP,  
%   and THETA is a vector of angles.  R and THETA must have the same 18tQWI$  
%   length.  The output Z is a matrix with one column for every (N,M) Zy3&Zt  
%   pair, and one row for every (R,THETA) pair. ]`H.qV  
% <Jrb"H[ T"  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike TY[d%rMm  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), EA E\Xv  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral >^GCSPe  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Cj9O [  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized &b")`p&K  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. v!hs~DnUZ  
% RW^v{'o  
%   The Zernike functions are an orthogonal basis on the unit circle. 9<c4y4#y  
%   They are used in disciplines such as astronomy, optics, and XJ/ kB8  
%   optometry to describe functions on a circular domain. vK7,O%!S  
% 5T3>fw2G  
%   The following table lists the first 15 Zernike functions. Y]Vc}-a(h  
% W@C tFU9  
%       n    m    Zernike function           Normalization .p~;U|h"  
%       -------------------------------------------------- na:^7:I  
%       0    0    1                                 1 >:E-^t%  
%       1    1    r * cos(theta)                    2 Qf(e'e  
%       1   -1    r * sin(theta)                    2 Z9~Wlt'?  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) n<&R"89  
%       2    0    (2*r^2 - 1)                    sqrt(3) TN aff  
%       2    2    r^2 * sin(2*theta)             sqrt(6) <X&:tZ #/  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) JlGD.!`  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) qk1D#1vl  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) bXLa~r4\  
%       3    3    r^3 * sin(3*theta)             sqrt(8) >*xzSd? \  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) f_XCO=8'v  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }AYSQ~:  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) wh+ibH}@!  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) XPTB,1g+f  
%       4    4    r^4 * sin(4*theta)             sqrt(10) B4O a7$M/U  
%       -------------------------------------------------- |T&#"q,i9%  
% ]%hI-  
%   Example 1: gg_(%.>  
% ur7a%NH  
%       % Display the Zernike function Z(n=5,m=1) l= S_#  
%       x = -1:0.01:1; Kp;o?5H  
%       [X,Y] = meshgrid(x,x); h1)\.F4G  
%       [theta,r] = cart2pol(X,Y); _'a4I;  
%       idx = r<=1; -~ Q3T9+  
%       z = nan(size(X)); $, 42h  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); HX*U2<^  
%       figure *E_= 8OV  
%       pcolor(x,x,z), shading interp {v(|_j&:o  
%       axis square, colorbar Big-)7?  
%       title('Zernike function Z_5^1(r,\theta)') SoIMftX  
% MWf%Lh;R  
%   Example 2: W#\4"'=I  
% c[q3O**  
%       % Display the first 10 Zernike functions v8N1fuP}  
%       x = -1:0.01:1; GssoT<Y)Z  
%       [X,Y] = meshgrid(x,x); / KM+PeO  
%       [theta,r] = cart2pol(X,Y); 4R6 .GO  
%       idx = r<=1; PnvLXE}F  
%       z = nan(size(X)); #*@Yil=1  
%       n = [0  1  1  2  2  2  3  3  3  3]; \g/E4U .+  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 4r$t}t gX  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; q9^r2OO  
%       y = zernfun(n,m,r(idx),theta(idx)); `h#JDcT;a  
%       figure('Units','normalized') _qfdk@@g  
%       for k = 1:10 d1N&J`R\1  
%           z(idx) = y(:,k); (?(ahtT4T  
%           subplot(4,7,Nplot(k)) $[e*0!e  
%           pcolor(x,x,z), shading interp @*dA<N.9  
%           set(gca,'XTick',[],'YTick',[]) gnt[l0m  
%           axis square f,*e?9@;s  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) = 8n*%NC  
%       end 8dfx _kY`/  
% 6O?O6Ub  
%   See also ZERNPOL, ZERNFUN2. ;|c,  
aqlYB7  
fO+;%B  
%   Paul Fricker 11/13/2006 &o(? }W  
TG($l2  
|<S9nZg%p  
);C !:?  
ax$0J|}7  
% Check and prepare the inputs: w t}a`hxu  
% ----------------------------- rYT3oqpfT  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =+u$ZZ0+]o  
    error('zernfun:NMvectors','N and M must be vectors.') /3fo=7G6  
end sfH|sp  
8d]= +n !  
V%+KJ}S!Z  
if length(n)~=length(m) SYyH_0N  
    error('zernfun:NMlength','N and M must be the same length.') +I U]=qS  
end b'G4KNW  
mu(S 9  
15870xS  
n = n(:); StE4n0V  
m = m(:); TJCoID7a8  
if any(mod(n-m,2)) 4Hu.o7  
    error('zernfun:NMmultiplesof2', ... *Owq_)_ (|  
          'All N and M must differ by multiples of 2 (including 0).') U*zjEY:A  
end :Y"f .>  
K@h v[4  
7;Wj ^#  
if any(m>n) %H:!/'45  
    error('zernfun:MlessthanN', ... H>VuUH|  
          'Each M must be less than or equal to its corresponding N.') o zv><e#  
end D:%v((Ccw  
*@/! h2  
>RRb8=[J  
if any( r>1 | r<0 ) nF05p2Mh  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') $U<xrN>O  
end , !c.  
"=HCP,  
poeKY[].  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) b{9q   
    error('zernfun:RTHvector','R and THETA must be vectors.') )Nk^;[  
end 1}9@aKM  
+ 6O5hZ  
1S<V,9(  
r = r(:); <kt,aMw[*  
theta = theta(:); *l^h;RSx  
length_r = length(r); 2\W[ ItxL0  
if length_r~=length(theta) On#RYy^}  
    error('zernfun:RTHlength', ... Uk5jZ|  
          'The number of R- and THETA-values must be equal.') 0d~>zKho  
end -Y{P"!p0  
NFv9%$l-  
$s$z"<  
% Check normalization: \-gZ_>)  
% -------------------- XX#YiG4|J  
if nargin==5 && ischar(nflag) r1]shb%J?  
    isnorm = strcmpi(nflag,'norm'); Y[#i(5w  
    if ~isnorm s9?klJg  
        error('zernfun:normalization','Unrecognized normalization flag.') :VX?j 3qW  
    end x/ lW=EQ  
else $d'GCzYvZ  
    isnorm = false; L]I)E` s  
end MPhO#;v  
x!"S`AM  
/{#1w\  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4Bsx[~ u&  
% Compute the Zernike Polynomials <p;cR` %uE  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tT>~;l%'  
P33x/#VVE  
|t5K!?{i  
% Determine the required powers of r: CXwDG_e  
% ----------------------------------- wM8Gz.9,  
m_abs = abs(m); `}Ssc-A  
rpowers = []; >vF=}1_L  
for j = 1:length(n) rZm|7A)i  
    rpowers = [rpowers m_abs(j):2:n(j)]; *_ {w0U)  
end ?{ns1nW:  
rpowers = unique(rpowers); }%Dsy2:y  
}@>=,A4Y  
#Y6'Q8g f  
% Pre-compute the values of r raised to the required powers, (P&~PJH  
% and compile them in a matrix: 1'@/ jR  
% ----------------------------- h)2W}p{a4=  
if rpowers(1)==0 r*'a-2A u  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~Q}JC3f>  
    rpowern = cat(2,rpowern{:}); vs}_1o  
    rpowern = [ones(length_r,1) rpowern]; _PUgK\  
else b.V\E Ok  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `&]<_Jc1  
    rpowern = cat(2,rpowern{:}); MM8@0t'E  
end  JsAl;w  
.4P5tIn\  
Qvo(2(  
% Compute the values of the polynomials: PEqO<a1Z8  
% -------------------------------------- #~<cp)!3  
y = zeros(length_r,length(n)); IO3`/R-  
for j = 1:length(n) U"\$k&  
    s = 0:(n(j)-m_abs(j))/2; KZ_d..l*W  
    pows = n(j):-2:m_abs(j); xDv5'IGBb  
    for k = length(s):-1:1 W3K&C[f  
        p = (1-2*mod(s(k),2))* ... I!'PvIyO  
                   prod(2:(n(j)-s(k)))/              ... pd2Lc $O@  
                   prod(2:s(k))/                     ... >b9nc\~  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... P>q"P1&{  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); IRy!8A=X  
        idx = (pows(k)==rpowers); wXdtY  
        y(:,j) = y(:,j) + p*rpowern(:,idx); 8/lv,m#  
    end pdCn98}%-  
     my+y<C-o`  
    if isnorm pe(31%(h  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Np$peT[  
    end P%HvL4R  
end 9e^HTUFbG  
% END: Compute the Zernike Polynomials Lbb{z  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NR3]MGBKv  
wkSIQL  
)nJo\HFXv  
% Compute the Zernike functions: *5KV DOd  
% ------------------------------ 0Vu&UD  
idx_pos = m>0; ^H]q[XFR  
idx_neg = m<0; qf7:Q?+.|  
s"1:#.u  
QiDf,$t|,  
z = y; \ ) H}  
if any(idx_pos) -9Iz$ (>a  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); c,WRgXL  
end {a>a?fVU  
if any(idx_neg) b-sbRR  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); '2`MT-  
end ?$ rSbw  
q:OSQ~U_  
+(>!nsf  
% EOF zernfun \5g7_3,3W  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  %vPs38Fks  
xFZA1 8  
DDE还是手动输入的呢? G\8ps ~3T  
m>4jRr6sF  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计