首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, A$3Rbn}"  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, !CWe1Dm  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? {?eUAB<  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? I7oA7@zv  
[p9v#\G; [  
# G 77q$  
=&}_bd/]  
k_L`  
function z = zernfun(n,m,r,theta,nflag) /T)E&=Ds  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ![^pAEgx  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ~_vSMX  
%   and angular frequency M, evaluated at positions (R,THETA) on the U_(>eVi7F  
%   unit circle.  N is a vector of positive integers (including 0), and NC%hsg^0/  
%   M is a vector with the same number of elements as N.  Each element nf/?7~3?[  
%   k of M must be a positive integer, with possible values M(k) = -N(k) [&n[p?  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ? +L,  
%   and THETA is a vector of angles.  R and THETA must have the same nf0u:M"fm  
%   length.  The output Z is a matrix with one column for every (N,M) k?14'X*7yu  
%   pair, and one row for every (R,THETA) pair. 80*hi)ux[  
% n?.;*:  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike gHLI>ew*QR  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), uqC#h,~ 0  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral V_gl#e#  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;"Kgg:K>W  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized x%=CEe?6  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }yEV&& @  
% Y=P*   
%   The Zernike functions are an orthogonal basis on the unit circle. Ev5~= ]  
%   They are used in disciplines such as astronomy, optics, and ;Z d_2CZ  
%   optometry to describe functions on a circular domain. qT@h/Y  
% '\I(n|\  
%   The following table lists the first 15 Zernike functions. 985F(r  
% cjEqN8  
%       n    m    Zernike function           Normalization y4Jc|)  
%       -------------------------------------------------- [34N/;5  
%       0    0    1                                 1 v.Ba  
%       1    1    r * cos(theta)                    2 CaJ-oy8  
%       1   -1    r * sin(theta)                    2 Dcvul4Q  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) 1.cP3k l  
%       2    0    (2*r^2 - 1)                    sqrt(3) 'RMUjJ-!  
%       2    2    r^2 * sin(2*theta)             sqrt(6) G;l7,1;MU:  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) Af;Pl|Zh[  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) eBrNhE-[G]  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ,x8;| o5  
%       3    3    r^3 * sin(3*theta)             sqrt(8) @.e X8~3=  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) R+M=)Z  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f+^6.%  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) b_31 \  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !CGX\cvW  
%       4    4    r^4 * sin(4*theta)             sqrt(10) );gY8UL^  
%       -------------------------------------------------- /I`TN5~  
% $N=&D_Q  
%   Example 1: <kK>C8+  
% 5?k5J\+  
%       % Display the Zernike function Z(n=5,m=1) %e E^Y<@g  
%       x = -1:0.01:1; 9(N  
%       [X,Y] = meshgrid(x,x); exb} y  
%       [theta,r] = cart2pol(X,Y); vA/SrX.  
%       idx = r<=1; k&dXK  
%       z = nan(size(X)); UX)GA[WI  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); _ Op%H)  
%       figure |Kd#pYt%O  
%       pcolor(x,x,z), shading interp $D^\[^S  
%       axis square, colorbar ,n/]ALz>~  
%       title('Zernike function Z_5^1(r,\theta)') 7ftn gBv?  
% PftK>,+,  
%   Example 2: }iUK`e  
% +/ukS6>gr  
%       % Display the first 10 Zernike functions FU3K?A B  
%       x = -1:0.01:1; <~ smBd  
%       [X,Y] = meshgrid(x,x); Ei4^__g\'  
%       [theta,r] = cart2pol(X,Y); 4[gmA  
%       idx = r<=1; 7rjl-FUA~  
%       z = nan(size(X)); GcVQz[E  
%       n = [0  1  1  2  2  2  3  3  3  3]; ipv5JD[  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; UM7@c7B?  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; o<Zlm)"%1  
%       y = zernfun(n,m,r(idx),theta(idx)); W0gS>L_  
%       figure('Units','normalized') tIuM9D{P  
%       for k = 1:10 Y Zj-%5  
%           z(idx) = y(:,k); F9r.DG$}  
%           subplot(4,7,Nplot(k)) Z.\q$U7'9  
%           pcolor(x,x,z), shading interp ^Oz~T|)  
%           set(gca,'XTick',[],'YTick',[]) LZykc c9g  
%           axis square hFIh<m=C?Y  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) v)5;~.+%  
%       end -n _Y.~  
% UQl?_ [G  
%   See also ZERNPOL, ZERNFUN2. NL9.J @"b  
]Ur/DRNS  
 +A3/^C0  
%   Paul Fricker 11/13/2006 B7 %,D}  
>tM4|w|  
Tv``\<   
% N8I'*u  
P#O" {+`  
% Check and prepare the inputs: )4g_S?l=  
% ----------------------------- C>Ik ;  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -"[4E0g0  
    error('zernfun:NMvectors','N and M must be vectors.') /@9Q:'P  
end A({czHLhN5  
A0{xt*g   
zj`c%9N+  
if length(n)~=length(m) s%jBIeh  
    error('zernfun:NMlength','N and M must be the same length.') !1$x4 qxS  
end `^)`J  
S@qPf0dL<  
v$}^$8`  
n = n(:); jX7K- L  
m = m(:); O/~T+T%  
if any(mod(n-m,2)) TNu% _ 34  
    error('zernfun:NMmultiplesof2', ... q%3VcR$J  
          'All N and M must differ by multiples of 2 (including 0).') 4E''pW]8  
end .}dLqw  
,cxqr3 o  
.O- )m'5  
if any(m>n) c~T {;  
    error('zernfun:MlessthanN', ... :,8y8z$+  
          'Each M must be less than or equal to its corresponding N.') 9wL2NC31Q  
end zdP?HJ=F  
) 57'<  
PF4[;E S'  
if any( r>1 | r<0 ) c&D+=   
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') Y9abRr K  
end cj>@Jx}]M  
@[^ 3y C#  
SzLlJUVX  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) !{ &r|6  
    error('zernfun:RTHvector','R and THETA must be vectors.') Q=Q+*oog  
end +wQ5m8E  
amsl>wc!  
*JOK8[Qn  
r = r(:); xM_#FxJb  
theta = theta(:); 5H._Q  
length_r = length(r); 29Uqdo  
if length_r~=length(theta) kH 9k<{  
    error('zernfun:RTHlength', ... I(6%'s2  
          'The number of R- and THETA-values must be equal.') +C=vuR  
end lg|6~=aQ  
i3 js'?7E  
z fUDo`V~  
% Check normalization: M.g2y&8  
% -------------------- B} qRz  
if nargin==5 && ischar(nflag) H [+'>Id:  
    isnorm = strcmpi(nflag,'norm'); J.~@j;[2  
    if ~isnorm T)tr"<F5NP  
        error('zernfun:normalization','Unrecognized normalization flag.') =o@}~G&HA  
    end T#&1q]P1F  
else U'jmgHq  
    isnorm = false; 6F^/k,(k4  
end rT="ciQ  
puOMtCI  
MKtI 3vi?  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8z93ETv7`  
% Compute the Zernike Polynomials 0+0 Y$;<  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P#pb48^-  
#mH28UT  
TrDTay  
% Determine the required powers of r: f TmJDUv+  
% ----------------------------------- py$Gy-I~[  
m_abs = abs(m); DvWBvs,  
rpowers = []; 0o/;cBH  
for j = 1:length(n) *r>Y]VG;S  
    rpowers = [rpowers m_abs(j):2:n(j)]; ['(qeS@5O  
end 7gtaI3   
rpowers = unique(rpowers); R1*&rjB  
li3X}  
aR6~r^jB  
% Pre-compute the values of r raised to the required powers, qLBQ!>lR  
% and compile them in a matrix: ycN!N  
% ----------------------------- w[2E:Nj  
if rpowers(1)==0 i% 0 qN  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Tu:lIy~A  
    rpowern = cat(2,rpowern{:}); "P5,p"k:)  
    rpowern = [ones(length_r,1) rpowern]; !le#7Kii  
else + fvVora  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  ^Oj^7.T+  
    rpowern = cat(2,rpowern{:}); j+.E#:tu"  
end d3oRan}z  
JA >&$h  
|$8N*7UD  
% Compute the values of the polynomials: C B;j[.  
% -------------------------------------- :CM2kh"Iu  
y = zeros(length_r,length(n)); ^g'uR@uU  
for j = 1:length(n) }2=~7&)  
    s = 0:(n(j)-m_abs(j))/2; =)#XZ[#F  
    pows = n(j):-2:m_abs(j); '<"%>-^Gn  
    for k = length(s):-1:1 >U:-U"rA?  
        p = (1-2*mod(s(k),2))* ... "97sH_ ,  
                   prod(2:(n(j)-s(k)))/              ... jxK `ShW=  
                   prod(2:s(k))/                     ... 0Dd8c \J  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... x}C$/7^  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); 8pmWw?  
        idx = (pows(k)==rpowers); 2Z(?pJyDM  
        y(:,j) = y(:,j) + p*rpowern(:,idx); )x5w`N]lm  
    end V(G{_>>  
     wC1) \ld  
    if isnorm Ornm3%p+e  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); p,4S?c r>a  
    end 2V @ pt  
end c:DV8'fT  
% END: Compute the Zernike Polynomials %z1hXh#+  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (!ud"A|ab4  
p=Q o92 NH  
+SFo2Wdr43  
% Compute the Zernike functions: <SRSJJR|(  
% ------------------------------ wh]v{Fi'  
idx_pos = m>0; 5Shc$Awc!  
idx_neg = m<0; i .?l\  
-OQ6;A"#  
`C:J{`  
z = y; P\X$fD  
if any(idx_pos) ;S2/n$Ju_  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); o`jVd,aj  
end M4XU*piz  
if any(idx_neg) =rNI&K_<  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); E-rGOm" m  
end g*U[?I"sC  
( Q k*B  
uoY]@.  
% EOF zernfun =sXk,I;  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  U> 1voc  
LZ#SX5N  
DDE还是手动输入的呢? ],ISWb  
D j@7vM%_  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计