首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, BO^e.iB/  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ;tO(,^  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? *&7Av7S  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? i9Qx{f88  
ffdyDUzQ  
x@yF|8  
I/c* ?  
<Fi/!  
function z = zernfun(n,m,r,theta,nflag) K:mb$YJ&  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. J}BS/Tr}=  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _|3n h;-m  
%   and angular frequency M, evaluated at positions (R,THETA) on the UhNeY{6  
%   unit circle.  N is a vector of positive integers (including 0), and a4?:suX$  
%   M is a vector with the same number of elements as N.  Each element 6 LC*X  
%   k of M must be a positive integer, with possible values M(k) = -N(k) YQ&Xd/z-  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, qvCl mZ  
%   and THETA is a vector of angles.  R and THETA must have the same y 2bZo'Z  
%   length.  The output Z is a matrix with one column for every (N,M) DEIn:d  
%   pair, and one row for every (R,THETA) pair. R4{2+q=0  
% ) b?HK SqI  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike L0}"H .  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cJ&%XN  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral I_4'9  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, tJc9R2  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized ? r^+-  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qjuX1 6o  
% =F6J%$  
%   The Zernike functions are an orthogonal basis on the unit circle. DJhi>!xJ  
%   They are used in disciplines such as astronomy, optics, and RV-7y^[]^  
%   optometry to describe functions on a circular domain. -3A#a_fu  
% +h"RXwlBM  
%   The following table lists the first 15 Zernike functions. |:C=j/f   
% V#zDYrp  
%       n    m    Zernike function           Normalization ygh*oVHO  
%       -------------------------------------------------- X2~>Z^, U  
%       0    0    1                                 1 Ygr1 S(=  
%       1    1    r * cos(theta)                    2 U]O7RH  
%       1   -1    r * sin(theta)                    2 s/8>(-H#  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) 7Q2"]f,$CQ  
%       2    0    (2*r^2 - 1)                    sqrt(3) L]cZPfI6  
%       2    2    r^2 * sin(2*theta)             sqrt(6) :beBiO  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) )=#QTiJ  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) vn7<>k> dx  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Zj%l (OVq  
%       3    3    r^3 * sin(3*theta)             sqrt(8) zmF_-Q`c  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) w`q):yXX  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !q mnMY$  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 7YrX3Hx 8  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D3N\$D  
%       4    4    r^4 * sin(4*theta)             sqrt(10) qdWsP9}q  
%       -------------------------------------------------- ;vnG  
% v [\' M  
%   Example 1: YLk/16r  
% yc?+L ;fN  
%       % Display the Zernike function Z(n=5,m=1) Cwl#(; @  
%       x = -1:0.01:1; lOYzo  
%       [X,Y] = meshgrid(x,x); f 0D9Mp  
%       [theta,r] = cart2pol(X,Y); LNPwb1)  
%       idx = r<=1; \hoYQK j  
%       z = nan(size(X)); C;QIp6"1  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); &N.D!7X  
%       figure 2Ck'A0d  
%       pcolor(x,x,z), shading interp x8+W9i0[1  
%       axis square, colorbar MIGcV9hf  
%       title('Zernike function Z_5^1(r,\theta)') CvS}U%   
% BxVo>r  
%   Example 2: ~RgO9p(dY  
% wGr5V!  
%       % Display the first 10 Zernike functions T*e>_\Tx  
%       x = -1:0.01:1; 5srj|'ja  
%       [X,Y] = meshgrid(x,x); $)8b)Tb  
%       [theta,r] = cart2pol(X,Y); U= QfInB  
%       idx = r<=1; vau0Jn%=ck  
%       z = nan(size(X)); {@ ygq-TZ  
%       n = [0  1  1  2  2  2  3  3  3  3]; '7Q5"M'  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; R-5EztmLae  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; K =nW|^  
%       y = zernfun(n,m,r(idx),theta(idx)); 2j*;1  
%       figure('Units','normalized') JL.noV3q$  
%       for k = 1:10 I:?1(.kd2-  
%           z(idx) = y(:,k); OiAP%7i9  
%           subplot(4,7,Nplot(k)) +X#JCLD  
%           pcolor(x,x,z), shading interp tj7{[3~-[  
%           set(gca,'XTick',[],'YTick',[]) 0<(F 8  
%           axis square QU{|S.\  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 99)md   
%       end ay4E\=k  
% tj<a , l  
%   See also ZERNPOL, ZERNFUN2. %an"cQ ]  
zI1-l9 o  
!} ~K'1"  
%   Paul Fricker 11/13/2006 2vbm=~)$F  
N{rC#A3  
&ZmWR  
z86[_l:  
6'E3Q=}d  
% Check and prepare the inputs: Ni bOtIZ  
% ----------------------------- nZ7FG  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) NWx.l8G  
    error('zernfun:NMvectors','N and M must be vectors.') Ut|G.%1Vd%  
end $=) i{kGS@  
o$ disJ  
bUJ5j kZ)  
if length(n)~=length(m) 1T96W :   
    error('zernfun:NMlength','N and M must be the same length.') p{c+ +P5  
end %uA\Le  
bvpP/LeY  
!LDuCz -  
n = n(:); {6E&\  
m = m(:); hqr V {c  
if any(mod(n-m,2)) "lU%Pm]>  
    error('zernfun:NMmultiplesof2', ... JrZ"AId2  
          'All N and M must differ by multiples of 2 (including 0).') 6<E4?<O%  
end 3JnBKh\n  
BM6 J  
.~>Uh3S  
if any(m>n) e(t,~(  
    error('zernfun:MlessthanN', ... b d!|/Lk  
          'Each M must be less than or equal to its corresponding N.') `VJJ"v<L  
end {Ftz4y)6  
&tKr ?l  
@t W;(8-  
if any( r>1 | r<0 ) 8Df(|>mK  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') %(72+B70R  
end "'M>%m u  
8`edskWrU  
n4* hQi+d  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) P8Nzz(JF  
    error('zernfun:RTHvector','R and THETA must be vectors.') -&3WN!egq  
end w"p,6Ew  
eYJ6&).F  
x^s2bb  
r = r(:); +1`Zu$|  
theta = theta(:); $8k QM  
length_r = length(r); Ai99:J2k  
if length_r~=length(theta) P[|FK(l  
    error('zernfun:RTHlength', ... oSDx9%  
          'The number of R- and THETA-values must be equal.') E Z^eEDZ  
end 2 d%j6D  
v\LcZt`}  
)@%wj;>a  
% Check normalization: F.nJX ZnJ  
% -------------------- ve#*qz Y  
if nargin==5 && ischar(nflag) oN0p$/La  
    isnorm = strcmpi(nflag,'norm'); Ib$*w)4:  
    if ~isnorm {u/G!{N$  
        error('zernfun:normalization','Unrecognized normalization flag.') >O7ITy  
    end YJioR4+q  
else *)PCPYB^  
    isnorm = false; A..,.   
end $-Ud&sjn  
F0 cde  
#Kr\"o1]  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BseK?`]U"  
% Compute the Zernike Polynomials }8+rrzMUB  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MT`gCvoF4P  
I(i/|S&^  
$?38o6  
% Determine the required powers of r: }]8n3&*  
% ----------------------------------- pP1|/f5n`  
m_abs = abs(m); O{0TS^  
rpowers = []; 35 Y#eU2]  
for j = 1:length(n) H<^*V8J 'w  
    rpowers = [rpowers m_abs(j):2:n(j)]; 1pT v6  
end bp'qrcFuiL  
rpowers = unique(rpowers); u!&w"t61Nd  
XxN=vL&m  
$~#N1   
% Pre-compute the values of r raised to the required powers, M7$ h  
% and compile them in a matrix: ;g-L2(T05;  
% ----------------------------- me-:A:si  
if rpowers(1)==0 aWp9K+4R$/  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zjyj,jP  
    rpowern = cat(2,rpowern{:}); qb rf;`  
    rpowern = [ones(length_r,1) rpowern]; r6B\yH2  
else Iyo ey  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Lk%u(duU^  
    rpowern = cat(2,rpowern{:}); A5d(L4Q]a(  
end ^ X&`:f  
] D(laqS;"  
#g.J,L  
% Compute the values of the polynomials: cfb8kNn~+  
% -------------------------------------- IW48Sg  
y = zeros(length_r,length(n)); Je|D]w  
for j = 1:length(n) f zu#!  
    s = 0:(n(j)-m_abs(j))/2; >e]46 K  
    pows = n(j):-2:m_abs(j); 'rT@r:6fn  
    for k = length(s):-1:1 X >i`z  
        p = (1-2*mod(s(k),2))* ... SvlS 4C  
                   prod(2:(n(j)-s(k)))/              ... os\"(*dix  
                   prod(2:s(k))/                     ... k\:f2%!!  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _}_lrg}U  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); 1[QH68  
        idx = (pows(k)==rpowers);  T?!&a0  
        y(:,j) = y(:,j) + p*rpowern(:,idx); h6!o,qw"  
    end j Hd <*  
     Ri,8rf0u  
    if isnorm 9Y9 pKTU  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }v0IzGKs  
    end {{FA "NW  
end RETq S  
% END: Compute the Zernike Polynomials S-FoyID\H  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W#p A W  
G4!$48  
kg2?IL  
% Compute the Zernike functions: <lk_]+ XJ3  
% ------------------------------ .x$!Rc}  
idx_pos = m>0; |+?ABPk"  
idx_neg = m<0; s+"[S%  
3@k;"pFa<  
@!92Ok  
z = y; Y(>]7  
if any(idx_pos) 7\'ow|)}v  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); x6,kG  
end ~YxLDo'.t  
if any(idx_neg) u9AXiv+K  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); cZ(7/Pl  
end +C~,q{u  
}2sc|K^  
a8?Zb^  
% EOF zernfun %ZV a{Nc  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  A{Giz&p  
tP2hU[7Z  
DDE还是手动输入的呢? <`EZ^S L;  
wy&s~lpV,7  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计