首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, -V;Y4,:c  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, tn Ufi8\ob  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? [err$  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? *#>(P  
\5&Mg81  
4+>yL+sC%v  
@!oN]0`F;  
+`wr{kB$~  
function z = zernfun(n,m,r,theta,nflag) m%u`#67oK  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0qNmao4E_  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =(hBgNH  
%   and angular frequency M, evaluated at positions (R,THETA) on the I2HV{1(i  
%   unit circle.  N is a vector of positive integers (including 0), and iCpm^XT  
%   M is a vector with the same number of elements as N.  Each element sE&nEc  
%   k of M must be a positive integer, with possible values M(k) = -N(k) p@~Y[a =  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1,  kSEA  
%   and THETA is a vector of angles.  R and THETA must have the same *LhwIY  
%   length.  The output Z is a matrix with one column for every (N,M) 3<<wHK;)  
%   pair, and one row for every (R,THETA) pair. 5@1h^w v  
% ,=CipL9]  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike PTe$dPB  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 'fK=;mM  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral gYN;F u-9Z  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, zUJXA:L9  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized i 7T#WfF  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. G3|23G.~)(  
%  !{V`N|0  
%   The Zernike functions are an orthogonal basis on the unit circle. u,iiS4'Ze  
%   They are used in disciplines such as astronomy, optics, and 32+N?[9 *  
%   optometry to describe functions on a circular domain. L|APXy]>  
% XOqHzft h6  
%   The following table lists the first 15 Zernike functions. = .S2gO >  
% W:n\,P  
%       n    m    Zernike function           Normalization m`zd0IRTP  
%       -------------------------------------------------- 74 ptd,  
%       0    0    1                                 1 =aj|auu  
%       1    1    r * cos(theta)                    2 =3hJti9[  
%       1   -1    r * sin(theta)                    2 n5xG4.#G  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) `::j\3B&Y-  
%       2    0    (2*r^2 - 1)                    sqrt(3) o(v`  
%       2    2    r^2 * sin(2*theta)             sqrt(6) IA1O]i S  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) n3J,`1*ct  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) u]B b^[  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) o>]w76A^(  
%       3    3    r^3 * sin(3*theta)             sqrt(8) sdXchVC  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) uq:'`o-1  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )I<VH +6  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) S WsD]rn  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ' )F@em  
%       4    4    r^4 * sin(4*theta)             sqrt(10) b N>Ar  
%       -------------------------------------------------- %E, -dw  
% ?b^<Tny  
%   Example 1: w\t  
% 35-FD{  
%       % Display the Zernike function Z(n=5,m=1) ]6=opvm  
%       x = -1:0.01:1; <9=RLENmY"  
%       [X,Y] = meshgrid(x,x); $\4Or  
%       [theta,r] = cart2pol(X,Y); ~c1~) QzZ  
%       idx = r<=1; _;(Q MeR  
%       z = nan(size(X)); ,aWfGh#$  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); \<%FZT_4~  
%       figure qj*BV  
%       pcolor(x,x,z), shading interp I GcR5/3  
%       axis square, colorbar wL0"1Ya  
%       title('Zernike function Z_5^1(r,\theta)') Q"xDRQA  
% *OE>gg&?Nh  
%   Example 2: Q%GLT,f1.  
% SR)@'-Wd  
%       % Display the first 10 Zernike functions BYS>"  
%       x = -1:0.01:1; Z[j-.,Qu  
%       [X,Y] = meshgrid(x,x); [iSLn3XXRX  
%       [theta,r] = cart2pol(X,Y); e8]mdU{)  
%       idx = r<=1; 10/3-)+  
%       z = nan(size(X)); ^T@-yys  
%       n = [0  1  1  2  2  2  3  3  3  3]; T?5F0WKi  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; YX2j;Y?  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; Q;1$gImFz  
%       y = zernfun(n,m,r(idx),theta(idx)); yFP#z5G  
%       figure('Units','normalized') 3^ &pb  
%       for k = 1:10 b;|^62  
%           z(idx) = y(:,k); tQ?}x#J  
%           subplot(4,7,Nplot(k)) `Sj8<O}  
%           pcolor(x,x,z), shading interp GHWpL\A{8`  
%           set(gca,'XTick',[],'YTick',[]) zjJyc?  
%           axis square }KkH7XksF  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) lu.2ZQE  
%       end {la ^useg[  
% t! Av [K  
%   See also ZERNPOL, ZERNFUN2. 3 ?/}  
& l|B>{4v  
q`;URkjk  
%   Paul Fricker 11/13/2006 |b7>kM}"  
*XzUqK  
1r w>gR  
9p$q@Bc  
[K9q+  
% Check and prepare the inputs:  Q{Bj(f  
% ----------------------------- ,9M \`6  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) pK1(AV'L  
    error('zernfun:NMvectors','N and M must be vectors.') o_$r*Z|HG  
end p-/x Md  
86} rz  
\S2'3SD d/  
if length(n)~=length(m) d ly 08 74  
    error('zernfun:NMlength','N and M must be the same length.') C"mb-n 7s  
end n:!J3pR  
42Ffx?Qmv  
9hp0wi@W}  
n = n(:); >zhbipA  
m = m(:); wYawG$@_  
if any(mod(n-m,2)) `")  I[h  
    error('zernfun:NMmultiplesof2', ... SI(8.$1  
          'All N and M must differ by multiples of 2 (including 0).') SO&;]YO  
end bo"I:)n;  
]ogy`O>  
!c`1~a!  
if any(m>n) fu&]t8MJC  
    error('zernfun:MlessthanN', ... a:]yFi:Su  
          'Each M must be less than or equal to its corresponding N.') +1623E  
end hP#&]W3:  
 JuI,wA  
UX9o  
if any( r>1 | r<0 ) 6%xl}z]o  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') RGKJO_*J2  
end |3cR'|<Ual  
6u7HO-aa  
tw')2UGg  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Yb\36|  
    error('zernfun:RTHvector','R and THETA must be vectors.') 3G&1. 8  
end 1|89-Ii]  
d$Xvax,C  
cK } Qu  
r = r(:); u@3w$"Pv1  
theta = theta(:); =w5w=qB  
length_r = length(r); #,;k>2j0  
if length_r~=length(theta) X[[=YCi0  
    error('zernfun:RTHlength', ... Dx%fW`  
          'The number of R- and THETA-values must be equal.') w {q YP  
end !14z4]b  
5-QXvw(TH  
iB`m!g6$  
% Check normalization: 'mM5l*{  
% -------------------- q.t5L=l^ r  
if nargin==5 && ischar(nflag) `F@yZ4L3S  
    isnorm = strcmpi(nflag,'norm'); lb('r"*.  
    if ~isnorm {Q"<q`c  
        error('zernfun:normalization','Unrecognized normalization flag.') o_5@R+&  
    end U|QDV16f  
else Bk F[nL*|  
    isnorm = false; a`uT'g[*  
end P;/T`R=Vr"  
A!~o?ej  
xl^'U/  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J@fE" )  
% Compute the Zernike Polynomials o5R\7}]GE  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a*8}~p,  
%Z? o]  
L5W>in5(  
% Determine the required powers of r: N@$%0!  
% ----------------------------------- Id0F2  [  
m_abs = abs(m); GS H{1VS_b  
rpowers = []; .%A2  
for j = 1:length(n) @6SSk=9_S  
    rpowers = [rpowers m_abs(j):2:n(j)]; "gz;Q  
end loJ0PY'}=  
rpowers = unique(rpowers); 5dk,!Cjg  
UK,P?_e  
'3Ie0QO]"%  
% Pre-compute the values of r raised to the required powers, v#FUD-Z  
% and compile them in a matrix: /WfxI>v  
% ----------------------------- _;{-w%Vf  
if rpowers(1)==0 86g+c  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "q .uiz+1:  
    rpowern = cat(2,rpowern{:}); !)=o,sVA  
    rpowern = [ones(length_r,1) rpowern]; @gc"-V*-/  
else De_</1Au!2  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [)A#9L~s=  
    rpowern = cat(2,rpowern{:}); ~aG-^BAS  
end *@nUas 2"  
? h%+2  
$5r,Q{;$  
% Compute the values of the polynomials: )QD}R36Ic  
% -------------------------------------- [Bo$?  
y = zeros(length_r,length(n)); >``GDjcJ  
for j = 1:length(n) @U JmbD{  
    s = 0:(n(j)-m_abs(j))/2; (T01hR&  
    pows = n(j):-2:m_abs(j); p/~kw:I  
    for k = length(s):-1:1 rYQ@"o0/Y  
        p = (1-2*mod(s(k),2))* ... v_0!uT5~NE  
                   prod(2:(n(j)-s(k)))/              ... ~@a R5Q>us  
                   prod(2:s(k))/                     ... |5Pbc&mH8A  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =jt_1L4  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); rUjr'O0  
        idx = (pows(k)==rpowers); r.;iO0[/  
        y(:,j) = y(:,j) + p*rpowern(:,idx); df& |Lc1J  
    end C 5 UDez  
     IcQ!A=lB  
    if isnorm $lA,{Q  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); us%RQ8=k  
    end ;7k7/f:  
end 4 G[hU4L  
% END: Compute the Zernike Polynomials rbbuSI  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Zd ,=  
1,'^BgI,  
qhtAtP>i"  
% Compute the Zernike functions: <v k$eB8EC  
% ------------------------------ nn4Sy,cz  
idx_pos = m>0; XH$|DeAFM  
idx_neg = m<0; YCO:bBmp:  
[uQZD1<q  
t}*!UixE  
z = y; w tLM c  
if any(idx_pos) 0f/!|c  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |9]K:A  
end MPN=K|*  
if any(idx_neg) ]_8I_V cQ  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); x)ZH;)  
end Gw^=kzh  
@(fY4]K  
$4JX#lkt  
% EOF zernfun #`0z=w/)  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  :F w"u4WI  
.P :f  
DDE还是手动输入的呢? _.*4Y  
xgqv2s>L  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计