首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, #Vnkvvv  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, pI1-cV,`  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? S4Pxc ]!  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? XPavReGf  
xzdf^Ce  
HCIU!4rH  
_:ReN_0  
|T<_5Ik  
function z = zernfun(n,m,r,theta,nflag) B?OFe'*  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. /74QMx?  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8^kGS-+^  
%   and angular frequency M, evaluated at positions (R,THETA) on the /,BD#|  
%   unit circle.  N is a vector of positive integers (including 0), and ]P9l jwR  
%   M is a vector with the same number of elements as N.  Each element AgWa{.`f:  
%   k of M must be a positive integer, with possible values M(k) = -N(k) 1NbG>E#Ol  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, a1g,@0s  
%   and THETA is a vector of angles.  R and THETA must have the same v3*_9e  
%   length.  The output Z is a matrix with one column for every (N,M) d8DV[{^  
%   pair, and one row for every (R,THETA) pair. yjO1 Ol  
% ^\hG"5#  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike m~w[~flgZ  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YC*"Thuu  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral NyaQI<5D  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, aE Bu *`-j  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized UBv,=v  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. nyX2|m&  
% ,[N%Q#  
%   The Zernike functions are an orthogonal basis on the unit circle. i"1Mfz~e  
%   They are used in disciplines such as astronomy, optics, and T tfo^ksw  
%   optometry to describe functions on a circular domain. J9..P&c\  
% :W"~ {~#?  
%   The following table lists the first 15 Zernike functions. aacpM[{f  
% *Hg>[@dP0  
%       n    m    Zernike function           Normalization l?\jB\,  
%       -------------------------------------------------- >d(~# Z`  
%       0    0    1                                 1 2pZXZ  
%       1    1    r * cos(theta)                    2 cA&9e<  
%       1   -1    r * sin(theta)                    2 gK+ 4C  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) d}OTO10  
%       2    0    (2*r^2 - 1)                    sqrt(3) Lt2u,9  
%       2    2    r^2 * sin(2*theta)             sqrt(6) *o]L|Vu  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) @tF\p  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 9-sw!tKx  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Av$]|b  
%       3    3    r^3 * sin(3*theta)             sqrt(8) _Mi5g_  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) %9 SJ E  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) oF vfCrd  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) :v YYfs&  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?#Ge.D~u  
%       4    4    r^4 * sin(4*theta)             sqrt(10) w3N[9w?1  
%       -------------------------------------------------- W=ig.-  
% y3vdUauOn  
%   Example 1: K> %Tq  
% adlV!k7RG  
%       % Display the Zernike function Z(n=5,m=1) <3L5"77G 6  
%       x = -1:0.01:1; 'Oxy$U   
%       [X,Y] = meshgrid(x,x); "H2EL}3/]  
%       [theta,r] = cart2pol(X,Y); &`h{i K7  
%       idx = r<=1; '"`IC\N^  
%       z = nan(size(X)); HsxVZ.dS  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); ;[(oaK@+n  
%       figure O],T,Z?z  
%       pcolor(x,x,z), shading interp 1kz\IQ{  
%       axis square, colorbar 3v(*5  
%       title('Zernike function Z_5^1(r,\theta)') SP@ >vl+;  
% V#v`(j%  
%   Example 2: bkRLC_/d  
% 8bxfj<O,  
%       % Display the first 10 Zernike functions #+JG(^%B  
%       x = -1:0.01:1; %Celc#v  
%       [X,Y] = meshgrid(x,x); CZ8KEBl  
%       [theta,r] = cart2pol(X,Y); 65L6:}#  
%       idx = r<=1; "<6G6?sz  
%       z = nan(size(X)); ag;Q F  
%       n = [0  1  1  2  2  2  3  3  3  3]; !H#bJTXB  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; yZAS#ko}}  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; PYQ;``~x  
%       y = zernfun(n,m,r(idx),theta(idx)); +2(I1  
%       figure('Units','normalized') \1d (9jR  
%       for k = 1:10 "_P;2N6  
%           z(idx) = y(:,k); AJt+p&I[J  
%           subplot(4,7,Nplot(k)) 1f%1*L0>@  
%           pcolor(x,x,z), shading interp [2>yYr s_=  
%           set(gca,'XTick',[],'YTick',[]) zy?.u.4L  
%           axis square -N6f1>}pE  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) eP.wOl  
%       end #||}R[~P"  
% EJj.1/]|r  
%   See also ZERNPOL, ZERNFUN2. Uq[>_"}  
^/uA?h:]\  
czA5n  
%   Paul Fricker 11/13/2006 :8I9\eet3  
Q}`0W[a ~  
9Q.rMs>qj  
09|K>UC)v  
<qtr   
% Check and prepare the inputs: ^pxX]G]  
% ----------------------------- z-BXd  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }\hVy(\c  
    error('zernfun:NMvectors','N and M must be vectors.') *RDn0d[  
end 6 uv#de  
.>q8W  
u$h 4lIl  
if length(n)~=length(m) .RE:;<|w  
    error('zernfun:NMlength','N and M must be the same length.') dFRsm0T  
end ?e` ^P   
VX].3=T8  
:=}BN  
n = n(:); &@G:G(  
m = m(:); Ua<5U5  
if any(mod(n-m,2)) Ld\R:{M"  
    error('zernfun:NMmultiplesof2', ... d<% z 1Dj2  
          'All N and M must differ by multiples of 2 (including 0).') I+BHstF5um  
end ) dn(G@5  
O80<Z#%j`  
3Ko/{f  
if any(m>n) H0:E(}@   
    error('zernfun:MlessthanN', ... wZG\>9~  
          'Each M must be less than or equal to its corresponding N.') X]'{(?Ch  
end lun#^J  
_?<|{O  
.nB0 h  
if any( r>1 | r<0 ) < nXL  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') cU RkP`  
end bmJ5MF]_fG  
%WSo b@f8  
;ZH3{  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6{x(.=  
    error('zernfun:RTHvector','R and THETA must be vectors.') nePfu G]Q  
end fg s!v7  
#eQJEajv5  
zepm!JR1  
r = r(:); *Y,x|F  
theta = theta(:); #J@[Wd  
length_r = length(r); RzxNbeki[W  
if length_r~=length(theta) yQU_>_!n  
    error('zernfun:RTHlength', ... (XeE2l2M  
          'The number of R- and THETA-values must be equal.') ks"|}9\%<  
end 34z"Pm  
YHkn2]^#A  
$RYa6"`  
% Check normalization: V\{clJ\U  
% -------------------- e7@ojOQ%  
if nargin==5 && ischar(nflag) H+1-]'g`  
    isnorm = strcmpi(nflag,'norm'); OSlvwH%(EE  
    if ~isnorm <L`KzaA  
        error('zernfun:normalization','Unrecognized normalization flag.') `q?8A3A  
    end wr5AG<%(  
else E7NV ^4h  
    isnorm = false; @AG n{q  
end r) HHwh{9  
i8`Vv7LF  
z,Medw6[  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qo p^;~  
% Compute the Zernike Polynomials _hN\10ydY  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %oq{L]C(rf  
RLw;(*(g  
"|Xk2U  
% Determine the required powers of r: [f)cL6AeF  
% ----------------------------------- 8s"%u )  
m_abs = abs(m); jNTjSX  
rpowers = []; (mgS"zPS  
for j = 1:length(n) * vflscgt  
    rpowers = [rpowers m_abs(j):2:n(j)]; wN`jE0 {  
end e91aK  
rpowers = unique(rpowers); {/"2Vk<H8  
(0j}-iaQEZ  
hakKs.U|[  
% Pre-compute the values of r raised to the required powers, 9)}[7Mg:C  
% and compile them in a matrix: HIQ _%L4]  
% ----------------------------- "7!;KHc  
if rpowers(1)==0 qm./|#m>  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); RM K"o?  
    rpowern = cat(2,rpowern{:}); "^4_@ oo  
    rpowern = [ones(length_r,1) rpowern]; G;&-\0>W  
else t0o`-d(  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 21 O'M  
    rpowern = cat(2,rpowern{:}); K&nE_.kbl  
end '>&^zgr  
%`OJ.:k  
sp#p8@Cj  
% Compute the values of the polynomials: >xF/Pl  
% -------------------------------------- [pl'|B  
y = zeros(length_r,length(n)); PUF/#ck  
for j = 1:length(n) (&}i`}v_  
    s = 0:(n(j)-m_abs(j))/2; |K6REkzr  
    pows = n(j):-2:m_abs(j); 0ZBJ ~W  
    for k = length(s):-1:1 8)O[Aq::  
        p = (1-2*mod(s(k),2))* ... TT'[qfAI  
                   prod(2:(n(j)-s(k)))/              ... vI2^tX 9  
                   prod(2:s(k))/                     ... (^@ra$.  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... bLe <G  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); :z4)5= 6M  
        idx = (pows(k)==rpowers); &{>cZh}\  
        y(:,j) = y(:,j) + p*rpowern(:,idx); 2@9Tfm(=  
    end iMIlZ  
     |UK}  
    if isnorm [ JpKSTg[  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); LJ*q1 ;<E  
    end X}tVmO?  
end vWRju*Z&  
% END: Compute the Zernike Polynomials IIg^FZ*]_  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~V&aUDO>/  
zN!ZyI$nqP  
j:k[90  
% Compute the Zernike functions: 9A} # 6  
% ------------------------------ F">Qpgt  
idx_pos = m>0; 4G$|Rx[{,  
idx_neg = m<0; *$p2*%7Ne  
q8^^H$<Db  
MP_'D+LS  
z = y; Gs9:6  
if any(idx_pos) BDq%'~/^  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); o>/YAX:.!T  
end WpF2)R}G=  
if any(idx_neg) <4_X P.N  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Rn{iaM2Y<  
end nX(+s*Y+w  
*8#i$w11M  
oN{Z+T :  
% EOF zernfun 3T"j)R_=l  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  AwslWkd=  
Td G!&:>  
DDE还是手动输入的呢? z)9wXo#~  
wi4=OU1L)a  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计