首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, e5s=@-[  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, QY^v*+lr\  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 1ti9FQ  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ;8~tt I  
;Y^.SR"  
]c+HD*  
'm4v)w<y#  
apkmb<  
function z = zernfun(n,m,r,theta,nflag) oEuV&m|yX  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. F?!X<N{  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Dcep^8'  
%   and angular frequency M, evaluated at positions (R,THETA) on the @V7HxW7RX  
%   unit circle.  N is a vector of positive integers (including 0), and S^ ,q{x*T  
%   M is a vector with the same number of elements as N.  Each element a(s% 3"*Q  
%   k of M must be a positive integer, with possible values M(k) = -N(k) Ec/-f `8  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, q83!PI  
%   and THETA is a vector of angles.  R and THETA must have the same O$K?2-  
%   length.  The output Z is a matrix with one column for every (N,M) >!gW]{  
%   pair, and one row for every (R,THETA) pair. -Wt (t2  
% s?,\aSsU@  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike x\R%hGt  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), }#Q?\  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral 4#fgUlV  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 9R1S20O  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized UWPzRk#s"  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. FRR`<do5$,  
% )Bb:?!EuEH  
%   The Zernike functions are an orthogonal basis on the unit circle. DOa%|H'P  
%   They are used in disciplines such as astronomy, optics, and % k}+t3aF  
%   optometry to describe functions on a circular domain. 'Cp]Q@]\  
% v6#i>n~x,  
%   The following table lists the first 15 Zernike functions. s~)I1G  
% \Q~HL_fy|Y  
%       n    m    Zernike function           Normalization z7PmyU >  
%       -------------------------------------------------- px~:'U  
%       0    0    1                                 1 #$?!P1  
%       1    1    r * cos(theta)                    2 dJf#j?\[  
%       1   -1    r * sin(theta)                    2 ;&~9k?v7L  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) O~bJ<O=?  
%       2    0    (2*r^2 - 1)                    sqrt(3) +W}dO#  
%       2    2    r^2 * sin(2*theta)             sqrt(6) C U 8s*  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) 0%b !ARix  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) iYR`|PJi  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) f.{/PL  
%       3    3    r^3 * sin(3*theta)             sqrt(8) [izP1A$r#Q  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) '#ow 9w+^  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '0tNo.8K  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 1(4}rB3  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ae3=o8p  
%       4    4    r^4 * sin(4*theta)             sqrt(10) DFvj  
%       -------------------------------------------------- EA=EcUf'  
% rWS],q=c  
%   Example 1: 8oxYgj&~X  
% {@*l,[,5-  
%       % Display the Zernike function Z(n=5,m=1) ZBxV&.9/  
%       x = -1:0.01:1; mzH3Q564  
%       [X,Y] = meshgrid(x,x); RkTO5XO  
%       [theta,r] = cart2pol(X,Y); K[s!3.u  
%       idx = r<=1; C<"b99\2`  
%       z = nan(size(X)); SYaL@54  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); )>+J`NFa  
%       figure L`@)*x)~R  
%       pcolor(x,x,z), shading interp e00s*LdC  
%       axis square, colorbar i^_?C5  
%       title('Zernike function Z_5^1(r,\theta)') f)9{D[InM^  
% kgGMA 7Jy  
%   Example 2: rd hM#?  
% .J fV4!=o  
%       % Display the first 10 Zernike functions K!A;C#b!  
%       x = -1:0.01:1; {+  @M!  
%       [X,Y] = meshgrid(x,x); ,Z aPY  
%       [theta,r] = cart2pol(X,Y); s& Lyg>>`  
%       idx = r<=1; yh{Wuz=T  
%       z = nan(size(X)); <52)  
%       n = [0  1  1  2  2  2  3  3  3  3]; s{@3G8  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; &?(472<f**  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; Q2jl61d_9  
%       y = zernfun(n,m,r(idx),theta(idx)); :(Uz`k7   
%       figure('Units','normalized') F2WMts  
%       for k = 1:10 RAY.]:}jr  
%           z(idx) = y(:,k); Hr/3nq}.  
%           subplot(4,7,Nplot(k)) snti*e4"V  
%           pcolor(x,x,z), shading interp fF.qQTy;7  
%           set(gca,'XTick',[],'YTick',[]) ^,,lo<d_L  
%           axis square jQRl-[n  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F ?.J1]  
%       end `bMwt?[*  
% ?CHFy2%Y  
%   See also ZERNPOL, ZERNFUN2. p({)ZU3  
vm4q1!!(  
6fcn(&Qk  
%   Paul Fricker 11/13/2006 ~h@<14c{X  
3X]\p}]z  
hJasnY7  
q A?j-H  
^_o9%)RL(  
% Check and prepare the inputs: w?Nx ^)xX  
% ----------------------------- BzyzOtBp3L  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #`Gh8n#  
    error('zernfun:NMvectors','N and M must be vectors.') !Q" 3B6 86  
end S)~Riuy$  
eHQ3K#M#  
I15g G.)  
if length(n)~=length(m) _?J:Z*z?  
    error('zernfun:NMlength','N and M must be the same length.') 8j%hxAV$  
end *oP&'$P  
J2P5<  
9_5tA'Q  
n = n(:); 1h0cId8d  
m = m(:); mbCY\vEl  
if any(mod(n-m,2)) @o6^"  
    error('zernfun:NMmultiplesof2', ... ?Rg8u  
          'All N and M must differ by multiples of 2 (including 0).') 3t^r;b  
end a eo/4  
({l!'>?  
p@x1B &Z  
if any(m>n) A"` (^#a  
    error('zernfun:MlessthanN', ... (y;8izp9!  
          'Each M must be less than or equal to its corresponding N.') {S;/+X,  
end AroXf#.  
EPMdR66  
d}e/f)(  
if any( r>1 | r<0 ) 2 - ?  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') _O*"_^6  
end |=CV.Su  
7<?~A6  
3cztMi  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |Lz:i +;  
    error('zernfun:RTHvector','R and THETA must be vectors.') SOPQg?'n=V  
end r\sQ8/  
F 6 xQ`T|  
std4Nyp  
r = r(:); beM}({:`  
theta = theta(:); 3%$nRP X  
length_r = length(r); BHW8zY=F  
if length_r~=length(theta) wZV/]jmlEt  
    error('zernfun:RTHlength', ... ixFuqPij  
          'The number of R- and THETA-values must be equal.') RO1xcCp  
end u4kg#+H  
HBc^[fJ^-  
`1$7. ydQ  
% Check normalization: Wi?37EHr  
% -------------------- BEv>?T 0  
if nargin==5 && ischar(nflag) 'nFqq:2Xa  
    isnorm = strcmpi(nflag,'norm'); YLfZ;W|6u  
    if ~isnorm e2v[ma-  
        error('zernfun:normalization','Unrecognized normalization flag.') 7TC=$y ,  
    end }FTyRHD|  
else oKJj?%dHK9  
    isnorm = false; ~X/1%  
end =N9a!i i|  
b]NSCu*)s  
@ qfVt  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yBPaGZ{f  
% Compute the Zernike Polynomials ZMHb  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TuBl9 p'6  
(Hcd{]M~  
s9wc ZO  
% Determine the required powers of r: C NNyz$  
% ----------------------------------- pOCLyM9c  
m_abs = abs(m); /l,V0+p  
rpowers = []; y6lle<SIu  
for j = 1:length(n) GB(o)I#h  
    rpowers = [rpowers m_abs(j):2:n(j)]; 62&(+'$n  
end v [_C^;  
rpowers = unique(rpowers); %s;#epP$  
8gv \`  
B?nQUIb:  
% Pre-compute the values of r raised to the required powers, i '5Q.uX  
% and compile them in a matrix: %r0yBK2uOp  
% ----------------------------- 8} \Lt  
if rpowers(1)==0 LsnM5GU7  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0@yHT-Dy  
    rpowern = cat(2,rpowern{:}); 8"4&IX  
    rpowern = [ones(length_r,1) rpowern]; n# %mL<  
else h7NS9CgO  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); gc 14%  
    rpowern = cat(2,rpowern{:}); Zu\(XN?62  
end sS, Swgr  
Y. ]FVq  
V fJYYR  
% Compute the values of the polynomials: jmbwV,@Q2  
% -------------------------------------- P"J(O<(1-:  
y = zeros(length_r,length(n)); Lt+ Cm$3  
for j = 1:length(n) 0Ii* "?s  
    s = 0:(n(j)-m_abs(j))/2; yVvO!  
    pows = n(j):-2:m_abs(j); 3[E3]]OVa  
    for k = length(s):-1:1 6 s{~9  
        p = (1-2*mod(s(k),2))* ... W>Eee?  
                   prod(2:(n(j)-s(k)))/              ... 6.},y<E  
                   prod(2:s(k))/                     ... GqXnOmk  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ,YYyFMC7S  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); m]8rljo  
        idx = (pows(k)==rpowers); (c ?OcwTH  
        y(:,j) = y(:,j) + p*rpowern(:,idx); .(OFYK<  
    end d0y [:  
     JzJS?ZF  
    if isnorm 0b9;v lGq$  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <=A1d\   
    end Z~o6%_xe  
end Amf gc>eJ  
% END: Compute the Zernike Polynomials 37DyDzW)'  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %|$h<~  
k/A8 |  
@vdBA hXk  
% Compute the Zernike functions: =EI>@Y"  
% ------------------------------ !rzbm&@  
idx_pos = m>0; Hn5:*;N  
idx_neg = m<0; >M{=qs  
I@a y&NNh  
i>YD_#w  
z = y; {<{ O!  
if any(idx_pos) =&RpW7]  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); JsohhkJNGi  
end {3F;:%$`c  
if any(idx_neg) K' xN>qc  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); &~ of]A  
end Q>R jv.1  
*Y"Kbn 6  
^'j? { @  
% EOF zernfun b(JQ>,hX  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  {A<pb{<u  
ViZ Tl~  
DDE还是手动输入的呢? 9)P-<  
e_U1}{=t  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计