首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, +FAj30  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, a{.q/Tbt  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? [orL.D]  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 6y~F'/ww  
z}B 39L  
xhOoZ-  
r5Tdp)S  
n{i,`oQ"  
function z = zernfun(n,m,r,theta,nflag) naW!b&:  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. I{jvUYrKH  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #,u|*O:  
%   and angular frequency M, evaluated at positions (R,THETA) on the 8lL|j  
%   unit circle.  N is a vector of positive integers (including 0), and F,{mF2U*$  
%   M is a vector with the same number of elements as N.  Each element [IQ|c?DxpL  
%   k of M must be a positive integer, with possible values M(k) = -N(k) hd u2?v@  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :Ys~Lt54  
%   and THETA is a vector of angles.  R and THETA must have the same kQ}n~Hn  
%   length.  The output Z is a matrix with one column for every (N,M) {X&lgj  
%   pair, and one row for every (R,THETA) pair. 18!y7 _cFT  
% i*Ldec^  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4] uj+J  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), AoeRoqg&#  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral m$kQbPlatN  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, b.@a,:"  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized acR|X@ \3  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b1Kt SRLV  
% e[fOm0^.c  
%   The Zernike functions are an orthogonal basis on the unit circle. PmRvjSIG  
%   They are used in disciplines such as astronomy, optics, and XS[L-NHG  
%   optometry to describe functions on a circular domain. P}Kgh7)3  
% Zn'tNt/  
%   The following table lists the first 15 Zernike functions. w_xca(  
% odsFgh  
%       n    m    Zernike function           Normalization sa(.Anmlj  
%       -------------------------------------------------- 6JDHwV  
%       0    0    1                                 1 L meP J  
%       1    1    r * cos(theta)                    2 DS<1"4 b|  
%       1   -1    r * sin(theta)                    2 { K]5[bMT  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) NEIkG>\7q  
%       2    0    (2*r^2 - 1)                    sqrt(3) 6(Pan%  
%       2    2    r^2 * sin(2*theta)             sqrt(6) ^ RA'E@ "  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) 15\m.Ix  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) GWnIy6TH l  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6!ve6ZB[p  
%       3    3    r^3 * sin(3*theta)             sqrt(8) pn gto  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) o@Oz a  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) DPTk5o[  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) _`|1B$@x  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [|DKBJ  
%       4    4    r^4 * sin(4*theta)             sqrt(10) .B# .   
%       -------------------------------------------------- VThr]$2Y  
% tcuwGs>_  
%   Example 1: ff\~`n~WZ  
% t'rN7.d  
%       % Display the Zernike function Z(n=5,m=1) ["Ltqgx  
%       x = -1:0.01:1; \^c4v\s<o#  
%       [X,Y] = meshgrid(x,x); //q(v,D%Q  
%       [theta,r] = cart2pol(X,Y); L>1hiD&  
%       idx = r<=1; i2~uhGJ  
%       z = nan(size(X)); amu;grH  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); &riGzU]  
%       figure QPJ \Iu@D$  
%       pcolor(x,x,z), shading interp pk/#RUfT+  
%       axis square, colorbar ]:<! (  
%       title('Zernike function Z_5^1(r,\theta)') |h>PUt@LL  
% fFjpQ~0  
%   Example 2: 5ilGWkb`'X  
% 6pt_cpbR  
%       % Display the first 10 Zernike functions QJGGce  
%       x = -1:0.01:1; $KiCs]I+  
%       [X,Y] = meshgrid(x,x); ,c p2Fac  
%       [theta,r] = cart2pol(X,Y);  Y'iX   
%       idx = r<=1; GXtMX ha,  
%       z = nan(size(X)); +I3jI <  
%       n = [0  1  1  2  2  2  3  3  3  3]; 0bg"Q4  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; K}~$h,n  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; Ps!MpdcL3  
%       y = zernfun(n,m,r(idx),theta(idx)); B0fOAP1  
%       figure('Units','normalized')  +$dJA  
%       for k = 1:10 t]yxLl\  
%           z(idx) = y(:,k); CLR1 CGnn7  
%           subplot(4,7,Nplot(k)) ,N.8  
%           pcolor(x,x,z), shading interp =}^NyLE?  
%           set(gca,'XTick',[],'YTick',[]) 3S0.sU~_U  
%           axis square I"07x'Ahq3  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 2Je $SE8  
%       end l!mbpFt  
% Ys"wG B>  
%   See also ZERNPOL, ZERNFUN2. BG>Y[u\N  
22`^Rsb,6L  
X z+%Ym  
%   Paul Fricker 11/13/2006 RLmOg{L  
[{znwK@  
3nq?Y8yac  
ejROJXB  
CdolZW-!"  
% Check and prepare the inputs: DXFu9RE\{  
% ----------------------------- |3*9+4]a  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f-ltV<C_  
    error('zernfun:NMvectors','N and M must be vectors.') gq+SM  i=  
end }u Y2-l  
*LT~:Gs#  
067c/ c  
if length(n)~=length(m) "s2_X+4oY  
    error('zernfun:NMlength','N and M must be the same length.') /sE,2X*BT  
end eA/n.V$z  
Av X1*  
(!~cO x   
n = n(:); hnnB4]c  
m = m(:); mxa~JAlN_  
if any(mod(n-m,2)) vwCQvt  
    error('zernfun:NMmultiplesof2', ... *FS8]!Qg  
          'All N and M must differ by multiples of 2 (including 0).') @KN+)qP  
end !NXjax\r  
-9Q(3$}  
B=_w9iVN  
if any(m>n) ;Rrh$Ag  
    error('zernfun:MlessthanN', ... IkrB}  
          'Each M must be less than or equal to its corresponding N.') YW}$eW*  
end -;""l{  
i2F7O"f.  
ewDYu=`*  
if any( r>1 | r<0 ) dbp\tWaW  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') !`69.v  
end XlmX3RU  
L\:|95Yq  
/<LZt<K  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) !8{ VLg  
    error('zernfun:RTHvector','R and THETA must be vectors.') TO wd+]B  
end &i#$ia r  
LUOjaX  
(jc@8@Wo.  
r = r(:); lZFu|(  
theta = theta(:); 2g.lb&3W  
length_r = length(r); %I1@{>OxG  
if length_r~=length(theta) inP2y?j  
    error('zernfun:RTHlength', ... "<,lqIqA;  
          'The number of R- and THETA-values must be equal.') C{exvLQ  
end 8-Abg:)  
S{c/3k~  
q<3nAE$?=  
% Check normalization: z.vQ1~s  
% -------------------- ["-rD y P  
if nargin==5 && ischar(nflag) 5`;SI36"  
    isnorm = strcmpi(nflag,'norm'); a:FU- ^B4~  
    if ~isnorm q_MN  
        error('zernfun:normalization','Unrecognized normalization flag.') coP->&(@U#  
    end _v!7 |&\  
else ZmA}i`  
    isnorm = false; ^q7V%{54  
end /MZ<vnN7f  
>m%_`68  
ah>c)1DA*H  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u$ts>Q;5  
% Compute the Zernike Polynomials &<&tdShI  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m#"_x{oa  
MZgaQUg  
!np_B0`  
% Determine the required powers of r: `3TR`,=  
% ----------------------------------- !:{Qbv&T  
m_abs = abs(m); ak(s@@k  
rpowers = []; )CGQ}  
for j = 1:length(n) 7 N}@zPAZ  
    rpowers = [rpowers m_abs(j):2:n(j)]; G%F#I  
end xIdb9hm<  
rpowers = unique(rpowers); g2OnLEF]s  
{ FJMc O=  
qe]D4K8`Q3  
% Pre-compute the values of r raised to the required powers, E-A9lJWr  
% and compile them in a matrix: &RR;'wLoQT  
% ----------------------------- K\xz|Gq  
if rpowers(1)==0 w,%"+ tY_  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Agc ss20.  
    rpowern = cat(2,rpowern{:}); "~r<ZG  
    rpowern = [ones(length_r,1) rpowern]; `bP`.Wm  
else D*l(p5[  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); oj8r*  
    rpowern = cat(2,rpowern{:}); dc$zW^i  
end Ha v&vV  
B`SX3,3  
ib,`0=0= O  
% Compute the values of the polynomials: ~WrpJjI[  
% -------------------------------------- oodA&0{)d  
y = zeros(length_r,length(n)); r O87V!Cj  
for j = 1:length(n) D+T/ Z)  
    s = 0:(n(j)-m_abs(j))/2; p$,7qGST  
    pows = n(j):-2:m_abs(j); Bg|d2,im  
    for k = length(s):-1:1 ys=2!P-[#  
        p = (1-2*mod(s(k),2))* ... =!Ik5LiD  
                   prod(2:(n(j)-s(k)))/              ...  ^B"LT>.[  
                   prod(2:s(k))/                     ... N"9^A^w8k  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ydWr&E5  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); 5BrN uR$  
        idx = (pows(k)==rpowers); w1Bkz\95  
        y(:,j) = y(:,j) + p*rpowern(:,idx); | BaEv\$K  
    end h;=~%2Y  
     [8u9q.IZ  
    if isnorm LWrYK i  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); *r.% /^@  
    end JMAdsg/  
end g? vz\_  
% END: Compute the Zernike Polynomials FQek+[ox  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F=\ REq  
.7.G}z1  
y[J9"k(@  
% Compute the Zernike functions: p39$V[*g(  
% ------------------------------ NSVE3  
idx_pos = m>0; % J\G[dl  
idx_neg = m<0; G[}v?RLI  
?0)K[Kd'Y  
GwO`@-}E  
z = y; >p&"X 2 @  
if any(idx_pos) <gPM/ 4$G  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); UV(`.  
end m9h<)D'>  
if any(idx_neg) L IKuK#  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ybpOk  
end CUDA<Fm  
7a[6@  
0 Rb3| te  
% EOF zernfun Q7amp:JFb  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  f7zB_hVDmE  
Mmgm6{  
DDE还是手动输入的呢? uJ|,-"~F  
[6\O <-?  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2024 光行天下 蜀ICP备06003254号-1 网站统计