首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, E1rxuV|9  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, (L8z<id<z  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? h<f]hJ`ep  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? .:+&2#b  
Iqm QQ_KH  
E\=23[0  
! ^U!T\qDi  
"+ 8Y{T  
function z = zernfun(n,m,r,theta,nflag) gK"E4{y_@  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0 8 aZU  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N P<gr=&  
%   and angular frequency M, evaluated at positions (R,THETA) on the ejPK-jxCa/  
%   unit circle.  N is a vector of positive integers (including 0), and 9^1.nE(R&  
%   M is a vector with the same number of elements as N.  Each element oSqkAAGz\  
%   k of M must be a positive integer, with possible values M(k) = -N(k) r081.<  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, i_qR&X  
%   and THETA is a vector of angles.  R and THETA must have the same 095Z Z20  
%   length.  The output Z is a matrix with one column for every (N,M) 6):^m{RH^  
%   pair, and one row for every (R,THETA) pair. #1` lJ  
% ZzV%+n7<Vx  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Sg}]5Mn`  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Rd{#cW~  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral = ^A/&[&31  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, V9i[ dF  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized Hb{G RG70  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. XDrNc!XN  
% )\r;|DN  
%   The Zernike functions are an orthogonal basis on the unit circle. v %fRq!~  
%   They are used in disciplines such as astronomy, optics, and Oe*+pReSD  
%   optometry to describe functions on a circular domain. N=P+b%%:Z  
% C~aNOe WR  
%   The following table lists the first 15 Zernike functions. aI0}E O  
% ~kAen  
%       n    m    Zernike function           Normalization Z39I*-6F9W  
%       -------------------------------------------------- \%D/]"@r  
%       0    0    1                                 1 $f^ \fa[  
%       1    1    r * cos(theta)                    2 }28,fb /  
%       1   -1    r * sin(theta)                    2 vg/:q>o  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) ?~>#(Q  
%       2    0    (2*r^2 - 1)                    sqrt(3) QX j4cg  
%       2    2    r^2 * sin(2*theta)             sqrt(6) 3d|n\!1r  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) - &/n[EE  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) e)2s2y@zi  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) cp7Rpqg  
%       3    3    r^3 * sin(3*theta)             sqrt(8) 406.6jmv  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) 3bp'UEF^k  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3Vj,O?(Z  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) $'2yPoR  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dkRG4 )~g  
%       4    4    r^4 * sin(4*theta)             sqrt(10) ^"!j m  
%       -------------------------------------------------- a:(.{z?nM  
% aN5w  
%   Example 1: 6mi: %)"  
% HFL(t]  
%       % Display the Zernike function Z(n=5,m=1) kM,$0 @  
%       x = -1:0.01:1; ZzuEw   
%       [X,Y] = meshgrid(x,x); Ux Yb[Nbc  
%       [theta,r] = cart2pol(X,Y); .l->O-=  
%       idx = r<=1; Q'~2,%3<  
%       z = nan(size(X)); 6(`Bl$M9  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); )`ZTu -|  
%       figure G3&l|@5  
%       pcolor(x,x,z), shading interp Z+< zKn}  
%       axis square, colorbar P7Ws$7x  
%       title('Zernike function Z_5^1(r,\theta)') J\@yP  
% buRK\C  
%   Example 2: {T]^C  
% 6^ ]Y])  
%       % Display the first 10 Zernike functions 9Xg+$/  
%       x = -1:0.01:1; C>vp oCA  
%       [X,Y] = meshgrid(x,x); V+mTo^  
%       [theta,r] = cart2pol(X,Y); >~kSe=Hsb4  
%       idx = r<=1; 4$=Dq$4z  
%       z = nan(size(X)); xsq+RBJi  
%       n = [0  1  1  2  2  2  3  3  3  3]; os]P6TFFX?  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 0!c^pOq6  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; 6Y|jK< n?H  
%       y = zernfun(n,m,r(idx),theta(idx)); .I@jt?6X  
%       figure('Units','normalized') g $\Z-!(  
%       for k = 1:10 75t\= 6#  
%           z(idx) = y(:,k); mE"?{~XVL  
%           subplot(4,7,Nplot(k)) l0m\2Ttf  
%           pcolor(x,x,z), shading interp Z2]ySyt]  
%           set(gca,'XTick',[],'YTick',[]) +K3SAGm  
%           axis square 7B`,q-x.  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6}YWM]c%  
%       end do2~LmeW  
% S0_#h)  
%   See also ZERNPOL, ZERNFUN2. jrMY]Ea2`  
5y. n  
A d0dg2Gw  
%   Paul Fricker 11/13/2006 ,1"w2,=  
&J)q_Z8  
9Se7 1  
vxxa,KR/y  
R0R Xw  
% Check and prepare the inputs: !vU$^>zo~  
% ----------------------------- ?d*0-mhQ,  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) xhAORhw#  
    error('zernfun:NMvectors','N and M must be vectors.') eGZX 6Q7m  
end +X4O.6Mn  
v(v Lk\K7  
gHLBtl/  
if length(n)~=length(m) }U=|{@%  
    error('zernfun:NMlength','N and M must be the same length.') JfmNI~%  
end GbC-6.~  
X]J]7\4tF\  
xS) njuq4  
n = n(:); -S]yXZ  
m = m(:); (~~*PT-  
if any(mod(n-m,2)) =_%i5]89P  
    error('zernfun:NMmultiplesof2', ... "p43#  
          'All N and M must differ by multiples of 2 (including 0).') l[EnFbD6  
end <MhjvHg  
/P~@__XN  
#"^F:: b-  
if any(m>n) <_HK@E<_HO  
    error('zernfun:MlessthanN', ... \bze-|C  
          'Each M must be less than or equal to its corresponding N.') CKShz]1  
end yub|   
1]HEwTT/1_  
2\flTO2Ny  
if any( r>1 | r<0 )  >:whNp  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') m_Owe/BC#m  
end ), >jBYMJ  
J`U\3:b`SP  
D];%Ey  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?)$+W+vK  
    error('zernfun:RTHvector','R and THETA must be vectors.') tZS-e6*S  
end ;P9P2&c8c  
gC81ICM  
SF.4["$  
r = r(:); 2IgTB|2  
theta = theta(:); 0n25{N  
length_r = length(r); d\Xi1&&  
if length_r~=length(theta) fk%yi[  
    error('zernfun:RTHlength', ... N;cEf7+f  
          'The number of R- and THETA-values must be equal.') ].f28bY  
end ~7$E\w6  
;[*jLi,uc  
}cK<2J#  
% Check normalization: l0Myem v?z  
% --------------------  y{h y  
if nargin==5 && ischar(nflag) 49%qBO$R  
    isnorm = strcmpi(nflag,'norm'); Nf0'>`/  
    if ~isnorm _qg)^M6  
        error('zernfun:normalization','Unrecognized normalization flag.') 0MK|spc  
    end !r:X`~\a  
else x!klnpGp  
    isnorm = false; gxEa?QH  
end tGGv 2TCEy  
^h+,Kn0@  
8(R%?> 8  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w ^ v*1KA&  
% Compute the Zernike Polynomials OhmKjY/}  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W2L:  
R:zPU   
shbPy   
% Determine the required powers of r: ,?Pn-aC +  
% ----------------------------------- oQgd]| v  
m_abs = abs(m); 6Z~u2&  
rpowers = []; v)|[=  
for j = 1:length(n) D}|PBR  
    rpowers = [rpowers m_abs(j):2:n(j)]; iB[>uW  
end LG6VeYe|\X  
rpowers = unique(rpowers); (are2!Oq  
-%]O-'  
<rUH\z5cP  
% Pre-compute the values of r raised to the required powers, ZV}"k_+-  
% and compile them in a matrix: 1:<=zqh0  
% ----------------------------- 9-;ujl?{  
if rpowers(1)==0 fY@Y$S`Fh  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;SAurG$  
    rpowern = cat(2,rpowern{:}); 5~T`R~Uqb  
    rpowern = [ones(length_r,1) rpowern]; }Z T{  
else `IQ01FuP  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  6e,|HV  
    rpowern = cat(2,rpowern{:});  Ad)Po  
end ^R* _Q,o#  
aY8"Sw|4  
0z) 8i P  
% Compute the values of the polynomials:  ,lX5-1H  
% -------------------------------------- ugexkdgM  
y = zeros(length_r,length(n)); ji(W+tQ2Y'  
for j = 1:length(n) QjH;'OVt  
    s = 0:(n(j)-m_abs(j))/2; :TU;%@7  
    pows = n(j):-2:m_abs(j); ,]?Xf >  
    for k = length(s):-1:1 ,L#Qy>MOb  
        p = (1-2*mod(s(k),2))* ... s BP.P7u  
                   prod(2:(n(j)-s(k)))/              ... \u@4 eBAV  
                   prod(2:s(k))/                     ... CW*Kd t  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... hS]g^S==2h  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); 2XhtK  
        idx = (pows(k)==rpowers); ,4oYKJ$+h  
        y(:,j) = y(:,j) + p*rpowern(:,idx); 3R(GO.n=]  
    end :.kc1_veYS  
     fl| 8#\r  
    if isnorm oh+Q}Fa:  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $ o rN>M42  
    end RAMkTS  
end nR)/k,3W  
% END: Compute the Zernike Polynomials  L><# I  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6^U8Utx  
P3|_R HIb  
?sQOz[ig;  
% Compute the Zernike functions: Y<('G5A  
% ------------------------------ 3nb&Z_/e  
idx_pos = m>0; n_;qB7,,  
idx_neg = m<0;  W7I.S5  
]v=*WK  
>ZMB}pt`  
z = y; +`pS 7d  
if any(idx_pos) E (DNK  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); om%L>zfB  
end ~(E.$y7P  
if any(idx_neg) tfzIem  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); :^7P. lhK  
end ""cnZZ5)  
eELJDSd BV  
)eFXjnHN  
% EOF zernfun <CrNDY  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  MBy0Ky  
VaYL#\;c<  
DDE还是手动输入的呢? W5C8$Bqm  
O &DkB*-  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计