首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, @&> +`kgU-  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, g 0=t9J  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? i<![i5uAI  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? OPh@H.)^  
sTYl' Ieg  
0M.[) @  
2M`Ni&v  
|,f6c Om f  
function z = zernfun(n,m,r,theta,nflag) >qZRIDE5$  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. l,8| E  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N I[C.iILL  
%   and angular frequency M, evaluated at positions (R,THETA) on the w-/Tb~#E  
%   unit circle.  N is a vector of positive integers (including 0), and [a6lE"yr  
%   M is a vector with the same number of elements as N.  Each element Fm{y.URo  
%   k of M must be a positive integer, with possible values M(k) = -N(k)  3".W  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, bsVOO9.4-  
%   and THETA is a vector of angles.  R and THETA must have the same %QkvBg*  
%   length.  The output Z is a matrix with one column for every (N,M) ,^T2hY`  
%   pair, and one row for every (R,THETA) pair. r73Xh"SL  
% 81g0oVv  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /iy/2x28>  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )E|Bb=%  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral 93,ExgFt  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, CiF bk&-g  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized v]sGdZ(6-  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. xbIA97g-O,  
% o)DKP>IM#  
%   The Zernike functions are an orthogonal basis on the unit circle. **[p{R]8o  
%   They are used in disciplines such as astronomy, optics, and }%|OnEk"  
%   optometry to describe functions on a circular domain. ],m-,K  
% _l<"Qqt  
%   The following table lists the first 15 Zernike functions.  7dIDKx  
% dY^~^<{Lj  
%       n    m    Zernike function           Normalization S([De"y  
%       -------------------------------------------------- zSO9 U  
%       0    0    1                                 1 ==9Ez  
%       1    1    r * cos(theta)                    2 1owoh,V6  
%       1   -1    r * sin(theta)                    2 =X):Zi   
%       2   -2    r^2 * cos(2*theta)             sqrt(6) Pr"ESd>Y  
%       2    0    (2*r^2 - 1)                    sqrt(3) <Do89  
%       2    2    r^2 * sin(2*theta)             sqrt(6) 8iB}a\]B  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) >@o*v*25  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) s,8%;\!C  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) a1&^P1.  
%       3    3    r^3 * sin(3*theta)             sqrt(8) yo=d"*E4^  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) %8/$CR  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) O5w\oDhMb  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) E&AR=yqk  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "`wq:$R  
%       4    4    r^4 * sin(4*theta)             sqrt(10) "k/x+%!Spc  
%       -------------------------------------------------- %|~ UNP$  
% 6W o7q\"  
%   Example 1: wO9<An  
% Q*5d~Yr]R  
%       % Display the Zernike function Z(n=5,m=1) =v}.sJ V?  
%       x = -1:0.01:1; 1['A1 ,  
%       [X,Y] = meshgrid(x,x);  qn .  
%       [theta,r] = cart2pol(X,Y); EOiKwhrV  
%       idx = r<=1; K`sm  
%       z = nan(size(X)); m[XN,IE#u  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); 0ni5:tYy  
%       figure l%O-c}X  
%       pcolor(x,x,z), shading interp ueOvBFgZ  
%       axis square, colorbar n >^?BU  
%       title('Zernike function Z_5^1(r,\theta)') ? "gy`oCv  
% r_",E=e  
%   Example 2: U7N<!6  
% 4C$,X!kzF  
%       % Display the first 10 Zernike functions w>e OERZa  
%       x = -1:0.01:1; ;-F#a+2]!  
%       [X,Y] = meshgrid(x,x); gV c[`( @h  
%       [theta,r] = cart2pol(X,Y); l d@^ $  
%       idx = r<=1; ^/,s$dj  
%       z = nan(size(X)); w K+2;*bI  
%       n = [0  1  1  2  2  2  3  3  3  3]; pfG:P rZ  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; {+ m)*3~w  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; .T7ciD  
%       y = zernfun(n,m,r(idx),theta(idx)); f55Ev<oOa  
%       figure('Units','normalized') Cn,dr4J[  
%       for k = 1:10 :5(TOF  
%           z(idx) = y(:,k); kF5}S8B  
%           subplot(4,7,Nplot(k)) n\ZFPXP  
%           pcolor(x,x,z), shading interp Qj~0vx!  
%           set(gca,'XTick',[],'YTick',[]) w?[)nlNW  
%           axis square c:bB4ch}  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) fAK  
%       end l/]P6 @N  
% >wn&+%i&  
%   See also ZERNPOL, ZERNFUN2. 9/{g%40B^  
<:p&P  
J]%P fWV  
%   Paul Fricker 11/13/2006 5]{YERa'  
.F]6uXd  
IRQ(/:]  
Gp14;  
# ;9KDt@  
% Check and prepare the inputs: O;XF'r_  
% ----------------------------- #X)s=Y&5!T  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *6h.#$\  
    error('zernfun:NMvectors','N and M must be vectors.') mb#)w`<  
end \l:n  
_CgD7d  
&I70veNY  
if length(n)~=length(m) @U&|38  
    error('zernfun:NMlength','N and M must be the same length.') 6O"0?wG+  
end k`?n("j  
oyHjdPdY#  
$R^"~|m3M  
n = n(:); Y3thW@mD05  
m = m(:); A4# m&o  
if any(mod(n-m,2)) NzEuiI}  
    error('zernfun:NMmultiplesof2', ... W&"FejD  
          'All N and M must differ by multiples of 2 (including 0).') rnW i<Se  
end 7S Qu  
wiutUb Y  
i,~{{XS<  
if any(m>n) Q|0[B4e^:  
    error('zernfun:MlessthanN', ... FGZOn5U6'  
          'Each M must be less than or equal to its corresponding N.') -0W;b"]+A  
end ,+JAwII>O  
}SYvGp{J,  
qn<~ LxQ  
if any( r>1 | r<0 ) /5o~$S  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,0~'#x>  
end _K9jj  
/g_}5s-Z  
6L2.88 i  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ThHK1{87X}  
    error('zernfun:RTHvector','R and THETA must be vectors.') uv@4/M`  
end 2sXWeiJy;  
j3FDGDrg  
<@?bYp  
r = r(:); F`3I~(  
theta = theta(:); 5r.{vQ  
length_r = length(r); kweypIB  
if length_r~=length(theta) <5nz:B/  
    error('zernfun:RTHlength', ... )37|rB E  
          'The number of R- and THETA-values must be equal.') Y+D#Dv |  
end iR_X,&p   
_/KN98+  
+VTMa9d  
% Check normalization: ua2SW(C@  
% -------------------- x1TB (^aX  
if nargin==5 && ischar(nflag) wL}=$DN  
    isnorm = strcmpi(nflag,'norm'); -qs9a}iL  
    if ~isnorm 9XS'5AXN  
        error('zernfun:normalization','Unrecognized normalization flag.') Fd3V5h  
    end r;9F@/  
else (pAGS{{  
    isnorm = false; iLgWzA  
end pwm ]2}+  
/Wt<[g#  
ab6KK$s  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1}'|HAu  
% Compute the Zernike Polynomials Z5+qb  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'H97D-86/  
UE*M\r<  
v\&Wb_;A  
% Determine the required powers of r: @q|I$'K]x  
% ----------------------------------- D;m>9{=  
m_abs = abs(m); y_QK _R<f  
rpowers = []; /-1[}h%U'  
for j = 1:length(n) Td?a=yu:J  
    rpowers = [rpowers m_abs(j):2:n(j)]; IRD?.K]*  
end bz,C%HFA  
rpowers = unique(rpowers);  z7>  
.]P@{T||Y  
&_G^=Nc,H  
% Pre-compute the values of r raised to the required powers, Kk-A?ju@g  
% and compile them in a matrix: TTu<~GH  
% ----------------------------- ?9.SwIxU&  
if rpowers(1)==0 Xji<oih  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); E{|j  
    rpowern = cat(2,rpowern{:}); um ,Zt  
    rpowern = [ones(length_r,1) rpowern]; r65/O5F  
else k\I+T~~xD  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); fp u^  
    rpowern = cat(2,rpowern{:}); X)x$h{ OE  
end 6Xbo:#  
Yq}(O<ol  
^*`hJ48u  
% Compute the values of the polynomials: 7ZqC1  
% -------------------------------------- CB:G4VqOT  
y = zeros(length_r,length(n)); .gzNdSE  
for j = 1:length(n) [ lW~v:W  
    s = 0:(n(j)-m_abs(j))/2;  1ti+ Q0~  
    pows = n(j):-2:m_abs(j); C,HKao\  
    for k = length(s):-1:1 Dz3=ksXZ  
        p = (1-2*mod(s(k),2))* ... 4:WN-[xX  
                   prod(2:(n(j)-s(k)))/              ... 09HlL=0q  
                   prod(2:s(k))/                     ... J{` G=  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... t&*X~(Yb!  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); 4'_PLOgnX  
        idx = (pows(k)==rpowers); ===M/}r  
        y(:,j) = y(:,j) + p*rpowern(:,idx); G&y< lh  
    end Z]jm.'@z@  
     2guWWFS  
    if isnorm <xv@us7  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ezS@LFaA  
    end =^%#F~o:  
end !#xk?LyB  
% END: Compute the Zernike Polynomials eEl}.W}  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .?|pv}V  
/?C}PM  
Te_%r9P|2  
% Compute the Zernike functions: OTwIR<_B+  
% ------------------------------ B~xT:r  
idx_pos = m>0; `\Z7It?aDs  
idx_neg = m<0; V $Y=JK@  
W:VRLT>w>  
]jQj/`v1  
z = y; jJc:%h$|2  
if any(idx_pos) R+}7]tva6C  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); KsVN<eR{  
end uI lm!*0  
if any(idx_neg) ~?E.U,R  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); qJN!L))  
end Pk)>@F<  
;=r_R!d@  
bYt [/K,  
% EOF zernfun u2\QhP 9  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  'LX]/ D  
`En>o~L;  
DDE还是手动输入的呢? nF1}?  
e|1.-P@  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2026 光行天下 蜀ICP备06003254号-1 网站统计