首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, k6(9Rw8bCk  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, naaww  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? -ge :y2R_w  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 2y;J 11\  
O9/7?"l"  
Dpf"H  
.$s>b#mO  
3B^`xnV  
function z = zernfun(n,m,r,theta,nflag) rL9u7) x  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. +#wh`9[wBt  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vi8)U]6  
%   and angular frequency M, evaluated at positions (R,THETA) on the ]N#%exBVo  
%   unit circle.  N is a vector of positive integers (including 0), and 4r+s" |  
%   M is a vector with the same number of elements as N.  Each element ]hC6PKJU  
%   k of M must be a positive integer, with possible values M(k) = -N(k) }iBFo\vU  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !J/fJW>m6  
%   and THETA is a vector of angles.  R and THETA must have the same sSdnH_;&  
%   length.  The output Z is a matrix with one column for every (N,M) %]iE(!>3oy  
%   pair, and one row for every (R,THETA) pair. h!4jl0 oX]  
% g=q1@)  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Z<ABK`rEO  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), yr"BeTrS.  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral P-25]-  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, rd\:.  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized aZBS!X  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d:"#_  
% -&UP[Mq  
%   The Zernike functions are an orthogonal basis on the unit circle. !$1'q~sO  
%   They are used in disciplines such as astronomy, optics, and wiE'6CM  
%   optometry to describe functions on a circular domain. jVxX! V  
% %+F%C=GqI  
%   The following table lists the first 15 Zernike functions. +jifbf-  
% 'ai3f  
%       n    m    Zernike function           Normalization BJ,D1E  
%       -------------------------------------------------- Z H1UAf  
%       0    0    1                                 1 $bd tiD  
%       1    1    r * cos(theta)                    2 k  __MYb  
%       1   -1    r * sin(theta)                    2 ("!P_Q#  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) ?mME^?x Mu  
%       2    0    (2*r^2 - 1)                    sqrt(3) {%! >0@7  
%       2    2    r^2 * sin(2*theta)             sqrt(6) UU;U,q  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) `COnb@uD  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) SAUfA5|e  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6{8dv9tK  
%       3    3    r^3 * sin(3*theta)             sqrt(8) )i$:iI >k  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) mQiVTIP3[O  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5+yT{,(5  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ^W)h=49PN  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %'`L+y  
%       4    4    r^4 * sin(4*theta)             sqrt(10) 3~5 %6`  
%       -------------------------------------------------- = 3("gScUj  
% tY>_ +)oi  
%   Example 1: LF?MO1!M  
% <{"Jy)Uf  
%       % Display the Zernike function Z(n=5,m=1) 3l?-H|T  
%       x = -1:0.01:1; 7!kbe2/]'  
%       [X,Y] = meshgrid(x,x); h F4gz*Q  
%       [theta,r] = cart2pol(X,Y); ?K9zTas@  
%       idx = r<=1; ?]In@h-  
%       z = nan(size(X)); XxeyGs^%9  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); 1*vt\,G  
%       figure Y [ p  
%       pcolor(x,x,z), shading interp L2P#5B!S  
%       axis square, colorbar y%NZ(Y,v  
%       title('Zernike function Z_5^1(r,\theta)') 0n('F  
% PYPDK*Ie  
%   Example 2: Fmo^ ?~b  
% `k.Nphx~%  
%       % Display the first 10 Zernike functions fJ8Q\lb<_  
%       x = -1:0.01:1; A!n)Fpk  
%       [X,Y] = meshgrid(x,x); xzrA%1y  
%       [theta,r] = cart2pol(X,Y); .Km6 (U  
%       idx = r<=1; GDBxciv  
%       z = nan(size(X)); `j1(GQt  
%       n = [0  1  1  2  2  2  3  3  3  3]; %*Aq%,.={  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; tLc 9-  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; AC& }8w[>u  
%       y = zernfun(n,m,r(idx),theta(idx)); ,LpGE>s  
%       figure('Units','normalized') ZlEH3-Zv  
%       for k = 1:10 #lo1GoL\  
%           z(idx) = y(:,k); ,{rm<M.)  
%           subplot(4,7,Nplot(k)) !y 7SCz g  
%           pcolor(x,x,z), shading interp JrhDqyk*  
%           set(gca,'XTick',[],'YTick',[]) =Ti[Q5SZ  
%           axis square VzZ'W[/7)B  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R3\oLT4  
%       end _A5.  
% /QT"5fxKJ  
%   See also ZERNPOL, ZERNFUN2. 2S#|[wq(  
)xPfz  
N sNk  
%   Paul Fricker 11/13/2006 6B .x=  
hErO.ad1o  
<~ 9a3c?  
*~H\#N|x  
WY3D.z-</  
% Check and prepare the inputs: fAHf}j  
% ----------------------------- I%qZMoS1h  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) co-dq\P  
    error('zernfun:NMvectors','N and M must be vectors.') |y}iOI  
end $Lx2!Zy  
+;*dFL  
WD${f#]N  
if length(n)~=length(m) y)%CNH)*x  
    error('zernfun:NMlength','N and M must be the same length.') jXCSD@?]K  
end pjVF^gv,*  
f:_mrzz  
CQGq}.Jt!  
n = n(:); Jg:%|g  
m = m(:); `eXTVi|0"~  
if any(mod(n-m,2)) {6,  l#z  
    error('zernfun:NMmultiplesof2', ... dnXre*rhz  
          'All N and M must differ by multiples of 2 (including 0).') "z/)> ?Wn  
end /CW 0N@  
7%g8&d  
0%f}w0]:  
if any(m>n) sH_5.+,`  
    error('zernfun:MlessthanN', ... $wq[W,'#L  
          'Each M must be less than or equal to its corresponding N.') 08 $y1;  
end Sh(Ws2b7  
Q^c)T>OAI  
-o`Eka!ELz  
if any( r>1 | r<0 ) +^0Q~>=VD  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') TcjTF|q>  
end 7%x 3o#&  
2qQG  
sCi"qtHP  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) npD`9ff  
    error('zernfun:RTHvector','R and THETA must be vectors.') BXx0Z %e.3  
end R<-u`uX nP  
q5D_bm7,3  
AXmW7/Sj"  
r = r(:); w4UaWT1J  
theta = theta(:); L UitY  
length_r = length(r); ZA>p~Zt  
if length_r~=length(theta) 1B#Z<p  
    error('zernfun:RTHlength', ... d@u)'AY%/  
          'The number of R- and THETA-values must be equal.') uOU?-WtPz  
end *RpBKm&^7  
HXY,e$c#y  
V < ;vy&&  
% Check normalization: ZBX,4kxK7  
% -------------------- bU+ z(Eg6  
if nargin==5 && ischar(nflag) D;RZE  
    isnorm = strcmpi(nflag,'norm'); :p6.v>s8  
    if ~isnorm y;1 'hP&  
        error('zernfun:normalization','Unrecognized normalization flag.') f:)%+)U<Xm  
    end wy)I6`v  
else tOQura  
    isnorm = false; h%0hryGB  
end 4IEF{"c_8  
&F xw19[G  
gOnVN6  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :kMEL*  
% Compute the Zernike Polynomials 6gSo>F4=  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _t+.I9kQ  
J#L"kz  
luYa+E0  
% Determine the required powers of r: `fA|])3T  
% ----------------------------------- Pn;Tg7oz  
m_abs = abs(m); @m bR I0  
rpowers = []; 9~FB^3Nz_  
for j = 1:length(n) hrt ]Qn&  
    rpowers = [rpowers m_abs(j):2:n(j)]; 5qx,b&^w  
end FSp57W$  
rpowers = unique(rpowers); fQtV-\Bc  
r'C(+E (  
<+%#xi/_  
% Pre-compute the values of r raised to the required powers, %%=PpKYtSD  
% and compile them in a matrix: k'hJ@ 6eKS  
% ----------------------------- Uz&XqjS  
if rpowers(1)==0 yhBf%m  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9)Jc'd|  
    rpowern = cat(2,rpowern{:}); JkiMrpkuk  
    rpowern = [ones(length_r,1) rpowern]; zURob MpE#  
else SW^/\cJ^  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1E]|>)$  
    rpowern = cat(2,rpowern{:}); w N-np3k  
end 5V{ B,T  
%#^)hX,+Q  
tCw.wDq3=  
% Compute the values of the polynomials: 0VOj,)K=  
% -------------------------------------- _Coh11  
y = zeros(length_r,length(n)); HalkNR-eEm  
for j = 1:length(n) ?3vOc/2@  
    s = 0:(n(j)-m_abs(j))/2; aeP 6JHj  
    pows = n(j):-2:m_abs(j); rps2sXGr  
    for k = length(s):-1:1 0d%p<c  
        p = (1-2*mod(s(k),2))* ... +Je(]b @  
                   prod(2:(n(j)-s(k)))/              ... cc"L> XoK  
                   prod(2:s(k))/                     ... pu"`*NL  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... AhjUFz  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); U!0 Qf7D  
        idx = (pows(k)==rpowers); 5tIM@,.I/  
        y(:,j) = y(:,j) + p*rpowern(:,idx); wGXnS"L!  
    end K1F,M9 0]  
     .7!n%Ks  
    if isnorm le*1L8n$'  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :-I~-Yj  
    end ,s?7EHtC  
end -]uN16\ F  
% END: Compute the Zernike Polynomials 2rr}5i)r|  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /Ww_fY  
jf_0IE  
nmLn]U=  
% Compute the Zernike functions: s?.A $^t  
% ------------------------------ *=-o0c  
idx_pos = m>0; ~"Pu6-\VT  
idx_neg = m<0; x}w"2[fL  
4|&7j7<u  
k#4%d1O}  
z = y; a!;]9}u7  
if any(idx_pos) XYKWOrkQqa  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); y5XHJUTu  
end IQZBH2R  
if any(idx_neg) `o9vE0^T<  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); C3H q&TVf/  
end n.[0#Ur&}  
m]bv2S+5y  
3lyk/',  
% EOF zernfun g[rxK n\Z  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  v;S7i>\  
r5b5`f4  
DDE还是手动输入的呢? &qki NS  
&zsaVm8  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计