首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, lIhP\:;S&  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, pH9xyN[:a  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? lwSZ pS  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? yf4I<v$y  
\=1$$EDS9  
CE5A^,EsB  
NZb}n`:  
kuq&8f~!  
function z = zernfun(n,m,r,theta,nflag) Q6 oM$qiM  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~:JoKm`vU  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Vb @lK~  
%   and angular frequency M, evaluated at positions (R,THETA) on the Sj'Iz #  
%   unit circle.  N is a vector of positive integers (including 0), and G+~f  
%   M is a vector with the same number of elements as N.  Each element v:F_! Q  
%   k of M must be a positive integer, with possible values M(k) = -N(k) A:$4cacu9  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, eG_@WLxwD  
%   and THETA is a vector of angles.  R and THETA must have the same P:#KBF;a  
%   length.  The output Z is a matrix with one column for every (N,M) wPE\?en  
%   pair, and one row for every (R,THETA) pair. !qu/m B  
% T? g%I  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^j!2I&h1  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P @Jo[J<  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral c4f3Dr'xw  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^7Rc\   
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized BHu%x|d  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. B"Ma<"HU  
% rD;R9b"J  
%   The Zernike functions are an orthogonal basis on the unit circle. .fgVzDR|+  
%   They are used in disciplines such as astronomy, optics, and EJW}&e/  
%   optometry to describe functions on a circular domain. XiL[1JM  
% gs"w 0[$  
%   The following table lists the first 15 Zernike functions. gy`WBg(7x  
% ew.jsa`TrW  
%       n    m    Zernike function           Normalization gF>t+"+ x  
%       -------------------------------------------------- ^~1Z"kAnT  
%       0    0    1                                 1 j4:Xel/  
%       1    1    r * cos(theta)                    2 } *jmW P  
%       1   -1    r * sin(theta)                    2 Bwc_N.w?3  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) [gDl<6a#4  
%       2    0    (2*r^2 - 1)                    sqrt(3) %M*2j%6  
%       2    2    r^2 * sin(2*theta)             sqrt(6) ElA(1o|9I  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) dw>1Ut{"3  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) oCxy(q'y  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) yBRYEqS+  
%       3    3    r^3 * sin(3*theta)             sqrt(8) /,,IM/(6^  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) =[:pm)   
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vD^Uod1  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) >} E  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S}P rgw/  
%       4    4    r^4 * sin(4*theta)             sqrt(10) hb<cynY  
%       -------------------------------------------------- FN/siw(?3  
% gtnu/ Q  
%   Example 1: J(:y-U  
% 4(dgunP  
%       % Display the Zernike function Z(n=5,m=1) n%6ba77  
%       x = -1:0.01:1; \beYb0(+  
%       [X,Y] = meshgrid(x,x); 7Bym?  
%       [theta,r] = cart2pol(X,Y); 8shx7"  
%       idx = r<=1; &^7(?C' u  
%       z = nan(size(X)); R2A#2{+H  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); \30rF]F`l  
%       figure d2?#&d'aq  
%       pcolor(x,x,z), shading interp bao"iv~z  
%       axis square, colorbar 6Nws>(Ij  
%       title('Zernike function Z_5^1(r,\theta)') Qb5@e#  
% N F,<^ u  
%   Example 2: F/cA tT.M?  
% :Y|[?;  
%       % Display the first 10 Zernike functions &3OV|ly]  
%       x = -1:0.01:1;  [a_o3  
%       [X,Y] = meshgrid(x,x); S%j W} v';  
%       [theta,r] = cart2pol(X,Y); &O5O@3:7]  
%       idx = r<=1; U4[GA4DZ   
%       z = nan(size(X)); q8!]x-5$6j  
%       n = [0  1  1  2  2  2  3  3  3  3]; hEFOT]P4  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; *L~?.9R  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; 6rWb2b  
%       y = zernfun(n,m,r(idx),theta(idx)); 7&dK_x,a  
%       figure('Units','normalized') CQPq5/@Y4  
%       for k = 1:10 "A> _U<Y  
%           z(idx) = y(:,k); e{H(  
%           subplot(4,7,Nplot(k)) ~e&O?X  
%           pcolor(x,x,z), shading interp  \EXa 9X2  
%           set(gca,'XTick',[],'YTick',[]) +KaVvf  
%           axis square ?AH B\S  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %=Y=]g2  
%       end LJ K0WWch  
% !;4Hh)2  
%   See also ZERNPOL, ZERNFUN2. gquvVj1oT  
s\< @v7A  
1Ko4O)L]&  
%   Paul Fricker 11/13/2006 G)q;)n;*=  
aU@1j;se@  
cwOa"]t}  
e<qfM&*  
o7 0] F  
% Check and prepare the inputs: ^ FM  
% ----------------------------- RL )~J4Y  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cvQAo|  
    error('zernfun:NMvectors','N and M must be vectors.') rHi4Pw{L  
end lwz\" 8  
_ds;:*N+qA  
%WC ^aKfY  
if length(n)~=length(m) h?H|)a<^9  
    error('zernfun:NMlength','N and M must be the same length.') G{{M' 1  
end (AX$S vw  
M ziOpraj  
t 4VeXp6  
n = n(:); (L1F ],Au  
m = m(:); $}'(%\7"  
if any(mod(n-m,2)) . :>e"D  
    error('zernfun:NMmultiplesof2', ... 1{wbC)  
          'All N and M must differ by multiples of 2 (including 0).') @qYT/V*/  
end M%Ksyr9  
,p#r; O<O  
*H i}FI  
if any(m>n) !.-u'6e  
    error('zernfun:MlessthanN', ... |fIyq}{7  
          'Each M must be less than or equal to its corresponding N.') m;A[ 2 6X  
end rLE+t(x(0  
GwfCl{l  
MTN*{ug2:  
if any( r>1 | r<0 ) rL&Mq}7QK  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3m9b  
end ^}{x).  
oam;hmw  
qGX#(,E9;  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $PI9vyS  
    error('zernfun:RTHvector','R and THETA must be vectors.') 2gZ nrU  
end [q C0YM  
,tcUJ}l  
0~K&P#iR  
r = r(:); 9zS   
theta = theta(:); 1q@R04i  
length_r = length(r); ( Zd(?">i  
if length_r~=length(theta) ~**x_ v  
    error('zernfun:RTHlength', ... "*.N'J\  
          'The number of R- and THETA-values must be equal.') D,R',(3  
end A)V*faD  
9(nq 4 HvI  
0?( uqjD:  
% Check normalization: <9piKtb|L  
% -------------------- dq`{fqGl  
if nargin==5 && ischar(nflag) H17I" 5N  
    isnorm = strcmpi(nflag,'norm'); ]@b9m  
    if ~isnorm AFm9"mQrw  
        error('zernfun:normalization','Unrecognized normalization flag.') vV*J;%MO  
    end P"l'? `  
else 5OtdB'UITd  
    isnorm = false; tpC^68* F  
end Z/:F)c,x  
$+_1F`  
7s#8-i  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >X eXd{$  
% Compute the Zernike Polynomials -4sKB>b  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V-@4s}zX  
DU$#tg}{  
<n06(9BF  
% Determine the required powers of r: :i4(cap&}F  
% ----------------------------------- d1/9 A-{  
m_abs = abs(m); 7U_ob"`JV  
rpowers = []; `=P_ed%&'  
for j = 1:length(n) oKCy,Ot<  
    rpowers = [rpowers m_abs(j):2:n(j)]; ;nP(S`'  
end +(92}~RK  
rpowers = unique(rpowers); @$n $f  
t@9-LYbL  
& ]] l0B  
% Pre-compute the values of r raised to the required powers, P1T {5u!T  
% and compile them in a matrix: 3MFT P5~  
% ----------------------------- U|xHy+N  
if rpowers(1)==0 ThgJ '  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N+B!AK0.  
    rpowern = cat(2,rpowern{:}); Ycspdl+(S$  
    rpowern = [ones(length_r,1) rpowern]; ]6[+tpx  
else GT6i9*tb #  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (C#0 ML  
    rpowern = cat(2,rpowern{:});  IPK1g3Z  
end vm_]X{80;  
3PZ(Kn<  
k[ zyR  
% Compute the values of the polynomials: CvE^t#Bok  
% -------------------------------------- >Ti%Th,  
y = zeros(length_r,length(n)); BJWlx*U]  
for j = 1:length(n) ; Z7!BU  
    s = 0:(n(j)-m_abs(j))/2; ~Yi4?B<  
    pows = n(j):-2:m_abs(j); v$Fz^<Na  
    for k = length(s):-1:1 aH?Ygzw  
        p = (1-2*mod(s(k),2))* ... n19A>,m  
                   prod(2:(n(j)-s(k)))/              ... jaodcT0  
                   prod(2:s(k))/                     ... eG!ma`v  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... } SW p~3P  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); D^6iQW+.P  
        idx = (pows(k)==rpowers); BLt58LYGX  
        y(:,j) = y(:,j) + p*rpowern(:,idx); B os`+Y  
    end >fI\f <ez  
     ;9mRumLG"  
    if isnorm /X.zt `  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); UHvA43  
    end V&:x+swt  
end t e-xhJ&K  
% END: Compute the Zernike Polynomials MWA,3I\.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %K|f,w=m  
k+-?b(z)$  
RVttk )Ny  
% Compute the Zernike functions: (KyOo,a  
% ------------------------------ 7`J2/(  
idx_pos = m>0; GkI'.  
idx_neg = m<0; #0b:5.vy  
:cWU,V  
_MTZuhY  
z = y; ydYsmTr  
if any(idx_pos) InbB2l4G  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4jebx jZ  
end hQ<7k'V  
if any(idx_neg) Eqz|eS*6  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); yjL+1_"B  
end %AA&n*m  
A/I\MN|  
z6@8IszU  
% EOF zernfun (Q=o 9o:b  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  /Z?o%/bw:  
LJ <pE;`d  
DDE还是手动输入的呢? I9G^T' W  
Skci;4T(  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计