首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, &Ivf!Bgm{Z  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ,m[#<}xXA  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? `]4tJJy$  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |h-e+Wh1  
j5!pS xOC  
NX8. \Pf#  
kE854Ej  
!|~yf3  
function z = zernfun(n,m,r,theta,nflag) k-I U}|Xz  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =3|5=ZU034  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Q .g44>  
%   and angular frequency M, evaluated at positions (R,THETA) on the Ntlbn&lc;D  
%   unit circle.  N is a vector of positive integers (including 0), and n K6(0?/  
%   M is a vector with the same number of elements as N.  Each element o#hFK'&~  
%   k of M must be a positive integer, with possible values M(k) = -N(k) l*b0uF  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, FJ2~SKWT  
%   and THETA is a vector of angles.  R and THETA must have the same 1pM>-"a8j  
%   length.  The output Z is a matrix with one column for every (N,M) ZVDi;   
%   pair, and one row for every (R,THETA) pair. FW:V<{f  
% lyw)4;wt\  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike I]Ws   
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #:8V<rc^  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral SI/3Dz[  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, o'=i$Eb  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized <~  ?LU^  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )j}v3@EM5  
% k iu#THF  
%   The Zernike functions are an orthogonal basis on the unit circle. z6Zd/mt~x  
%   They are used in disciplines such as astronomy, optics, and '5\?l:z  
%   optometry to describe functions on a circular domain. Ygc.0VKMR  
% a0PClbf2.  
%   The following table lists the first 15 Zernike functions. j`QXl  
% ZJV;&[$[  
%       n    m    Zernike function           Normalization +r$VrNVs  
%       -------------------------------------------------- /! M%9gu  
%       0    0    1                                 1 Q+p9^_r  
%       1    1    r * cos(theta)                    2 QeQxz1  
%       1   -1    r * sin(theta)                    2 }[: i!t.m  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) D<lVWP  
%       2    0    (2*r^2 - 1)                    sqrt(3) o$Z]qhq  
%       2    2    r^2 * sin(2*theta)             sqrt(6) wUH:l  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) $?y\3GX  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) wLKC6@ W  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) y<m }dW6[\  
%       3    3    r^3 * sin(3*theta)             sqrt(8) qv8B$}FU  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) YbJB.;qK  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3^]Kd  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) @Uqcym.  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +oiuulA  
%       4    4    r^4 * sin(4*theta)             sqrt(10) 9^@#Ua  
%       -------------------------------------------------- KNSMx<GP  
% (S8hr,%n  
%   Example 1: %Vhj<gN  
% @gi / 1cq  
%       % Display the Zernike function Z(n=5,m=1) &X)^G#  
%       x = -1:0.01:1; &G_XgQsg{  
%       [X,Y] = meshgrid(x,x); "LM[WcDX  
%       [theta,r] = cart2pol(X,Y); h%]  D[g  
%       idx = r<=1; UxvT|~"  
%       z = nan(size(X)); `t2Y IwOK  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); )| F O>  
%       figure C:RA(  
%       pcolor(x,x,z), shading interp v dPb-z4  
%       axis square, colorbar 2[1lwV  
%       title('Zernike function Z_5^1(r,\theta)') 07>Iq8<mu  
% O7yIFqI=/  
%   Example 2: yK w.69.  
% Dj{=Y`Tw  
%       % Display the first 10 Zernike functions ^F87gow%`B  
%       x = -1:0.01:1; 7w?N-Q$y  
%       [X,Y] = meshgrid(x,x); 4d%QJ7y  
%       [theta,r] = cart2pol(X,Y); oA4<AJ2  
%       idx = r<=1; 4)d"}j  
%       z = nan(size(X)); FLQ>,=O  
%       n = [0  1  1  2  2  2  3  3  3  3]; lz(}N7SLa  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; A5,(P$@ k  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; :</KgR0I  
%       y = zernfun(n,m,r(idx),theta(idx)); M! uE#|  
%       figure('Units','normalized') T *rz#O  
%       for k = 1:10 '19kP.  
%           z(idx) = y(:,k); "BvDLe':  
%           subplot(4,7,Nplot(k))  #{zF~/Qq  
%           pcolor(x,x,z), shading interp `}#n#C)  
%           set(gca,'XTick',[],'YTick',[]) 0(+dXzcwM  
%           axis square b\C1qM4  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) xvW# ~T]  
%       end ~Z5Wwp]a  
% Gy!bPVe  
%   See also ZERNPOL, ZERNFUN2. 8 )= "Ee  
.|GnTC q  
0[1/#0$  
%   Paul Fricker 11/13/2006 Rzxkz  
0f"la=6  
=]P|!$!}0  
?A~a}bFZ  
dwVo"_Yr  
% Check and prepare the inputs: E*8 3N@i  
% ----------------------------- >C -N0H  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) I G B)  
    error('zernfun:NMvectors','N and M must be vectors.') > 7 qZ\#  
end '|nAGkA  
zI'c'X1,  
Y |aaZ|+  
if length(n)~=length(m) VX e7b  
    error('zernfun:NMlength','N and M must be the same length.') :@J.!dokF  
end HQ^:5 XH  
)`}4rD^b  
ig4mj47wJ  
n = n(:); 'V} 4_3#q  
m = m(:); 1p(9hVA  
if any(mod(n-m,2)) L!^^3vn  
    error('zernfun:NMmultiplesof2', ... #A^(1  
          'All N and M must differ by multiples of 2 (including 0).') 0-8'. C1v  
end E*8).'S%k  
!6eF8T  
Pi=B\=gs  
if any(m>n) xN44>3#  
    error('zernfun:MlessthanN', ... =5#sB*  
          'Each M must be less than or equal to its corresponding N.')  o*xft6U  
end @T~~aQFk  
G/&Wc2k  
YBQ{/"v%|  
if any( r>1 | r<0 ) 5Pd^Sew  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') z=K hbh  
end AmBLZ<f;  
DTC OhUIV  
<[tU.nh  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9^^:Y3j  
    error('zernfun:RTHvector','R and THETA must be vectors.') YI),yj  
end AHn Yfxv_  
*w6(nG'M{  
Hs(U|BXU  
r = r(:); ^ 4{"h  
theta = theta(:); -PskUl'  
length_r = length(r); -h{|u{t  
if length_r~=length(theta) io*iA<@Gx  
    error('zernfun:RTHlength', ... LRv[,]b  
          'The number of R- and THETA-values must be equal.') fk(h*L|sI  
end X!f` !tZ:{  
>npFg@A  
IeGVLC  
% Check normalization: O 718s\#  
% -------------------- `h$^=84  
if nargin==5 && ischar(nflag) NSQ#\:3:S  
    isnorm = strcmpi(nflag,'norm'); KNqs=:i  
    if ~isnorm d8M8O3  
        error('zernfun:normalization','Unrecognized normalization flag.') +XL|bdK  
    end Ogp@!  
else +%LR1+/%b  
    isnorm = false; 0-Vx!(  
end RV_+-m{]  
sjwD x0(7=  
GA2kg7  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,=`iQl3(y/  
% Compute the Zernike Polynomials wak'L5GQE  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f}VIkx]X"  
Y%@a~|  
NnqAr ,  
% Determine the required powers of r: /@+[D{_Fw  
% ----------------------------------- aui3Mq#f  
m_abs = abs(m); '*n2<y  
rpowers = []; #]lK!:  
for j = 1:length(n) 6Wc'5t3  
    rpowers = [rpowers m_abs(j):2:n(j)]; 3nX={72<b  
end xc_-1u4a9  
rpowers = unique(rpowers); < /9@RO  
=x} p>#o,J  
4pZ=CB+j  
% Pre-compute the values of r raised to the required powers, i|QL6e*0  
% and compile them in a matrix: ZMmf!cKY:'  
% ----------------------------- _?a.S8LxJZ  
if rpowers(1)==0 U$ 22r b  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !r`/vQ #  
    rpowern = cat(2,rpowern{:}); v}BXH4&Y  
    rpowern = [ones(length_r,1) rpowern]; FmC [u  
else {V5eHn9/Q'  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =Bb/Y`Q  
    rpowern = cat(2,rpowern{:}); {qL}:ha?  
end +/DT#}JE  
}<g- 0&GLm  
wUcp_)aE|  
% Compute the values of the polynomials: ~=Q Tv8  
% -------------------------------------- H:.l:PJ  
y = zeros(length_r,length(n)); %S]g8O[}nl  
for j = 1:length(n) Vl%jpjqP  
    s = 0:(n(j)-m_abs(j))/2; CC.ri3+.  
    pows = n(j):-2:m_abs(j); [?nM)4d  
    for k = length(s):-1:1 `rZS\A  
        p = (1-2*mod(s(k),2))* ... fQ_(2+ FM  
                   prod(2:(n(j)-s(k)))/              ... ?$Ii_.  
                   prod(2:s(k))/                     ... I hPX/P  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )m.U"giG++  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); N_| '`]D  
        idx = (pows(k)==rpowers); .fD%*-  
        y(:,j) = y(:,j) + p*rpowern(:,idx); <K  GYwLk  
    end KIYs[0*k  
     I#9q^,,F  
    if isnorm iBaz1pDc  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |}naI_Qudv  
    end 22r$Ri_>  
end tLo_lLn*~%  
% END: Compute the Zernike Polynomials J0,;F9<C#X  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .lyK ,p  
q o tWWe#  
jC_m0Iwc  
% Compute the Zernike functions: klSAY  
% ------------------------------ FgTWym_  
idx_pos = m>0; 2^4OaHY88  
idx_neg = m<0; 9jW"83*5  
i4H,Ggb  
0t(js_  
z = y; [LDY;k~5+  
if any(idx_pos) %)p?&_  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); xDEjeM G  
end tl+ 9SBl  
if any(idx_neg) `$i/f(t6`  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); C9L_`[9DO  
end p^*A&7d:P  
,#Mt10e{  
OS sYmF  
% EOF zernfun oJe`]_XZ  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  %uDH_J|^  
Eo>EK>  
DDE还是手动输入的呢? hGJANA  
Z7p!YTA  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计