首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, pA'4|ffwe  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 1-8mFIK  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? CKYc\<zR0l  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? -]0OKE&  
Ci@o|Y }tP  
8bTn^!1  
\j@OZ   
dN$0OS`s[  
function z = zernfun(n,m,r,theta,nflag) ($q-_m  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Nyku4r0  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Ep9nsX*   
%   and angular frequency M, evaluated at positions (R,THETA) on the |kyX3~  
%   unit circle.  N is a vector of positive integers (including 0), and {{$Nqn,pH  
%   M is a vector with the same number of elements as N.  Each element >8~.wXyoC  
%   k of M must be a positive integer, with possible values M(k) = -N(k) D$w6V  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, )tC5Hijq,  
%   and THETA is a vector of angles.  R and THETA must have the same zU5v /'h>d  
%   length.  The output Z is a matrix with one column for every (N,M) ep!Rf:  
%   pair, and one row for every (R,THETA) pair. h9t$Uz^N  
% ^h(ew1:  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]AINK UI0  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {3|t;ZHk  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral qk%;on&`  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, k$4y9{  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized :i0uPh\0  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Y z<3JRw  
% Y xr>"KH6a  
%   The Zernike functions are an orthogonal basis on the unit circle. Tm~" IB*  
%   They are used in disciplines such as astronomy, optics, and P{8iJ`rBG  
%   optometry to describe functions on a circular domain. /Wi[OT14  
% I,E?h?6Y  
%   The following table lists the first 15 Zernike functions. *z5.vtfu!  
% 5#HW2"7  
%       n    m    Zernike function           Normalization y*4=c _Z  
%       -------------------------------------------------- 0eT(J7[ <  
%       0    0    1                                 1 JB%',J  
%       1    1    r * cos(theta)                    2 GA$V0YQX  
%       1   -1    r * sin(theta)                    2 e),q0%5  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) ~ 8PZ5;g  
%       2    0    (2*r^2 - 1)                    sqrt(3) 1$xNUsD2  
%       2    2    r^2 * sin(2*theta)             sqrt(6) ~uj#4>3T  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) @3>u@  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) !44/sr'  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) n4O]8C'lW9  
%       3    3    r^3 * sin(3*theta)             sqrt(8) 4-l 8,@9  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) Xe3U`P7(  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b_$4V3TA  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) KN^=i5K+Y  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T.])diuvj-  
%       4    4    r^4 * sin(4*theta)             sqrt(10) [zH:1Zhl&  
%       -------------------------------------------------- hwPw]Ln/  
% `{f}3bO7C  
%   Example 1: 4)S,3G  
% +cJL7=V&  
%       % Display the Zernike function Z(n=5,m=1) Jz\%%C  
%       x = -1:0.01:1; ZJnYIK  
%       [X,Y] = meshgrid(x,x); _?-E7:Sw  
%       [theta,r] = cart2pol(X,Y); -z ID x  
%       idx = r<=1; iJ ($YvF4  
%       z = nan(size(X));  Fe#  1  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); h}>"j%I  
%       figure {dhXIs  
%       pcolor(x,x,z), shading interp =Z{O<xw'  
%       axis square, colorbar ?1*cO:O  
%       title('Zernike function Z_5^1(r,\theta)') ^-TE([bW  
% /74QMx?  
%   Example 2: ;(b9#b.  
% 1gE [v  
%       % Display the first 10 Zernike functions zUt' QH7E.  
%       x = -1:0.01:1; y;4OY  
%       [X,Y] = meshgrid(x,x); 6, ^>mNm  
%       [theta,r] = cart2pol(X,Y); WEw6He;  
%       idx = r<=1; %2}-2}[>  
%       z = nan(size(X)); 5us:adm[pD  
%       n = [0  1  1  2  2  2  3  3  3  3]; 6`&a&%,O  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; VRVO-Sk  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; ^\hG"5#  
%       y = zernfun(n,m,r(idx),theta(idx)); w VvF^VHV^  
%       figure('Units','normalized') b10cuy|a/X  
%       for k = 1:10 MOQ6 :  
%           z(idx) = y(:,k); n"h `5p5'  
%           subplot(4,7,Nplot(k)) 6gkV*|U,e  
%           pcolor(x,x,z), shading interp `:ArT}F  
%           set(gca,'XTick',[],'YTick',[]) kS%Ydy#:'  
%           axis square TCMCK_SQL  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +UCG0D  
%       end raW>xOivR  
% W 6^5YH%  
%   See also ZERNPOL, ZERNFUN2. nxO"ua  
<KJ/<0l  
@CNi{. RX  
%   Paul Fricker 11/13/2006 -5)H<dAQZ  
q?H|o(  
]dF ,:8  
q?Cnav`DY  
H!@kO]?n  
% Check and prepare the inputs: d .[8c=$  
% ----------------------------- _H9 MwJ  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) UI0( =>L  
    error('zernfun:NMvectors','N and M must be vectors.') ru'F6?d  
end ?'IP4z;y  
EHSlK5bD,  
Tg7an&#  
if length(n)~=length(m) ajve~8/&  
    error('zernfun:NMlength','N and M must be the same length.') ~Q*%DRd&Z-  
end {k(g]#pP  
&]Q@7Nl7:l  
seba9 y  
n = n(:);  50"pbzW  
m = m(:); M "ui0 ac  
if any(mod(n-m,2)) *tGY6=7O  
    error('zernfun:NMmultiplesof2', ... ov|d^)'  
          'All N and M must differ by multiples of 2 (including 0).') CVDV)#JA  
end r^2p*nr}  
bs+f,j-oBN  
XUrXnz|>  
if any(m>n) WEAT01  
    error('zernfun:MlessthanN', ... !zBhbmlKt  
          'Each M must be less than or equal to its corresponding N.') R1Pk TZP&  
end 87=&^.~`  
}?lrU.@zg  
XYQ/^SI!:  
if any( r>1 | r<0 ) 3\AU 72-  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') FOb0uj=(v  
end +20G>y=+  
6d:zb;Iz  
 ;i4Q|  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) GeI-\F7b  
    error('zernfun:RTHvector','R and THETA must be vectors.') j 'FVz&  
end .b_)%jd x  
MlcR"gl*  
.nTwPrG  
r = r(:); 85>05 ?  
theta = theta(:); 84$nT>c  
length_r = length(r); }pDqe;a{  
if length_r~=length(theta) r=Gks=NX"  
    error('zernfun:RTHlength', ... 9y6-/H ,  
          'The number of R- and THETA-values must be equal.') Y21g{$~Q{  
end ) g0%{dfJ  
Gw=B:kGk  
#akpXdXs  
% Check normalization: FSP+?((  
% -------------------- toLV4BtIG  
if nargin==5 && ischar(nflag) phQU D  
    isnorm = strcmpi(nflag,'norm'); 7Sf bx~48  
    if ~isnorm !1rlN8w(qr  
        error('zernfun:normalization','Unrecognized normalization flag.') ,aOl_o -&  
    end 'SO %)B  
else Mo y <@+  
    isnorm = false; ?U%QG5/>  
end ^/)^7\@  
I?]ohG K  
*lYVY) L  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZLc -RM  
% Compute the Zernike Polynomials 7X`l&7IXP  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \j+1V1t9  
x`U^OLV  
H  >j  
% Determine the required powers of r: 6O|@xvg  
% ----------------------------------- S3F;(PDzy  
m_abs = abs(m); x%s-+&  
rpowers = []; j1^I+j)  
for j = 1:length(n) 63^O|y\W8  
    rpowers = [rpowers m_abs(j):2:n(j)]; NYt&@Z}]  
end 5rwu!Y;7*  
rpowers = unique(rpowers); PZ2;v<  
G"klu  
aL*&r~`&e'  
% Pre-compute the values of r raised to the required powers, B%" d~5Y  
% and compile them in a matrix: WeJl4wF  
% ----------------------------- T m,b,hi$  
if rpowers(1)==0 1G"z<v B  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +Um( h-;  
    rpowern = cat(2,rpowern{:}); H0:E(}@   
    rpowern = [ones(length_r,1) rpowern]; WM Fb4SUR  
else !_"@^?,q  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); w&X<5'GM  
    rpowern = cat(2,rpowern{:}); BYpG  
end %.vQU @2A  
;>#wU'  
Jy^u?  
% Compute the values of the polynomials: ;l4[%xld  
% -------------------------------------- :X0k]p  
y = zeros(length_r,length(n)); .Fs7z7?Y  
for j = 1:length(n) }]e-{C}  
    s = 0:(n(j)-m_abs(j))/2; _+p4Wvu~0  
    pows = n(j):-2:m_abs(j); 0QFS  
    for k = length(s):-1:1 g@rb  
        p = (1-2*mod(s(k),2))* ... gaQdG=G8$  
                   prod(2:(n(j)-s(k)))/              ... FFV `P  
                   prod(2:s(k))/                     ... ,eOB(?Ku  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... hq%?=2'9?  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); t'?.8}?)I&  
        idx = (pows(k)==rpowers); kr+D,h01  
        y(:,j) = y(:,j) + p*rpowern(:,idx); 0M*Z'n +  
    end XnDUa3  
     .}&` TU  
    if isnorm W6f/T3  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 'U1R\86M  
    end FQm`~rA~zt  
end 9`wZz~hL"  
% END: Compute the Zernike Polynomials ahuGq'  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2w59^"<,  
-- PtZ]Z  
&]8P1{  
% Compute the Zernike functions: LwrUQ)  
% ------------------------------ 5XO;N s  
idx_pos = m>0; l9}3XI.=  
idx_neg = m<0; Xp >7iX!:  
,ek_R)&[o  
G.rrv  
z = y; 5Eg1Q YVt  
if any(idx_pos) P=7zs;k  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Gnf~u[T6  
end \!>3SKs(e  
if any(idx_neg) uZM{BgXXD  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); `Zf^E >)  
end Ge2q%  
OTy.VT|  
NYE` Kin-  
% EOF zernfun q ]M+/sl  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  >H'4{|  
]F;f`o  
DDE还是手动输入的呢? GqWB{$J;"  
[21 =5S  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计