首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 0U%Xm[:  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, x~z_,':  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? -Uri|^t  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? SHwRX? B|  
O) 1E$#~  
j %H`0  
F3Dt7q  
C38%H  
function z = zernfun(n,m,r,theta,nflag) xD4$0Ppu  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. +aj^Cs1$  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `.[ 8$  
%   and angular frequency M, evaluated at positions (R,THETA) on the  $WR?  
%   unit circle.  N is a vector of positive integers (including 0), and =LK}9ViH  
%   M is a vector with the same number of elements as N.  Each element 4\HsU9x  
%   k of M must be a positive integer, with possible values M(k) = -N(k) ^SAq^3^P!  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 9T?64t<Ju  
%   and THETA is a vector of angles.  R and THETA must have the same c|Y!c!9F  
%   length.  The output Z is a matrix with one column for every (N,M) {@45?L('  
%   pair, and one row for every (R,THETA) pair. 2f^-~dz  
% Z7KXWu+6`m  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike AEqq1A   
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Fg4@On[,i  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral &XtRLt gS  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, n/AW?'  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized ).Gd1pE  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. lJ&y&N<O  
% ]4o?BkL  
%   The Zernike functions are an orthogonal basis on the unit circle. A="fj  
%   They are used in disciplines such as astronomy, optics, and l&Q!mU}  
%   optometry to describe functions on a circular domain. 9~~UM<66W  
% h0lu!m#\_  
%   The following table lists the first 15 Zernike functions. ;`X~ k|7K  
% M~p=#V1D  
%       n    m    Zernike function           Normalization $rB6<  
%       -------------------------------------------------- 3S;N(A4  
%       0    0    1                                 1 :".w{0l@  
%       1    1    r * cos(theta)                    2 "{ FoA3g|  
%       1   -1    r * sin(theta)                    2 PQ3h\CL1n  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) 4.'JLArw  
%       2    0    (2*r^2 - 1)                    sqrt(3) <m]wi7  
%       2    2    r^2 * sin(2*theta)             sqrt(6) ;(S|cm'>}  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) fGTOIi@#  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) (bvoF5%  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 02pplDFsM  
%       3    3    r^3 * sin(3*theta)             sqrt(8) AerFgQiS  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) SX_4=^  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) az2X ch]  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ="dDA/,$VS  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \iga Q\~  
%       4    4    r^4 * sin(4*theta)             sqrt(10) eO[c lB  
%       -------------------------------------------------- lkwh'@s.  
% Up|f=@=  
%   Example 1: 7kd|K b(  
% V.2[ F|P;3  
%       % Display the Zernike function Z(n=5,m=1) }dKLMNqPA  
%       x = -1:0.01:1; bjzx!OCpV  
%       [X,Y] = meshgrid(x,x); R&Ci/  
%       [theta,r] = cart2pol(X,Y); TVeJ6  
%       idx = r<=1; 9^\hmpP@D  
%       z = nan(size(X)); ,C:o`fQ\  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); ve-8*Xa  
%       figure /[?Jylj  
%       pcolor(x,x,z), shading interp m[rL\](-  
%       axis square, colorbar KTv4< c]  
%       title('Zernike function Z_5^1(r,\theta)') LS6ry,D"7  
% >3P9 i ;W  
%   Example 2: tT-=hDw  
% U&Ab# m;  
%       % Display the first 10 Zernike functions ? d5h9}B  
%       x = -1:0.01:1; hVf^  
%       [X,Y] = meshgrid(x,x);  5~s{N  
%       [theta,r] = cart2pol(X,Y); ^*>n4U  
%       idx = r<=1; aDveU)]=1  
%       z = nan(size(X)); ]/44Ygz/  
%       n = [0  1  1  2  2  2  3  3  3  3]; PpFsp( )x  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; afUTAP@  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; Rcf=J){D6  
%       y = zernfun(n,m,r(idx),theta(idx)); M=[th  
%       figure('Units','normalized') (yGQa5v  
%       for k = 1:10 9-93aC.|}  
%           z(idx) = y(:,k); j ug'g  
%           subplot(4,7,Nplot(k)) L|J~9FM  
%           pcolor(x,x,z), shading interp gn.Ol/6D  
%           set(gca,'XTick',[],'YTick',[]) GoD ?KC  
%           axis square 9U'[88  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) rS,j;8D-  
%       end -[$&s FD  
% blp=Hk  
%   See also ZERNPOL, ZERNFUN2. J7n5Ps\M  
-l JYr/MSL  
-|[~sj-p  
%   Paul Fricker 11/13/2006 ETm]o  
c'rd$  
B{PLIisc  
_:%U_U  
Qi:j)uDW  
% Check and prepare the inputs: l5HWZs^  
% ----------------------------- _[JkJwPTx  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) QkE,T0,/?h  
    error('zernfun:NMvectors','N and M must be vectors.') n ,1tD  
end 6|oWaA\gI  
:t5uDKZ_j)  
$',3Pv  
if length(n)~=length(m) !sG"n&uZq  
    error('zernfun:NMlength','N and M must be the same length.') h!Y?SO.b  
end 2&x7W*  
PGY9*0n  
O#G| ~'.,  
n = n(:); ;dOs0/UM&  
m = m(:); >2Ca5C  
if any(mod(n-m,2)) 6l[G1KkV  
    error('zernfun:NMmultiplesof2', ... r{Z[xWIX  
          'All N and M must differ by multiples of 2 (including 0).') %YCd%lAe,  
end 5m`[MBt2g  
T<M?PlED  
xD0NZ~w%  
if any(m>n) pn s+y  
    error('zernfun:MlessthanN', ... :MBS>owR  
          'Each M must be less than or equal to its corresponding N.') R'Eq:Rv~;^  
end _uJVuCc  
DM'qNgB7  
>-zkB)5<,#  
if any( r>1 | r<0 ) jN{Zw*  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') yZ~b+=UM  
end 1I \tu  
j8c6[ih  
s ^3[W0hL  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Uz $ @(C  
    error('zernfun:RTHvector','R and THETA must be vectors.') JT#7yetk'  
end J&_3VKrN  
 mmcdtVe  
h"8QeX:((  
r = r(:); pI 5_Hg  
theta = theta(:); X(b1/lzA  
length_r = length(r); ]4GZ'&m}  
if length_r~=length(theta) 9t}J|09i  
    error('zernfun:RTHlength', ... wibwyzo  
          'The number of R- and THETA-values must be equal.') 4(8<w cL  
end 9fMSAB+c%  
117c,yM0  
9#fp_G;=  
% Check normalization: K9*IA@xL  
% -------------------- |i u2&p >  
if nargin==5 && ischar(nflag) T g{UK  
    isnorm = strcmpi(nflag,'norm'); W]@6=OpH  
    if ~isnorm %Gu][_.L  
        error('zernfun:normalization','Unrecognized normalization flag.') 2!idy]vy_  
    end hbH#Co~o4#  
else {( dP  
    isnorm = false; .OV-`TNWj  
end ;le0QA Pf  
,m:6qdN  
o"\{OX  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `1q|F9D  
% Compute the Zernike Polynomials M=6G:HHY  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?^F5(B[+Y  
'QnW9EHLF  
8(^ ,r#Gy  
% Determine the required powers of r: V pH|R  
% ----------------------------------- I5Q~T5Ar  
m_abs = abs(m); ZBC@xM&-  
rpowers = []; _{mJ.1)V;  
for j = 1:length(n) D$mf5G &  
    rpowers = [rpowers m_abs(j):2:n(j)]; R~cIT:i  
end ,0h3x$l)   
rpowers = unique(rpowers); #?Wo <]i  
@ 'Q%Jc(  
E^82==R  
% Pre-compute the values of r raised to the required powers, 9':/Sab:7v  
% and compile them in a matrix: Op90NZI#K  
% ----------------------------- HGb.656r  
if rpowers(1)==0 ;&q]X]bJ  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4]]b1^vVj  
    rpowern = cat(2,rpowern{:}); .5N Zf4:C  
    rpowern = [ones(length_r,1) rpowern]; ]Cr]Pvab{  
else Bqp&2zg)@  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `;e^2  
    rpowern = cat(2,rpowern{:}); Q<C@KBiVE  
end MorW\7-}  
[*t U}9  
mgxz1d  
% Compute the values of the polynomials: \wFhTJY  
% -------------------------------------- cT I,1U  
y = zeros(length_r,length(n)); ^ISQ{M#_  
for j = 1:length(n) }.OxJ=M  
    s = 0:(n(j)-m_abs(j))/2; K: 4P ;ApI  
    pows = n(j):-2:m_abs(j); ^h`!f vyH  
    for k = length(s):-1:1 T6;>O`B.r  
        p = (1-2*mod(s(k),2))* ... \3M1.Q4$Gr  
                   prod(2:(n(j)-s(k)))/              ... O8iu+}]/6  
                   prod(2:s(k))/                     ... 6Z$b?A3zM  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... K/~Y!?:J r  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); We|-5  
        idx = (pows(k)==rpowers); FGDw;lEa9[  
        y(:,j) = y(:,j) + p*rpowern(:,idx); ')rD?Z9 ^  
    end x)d2G 6x  
     W;91H'`?H  
    if isnorm H8( C>w-'  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); y. T ct.  
    end V!\n3i?i  
end /m;O;2"  
% END: Compute the Zernike Polynomials 8.PXTOhVL  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O-?z' @5cI  
b5[f 5  
q;IhLBl'  
% Compute the Zernike functions: A<a2TXcIE3  
% ------------------------------ 7G?Ia%u  
idx_pos = m>0; O3!Ouh&  
idx_neg = m<0; py}.00it  
E*h0#m|)  
UP5%C;  
z = y; AUu5g  
if any(idx_pos) Ja^7$WY  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); S[ws0Y60  
end Wn2Ny jX  
if any(idx_neg) 7=L:m7T  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); VyRW'  
end (R,NV3m?w  
,>:XE@xcp  
?&{S~[;l  
% EOF zernfun @"jmI&hYn  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  I,?Fqg'sq  
~(Ih~/5\^  
DDE还是手动输入的呢? ==PQ-Ia  
+An![1N,  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计