首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, fWc|gq  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, TL$EV>Nr  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 6VP`evan  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? :<Y}l-x  
1n5(S<T  
>T2LEW  
VV4Gjc  
>(w2GD?  
function z = zernfun(n,m,r,theta,nflag) 4/kv3rv  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?bZovRx  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N s>k Uh  
%   and angular frequency M, evaluated at positions (R,THETA) on the &6 s) X  
%   unit circle.  N is a vector of positive integers (including 0), and 3f " %G\  
%   M is a vector with the same number of elements as N.  Each element n79QJl/  
%   k of M must be a positive integer, with possible values M(k) = -N(k) VErv;GyV  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, n\Fp[9+Z\  
%   and THETA is a vector of angles.  R and THETA must have the same Jj~EiA  
%   length.  The output Z is a matrix with one column for every (N,M) tWTKgbj(  
%   pair, and one row for every (R,THETA) pair. EN{]Qb06A  
% 8dD2  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -K,-h[ o  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^, l_{  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral |Fm6#1A@  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, LMi:%i%\  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized Uoya3#4 G  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5uq3\a  
% 6u`F d#  
%   The Zernike functions are an orthogonal basis on the unit circle. F' U 50usV  
%   They are used in disciplines such as astronomy, optics, and y@2epY?{  
%   optometry to describe functions on a circular domain. UYk>'\%H0  
% p4IZ   
%   The following table lists the first 15 Zernike functions. 7n]65].t  
% C%*k.$#r!  
%       n    m    Zernike function           Normalization O#wpbrJ  
%       -------------------------------------------------- O}9KJU  
%       0    0    1                                 1 -jgysBw+Xb  
%       1    1    r * cos(theta)                    2 L %ip>  
%       1   -1    r * sin(theta)                    2 8+]hpa,q  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) 3lV^B[$  
%       2    0    (2*r^2 - 1)                    sqrt(3) f\'{3I29  
%       2    2    r^2 * sin(2*theta)             sqrt(6) EbeI{ -'aF  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) K{n{KB&_&  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) q-nSLE+_;  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @ '@:sM_  
%       3    3    r^3 * sin(3*theta)             sqrt(8) ~~/xR s  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) KH\b_>wU2  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1@u2im-O  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ~GE$myUT\p  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qE'9QQ>:b  
%       4    4    r^4 * sin(4*theta)             sqrt(10) V8eB$in  
%       -------------------------------------------------- ]9}HEu;1M  
% =rdY @  
%   Example 1: tXJU vish  
% QwhRNnE=  
%       % Display the Zernike function Z(n=5,m=1) l5l>d62  
%       x = -1:0.01:1; ikE<=:pe  
%       [X,Y] = meshgrid(x,x); Fnk_\d6Ma  
%       [theta,r] = cart2pol(X,Y); n|GaV  
%       idx = r<=1; hOhS)  
%       z = nan(size(X)); .0R v(Y  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); _gKe%J&  
%       figure 2pdvWWh3l  
%       pcolor(x,x,z), shading interp u?s VcD[  
%       axis square, colorbar r`c_e)STO  
%       title('Zernike function Z_5^1(r,\theta)') R/"x}B1d  
% - 0?^#G}3}  
%   Example 2: 5*[2yKsTi  
% (98Nzgxgx}  
%       % Display the first 10 Zernike functions eY{+~|KZ  
%       x = -1:0.01:1; qj cp65^  
%       [X,Y] = meshgrid(x,x); '!f5?O+E  
%       [theta,r] = cart2pol(X,Y); bc , p }  
%       idx = r<=1; 2lL,zFAq  
%       z = nan(size(X)); ? FfC  
%       n = [0  1  1  2  2  2  3  3  3  3]; EGl^!.'  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; VLBE'3Qg 1  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; r>GZ58i  
%       y = zernfun(n,m,r(idx),theta(idx)); sB69R:U;  
%       figure('Units','normalized') OFje+S  
%       for k = 1:10 }w4QP+ x  
%           z(idx) = y(:,k); V.wqZ {G  
%           subplot(4,7,Nplot(k)) dMR3)CO  
%           pcolor(x,x,z), shading interp W2uOR{ '?  
%           set(gca,'XTick',[],'YTick',[]) U-n;xX0=  
%           axis square I(=V}s2  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Ts~L:3oaQ  
%       end l }XU 59  
% |lv|!]qAma  
%   See also ZERNPOL, ZERNFUN2. Zw wqSyuGf  
!%dN<%Ah  
.f+TZDUO  
%   Paul Fricker 11/13/2006 ]({~,8s  
Q]p(u\*  
4Vq%N  
vFEQ7 qI  
\c^45<G2qA  
% Check and prepare the inputs: eW|^tH  
% ----------------------------- %kgkXc~6|x  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3]?#he  
    error('zernfun:NMvectors','N and M must be vectors.') 1 hg}(Hix  
end aZbw]0q@o  
_#vrb;.+  
7t.!lh5G%  
if length(n)~=length(m) /PsnD_s]5  
    error('zernfun:NMlength','N and M must be the same length.') epgPT'^  
end 3j3N!T9  
|F#1C9]P  
~)(\6^&=|  
n = n(:); ]vuwkn+)  
m = m(:); GKcv<G208  
if any(mod(n-m,2)) h,"4SSL  
    error('zernfun:NMmultiplesof2', ... A/`%/0e   
          'All N and M must differ by multiples of 2 (including 0).') q{+_ <2U|  
end &IlU|4`R%  
qTQBt}  
*{+G=d  
if any(m>n) 2h%z ("3/  
    error('zernfun:MlessthanN', ... CW<N: F.9  
          'Each M must be less than or equal to its corresponding N.') 2U-3Q]/I}  
end ]5%/3P,/  
8mQmi`  
bu51$s?B  
if any( r>1 | r<0 ) jbR0%X2  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') yV^s,P1  
end n9s iX  
VsA'de!V4[  
>|;aIa@9  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^%` wJ.c  
    error('zernfun:RTHvector','R and THETA must be vectors.') hdVdcnM  
end Q?X>E3=U  
MMj9{ou  
H8"@iE,  
r = r(:);  }K3x  
theta = theta(:); D1 &A,2wO  
length_r = length(r); Bm]8m=p  
if length_r~=length(theta) 'R_g">B.  
    error('zernfun:RTHlength', ... XQS9,Hl  
          'The number of R- and THETA-values must be equal.') p ]d] QMu  
end *E{2J:`  
ciMzf$+G$  
E4hLtc^ +  
% Check normalization: x.q+uU$^  
% -------------------- :^(>YAyHj^  
if nargin==5 && ischar(nflag) -{ZWo:,r~q  
    isnorm = strcmpi(nflag,'norm'); w}=5ElB  
    if ~isnorm \<g*8?yFs  
        error('zernfun:normalization','Unrecognized normalization flag.') ~s5SZK*  
    end 2p " WTd  
else :>=\.\  
    isnorm = false; YY!Rz[/  
end ,TFIG^Dvq  
O?|gp<=d  
KGg3 !jY  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z4\=*ic@  
% Compute the Zernike Polynomials QqU!Najf  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !50[z:  
LGtIm7  
Y0X-Zqk'  
% Determine the required powers of r: r9dyA5oD  
% ----------------------------------- bcYF\@};  
m_abs = abs(m); hvaSH69*m  
rpowers = []; ukUGvK  
for j = 1:length(n) q|),`.eh\  
    rpowers = [rpowers m_abs(j):2:n(j)]; )+6MK(<"  
end F|!){=   
rpowers = unique(rpowers); LEtG|3Dx  
ctGL-kp  
?F3h)(}  
% Pre-compute the values of r raised to the required powers, r >nG@A  
% and compile them in a matrix: m|G'K[8  
% ----------------------------- $b mLu=9  
if rpowers(1)==0 yYfs y?3  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g pOC`=  
    rpowern = cat(2,rpowern{:}); 1aTB%F  
    rpowern = [ones(length_r,1) rpowern]; OtNd,U.dE  
else _D+J!f^  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;&)-;l7M  
    rpowern = cat(2,rpowern{:}); FIsyiSY<j  
end \7'+h5a  
aYSCw 3C<  
?pd8w#O  
% Compute the values of the polynomials: :n-]>Q>5=k  
% -------------------------------------- Uw7h=UQh  
y = zeros(length_r,length(n)); mV pMh#zw  
for j = 1:length(n) y9Usn8  
    s = 0:(n(j)-m_abs(j))/2; b"{'T]"*j  
    pows = n(j):-2:m_abs(j); 2_Z ? #Y  
    for k = length(s):-1:1 <Pi|J-Y  
        p = (1-2*mod(s(k),2))* ... :w^Ed%>y7  
                   prod(2:(n(j)-s(k)))/              ... K>@+m  
                   prod(2:s(k))/                     ... Bn &Ws  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &eX!#nQ_.  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); W*I(f]8:y`  
        idx = (pows(k)==rpowers); Iepsz  
        y(:,j) = y(:,j) + p*rpowern(:,idx); ZNvEW  
    end ys kO  
     OD!& .%  
    if isnorm |3KLk?2  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); TtTj28 k7  
    end "[ZB+-|[0  
end '?p<lu^^B  
% END: Compute the Zernike Polynomials ~XmLX)vO/  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dx@-/^.  
9j6QX ~,  
t,+nQ9  
% Compute the Zernike functions: |$ lM#Ua  
% ------------------------------ F}/S:(6LF2  
idx_pos = m>0; Su/6Q$0 t  
idx_neg = m<0; \6Zr  
7E79-r&n  
A"dR{8&0  
z = y; |#cm`v  
if any(idx_pos) DrY:9[LP  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); eEv@}1~  
end GQUe!G9  
if any(idx_neg) U"^kH|  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4i(JZN?  
end SPY|K  
9\BT0kx  
D!Pq4'd(  
% EOF zernfun )9"_J9G  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  >~[c|ffyo/  
ao1(]64X"  
DDE还是手动输入的呢? }@'$b<!B  
K/j3a[.  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计