首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, i];P!Gm  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, (<8}un  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? yMTO5~U{  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? :7mHPe }(  
Am_>x8z  
u6 Lx3  
32j}ep.*  
7 )r L<+  
function z = zernfun(n,m,r,theta,nflag) E)ZL+(  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. KIag(!&  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Lj9RF<39g  
%   and angular frequency M, evaluated at positions (R,THETA) on the }m~MN4 l  
%   unit circle.  N is a vector of positive integers (including 0), and 7CvBE;i  
%   M is a vector with the same number of elements as N.  Each element "WUS?Q  
%   k of M must be a positive integer, with possible values M(k) = -N(k) zsJermF,O  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, nw0#gDI|  
%   and THETA is a vector of angles.  R and THETA must have the same v8j3 K   
%   length.  The output Z is a matrix with one column for every (N,M) R&J?X Q  
%   pair, and one row for every (R,THETA) pair. J9p4\=9  
% "=T &SY  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 2\QsF,@`YU  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m!ueqV"  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral -TH MTRFz  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, lg~7[=%k#  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized _]pu"hZz4  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^W,5A;*3  
% V 3cKbk7~  
%   The Zernike functions are an orthogonal basis on the unit circle. aR/?YKA  
%   They are used in disciplines such as astronomy, optics, and  mPk'a  
%   optometry to describe functions on a circular domain. \m G Y'0  
% 6/Xs}[iJ  
%   The following table lists the first 15 Zernike functions. kuV7nsXiQ  
% ZcQu9XDIt  
%       n    m    Zernike function           Normalization <7`zc7c]#  
%       -------------------------------------------------- nGkSS_X  
%       0    0    1                                 1 =4a:)g'  
%       1    1    r * cos(theta)                    2 \ '4~@  
%       1   -1    r * sin(theta)                    2 "cPg_-n  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) yi>A ogQ,  
%       2    0    (2*r^2 - 1)                    sqrt(3) wz*iwd-  
%       2    2    r^2 * sin(2*theta)             sqrt(6) &Xqxuy ]J  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) '.(Gg%*\.  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) -6HwG fU  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) qul#)HI  
%       3    3    r^3 * sin(3*theta)             sqrt(8) I}3F'}JV<  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) v#d\YV{I  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  pUb1#=  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) =I@t%Y  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) oDz|%N2s|  
%       4    4    r^4 * sin(4*theta)             sqrt(10) P<<+;']  
%       -------------------------------------------------- {YzCgf  
% "J1A9|  
%   Example 1: AcPLJ!y  
% 2!Dz9m3  
%       % Display the Zernike function Z(n=5,m=1) h @!p:]  
%       x = -1:0.01:1;  JhFbze>  
%       [X,Y] = meshgrid(x,x); j)?M  
%       [theta,r] = cart2pol(X,Y); \7r0]& _  
%       idx = r<=1; O {1" I  
%       z = nan(size(X)); o8 JOpD  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); Nc7"`!;-   
%       figure pg4W?N`  
%       pcolor(x,x,z), shading interp &uK(. @  
%       axis square, colorbar , ~O>8VbF  
%       title('Zernike function Z_5^1(r,\theta)') =cS&>MT  
% G`Nw]_ Z_  
%   Example 2: 0\P5=hD)K  
% Zj2 si  
%       % Display the first 10 Zernike functions * 9^8NY]  
%       x = -1:0.01:1; P0,]`w  
%       [X,Y] = meshgrid(x,x); oS fr5 i  
%       [theta,r] = cart2pol(X,Y); -WlYHW  
%       idx = r<=1; f^ui Zb  
%       z = nan(size(X)); EfrQ~`\  
%       n = [0  1  1  2  2  2  3  3  3  3]; F@i >l{C  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; &q-&%~E@  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; i/x |c!E  
%       y = zernfun(n,m,r(idx),theta(idx)); i6'=]f'{  
%       figure('Units','normalized') d:(Ex^^  
%       for k = 1:10 &zdS9e-fF  
%           z(idx) = y(:,k); f+cb83}n]  
%           subplot(4,7,Nplot(k)) S4x9k{Xn  
%           pcolor(x,x,z), shading interp yYA*5 7^A  
%           set(gca,'XTick',[],'YTick',[]) "GO!^ZG]  
%           axis square G% tlV&In  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {EoYU\x  
%       end /iU<\+ H  
% *#T: _  
%   See also ZERNPOL, ZERNFUN2. DM^0[3XuV5  
'~D4%WKT  
(p-q>@m  
%   Paul Fricker 11/13/2006 $oBs%.Jp  
yE8D^M|g  
.<%tu 0  
&n6{wtBP  
d`^3fr'.4A  
% Check and prepare the inputs: 1K#>^!?M  
% ----------------------------- o$*(N  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) {N4 'g_  
    error('zernfun:NMvectors','N and M must be vectors.') 41X`.  
end 5n3yc7NPP  
ys9:";X;}  
r3'J{-kl  
if length(n)~=length(m)  XIInI  
    error('zernfun:NMlength','N and M must be the same length.') 4$xVm,n|  
end ,a #>e  
0= $/  
Lh[0B.g<  
n = n(:); w2 Y%yjCV  
m = m(:); D S U`(`  
if any(mod(n-m,2)) ip-X r|Bq  
    error('zernfun:NMmultiplesof2', ... CvU$Fsb  
          'All N and M must differ by multiples of 2 (including 0).') C+NN.5No  
end !mlfG "FE  
J@5iD  
?Q"andf  
if any(m>n) <?.eU<+O`S  
    error('zernfun:MlessthanN', ... d{S'6*`D  
          'Each M must be less than or equal to its corresponding N.') duG!QS:  
end (47?lw &  
Z@zo~*o  
Cqr{Nssu  
if any( r>1 | r<0 ) D6bYg `  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') "\o#YC  
end t "VT['8  
_k@cs^  
 S_P&Fv  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) I$; `^z  
    error('zernfun:RTHvector','R and THETA must be vectors.') jFN0xGZ  
end a|t~&\@  
Y_%:%J  
L`nW&; w'  
r = r(:); !n-Sh<8  
theta = theta(:); |vs5N2_  
length_r = length(r);  =yod  
if length_r~=length(theta) )L b` 4B  
    error('zernfun:RTHlength', ... r2RJb6  
          'The number of R- and THETA-values must be equal.') VIAq$iu7  
end kLgkUck8]  
#*iUZo  
r&LZH.$oh  
% Check normalization: lh;fqn`  
% -------------------- hz:7W8  
if nargin==5 && ischar(nflag) 'zUV(K?2]  
    isnorm = strcmpi(nflag,'norm'); %0Ur3  
    if ~isnorm Ch"wp/[  
        error('zernfun:normalization','Unrecognized normalization flag.') S`s]zdUTP  
    end vkG#G]Qs";  
else 0F)v9EK(W4  
    isnorm = false; mF 1f(  
end !ZTghX}D  
m,HE4`g  
q1rj!7  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pT,8E(*l2  
% Compute the Zernike Polynomials QM(xMq  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T_*inPf  
D\Ez~.H  
xa)p ,  
% Determine the required powers of r: _^_3>}y5op  
% ----------------------------------- /r7xA}se^  
m_abs = abs(m); cSPQ NYU:  
rpowers = []; 89M'klZ   
for j = 1:length(n) if&bp ,  
    rpowers = [rpowers m_abs(j):2:n(j)]; z6`0Uv~  
end i]MemM-  
rpowers = unique(rpowers); fqI67E$59  
#da{3>z:  
_$UJ'W})/  
% Pre-compute the values of r raised to the required powers, 7T/BzXr,B  
% and compile them in a matrix: $#rkvG_w  
% ----------------------------- q(n"r0)=  
if rpowers(1)==0 KS*,'hvY  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Z )c\B  
    rpowern = cat(2,rpowern{:}); uw3vYYFX  
    rpowern = [ones(length_r,1) rpowern]; 1]/;qNEv  
else d[6 'w ?  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); WaB0?jI  
    rpowern = cat(2,rpowern{:}); y[b 8rv  
end 1'f_C<.0  
z|Y54o3  
;a?<7LIx  
% Compute the values of the polynomials: CU|E-XPW  
% -------------------------------------- 6Amt75RY  
y = zeros(length_r,length(n)); CR$wzjP j  
for j = 1:length(n) (xo`*Q,+  
    s = 0:(n(j)-m_abs(j))/2; >5t! Xt  
    pows = n(j):-2:m_abs(j); I0x)d`  
    for k = length(s):-1:1 :E-$:\V0}k  
        p = (1-2*mod(s(k),2))* ... M0$MK>  
                   prod(2:(n(j)-s(k)))/              ... bll[E}E|3  
                   prod(2:s(k))/                     ... fnq 3ic"V  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 6,5h4[eF*  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); B.y}S  
        idx = (pows(k)==rpowers); ~HIj+kN  
        y(:,j) = y(:,j) + p*rpowern(:,idx); aV$kxzEc  
    end A l?%[-u  
     U5C]zswL  
    if isnorm G_1r&[N3  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); AO5&Y.A#  
    end vb[0H{TT2  
end q0 }u%Yz  
% END: Compute the Zernike Polynomials ;U3:1hn  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C<_\{de|9  
2-@)'6"n  
'1D $ ;  
% Compute the Zernike functions: P%:?"t+J`;  
% ------------------------------ AO8 #l YP?  
idx_pos = m>0; C`r:jA<LC,  
idx_neg = m<0; #HV5M1mb  
AZ(zM.y!#_  
 D_dv8  
z = y; (l%?YME  
if any(idx_pos) rf=l1GW  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); E2M<I;:EA  
end E#_/#J]UQn  
if any(idx_neg) -F?97&G$  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Stw g[K0<  
end I\TSVJk^Xi  
+IS6l*_y>6  
cD]H~D}M  
% EOF zernfun f+9WGNpw  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  /:]<z6R  
L+G0/G}O\  
DDE还是手动输入的呢? p@O Ip  
}j2;B 8j  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计