首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 公差分析结果的疑问 [点此返回论坛查看本帖完整版本] [打印本页]

sansummer 2011-06-21 13:48

公差分析结果的疑问

我现在在初学zemax的公差分析,找了一个双胶合透镜 )[6U^j4  
A RuA<vQ  
[attachment=34427] Gr'  CtO  
jXx<`I+]  
然后添加了默认公差分析,基本没变 4r#= *  
[Td4K.c  
[attachment=34428] #4% ]o%.  
S~bOUdV Z  
然后运行分析的结果如下: {SPq$B_VR  
z+wA rPxc  
Analysis of Tolerances FaSf7D`C  
]=I@1B;_m  
File : E:\光学设计资料\zemax练习\f500.ZMX '~<m~UXvD#  
Title: d#Y^>"|$.  
Date : TUE JUN 21 2011 (!aNq(   
W~; `WR;.  
Units are Millimeters. ~9]hV7y5C  
All changes are computed using linear differences. gQg"j)  
~s*)f.l  
Paraxial Focus compensation only. 0B/,/KX  
wLH>:yKUU  
WARNING: Solves should be removed prior to tolerancing. m|n%$$S&  
L|:`^M+^w  
Mnemonics: )JLdO*H  
TFRN: Tolerance on curvature in fringes. XGWSdPJLr  
TTHI: Tolerance on thickness. "Mn6U-  
TSDX: Tolerance on surface decentering in x. mt{nm[D!Xp  
TSDY: Tolerance on surface decentering in y. oy=js -  
TSTX: Tolerance on surface tilt in x (degrees). c /HHy,  
TSTY: Tolerance on surface tilt in y (degrees). SCHP L.n  
TIRR: Tolerance on irregularity (fringes). GL#up  
TIND: Tolerance on Nd index of refraction. ^z IW+:  
TEDX: Tolerance on element decentering in x. O)*+="Rg  
TEDY: Tolerance on element decentering in y. 9gDkTYkj  
TETX: Tolerance on element tilt in x (degrees). 4#xDgxg\f  
TETY: Tolerance on element tilt in y (degrees). ?m}s4a  
@[<><uTH  
WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. n u[ML  
L-WT]&n_  
WARNING: Boundary constraints on compensators will be ignored. m@2QnA[ 4  
'(f*2eE:  
Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm _[c0)2h  
Mode                : Sensitivities 5|j<`()H :  
Sampling            : 2 ^R7lom.  
Nominal Criterion   : 0.54403234 >V?eog%~  
Test Wavelength     : 0.6328 Ys!82M$g  
uM IIYS  
t7Iv?5]N  
Fields: XY Symmetric Angle in degrees {yHCXFWlS  
#      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY w !-gJmX>  
1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 F3@phu${  
B$fPgW-  
Sensitivity Analysis: yy^q2P  
+US!YU  
                 |----------------- Minimum ----------------| |----------------- Maximum ----------------| !Y0Vid  
Type                      Value      Criterion        Change          Value      Criterion        Change (l~AV9!m:  
Fringe tolerance on surface 1 \^J%sf${  
TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 TOB-aAO  
Change in Focus                :      -0.000000                            0.000000 x:NY\._  
Fringe tolerance on surface 2 |^"1{7)  
TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 SumF  2  
Change in Focus                :       0.000000                            0.000000 ;>EM[u  
Fringe tolerance on surface 3 "Y =;.:qe  
TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 2 /\r)$ 2i  
Change in Focus                :      -0.000000                            0.000000 dk#k bG;  
Thickness tolerance on surface 1 s^G.]%iU  
TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 |}s*E_/[  
Change in Focus                :       0.000000                            0.000000 NqazpB*  
Thickness tolerance on surface 2 &WuN&As!Z  
TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 DZ'P@f)]  
Change in Focus                :       0.000000                           -0.000000 Ha0M)0Anv  
Decenter X tolerance on surfaces 1 through 3 S}m)OmrmA  
TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 m<T%Rb4?@  
Change in Focus                :       0.000000                            0.000000 %op**@4/t\  
Decenter Y tolerance on surfaces 1 through 3 1y@i}<9F  
TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Xv5wJlc!d  
Change in Focus                :       0.000000                            0.000000 mW(W\'~_~  
Tilt X tolerance on surfaces 1 through 3 (degrees) ~zJbK. _  
TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 z1 | TC  
Change in Focus                :       0.000000                            0.000000 36&e.3/#  
Tilt Y tolerance on surfaces 1 through 3 (degrees) B:yGS*.tu  
TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 i4Q@K,$  
Change in Focus                :       0.000000                            0.000000 KEo ,m  
Decenter X tolerance on surface 1 7 UKh688  
TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 y{B=-\O]  
Change in Focus                :       0.000000                            0.000000 [\98$BN  
Decenter Y tolerance on surface 1 ?DS@e@lx  
TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 5K1)1E/Fu  
Change in Focus                :       0.000000                            0.000000 &v/dj@   
Tilt X tolerance on surface (degrees) 1 lBLARz&c#  
TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 }#RakV4  
Change in Focus                :       0.000000                            0.000000 ~|D Ut   
Tilt Y tolerance on surface (degrees) 1 A7Cm5>Y_S  
TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 `iFmrC<  
Change in Focus                :       0.000000                            0.000000 #K_ii)n  
Decenter X tolerance on surface 2 !OhC/f(GBZ  
TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 d=$Mim  
Change in Focus                :       0.000000                            0.000000 ^qvZXb  
Decenter Y tolerance on surface 2 T[w]o}>cW  
TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 XB;7!8|  
Change in Focus                :       0.000000                            0.000000 ~f&E7su-6+  
Tilt X tolerance on surface (degrees) 2 1Z/(G1  
TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 J\} twYty  
Change in Focus                :       0.000000                            0.000000 e }?db  
Tilt Y tolerance on surface (degrees) 2 gS!:+G%  
TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 Fj8z  
Change in Focus                :       0.000000                            0.000000 xC?6v '  
Decenter X tolerance on surface 3 z>1Pz(  
TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ,a{P4Bq  
Change in Focus                :       0.000000                            0.000000 8rAg \H3E  
Decenter Y tolerance on surface 3 :DK {Vg6  
TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ihhDOmUto  
Change in Focus                :       0.000000                            0.000000 ^&9zw\x;z  
Tilt X tolerance on surface (degrees) 3 xk9%F?)  
TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ,1.p%UE]>  
Change in Focus                :       0.000000                            0.000000 j1Y~_  
Tilt Y tolerance on surface (degrees) 3 b i',j0B  
TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 U#7#aeI  
Change in Focus                :       0.000000                            0.000000 y1jCg%'H  
Irregularity of surface 1 in fringes "=HA Y  
TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 <VMGTBVQ  
Change in Focus                :       0.000000                            0.000000 ,i ^9 |Oeq  
Irregularity of surface 2 in fringes y>8sZuH0  
TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 9R!atPz9  
Change in Focus                :       0.000000                            0.000000 gMi0FO'  
Irregularity of surface 3 in fringes nI?[rCM  
TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 W 8<&gh+  
Change in Focus                :       0.000000                            0.000000 { T/[cu<  
Index tolerance on surface 1 OR P\b  
TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 9!ngy*\x  
Change in Focus                :       0.000000                            0.000000 o"s)eh  
Index tolerance on surface 2 Y,qI@n<  
TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 np|Sy;:  
Change in Focus                :       0.000000                           -0.000000 ]? c B:}  
r5S[-`s;  
Worst offenders: ^)/0yB  
Type                      Value      Criterion        Change >>4qJ%bL  
TSTY   2            -0.20000000     0.35349910    -0.19053324 x;O[c3I  
TSTY   2             0.20000000     0.35349910    -0.19053324 % :f&.@'r  
TSTX   2            -0.20000000     0.35349910    -0.19053324  Po+.&7F  
TSTX   2             0.20000000     0.35349910    -0.19053324 ,hDW Ps2S  
TSTY   1            -0.20000000     0.42678383    -0.11724851 >%_\;svZG  
TSTY   1             0.20000000     0.42678383    -0.11724851  \{_q.;}  
TSTX   1            -0.20000000     0.42678383    -0.11724851 mX"oW_EK  
TSTX   1             0.20000000     0.42678383    -0.11724851 +uF>2b6'  
TSTY   3            -0.20000000     0.42861670    -0.11541563 ,C\i^>=  
TSTY   3             0.20000000     0.42861670    -0.11541563 8L=HW G!1  
q~F|  
Estimated Performance Changes based upon Root-Sum-Square method: c1(RuP:S  
Nominal MTF                 :     0.54403234 o+iiST JEe  
Estimated change            :    -0.36299231 Hzm:xg  
Estimated MTF               :     0.18104003 |w~nVRb  
/obfw^  
Compensator Statistics: oi7@s0@  
Change in back focus: |u% )gk  
Minimum            :        -0.000000 *}qWj_RT  
Maximum            :         0.000000 0(}t8lc  
Mean               :        -0.000000 e-/&$Qq  
Standard Deviation :         0.000000 Lz}OwKl  
_ gR;=~S  
Monte Carlo Analysis: $?iLLA~  
Number of trials: 20 tPWLg),  
FW;?s+Uyx  
Initial Statistics: Normal Distribution #b}Z`u?@  
VOsR An/N  
  Trial       Criterion        Change Wx%H%FeK  
      1     0.42804416    -0.11598818 ;3coP{  
Change in Focus                :      -0.400171 {GT*ZU*  
      2     0.54384387    -0.00018847 "m$##X\  
Change in Focus                :       1.018470 w>&aEv/f  
      3     0.44510003    -0.09893230 HXC ;Np  
Change in Focus                :      -0.601922 8P\G }  
      4     0.18154684    -0.36248550 6dr%;Wp  
Change in Focus                :       0.920681 y3Qsv  
      5     0.28665820    -0.25737414 np^N8$i:n  
Change in Focus                :       1.253875 @Ns Qd_e  
      6     0.21263372    -0.33139862 ~8Fk(E_  
Change in Focus                :      -0.903878 `:fZ)$sY  
      7     0.40051424    -0.14351809 Lz Kj=5'Y  
Change in Focus                :      -1.354815 ./Zk`-OBT  
      8     0.48754161    -0.05649072 LKB$,pR~1l  
Change in Focus                :       0.215922 'W^YM@  
      9     0.40357468    -0.14045766 (UD@q>c  
Change in Focus                :       0.281783 i v38p%Zm  
     10     0.26315315    -0.28087919 epe)a  
Change in Focus                :      -1.048393 l}|%5.5-  
     11     0.26120585    -0.28282649 / &5,3rU.G  
Change in Focus                :       1.017611 N7zft  
     12     0.24033815    -0.30369419 yjX9oxhtL  
Change in Focus                :      -0.109292 B)g[3gQ  
     13     0.37164046    -0.17239188 [=q1T3  
Change in Focus                :      -0.692430 3BJ0S.TF  
     14     0.48597489    -0.05805744 M#6W(|V/  
Change in Focus                :      -0.662040 wH&!W~M  
     15     0.21462327    -0.32940907 ;(Or`u]Dr  
Change in Focus                :       1.611296 s WvBv  
     16     0.43378226    -0.11025008 '3fu  
Change in Focus                :      -0.640081 RWZSQ~  
     17     0.39321881    -0.15081353 `5.'_3  
Change in Focus                :       0.914906 b94DJzL1z  
     18     0.20692530    -0.33710703 #&aqKV Y  
Change in Focus                :       0.801607 &)ChQZA  
     19     0.51374068    -0.03029165 ~rKrpb]ow  
Change in Focus                :       0.947293 D?_Zl;bQ'^  
     20     0.38013374    -0.16389860 - %h.t+=U  
Change in Focus                :       0.667010 VA_PvL.9  
'G4ICtHQ  
Number of traceable Monte Carlo files generated: 20 X`>i& I]  
@o _}g !9=  
Nominal     0.54403234 LckK\`mh  
Best        0.54384387    Trial     2 m}t`FsB.  
Worst       0.18154684    Trial     4 osAd1<EIC  
Mean        0.35770970 PiIpnoM  
Std Dev     0.11156454 S`0(*A[W*  
(Zrj_P`0[  
)9`qG:b'  
Compensator Statistics: \&3+D8H>n  
Change in back focus: & G4\2l9  
Minimum            :        -1.354815 'Aq{UGN  
Maximum            :         1.611296 pJ"qu,w  
Mean               :         0.161872 ]72`};  
Standard Deviation :         0.869664 Be2DN5)  
Ckuh:bs  
90% >       0.20977951               6j]0R*B7`Q  
80% >       0.22748071               f+,qNvBY/  
50% >       0.38667627               EgCAsSx(  
20% >       0.46553746               )_S(UVI5  
10% >       0.50064115                K=h9Ce  
7*A],:-q  
End of Run. c9 _ rmz8  
7WS p($  
这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 FbFPJ !fb  
[attachment=34429] joAv{Tc  
#'szP\  
是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 &Q#66ev  
u^I|T.w<r6  
不吝赐教
sansummer 2011-06-21 15:00
我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
sansummer 2011-06-22 08:56
90% >       0.20977951                 Vv=. -&'  
80% >       0.22748071                 y/7\?qfTk  
50% >       0.38667627                 ~P **O~  
20% >       0.46553746                 .g<DD)`  
10% >       0.50064115 Jk n>S#SZ  
\V~eVf;~  
最后这个数值是MTF值呢,还是MTF的公差? p6Gy ,C.  
wc4{)qDE  
也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   `l[c_%Bm  
xOmi\VbM  
怎么没人啊,大家讨论讨论吗
sansummer 2011-06-23 08:21
没有人啊???
天地大同 2011-06-23 09:35
引用第2楼sansummer于2011-06-22 08:56发表的  : <R=Zs[9M1  
90% >       0.20977951                 /t$d\b17pX  
80% >       0.22748071                 aj{Y\ 3L  
50% >       0.38667627                 .4!=p*Y  
20% >       0.46553746                 vV-`jsq20H  
10% >       0.50064115 6mxfLlZ  
....... \\;jw[P0  
j{+.tIzpq[  
` 7V]y -  
这些数值都是MTF值
天地大同 2011-06-23 09:38
Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   P{ lB50  
Mode                : Sensitivities Z o(rTCZX  
Sampling            : 2 v;D~Pa  
Nominal Criterion   : 0.54403234 M&9+6e'-F  
Test Wavelength     : 0.6328 Si;H0uPO  
-k"/X8  
波长632.8nm 时 mtf 是 0.54403234  没达到0.6
sansummer 2011-06-24 09:37
谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? a~y'RyA  
}y gD3:vN7  
这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
天地大同 2011-06-24 11:21
你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
sansummer 2011-06-24 14:30
啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
天地大同 2011-06-28 14:14
恩,多多尝试
sansummer 2011-06-28 15:04
最后一个问题,你的头像怎么换的?哈哈
天地大同 2011-06-28 16:09
是啊  本来没有的  最近刚弄的
sansummer 2011-06-28 18:02
多谢多谢,我也换头像啦
guapiqlh 2011-12-29 09:54
自己看看书不是一样可以解决吗?
雷伽多 2012-02-27 15:15
楼主分享一下学习ZEMAX公差分析的心得吧。我也刚刚学习这块,很是晕,不知怎么入手。看了一些相关资料,总说蒙特卡洛分析可以模拟生产装配的实际情况,我就是不知道他是如何做到的
zhujiehui 2012-02-27 16:32
学习一下啊
雷伽多 2012-03-07 17:37
额。。。请问你把敏感的公差调紧了后,百分比数有所变化吗?我也遇到同样的问题。。。
nanuto 2012-03-09 18:38
好样的
licc 2012-08-04 10:38
好高深
wmh1985 2012-08-06 21:23
楼主 太强大了  能不能讲的 系统一些了 j*r{2f4Rt  
毛毛虫07 2013-06-21 11:12
请问,公差设置的阿贝偏差应该设置成多少呢?
毛毛虫07 2013-06-21 11:16
天地大同:Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   E hMNap}5"  
Mode                : Sensitivities Lw>N rY(Y  
Sam .. (2011-06-23 09:38)  k;FUs[  
*gWwALGo5  
我们导师说让用蒙特卡罗分析法,是不是skip sensitivity 模式?还有,geom MTF和 diff MTF有什么区别?
zhu1988zi 2013-11-28 15:25
楼主的头像太慎人!
唐千永 2014-04-17 11:22
     公差分析这里 我也不是很清楚 ,学习一下
nd871693070 2020-03-19 10:47
一起学习下 X 0+vXz{~g  
查看本帖完整版本: [-- 公差分析结果的疑问 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计