首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 P}.yEta  
fxtYo,;$  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of Zo}\gg3  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Bcd0   
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 8+g|>{Vov  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 '%eaK_+7  
U# FJ8CD&u  
%fid=fopen('e21.dat','w'); Q%AS ;(d  
N = 128;                       % Number of Fourier modes (Time domain sampling points) F_M~!]<na  
M1 =3000;              % Total number of space steps  HPd+Bd  
J =100;                % Steps between output of space Tg{dIh.Q~O  
T =10;                  % length of time windows:T*T0 !,-qn)b  
T0=0.1;                 % input pulse width u6bB5(s`&  
MN1=0;                 % initial value for the space output location 4%c7#AX[T  
dt = T/N;                      % time step u[6`Jr~  
n = [-N/2:1:N/2-1]';           % Index .@/z-OgXg  
t = n.*dt;   46.q a nh  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 B#Oc8`1Y  
u20=u10.*0.0;                  % input to waveguide 2 t6,M  
u1=u10; u2=u20;                 NNREt:+kr  
U1 = u1;   /S=;DxZ,r  
U2 = u2;                       % Compute initial condition; save it in U NGb! 7Mu9  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. !tFU9Zt  
w=2*pi*n./T; WSpg(\Cs  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T RZ,<D I  
L=4;                           % length of evoluation to compare with S. Trillo's paper ~:RDw<PWp  
dz=L/M1;                       % space step, make sure nonlinear<0.05 o`y*yucHI  
for m1 = 1:1:M1                                    % Start space evolution e&a[k  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS [2H(yLwO  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; W<Vzd4hR  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform )1tnZ=&  
   ca2 = fftshift(fft(u2)); WY. \<$7  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation  "ppb%=  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ,*}g r  
   u2 = ifft(fftshift(c2));                        % Return to physical space %Cbc@=k  
   u1 = ifft(fftshift(c1)); VkP:%-*#v  
if rem(m1,J) == 0                                 % Save output every J steps. C6=;(=?C  
    U1 = [U1 u1];                                  % put solutions in U array (=&bo p  
    U2=[U2 u2]; !^"!fuoNC  
    MN1=[MN1 m1]; U*+!w@ .  
    z1=dz*MN1';                                    % output location DGuUI}|)  
  end F# 37Qv  
end yfw>y=/p  
hg=abs(U1').*abs(U1');                             % for data write to excel IkXKt8`YVA  
ha=[z1 hg];                                        % for data write to excel %RD7=Z-z  
t1=[0 t']; H|Fqc=qp  
hh=[t1' ha'];                                      % for data write to excel file a518N*]j  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format =x.v*W]F`  
figure(1) Z?!:=x>7m  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn LXEu^F~{u#  
figure(2) !&:W1Jkp(  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn z?) RF[  
d\<aJOi+-  
非线性超快脉冲耦合的数值方法的Matlab程序 +q, n}@y=  
A = Az[  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   X|n[9h:%  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ws(}K+y_  
D!E 9@*Lf  
)+{omQ7v  
; dHOH\,:  
%  This Matlab script file solves the nonlinear Schrodinger equations rxK[CDM,  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of [,?A$Z*Z|  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear j]F3[gpc  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 wk <~Y 3u  
xbH!:R;  
C=1;                           xp;8p94   
M1=120,                       % integer for amplitude :x5o3xE  
M3=5000;                      % integer for length of coupler c68$pgG  
N = 512;                      % Number of Fourier modes (Time domain sampling points) % |Gzht\  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 7/$Z7J!k  
T =40;                        % length of time:T*T0. hE`%1j2(  
dt = T/N;                     % time step 8P y_Y>  
n = [-N/2:1:N/2-1]';          % Index jE5 9h  
t = n.*dt;   p){RS q  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 5}^08Xl  
w=2*pi*n./T; n_ NG~ /x  
g1=-i*ww./2; ?;7>`F6ld  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; bzL;)H4Eo  
g3=-i*ww./2; iW%0pLn  
P1=0; +q?0A^C>  
P2=0; ^WYG?/{4  
P3=1; v@1Jh ns  
P=0; .?)oiPW#  
for m1=1:M1                 7Z:l;%]K  
p=0.032*m1;                %input amplitude !Fs) "?  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 IG@&l0ARL  
s1=s10; M@ZpgAfq  
s20=0.*s10;                %input in waveguide 2 M#<fh:>  
s30=0.*s10;                %input in waveguide 3 E6\~/=X=%  
s2=s20; 8}b[Q/h!  
s3=s30; @{GxQzo  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   *1]k&#s  
%energy in waveguide 1 3\~fe/z'I  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   eeR@p$4i  
%energy in waveguide 2 t-m,~IoW  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   F&j|Y>m  
%energy in waveguide 3 ba:^zO^  
for m3 = 1:1:M3                                    % Start space evolution &IY_z0=  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS EF{'J8AQ  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; h/~BUg'  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 90k|u'ikOp  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform ~g|0uO}.  
   sca2 = fftshift(fft(s2)); #EK8Qe_  
   sca3 = fftshift(fft(s3)); 4T\/wyq0  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   }n8;A;axi  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); $=a$z"  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); \(t>(4s_~  
   s3 = ifft(fftshift(sc3)); i_^NbC   
   s2 = ifft(fftshift(sc2));                       % Return to physical space 9uoj3Rh<  
   s1 = ifft(fftshift(sc1)); Gl:T  
end UC$+&&rO  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); "lb!m9F{  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); "< R 2oo)^  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); VQ}3r)ch  
   P1=[P1 p1/p10]; qnV9TeU)  
   P2=[P2 p2/p10]; nECf2>Yp v  
   P3=[P3 p3/p10]; wA&)y>n-  
   P=[P p*p]; BkqW>[\5xm  
end %+J*oFwQu  
figure(1) .[ s82c]]6  
plot(P,P1, P,P2, P,P3); Av4E ?@R  
.Q@'Ob`  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计