| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 +d\o|}c P ljPhAce % This Matlab script file solves the coupled nonlinear Schrodinger equations of +\Jo^\ % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of +a.2\Qt2A % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear qP#LJPaS % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 k}fC58q %"mI["{ %fid=fopen('e21.dat','w');
JHa1lj N = 128; % Number of Fourier modes (Time domain sampling points) B1 }-
M1 =3000; % Total number of space steps uK" T~ J =100; % Steps between output of space uE')<fVX( T =10; % length of time windows:T*T0 NgyEy n
\ T0=0.1; % input pulse width ;O`f+rG~ MN1=0; % initial value for the space output location Q/]~`S dt = T/N; % time step 1*hE bO n = [-N/2:1:N/2-1]'; % Index kiM:(=5 t = n.*dt; -z`FKej u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 \[3~*eX6 u20=u10.*0.0; % input to waveguide 2 D}y W:Pi' u1=u10; u2=u20; gxVr1DIkN U1 = u1; >B0AJW/u U2 = u2; % Compute initial condition; save it in U (2H
GV+Dg ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. hO8xH +; w=2*pi*n./T; yk?bz g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T CjpGo}a/ L=4; % length of evoluation to compare with S. Trillo's paper N~$>| gn dz=L/M1; % space step, make sure nonlinear<0.05 ;99oJD, for m1 = 1:1:M1 % Start space evolution p"%D/-%Gu u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS crb^TuN u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; A|f6H6UUx ca1 = fftshift(fft(u1)); % Take Fourier transform )]C]K B ca2 = fftshift(fft(u2)); b:F;6X0~Hl c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation )^o.H~Pv c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift GO"|^W u2 = ifft(fftshift(c2)); % Return to physical space Uyb0iQ-,s u1 = ifft(fftshift(c1)); `qs,V if rem(m1,J) == 0 % Save output every J steps. qF~9:` U1 = [U1 u1]; % put solutions in U array ;9z|rWsF U2=[U2 u2]; <Tgy$Hm MN1=[MN1 m1]; J "I,] z1=dz*MN1'; % output location p}!i_P end I9qZE=i end gP
QOv hg=abs(U1').*abs(U1'); % for data write to excel Zu|NF
uFI ha=[z1 hg]; % for data write to excel 8C3oi&av/{ t1=[0 t']; %evb.h) hh=[t1' ha']; % for data write to excel file D{B?2}X %dlmwrite('aa',hh,'\t'); % save data in the excel format @l j| figure(1) 06Wqfzceb waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn I zTJ7E*i figure(2) 7!AyL w waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn TbD phu,&DS! 非线性超快脉冲耦合的数值方法的Matlab程序 6ncwa<q5 j_g(6uZhz3 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 k)I4m.0a5 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 e}?Q&Lci _"
9 q(1 b+qd'
,.Z Am*IC?@tq % This Matlab script file solves the nonlinear Schrodinger equations jaEe$2F2 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of KuJ9bn{u!C % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Nt$4; % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 (/I6Wa -O$vJ,* C=1; CPy>sV3Ru0 M1=120, % integer for amplitude gV.? Myy M3=5000; % integer for length of coupler 6Pl|FIJF N = 512; % Number of Fourier modes (Time domain sampling points) 3&})gU&a dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. 5/n L[4Z T =40; % length of time:T*T0. >Gpq{Ph[ dt = T/N; % time step zk{d*gN n = [-N/2:1:N/2-1]'; % Index ![B|Nxq}@ t = n.*dt; ppz3"5 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. PyfWIU7O w=2*pi*n./T; _3 3 b % g1=-i*ww./2; \#%GVru! g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; f\oW<2k]~ g3=-i*ww./2; :-jbIpj' P1=0; n8Qv8 P2=0; 3zh:~w_ P3=1; y]yl7g =~ P=0; E&cC2(w for m1=1:M1 =i vlS p=0.032*m1; %input amplitude (NFrZ0 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 ;av!fK s1=s10; 2*75*EQCH s20=0.*s10; %input in waveguide 2 dGk"`/@ s30=0.*s10; %input in waveguide 3 3;L$&X2 s2=s20; mBwz.KEm< s3=s30; m?Y-1!E0 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); e;XRH<LhAU %energy in waveguide 1 3H!]X M p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); P+f}r^4} %energy in waveguide 2 "mBM<rEn* p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); d;dT4vx$[M %energy in waveguide 3 wY ItG"+6 for m3 = 1:1:M3 % Start space evolution q<3La(^/ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS P0m9($JBD s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; S~:uOm2t\ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; WS[Z[O sca1 = fftshift(fft(s1)); % Take Fourier transform X8m-5(uW sca2 = fftshift(fft(s2)); [4#HuO@h sca3 = fftshift(fft(s3)); ~4+Y BN sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift me2vR# sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ?rOj?J9 sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); K@=u F1? s3 = ifft(fftshift(sc3)); 82,^Pu s2 = ifft(fftshift(sc2)); % Return to physical space >g !Z|ju s1 = ifft(fftshift(sc1)); =aB+|E end ?{ '_4n3O p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); By6O@ .\V p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); aR3jeB,=x p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); XFoSGqD P1=[P1 p1/p10]; 3\RD%[} P2=[P2 p2/p10]; 7HW:;2dL P3=[P3 p3/p10]; (.=Y_g. P=[P p*p]; L@O>;zp; end C<teZz8/w figure(1) H^kOwmSzh plot(P,P1, P,P2, P,P3); VB90 5% h'S0XU
; 转自:http://blog.163.com/opto_wang/
|
|