首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 +d\o|}c  
PljPhAce  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of +\Jo^\  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of +a.2\Qt2A  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear qP#LJPaS  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 k}fC58q  
%"mI["{  
%fid=fopen('e21.dat','w'); JHa1lj  
N = 128;                       % Number of Fourier modes (Time domain sampling points) B1 }-   
M1 =3000;              % Total number of space steps uK"  T~  
J =100;                % Steps between output of space uE')<fVX(  
T =10;                  % length of time windows:T*T0 NgyEy n \  
T0=0.1;                 % input pulse width ;O`f+rG~  
MN1=0;                 % initial value for the space output location Q/]~`S  
dt = T/N;                      % time step 1*hEbO  
n = [-N/2:1:N/2-1]';           % Index kiM:(=5  
t = n.*dt;   -z`FKej   
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 \[3~*eX6  
u20=u10.*0.0;                  % input to waveguide 2 D}y W:Pi'  
u1=u10; u2=u20;                 gxVr1DIkN  
U1 = u1;   >B0AJW/u  
U2 = u2;                       % Compute initial condition; save it in U (2H GV+Dg  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. hO8xH +;  
w=2*pi*n./T; yk?bz  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T CjpGo}a/  
L=4;                           % length of evoluation to compare with S. Trillo's paper  N~$>| gn  
dz=L/M1;                       % space step, make sure nonlinear<0.05 ;99oJD,  
for m1 = 1:1:M1                                    % Start space evolution p"%D/-%Gu  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS c rb^TuN  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; A|f6H6UUx  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform )]C]KB  
   ca2 = fftshift(fft(u2)); b:F;6X0~Hl  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation )^o.H~Pv  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   GO"|^W  
   u2 = ifft(fftshift(c2));                        % Return to physical space Uyb0iQ-,s  
   u1 = ifft(fftshift(c1));  `qs,V  
if rem(m1,J) == 0                                 % Save output every J steps. qF~9:`  
    U1 = [U1 u1];                                  % put solutions in U array ;9z|rWsF  
    U2=[U2 u2]; <Tgy$Hm  
    MN1=[MN1 m1]; J "I,]  
    z1=dz*MN1';                                    % output location p}!i_P  
  end I9qZE=i  
end gP QOv  
hg=abs(U1').*abs(U1');                             % for data write to excel Zu|NF uFI  
ha=[z1 hg];                                        % for data write to excel 8C3oi&av/{  
t1=[0 t']; %evb.h)  
hh=[t1' ha'];                                      % for data write to excel file D{B?2}X  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format @lj|  
figure(1) 06Wqfzceb  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn IzTJ7E*i  
figure(2) 7!AyLw  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn TbD  
phu,&DS!  
非线性超快脉冲耦合的数值方法的Matlab程序 6ncwa<q5  
j_g(6uZhz3  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   k)I4m.0a5  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 e}?Q&Lci  
_" 9 q(1  
b+qd' ,.Z  
Am*IC?@tq  
%  This Matlab script file solves the nonlinear Schrodinger equations jaEe$2F2  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of KuJ9bn{u!C  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Nt $4;  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ( /I6Wa  
-O$vJ,*  
C=1;                           CPy>sV3Ru0  
M1=120,                       % integer for amplitude gV.?Myy  
M3=5000;                      % integer for length of coupler 6Pl|FI JF  
N = 512;                      % Number of Fourier modes (Time domain sampling points) 3&})gU&a  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 5/nL[4Z  
T =40;                        % length of time:T*T0. >Gpq{Ph[  
dt = T/N;                     % time step zk{d*gN  
n = [-N/2:1:N/2-1]';          % Index ![B|Nxq}@  
t = n.*dt;   ppz3"5  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. PyfWIU7O  
w=2*pi*n./T; _33 b %  
g1=-i*ww./2; \#%GVru!  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; f\oW<2k]~  
g3=-i*ww./2; :-jbIpj'  
P1=0; n8Qv8  
P2=0; 3 zh:~w_  
P3=1; y]yl7g =~  
P=0;  E& cC2(w  
for m1=1:M1                 =i  vlS  
p=0.032*m1;                %input amplitude (NFrZ0  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ;av!fK  
s1=s10; 2*75*EQCH  
s20=0.*s10;                %input in waveguide 2 dGk"`/@  
s30=0.*s10;                %input in waveguide 3 3;L$&X2  
s2=s20; mBwz.KEm<  
s3=s30; m?Y-1!E0  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   e;XRH<LhAU  
%energy in waveguide 1 3H!]X M  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   P+f}r^4}  
%energy in waveguide 2 "mBM<rEn*  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   d;dT4vx$[M  
%energy in waveguide 3 wY ItG"+6  
for m3 = 1:1:M3                                    % Start space evolution q<3La(^/  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS P0m9($JBD  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; S~:uOm2t\  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; WS[Z[O  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform X8m-5(uW  
   sca2 = fftshift(fft(s2)); [4#HuO@h  
   sca3 = fftshift(fft(s3)); ~4+Y BN  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   me2vR#  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ?rOj?J9  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); K@=u F 1?  
   s3 = ifft(fftshift(sc3)); 82,^Pu  
   s2 = ifft(fftshift(sc2));                       % Return to physical space >g !Z|ju  
   s1 = ifft(fftshift(sc1)); =aB+|E  
end ?{'_4n3O  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); By6O@ .\V  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); aR3jeB,=x  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); XFoSGqD  
   P1=[P1 p1/p10]; 3\RD %[}  
   P2=[P2 p2/p10]; 7HW:;2dL  
   P3=[P3 p3/p10]; (.=Y_g.  
   P=[P p*p]; L@O>;zp;  
end C<teZz8/w  
figure(1) H^kOwmSzh  
plot(P,P1, P,P2, P,P3); VB905%  
h'S0XU ;  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计