| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 <R GRvv &CUkR6 % This Matlab script file solves the coupled nonlinear Schrodinger equations of R)<Fqa7Tm % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of L'aMXNO % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear cb'8Li8,j % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ik8e \?3];+c9 %fid=fopen('e21.dat','w'); Tw!x* N = 128; % Number of Fourier modes (Time domain sampling points) 6Otv[8^} M1 =3000; % Total number of space steps JSGUl4N J =100; % Steps between output of space ?a}eRA7 T =10; % length of time windows:T*T0 {GHGFi`Z T0=0.1; % input pulse width e% 5! MN1=0; % initial value for the space output location B2845~\. dt = T/N; % time step -F8%U:2a n = [-N/2:1:N/2-1]'; % Index TUpEhQ+* t = n.*dt; rBr28_i u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 1"v;w!uh u20=u10.*0.0; % input to waveguide 2 ,pLesbI u1=u10; u2=u20; 5)T{iPU%X U1 = u1; []dRDe;# U2 = u2; % Compute initial condition; save it in U ^+GN8LUs ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. cst=ms w=2*pi*n./T; 'kx{0J? g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T fcw\`. L=4; % length of evoluation to compare with S. Trillo's paper TS
UN(_XGW dz=L/M1; % space step, make sure nonlinear<0.05 \2NiI]t] for m1 = 1:1:M1 % Start space evolution ?|s[/zPS= u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS <m@U`RFm u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; .S?,%4v%% ca1 = fftshift(fft(u1)); % Take Fourier transform 8V}c(2m ca2 = fftshift(fft(u2)); =A!I-@]q< c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation N#[/h96F c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift "UAW u2 = ifft(fftshift(c2)); % Return to physical space \[>Rt u1 = ifft(fftshift(c1)); A@DIq/^xM if rem(m1,J) == 0 % Save output every J steps. rzl2Oj"4 U1 = [U1 u1]; % put solutions in U array Pv0+`>): U2=[U2 u2]; G 8NSBaZe MN1=[MN1 m1]; _')KDy7 z1=dz*MN1'; % output location 8=2)I. end @l;f';+ end w^ DAu1 hg=abs(U1').*abs(U1'); % for data write to excel ")sq?1?X ha=[z1 hg]; % for data write to excel SnXYq7`t t1=[0 t']; @NyCMe;] hh=[t1' ha']; % for data write to excel file ^3r2Q?d\ %dlmwrite('aa',hh,'\t'); % save data in the excel format g8qN+Gg figure(1) Q0 ^?jh waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn l[.pI];T figure(2) }RyYzm2 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn >5 i8%r M~"K@g=Wr 非线性超快脉冲耦合的数值方法的Matlab程序 HX=`kkX ] xH ` 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 7M$>'PfO Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ,YiBu^E9
c^=,@# 3F4I{L \,_%e[g49 % This Matlab script file solves the nonlinear Schrodinger equations ~Aq UT]l % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of n=yFw\w' % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear c3Mql+@ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `U;4O)`n /sYD+*a C=1; ].Et&v M1=120, % integer for amplitude =UYc~VUYnT M3=5000; % integer for length of coupler Rq\.RR]( N = 512; % Number of Fourier modes (Time domain sampling points) '7E?|B0], dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. {WC{T2:8 T =40; % length of time:T*T0. QGYmQ9m{kL dt = T/N; % time step "0]i4d1l n = [-N/2:1:N/2-1]'; % Index :ox+WY t = n.*dt; 7d9%L}+q ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. GbMSO w=2*pi*n./T; WJg?R^ g1=-i*ww./2; "4ovMan g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; l9SbuT$U g3=-i*ww./2; (IEtjv}D P1=0; ,I)/ V>u P2=0;
XLzHm&; P3=1; 0mCrA|A. P=0; tt`b+NOH> for m1=1:M1 Dpof~o,f p=0.032*m1; %input amplitude @=@WRPGM*9 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 Ao=.=0os s1=s10; rt."P20T s20=0.*s10; %input in waveguide 2 %*Y:Rm'> s30=0.*s10; %input in waveguide 3 g y&B"` s2=s20; q5QYp s3=s30; ymzlRs1^Ct p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); ,!Q2^R %energy in waveguide 1 *xt3mv/<z p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); s K s
D %energy in waveguide 2 1'}~;?_ p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); G#K=n %energy in waveguide 3 eyUo67'7 for m3 = 1:1:M3 % Start space evolution wLNO\JP' s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS o,u-% s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; $%sOL(
r s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 8wwD\1pLS sca1 = fftshift(fft(s1)); % Take Fourier transform 5]gd,&^?> sca2 = fftshift(fft(s2)); s_VP(Fe@K sca3 = fftshift(fft(s3)); k+%6:r,r& sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift ` 8.d sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); uE+]]ir sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Bm.%bA>
s3 = ifft(fftshift(sc3)); LL.YkYu s2 = ifft(fftshift(sc2)); % Return to physical space elw<(<u` s1 = ifft(fftshift(sc1)); @@_f''f$ end KLlW\MF1 p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); >Ei_## p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); q]<cn2 p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); lS9rgq<n P1=[P1 p1/p10]; rT5dv3^MW! P2=[P2 p2/p10]; mZ*!$P:vy" P3=[P3 p3/p10]; )CEfG P=[P p*p]; `0Qzu\gRb end ?r#e figure(1) $^d,>hJi plot(P,P1, P,P2, P,P3); WOR~tS E_7N^htv 转自:http://blog.163.com/opto_wang/
|
|