| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 J]S30&? 8Exky^OT| % This Matlab script file solves the coupled nonlinear Schrodinger equations of 6|3 X*Orn % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 60A!Gob % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2$!,$J-<Y % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 QOrMz`OA \.sC{@5K
%fid=fopen('e21.dat','w'); Lpkx$QZ N = 128; % Number of Fourier modes (Time domain sampling points) `Eu,SvkF w M1 =3000; % Total number of space steps X !0 7QKs J =100; % Steps between output of space JTBt=u{6^ T =10; % length of time windows:T*T0 Df *<3G T0=0.1; % input pulse width >py[g0J MN1=0; % initial value for the space output location k2,`W2]^E dt = T/N; % time step ru`U/6n n = [-N/2:1:N/2-1]'; % Index VGxab;#,:3 t = n.*dt; :~srl)|) u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 }fo_"bs@ u20=u10.*0.0; % input to waveguide 2 /4;A.r`; u1=u10; u2=u20; ~@X3qja
U1 = u1; 98?O[= U2 = u2; % Compute initial condition; save it in U em )%U ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. wxPl[)E w=2*pi*n./T; \ )>#`X g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T \QF0(*!! L=4; % length of evoluation to compare with S. Trillo's paper W$;qhB dz=L/M1; % space step, make sure nonlinear<0.05 gVh&c4 for m1 = 1:1:M1 % Start space evolution &V+KM"Ow u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS 9Hb|$/FD u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Y{#*;p*I ca1 = fftshift(fft(u1)); % Take Fourier transform /'_<~A ca2 = fftshift(fft(u2)); M3F1O6=4j c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation dw5"}-D c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift zF{~Md1 u2 = ifft(fftshift(c2)); % Return to physical space Y}t)!}p$r u1 = ifft(fftshift(c1)); >BK/HuS if rem(m1,J) == 0 % Save output every J steps. 6Uq;]@k% U1 = [U1 u1]; % put solutions in U array JEWc{)4QD U2=[U2 u2]; R2C~.d_TDu MN1=[MN1 m1]; >#l:]T z1=dz*MN1'; % output location `"yxmo*0 end soQ[Zg4} end AL,7rYZG$ hg=abs(U1').*abs(U1'); % for data write to excel .sM,U ha=[z1 hg]; % for data write to excel FeO1%#2<y t1=[0 t']; J-uQF| hh=[t1' ha']; % for data write to excel file 6\I1J=
C %dlmwrite('aa',hh,'\t'); % save data in the excel format l Ib
d9F figure(1) /N<aN9Z<x, waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn r7R.dD/. figure(2) )s,tBU+N waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn )S`[ gK &nI>`Q' 非线性超快脉冲耦合的数值方法的Matlab程序 yqL" YD PUZcb+%]h 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 %eIaH!x: Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 TBOg.y] = _N[mR^ w4}Q6_0v N!wuBRWR % This Matlab script file solves the nonlinear Schrodinger equations B9$f y).Gp % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of xfI0P0+ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear rWDD$4y % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *l"CIG' ^E8qI8s C=1; ~x<?Pj M1=120, % integer for amplitude (U#
Oj" M3=5000; % integer for length of coupler 8-k`"QI= N = 512; % Number of Fourier modes (Time domain sampling points) 5G(dvM-n dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. yZ)9Hd T =40; % length of time:T*T0. xf,A<j(o dt = T/N; % time step
k0ai#3iJ n = [-N/2:1:N/2-1]'; % Index +WMXd.iN, t = n.*dt; \f(zMP ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. .|hsn6i/- w=2*pi*n./T; vyJ8"
#]qY g1=-i*ww./2; w%iwxo g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ){'<67dK g3=-i*ww./2; e`LkCy[_ P1=0; !5?_) P2=0; /VufL+q1 P3=1; j3`YaWw P=0; }d>.Nj#zh for m1=1:M1 S1Od&v[R p=0.032*m1; %input amplitude ITqAy1m@C s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 YG:^gi s1=s10; Y~{<Hs s20=0.*s10; %input in waveguide 2 ZN;ondp4 s30=0.*s10; %input in waveguide 3 NQZ /E )f s2=s20; u%yYLpaKf s3=s30; Eri007? D p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); a@|H6:| %energy in waveguide 1 cb0rkmO p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); fpC":EX@r %energy in waveguide 2 kp<Au)u p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); 00dY?d{[D %energy in waveguide 3
3F!)7 for m3 = 1:1:M3 % Start space evolution \#) YS s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS kBrA ? s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; W#NZnxOX" s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; |nnFjGC`~ sca1 = fftshift(fft(s1)); % Take Fourier transform 'kC#GTZi sca2 = fftshift(fft(s2)); fKr_u<| sca3 = fftshift(fft(s3)); |gu@b~8 sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift ZX`x9/0& sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); D86F5HT}} sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 3%GsTq2o s3 = ifft(fftshift(sc3)); oA~0"}eS s2 = ifft(fftshift(sc2)); % Return to physical space HK<S|6B7V s1 = ifft(fftshift(sc1)); {^N,$,Ab. end UYJ>L p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); f"*4R
kG p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 71P. 9Iz p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); J(/J;PW P1=[P1 p1/p10]; ]S@T|08b P2=[P2 p2/p10];
uM\\(g} P3=[P3 p3/p10]; Kg>B$fBx) P=[P p*p]; Z]TQ+9t end |;)_-=L0P figure(1) O|=?!|`o plot(P,P1, P,P2, P,P3); j?]+~ 0n`Temb/ 转自:http://blog.163.com/opto_wang/
|
|