| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 T[q2quXgk eY;XF.mF % This Matlab script file solves the coupled nonlinear Schrodinger equations of eUQrn>`
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ;MR8E9 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear =J<3B
H^m % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 0.=dOz r 42~tdD %fid=fopen('e21.dat','w'); xrf z-"n4 N = 128; % Number of Fourier modes (Time domain sampling points) F7x]BeTM M1 =3000; % Total number of space steps B[epI3R J =100; % Steps between output of space _?CyKk\I T =10; % length of time windows:T*T0 (gQP_Oa( T0=0.1; % input pulse width Ja"?Pb MN1=0; % initial value for the space output location VMXccT9i! dt = T/N; % time step f;x0Ho5C2 n = [-N/2:1:N/2-1]'; % Index mA@FJK_
t = n.*dt; #Ipi 3 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 `zwXfY,% u20=u10.*0.0; % input to waveguide 2 P XKEqcQR u1=u10; u2=u20; ~l+2Z4nV U1 = u1; f; w\k7 # U2 = u2; % Compute initial condition; save it in U m%]1~b}" ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. Qzt'ZK w=2*pi*n./T; )[+82~F g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T u%!/-&?wF L=4; % length of evoluation to compare with S. Trillo's paper ;G.5.q[A dz=L/M1; % space step, make sure nonlinear<0.05 |Bz1u|uc for m1 = 1:1:M1 % Start space evolution z{`K_s%5 u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS w;W# 'pE u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; N?`V;`[ ca1 = fftshift(fft(u1)); % Take Fourier transform VddHK ca2 = fftshift(fft(u2)); JlR$"GU c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation %D1 |0v8} c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift Bs)'Gk`1 u2 = ifft(fftshift(c2)); % Return to physical space EMQGP<[ u1 = ifft(fftshift(c1)); eu={6/O if rem(m1,J) == 0 % Save output every J steps. 2. '` mGu U1 = [U1 u1]; % put solutions in U array )Fon;/p U2=[U2 u2]; V^Y'!w\LGI MN1=[MN1 m1]; *,& 2?E8 z1=dz*MN1'; % output location z36wWdRa6 end ZP{<f~; end h?[|1.lJx( hg=abs(U1').*abs(U1'); % for data write to excel 6S`0<Z;;/ ha=[z1 hg]; % for data write to excel )G#mC0?PV t1=[0 t']; 76H>ST@G| hh=[t1' ha']; % for data write to excel file (qglD %dlmwrite('aa',hh,'\t'); % save data in the excel format '_d4[Olu figure(1) ls7eypKR waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn @<NuuYQ& figure(2) wg%g(FO waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn J0V`sK 3ew4QPT' 非线性超快脉冲耦合的数值方法的Matlab程序 {ETM > qv& Bai[ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 Hvb8+"?~ Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :*f 2Bn .7]P-]uOZ 3xT9/8* rk6K0TQ8 % This Matlab script file solves the nonlinear Schrodinger equations Mg#yl\v % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of #u}%r{T % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear m9vX8;. % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Jsl2RdI * xCY^_ C=1; 84vd~Cf9 M1=120, % integer for amplitude e2f+Fv
9 M3=5000; % integer for length of coupler ,AmwsXN"F N = 512; % Number of Fourier modes (Time domain sampling points) yQuL[#p dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. ;$WHTO( T =40; % length of time:T*T0. ,jOJ\WXP dt = T/N; % time step 'IG@JL' n = [-N/2:1:N/2-1]'; % Index P #O2MiG t = n.*dt; H4s~=iB ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. !$A/.;0$ w=2*pi*n./T; V"m S$MN g1=-i*ww./2; U.KQjBi g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; |GtvgvO, g3=-i*ww./2; =*&[K^ P1=0; W%4=x>J- P2=0; p}^5ru P3=1; f. "\~ P=0; E7t;p)x for m1=1:M1 T5
(|{- p=0.032*m1; %input amplitude 4q E95THB s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 @(Y!$><Is s1=s10; #0>xa]S s20=0.*s10; %input in waveguide 2 C,An\lsT s30=0.*s10; %input in waveguide 3 yEq7ueJ' s2=s20; 7~SwNt, s3=s30; x2rAB5r6 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); 7Ml4u%? %energy in waveguide 1 =eDIvNps p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); .E<nQWz8 %energy in waveguide 2 DMM<,1 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); lG}#K^q %energy in waveguide 3 N7?B"p/ for m3 = 1:1:M3 % Start space evolution X_]rtG s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS VG);om7`PD s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; O\6U2b~ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 9@lWI sca1 = fftshift(fft(s1)); % Take Fourier transform /]_ t-> sca2 = fftshift(fft(s2)); 64<;6* sca3 = fftshift(fft(s3)); /'+>/ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift MKl0 d sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); HeOdCr-PN sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); b6bs . s3 = ifft(fftshift(sc3)); _y@].G s2 = ifft(fftshift(sc2)); % Return to physical space "f,{d}u s1 = ifft(fftshift(sc1)); 9af.t end qI+2,6
sGI p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); p+;& Gg54 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 7l D-|yx p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); >Icr4?zq P1=[P1 p1/p10]; Mfj82rHg P2=[P2 p2/p10]; =V[uXm P3=[P3 p3/p10]; y0%1YY P=[P p*p]; wDJ`#"5p{ end ilA45@ figure(1) =~B"8@B plot(P,P1, P,P2, P,P3); KJA
:; V
~C$| +>e 转自:http://blog.163.com/opto_wang/
|
|