首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 S}3fr^{.  
NYUL:Tp  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of g/_5unI}u  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ]%SH>  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear u#fM_>ML  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c ]-<vkpV  
mIvx1_[  
%fid=fopen('e21.dat','w'); K3&qq[8.e  
N = 128;                       % Number of Fourier modes (Time domain sampling points) c]<5zyl"j1  
M1 =3000;              % Total number of space steps wu6;.xTLl  
J =100;                % Steps between output of space DK~xrU'  
T =10;                  % length of time windows:T*T0 qq`4<0I>  
T0=0.1;                 % input pulse width E~T-=ocKE  
MN1=0;                 % initial value for the space output location {?0lBfB"  
dt = T/N;                      % time step GA )`-*.R  
n = [-N/2:1:N/2-1]';           % Index b_krk\e@S  
t = n.*dt;   @bLy,Xr&  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 }#+^{P3;  
u20=u10.*0.0;                  % input to waveguide 2 r<EY]f^`u  
u1=u10; u2=u20;                 59L\|OR  
U1 = u1;   rXq.DvQ  
U2 = u2;                       % Compute initial condition; save it in U J{<X 7uB  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 3&4(ZH=  
w=2*pi*n./T; qkqIV^*R  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T RC"MdcD:]y  
L=4;                           % length of evoluation to compare with S. Trillo's paper e{H=dIa+  
dz=L/M1;                       % space step, make sure nonlinear<0.05 =I5>$}q_&,  
for m1 = 1:1:M1                                    % Start space evolution ~=LE0.3[  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS I][*j  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; N>1em!AS  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform `RW HN/U  
   ca2 = fftshift(fft(u2));  }v{LRRi  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation MchA{p&Ol  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   YP<ms  
   u2 = ifft(fftshift(c2));                        % Return to physical space BOX2O.Pm  
   u1 = ifft(fftshift(c1)); |-ALklXr  
if rem(m1,J) == 0                                 % Save output every J steps. e%M;?0j  
    U1 = [U1 u1];                                  % put solutions in U array 2tO,dx  
    U2=[U2 u2]; R29~~IOqO  
    MN1=[MN1 m1]; {YC@T(  
    z1=dz*MN1';                                    % output location d-ko ^Y0  
  end @ q3k%$4  
end 4J? 0bZ  
hg=abs(U1').*abs(U1');                             % for data write to excel >'$Mp<  
ha=[z1 hg];                                        % for data write to excel q i;1L Kc  
t1=[0 t']; ,p a {qne  
hh=[t1' ha'];                                      % for data write to excel file /nsX]V6i  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format h#*dI`>l-  
figure(1) .{^5X)  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn T::85  
figure(2) WU` rh^  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn wlvgg  
~?}Emn;t  
非线性超快脉冲耦合的数值方法的Matlab程序 gH vZVC[b  
@mBQ?; qlK  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   0+ '&`Q!u  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !qg`/y9  
dT8S~-d%  
Q&;9 x?e  
:cECRm*  
%  This Matlab script file solves the nonlinear Schrodinger equations 3"e,q Y  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of *^4"5X@  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Qv-_ jZ  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 b%`1cV  
q;CiV  
C=1;                           B9 uoVcW  
M1=120,                       % integer for amplitude @.l@\4m  
M3=5000;                      % integer for length of coupler /SB;Von  
N = 512;                      % Number of Fourier modes (Time domain sampling points)  (ZizuHC  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ?l )[7LR4  
T =40;                        % length of time:T*T0. am'7uy!ka~  
dt = T/N;                     % time step 2zb"MEOS5  
n = [-N/2:1:N/2-1]';          % Index %$L{R  
t = n.*dt;   * u>\57W  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. AkV#J, 3LC  
w=2*pi*n./T; aFYIM`?(  
g1=-i*ww./2; X"Swi&4  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; (A#^l=su  
g3=-i*ww./2; oPM96 (  
P1=0; ##*3bDf$-5  
P2=0; Y3b *a".X  
P3=1; `;C  V=,M  
P=0; D,feF9  
for m1=1:M1                 7:1Lol-V  
p=0.032*m1;                %input amplitude *] X'( /b_  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ICQKP1WFp  
s1=s10; R m( "=(  
s20=0.*s10;                %input in waveguide 2 vs4>T^8e  
s30=0.*s10;                %input in waveguide 3 +e``OeXog  
s2=s20; |{ip T SH  
s3=s30; y N-9[P8C  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   {wKB;?fUvk  
%energy in waveguide 1 7. oM J  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   k,*XG$2h  
%energy in waveguide 2 S9.o/mr  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   |L ev.,,Ph  
%energy in waveguide 3 7[)E>XRE  
for m3 = 1:1:M3                                    % Start space evolution e^voW"?%  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS /N{*"s2)  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; !Uo4,g6r+  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; WyiQoN'q  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform AwR =]W;j  
   sca2 = fftshift(fft(s2)); mfr|:i  
   sca3 = fftshift(fft(s3)); <hyKu  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   75lA%| *X  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); z24q3 3O  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ^cWnF0)j.  
   s3 = ifft(fftshift(sc3));  ob]w;"  
   s2 = ifft(fftshift(sc2));                       % Return to physical space 6=C<>c %+  
   s1 = ifft(fftshift(sc1)); /n&&Um\  
end 9(Xn>G'iT  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); e0 ecD3  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); >t+P(*u  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); (bS&D/N.  
   P1=[P1 p1/p10]; 0y\Z9+G:  
   P2=[P2 p2/p10]; :3 mh@[V  
   P3=[P3 p3/p10]; %cn<ych G  
   P=[P p*p]; (ZlU^Gw#UB  
end sI2^Qp@O1  
figure(1) KI.hy2?e  
plot(P,P1, P,P2, P,P3); omx=  
.%-8 t{dt  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计