| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 a9Zq{Ysj ^} >w<'0 % This Matlab script file solves the coupled nonlinear Schrodinger equations of am6L8N % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of uW
%# % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear F*ylnB3z % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 67FWa $6R-5oQ %fid=fopen('e21.dat','w'); 8zW2zkv2|# N = 128; % Number of Fourier modes (Time domain sampling points) o-B$J? M1 =3000; % Total number of space steps &mS^ZyG J =100; % Steps between output of space N4TV T =10; % length of time windows:T*T0 5*u+q2\F T0=0.1; % input pulse width \1M4Dl5! MN1=0; % initial value for the space output location 'PW5ux@`< dt = T/N; % time step W ]8QM1$ n = [-N/2:1:N/2-1]'; % Index ('+d.F[109 t = n.*dt; >uEzw4w u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 ((%?`y u20=u10.*0.0; % input to waveguide 2 EQSQFRk; u1=u10; u2=u20; )Hr`MB U1 = u1; ^E>3|du]O U2 = u2; % Compute initial condition; save it in U 5L}/&^E#p ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. Y"$xX8o w=2*pi*n./T; uHRsFlw g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T qwAT>4 L=4; % length of evoluation to compare with S. Trillo's paper jT;;/Fd3/ dz=L/M1; % space step, make sure nonlinear<0.05 lNO;O}8 for m1 = 1:1:M1 % Start space evolution ,64-1! u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS -jmY)(\ u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; +R75v ) ca1 = fftshift(fft(u1)); % Take Fourier transform TIg3`Fon ca2 = fftshift(fft(u2));
|-~Y#] c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation * kh tJ]= c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift XW92gI<O u2 = ifft(fftshift(c2)); % Return to physical space @BMx!r5kn u1 = ifft(fftshift(c1)); 4E}Yt$| if rem(m1,J) == 0 % Save output every J steps. ;5( UzQU U1 = [U1 u1]; % put solutions in U array P16~Qj U2=[U2 u2]; SSzIih@u MN1=[MN1 m1]; b*lkBqs$ z1=dz*MN1'; % output location yEy6]f+>+ end Q22 GIr end Y8t8!{ytg hg=abs(U1').*abs(U1'); % for data write to excel t"I77aZ$A ha=[z1 hg]; % for data write to excel +jgSV.N t1=[0 t']; $<[79al# hh=[t1' ha']; % for data write to excel file }c:M^Ff %dlmwrite('aa',hh,'\t'); % save data in the excel format _DEjF)S figure(1) ?+8\.a! waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn 3=V&K- figure(2) ql~J8G9 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn +1!ia] cso8xq|b7 非线性超快脉冲耦合的数值方法的Matlab程序 9+!hg'9Qn p5*jzQ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 MLp9y# Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 xN'I/@ kb KqP#6^ _ :b!s2n!u 5#z1bu % This Matlab script file solves the nonlinear Schrodinger equations M )(DZ} % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of +aAc9'k % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear a$fnh3j[ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /BL4<T f /dIzY0<aO C=1; HjwE+: w M1=120, % integer for amplitude B`sAk
% M3=5000; % integer for length of coupler 62NsJ<#> N = 512; % Number of Fourier modes (Time domain sampling points) N6TH}~62} dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. JlJ a
# T =40; % length of time:T*T0. PZzMHK?hP dt = T/N; % time step f%8C!W]Dm n = [-N/2:1:N/2-1]'; % Index $<OD31T t = n.*dt; o{[qZc_% ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. l%=; w=2*pi*n./T; ^=*;X;7 g1=-i*ww./2; 5~S5F3 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; |1Z)E+q*: g3=-i*ww./2; @PIp*[7oC P1=0; NX&_p!_V P2=0; wdoR%b{M P3=1; EhBKj |y P=0; gI`m.EH}}N for m1=1:M1 *=xr-!MEk p=0.032*m1; %input amplitude $Ygue5{c s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 Qv ?"b s1=s10; FC4wwzb s20=0.*s10; %input in waveguide 2 x|29L7i s30=0.*s10; %input in waveguide 3 BL4-7 s2=s20; A/?7w
s3=s30; |&4/n6;P$0 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); .eC1qWZJpd %energy in waveguide 1 [.}oyz;}N p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); V G~Vs@c( %energy in waveguide 2 oD@7
SF p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); ]JR +ayk7 %energy in waveguide 3 EBmt9S for m3 = 1:1:M3 % Start space evolution d0 /#nz s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS Ht&YC<X s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; LXCx~;{\
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; kvj#c sca1 = fftshift(fft(s1)); % Take Fourier transform 9Gz=lc[!7 sca2 = fftshift(fft(s2));
W!(LF7_! sca3 = fftshift(fft(s3)); (4-CF3D sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift Yoll?_k+ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); uvS)8-o&F sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); q" 5(H5 s3 = ifft(fftshift(sc3)); 6d~'$<5on s2 = ifft(fftshift(sc2)); % Return to physical space [a<SDMR s1 = ifft(fftshift(sc1)); -D~%|).' end Z$? # p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); L{Vqh0QD& p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); -H-~;EzU p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); +qdEq_m P1=[P1 p1/p10]; PTV:IzoW P2=[P2 p2/p10]; Ef{Vp;] P3=[P3 p3/p10]; '/%H3A#L P=[P p*p]; YZJyk:H\ end [opGZ`>)j" figure(1) ,"79P/C plot(P,P1, P,P2, P,P3); _h1mF<\ X^ ygl0k \ 转自:http://blog.163.com/opto_wang/
|
|