| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 |xQG 5p"n g8nR % This Matlab script file solves the coupled nonlinear Schrodinger equations of 4Ub_;EI> % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of hJ.XG<?]$ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear "UKX~}8T % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 SPOg' |TF,Aj %fid=fopen('e21.dat','w'); 6:>4}WOP N = 128; % Number of Fourier modes (Time domain sampling points) r!V#@Md M1 =3000; % Total number of space steps ^~-i>gTD J =100; % Steps between output of space 4Cke(G T =10; % length of time windows:T*T0 \2-!%i, T0=0.1; % input pulse width .3qaaXeH MN1=0; % initial value for the space output location dG.s8r*?M dt = T/N; % time step )XMSQ ="m n = [-N/2:1:N/2-1]'; % Index NSHWs%Zc t = n.*dt; #6fp" u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 #!rng]p u20=u10.*0.0; % input to waveguide 2 w;0NtV| u1=u10; u2=u20; "p.MJxH U1 = u1; R!W!8rr3 U2 = u2; % Compute initial condition; save it in U \ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. ]
M"{=z w=2*pi*n./T; sn_]7d+Q g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T [%YA42_`LD L=4; % length of evoluation to compare with S. Trillo's paper * gr{{c dz=L/M1; % space step, make sure nonlinear<0.05 K+dkImkh for m1 = 1:1:M1 % Start space evolution Z66akr u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS v~q2D" u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; D^=_408\ ca1 = fftshift(fft(u1)); % Take Fourier transform epCU(d*b ca2 = fftshift(fft(u2)); go m<V?$ c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation zBay 3a c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift ?,%vndI u2 = ifft(fftshift(c2)); % Return to physical space uTA
/E9OY u1 = ifft(fftshift(c1)); TU$/3fp* if rem(m1,J) == 0 % Save output every J steps. &zlwV"W U1 = [U1 u1]; % put solutions in U array A|CW4f, U2=[U2 u2]; Zq2dCp% MN1=[MN1 m1]; n*CH,fih: z1=dz*MN1'; % output location 3qiE#+dC end +8."z"i3lE end vvv~n]S6 hg=abs(U1').*abs(U1'); % for data write to excel />Tyiy]2uu ha=[z1 hg]; % for data write to excel ^)rX27!G t1=[0 t']; zAC hh=[t1' ha']; % for data write to excel file 2uZ
<q?= %dlmwrite('aa',hh,'\t'); % save data in the excel format LVq3R 8A figure(1) y1,L0v$=} waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn bRJYw6oA< figure(2) _2q4Aaza waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn 1 <.I2\^ )W:`Q&/G 非线性超快脉冲耦合的数值方法的Matlab程序 kCL)F\v"iT a k@0M[d 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 &1%W-&bc6 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 m/|>4~ f*Xonb N$M#3Y; /gL(40 % This Matlab script file solves the nonlinear Schrodinger equations p H5IBIf' % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of >"f,'S5* % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear OwwH 45 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Ht5 %fcD =<_xUh. C=1; J<p< | |