| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 v}p'vh^8B G)5w_^&% % This Matlab script file solves the coupled nonlinear Schrodinger equations of ,jJ&x7ra8 % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of )6U&^9= % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1gk{|keh % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 O="#yE) &!>
)EHGV %fid=fopen('e21.dat','w'); X`bN/sI N = 128; % Number of Fourier modes (Time domain sampling points) 19-|.9m( M1 =3000; % Total number of space steps N,U<.{T=A J =100; % Steps between output of space \jL n5$OW T =10; % length of time windows:T*T0 ol]"r5#Q_H T0=0.1; % input pulse width S^nshQI MN1=0; % initial value for the space output location A41*4!L= dt = T/N; % time step )X-b|D4O n = [-N/2:1:N/2-1]'; % Index SKf9
yS# t = n.*dt; *olV Y/'O u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 |9>?{
B\a u20=u10.*0.0; % input to waveguide 2
fp!Ba u1=u10; u2=u20; !K a!f1 U1 = u1; #\9sCnb U2 = u2; % Compute initial condition; save it in U ,b;eU[!] ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 1L722I@ w=2*pi*n./T; ',GWH:B g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T `s
HrC L=4; % length of evoluation to compare with S. Trillo's paper P,5gaT) dz=L/M1; % space step, make sure nonlinear<0.05 oE:9}]N_ for m1 = 1:1:M1 % Start space evolution MX!t/&X(n u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS Y1RiuJtL u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; } :U'aa ca1 = fftshift(fft(u1)); % Take Fourier transform P5 GM s ca2 = fftshift(fft(u2)); A0{ !m c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation qOaI4JP@ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift RC(fhqV u2 = ifft(fftshift(c2)); % Return to physical space 4+&4 u1 = ifft(fftshift(c1)); +~~FfIzf# if rem(m1,J) == 0 % Save output every J steps. xb/L AlJ U1 = [U1 u1]; % put solutions in U array ^8dd U2=[U2 u2]; I4]|r k9 MN1=[MN1 m1]; H}m%=?y@ z1=dz*MN1'; % output location L
;5R*)t end hAx#5@*5 end t(3<w)r2 hg=abs(U1').*abs(U1'); % for data write to excel r|!w,>. ha=[z1 hg]; % for data write to excel pqmb&"l t1=[0 t']; U$CAA5HV] hh=[t1' ha']; % for data write to excel file 951"0S`Lo %dlmwrite('aa',hh,'\t'); % save data in the excel format awP
']iE figure(1) 1=LI))nV waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn ^rF{%1 DT figure(2) <>3}<i<[& waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn C1=7.dPr E.*TJ 非线性超快脉冲耦合的数值方法的Matlab程序 >E*j4gg
AKWM7fI 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 V%k #M Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4`Com~`6" ut26sg{s( Z^t" !oY pfd||Z % This Matlab script file solves the nonlinear Schrodinger equations Q'?{_ % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of h<KE)^). % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear K/oC+Z;K % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 IIC1T{D}v RU}
M&& C=1; .&Uu w M1=120, % integer for amplitude cYBv}ylw}R M3=5000; % integer for length of coupler 29:1crzx~ N = 512; % Number of Fourier modes (Time domain sampling points) _`6fGu& W dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. /?<tjK' "H T =40; % length of time:T*T0. MQD%m ;[s dt = T/N; % time step dWR0tS6vR` n = [-N/2:1:N/2-1]'; % Index V&7jd7
2{ t = n.*dt; GLI 5AbQK ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. `-)!4oJ] w=2*pi*n./T; QWt?` h= g1=-i*ww./2; _Wcr'*7 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; }e}J6[wP g3=-i*ww./2; z#qlu= P1=0; S*3N6*-l" P2=0; .xXe *dm% P3=1; =,Yi" E P=0; J*)Vpk for m1=1:M1 j$Ttoo p=0.032*m1; %input amplitude QbGc 9MM s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 6=V&3|" s1=s10; Jt4&%b-T s20=0.*s10; %input in waveguide 2 &Nf10%J'< s30=0.*s10; %input in waveguide 3 y*ae 5=6( s2=s20; T&.ZeB1 s3=s30; .
J"g.Q p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); ')pXQ %energy in waveguide 1
2[WH8l+ p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); 8KqrB! %energy in waveguide 2 XA8{N p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); >T*/[{L8; %energy in waveguide 3 W,</ for m3 = 1:1:M3 % Start space evolution 6nxX~k s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS tb;!2$ s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; f.?p"~! s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; w2BIf[~t sca1 = fftshift(fft(s1)); % Take Fourier transform V!!E)I sca2 = fftshift(fft(s2)); *ea%KE": sca3 = fftshift(fft(s3)); 21Z}Zj sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift nic7RN?F< sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); CXqU<a& sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); l{U-$} s3 = ifft(fftshift(sc3)); plL##?<D< s2 = ifft(fftshift(sc2)); % Return to physical space m/#)B6@A s1 = ifft(fftshift(sc1)); .PyPU]w end FJ}RT*7_C p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 2{!o"6t p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); @eQIwz p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); jYAD9v% P1=[P1 p1/p10]; wLeP;u1 P2=[P2 p2/p10]; r)$(>/[$ P3=[P3 p3/p10]; ?)=A[
P=[P p*p]; y8T%g( end &WW|! 6 figure(1) r+8%oWj plot(P,P1, P,P2, P,P3); _jmkA meu [}s nKogp 转自:http://blog.163.com/opto_wang/
|
|