| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 o2hk!#5[4 G,c2?^#n % This Matlab script file solves the coupled nonlinear Schrodinger equations of kwqY~@W % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of : 2$*'{mM % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ?=^\kXc[ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4*9t:D|} [Y?Y@x"MZ %fid=fopen('e21.dat','w'); ?FUK_] N = 128; % Number of Fourier modes (Time domain sampling points) @|sBnerE M1 =3000; % Total number of space steps wr=KAsH< J =100; % Steps between output of space "nb.!OG~( T =10; % length of time windows:T*T0 ^nNpT!o T0=0.1; % input pulse width }N ).$ MN1=0; % initial value for the space output location ].5q,A] dt = T/N; % time step c53:E'g n = [-N/2:1:N/2-1]'; % Index ^E Rdf2 t = n.*dt;
$cc]Av4c2 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 1
?Zw u20=u10.*0.0; % input to waveguide 2 L,
#|W u1=u10; u2=u20; [}GK rI U1 = u1; ij~- U2 = u2; % Compute initial condition; save it in U ](8F]J , ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. W}2!~ep! w=2*pi*n./T; b62B|0i g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Q4/BpKL L=4; % length of evoluation to compare with S. Trillo's paper LH=^3Gw dz=L/M1; % space step, make sure nonlinear<0.05 C^;8M'8z0 for m1 = 1:1:M1 % Start space evolution >;bym) u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS -^(KGu&L&u u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; #$W0%7 ca1 = fftshift(fft(u1)); % Take Fourier transform 1-N+qNSD` ca2 = fftshift(fft(u2)); I"x~ 7
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation z}.6yHS c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift 'Ha> >2M u2 = ifft(fftshift(c2)); % Return to physical space ;ND[+i2MN u1 = ifft(fftshift(c1)); aI;$N|]u if rem(m1,J) == 0 % Save output every J steps. 5*-RIs! 2 U1 = [U1 u1]; % put solutions in U array ;hV|W{=w U2=[U2 u2]; YTmHht{j# MN1=[MN1 m1]; 98O]tL+k/u z1=dz*MN1'; % output location *5*#Z~dut8 end GoAh{=s end *]h"J] hg=abs(U1').*abs(U1'); % for data write to excel '
Q(kx*; ha=[z1 hg]; % for data write to excel /':64#' t1=[0 t']; WiB~sIp hh=[t1' ha']; % for data write to excel file S
w%6- %dlmwrite('aa',hh,'\t'); % save data in the excel format )bL(\~0g~ figure(1) jpS$5Ct waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn zS|4@t\__ figure(2) o|y_j49 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn d=8.cQL:E a~a:mM>p 非线性超快脉冲耦合的数值方法的Matlab程序 QRrAyRf[ ^Go,HiB 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 @9n|5.i Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 T0"nzukd v_pe=LC{-e O"EL3$9V Hm!"% % This Matlab script file solves the nonlinear Schrodinger equations !L
q'o? % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ~o|sm a5. % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2p#d % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "aI)LlyCY m ie~.
" C=1; m[Ihte-> M1=120, % integer for amplitude 1#7|au%:) M3=5000; % integer for length of coupler pU<J?cU8N N = 512; % Number of Fourier modes (Time domain sampling points) )\VuN-d dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. <Opw"yY&q] T =40; % length of time:T*T0. ~6Fh,S1? dt = T/N; % time step 3`{;E{ n = [-N/2:1:N/2-1]'; % Index ::iYydpM t = n.*dt; LklE,W ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. UF6U5],`u w=2*pi*n./T; ?I?~BWu g1=-i*ww./2; T}1" g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; cJ@fJ| g3=-i*ww./2; =uNc\a ( P1=0; 5pDE!6gQ P2=0; #W|Obc]K P3=1; =54D#,[B P=0; .m8l\h^3 for m1=1:M1 4q7H p=0.032*m1; %input amplitude E'D16Rhp s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
Rx"+i0 s1=s10; eN
</H.bm] s20=0.*s10; %input in waveguide 2 ht L1aQ. s30=0.*s10; %input in waveguide 3
59SL
mj s2=s20; N%Y!{k5T7 s3=s30; iHf):J?8
y p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); (jhi<eV %energy in waveguide 1 K0C"s'q p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); IBeorDIZ %energy in waveguide 2 x7^VU5w# p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); l<4P">M!. %energy in waveguide 3 0<uLQVoR2n for m3 = 1:1:M3 % Start space evolution .o]I^3tfc s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS yih|6sd$F s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; H Q[ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; I0Allw[ sca1 = fftshift(fft(s1)); % Take Fourier transform >eo[)Y sca2 = fftshift(fft(s2)); }:{ @nP sca3 = fftshift(fft(s3)); >@cBDS<6R sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift p^q/u sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); lg2I|Z6DH sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 8d8jUPFQ s3 = ifft(fftshift(sc3)); &s}sA+w s2 = ifft(fftshift(sc2)); % Return to physical space pCo3%( s1 = ifft(fftshift(sc1)); _%Xp2`m end AY<L8 p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); bo<.pK$ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); E
$\nb]JQ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); b&4JHyleF P1=[P1 p1/p10]; Nl,iz_2] P2=[P2 p2/p10]; a JjUy% P3=[P3 p3/p10]; p<0=. ~ P=[P p*p]; B<-("P(q end SB('Nqih figure(1) f_LXp$n plot(P,P1, P,P2, P,P3); !t~tIJ>6 4
$Kzh 转自:http://blog.163.com/opto_wang/
|
|