首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 {<Xl57w-Q  
W7w*VD|  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of IeB^BD+j  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of /KhY,G'Z  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear v>5TTL~?  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [pz1f!Wn  
?$=Ml$  
%fid=fopen('e21.dat','w'); 5Z[HlN|-!  
N = 128;                       % Number of Fourier modes (Time domain sampling points) @"afEMd  
M1 =3000;              % Total number of space steps W\O.[7JP  
J =100;                % Steps between output of space rji<g>GQ  
T =10;                  % length of time windows:T*T0 A6#v6iT  
T0=0.1;                 % input pulse width Hm_&``='  
MN1=0;                 % initial value for the space output location 3# idXc  
dt = T/N;                      % time step gh% Q9Ni-  
n = [-N/2:1:N/2-1]';           % Index D"P<;@ef  
t = n.*dt;   ;MW=F9U*  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Sv[+~co<l  
u20=u10.*0.0;                  % input to waveguide 2 QLZ%m$Z  
u1=u10; u2=u20;                 -IL' (vx  
U1 = u1;   =64Ju Wvo  
U2 = u2;                       % Compute initial condition; save it in U VQbKrnX  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. @XH@i+ {B  
w=2*pi*n./T; _J0(GuG=~  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T *-s':('R  
L=4;                           % length of evoluation to compare with S. Trillo's paper KXcE@q9  
dz=L/M1;                       % space step, make sure nonlinear<0.05 Zc=#Y  
for m1 = 1:1:M1                                    % Start space evolution hho\e 8  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS <#lNi.?.  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 2l+t-  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform U-#vssJhk  
   ca2 = fftshift(fft(u2)); PBAQ KQ  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation `W u.wx  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   [UB]vPXm$  
   u2 = ifft(fftshift(c2));                        % Return to physical space &IFXU2t}  
   u1 = ifft(fftshift(c1)); >x${I`2w  
if rem(m1,J) == 0                                 % Save output every J steps. )>!y7/3  
    U1 = [U1 u1];                                  % put solutions in U array sl*&.F,v=  
    U2=[U2 u2]; ~ \ Udl  
    MN1=[MN1 m1]; f1I/aRV:+  
    z1=dz*MN1';                                    % output location  bRx}ih  
  end $lF\FC  
end !8o;~PPVl  
hg=abs(U1').*abs(U1');                             % for data write to excel 8b $e)  
ha=[z1 hg];                                        % for data write to excel \5F {MBx !  
t1=[0 t']; /z4n?&tM  
hh=[t1' ha'];                                      % for data write to excel file @eRv`O"  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format (E \lLlN  
figure(1) a7e.Z9k!  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn (?z"_\^n/  
figure(2) YF13&E2`\  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 7/FF}d  
&DWSu`z  
非线性超快脉冲耦合的数值方法的Matlab程序 ,h'omU7  
S oB6F9  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Yu|L6#[E  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 I(+%`{Wv  
Ml+O - 3T  
bYy7Ul6]  
 -to3I  
%  This Matlab script file solves the nonlinear Schrodinger equations }z_7?dn/  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of kDWvjT  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear <nF1f(ky  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 n#)kvr  
g y1i%  
C=1;                           Cx ;n#dn*  
M1=120,                       % integer for amplitude >>0c)uC|W  
M3=5000;                      % integer for length of coupler 5}`e"X  
N = 512;                      % Number of Fourier modes (Time domain sampling points) iIU>:)i  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. oY7 eVuz  
T =40;                        % length of time:T*T0. eed!SmP  
dt = T/N;                     % time step 7R>Pk9J  
n = [-N/2:1:N/2-1]';          % Index \>  
t = n.*dt;   0/zgjT|fe  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ]s~%1bd  
w=2*pi*n./T; axdRV1+s  
g1=-i*ww./2; yUu+68Z6  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; xu* dPG)v  
g3=-i*ww./2; Ml9  
P1=0; F6-U{+KU$!  
P2=0; q@Sj$  
P3=1; go5l<:9  
P=0; _eMY ?  
for m1=1:M1                 *gN)a%9  
p=0.032*m1;                %input amplitude s F3M= uz  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 };]f 3  
s1=s10; &BQ%df<y\  
s20=0.*s10;                %input in waveguide 2 f}+8m .g2  
s30=0.*s10;                %input in waveguide 3 |BA<> WE  
s2=s20; z|i2M8  
s3=s30; \FjY;rqfKe  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   FY<77i  
%energy in waveguide 1 +AL(K:  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   y`-5/4  
%energy in waveguide 2 N1u2=puJY  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   &!O~ f  
%energy in waveguide 3 oHkjMqju  
for m3 = 1:1:M3                                    % Start space evolution S$Fq1  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 3dC ;B@  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Q)}z$h55  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; /&G )IY]g  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform 6O'6,%#  
   sca2 = fftshift(fft(s2)); 2V=bE-  
   sca3 = fftshift(fft(s3)); R%^AW2   
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ob"yz}  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); %R LGO&  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); nN!R!tJPa  
   s3 = ifft(fftshift(sc3)); j-wz7B  
   s2 = ifft(fftshift(sc2));                       % Return to physical space {-)*.l=  
   s1 = ifft(fftshift(sc1)); \o{rw0w0  
end 6T{SRN{  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Shb"Jc_i  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); {]dH+J7  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); };@J)}  
   P1=[P1 p1/p10]; odC}RdN  
   P2=[P2 p2/p10]; P0XVR_TJf  
   P3=[P3 p3/p10]; 4+15`  
   P=[P p*p]; f3HleA&&  
end ,]|*~dd>G  
figure(1) ~TfQuIvQB  
plot(P,P1, P,P2, P,P3); @m Id{w z  
.q9wyVi7GI  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计