首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 77>oQ~q  
zl0{lV  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of kAftW '  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of inut'@=G/  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear I"Oq< _  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 2t= = <x  
eqx }]#  
%fid=fopen('e21.dat','w');  RD$:.   
N = 128;                       % Number of Fourier modes (Time domain sampling points) TnrBHaxbo4  
M1 =3000;              % Total number of space steps 2]!@)fio`  
J =100;                % Steps between output of space ?cU,%<r  
T =10;                  % length of time windows:T*T0 at uqo3  
T0=0.1;                 % input pulse width ?UnQ?F(+G<  
MN1=0;                 % initial value for the space output location <BR^Dv07U  
dt = T/N;                      % time step Knwy%5.Z  
n = [-N/2:1:N/2-1]';           % Index |T:R.=R$~  
t = n.*dt;   fG0?"x@>  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 DiFLat]X  
u20=u10.*0.0;                  % input to waveguide 2 sf*4|P}  
u1=u10; u2=u20;                 fdl.3~.C  
U1 = u1;   6VW *8~~Xy  
U2 = u2;                       % Compute initial condition; save it in U 0ho;L0Nr'  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. v$ ti=uk$  
w=2*pi*n./T; %:3XYO.w-  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T _w^,j"  
L=4;                           % length of evoluation to compare with S. Trillo's paper AuNUW0/ 7  
dz=L/M1;                       % space step, make sure nonlinear<0.05 e@D_0OZ  
for m1 = 1:1:M1                                    % Start space evolution 1@]&iZ]  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS d NACE*g;q  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; uwwR$ (\7  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform YxF@1_g  
   ca2 = fftshift(fft(u2)); (r|m&/  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation T#!>mL|9|  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   0 R6:3fV6R  
   u2 = ifft(fftshift(c2));                        % Return to physical space ( bwD:G9  
   u1 = ifft(fftshift(c1)); wZvv5:jKpu  
if rem(m1,J) == 0                                 % Save output every J steps. X[BP0:`t  
    U1 = [U1 u1];                                  % put solutions in U array O( ^h_  
    U2=[U2 u2]; #asg5 }  
    MN1=[MN1 m1]; =?5)M_6)  
    z1=dz*MN1';                                    % output location =2\2Sp  
  end c^}y9% 4c  
end C`5'5/-.  
hg=abs(U1').*abs(U1');                             % for data write to excel R%UTYRLUn  
ha=[z1 hg];                                        % for data write to excel fU>l:BzJ K  
t1=[0 t']; j|!,^._i  
hh=[t1' ha'];                                      % for data write to excel file M2Q,&>M   
%dlmwrite('aa',hh,'\t');                           % save data in the excel format |UTajEL  
figure(1) 7l* &Fh9;  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn @*z"Hi>4  
figure(2) IO)B3,g  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Tmzbh 9  
3^8Cc(bk  
非线性超快脉冲耦合的数值方法的Matlab程序 <)7aNW.  
s9Hxiw@D  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   D<WnPLA$g  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 U5Hi9fe  
"*d6E}wG  
<KMCNCU\+  
T$;S   
%  This Matlab script file solves the nonlinear Schrodinger equations 25>R^2,LiE  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of /U;j-m&   
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;Y7' U rn  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 nPyn~3  
VbX P7bZ  
C=1;                           sT^R0Q'>  
M1=120,                       % integer for amplitude JK$3qUDnI  
M3=5000;                      % integer for length of coupler 8$IKQNS  
N = 512;                      % Number of Fourier modes (Time domain sampling points) jVff@)_S  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 'f( CN3.!  
T =40;                        % length of time:T*T0. q5;dQ8Y ?  
dt = T/N;                     % time step (*S<2HN5  
n = [-N/2:1:N/2-1]';          % Index u)@:V)z  
t = n.*dt;   ,rMf;/[  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ciS +.%7  
w=2*pi*n./T; ~F"S]  
g1=-i*ww./2; M9iX_4  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; <h -)zI  
g3=-i*ww./2; \U:OQ.e  
P1=0; [F6 )Z[uG  
P2=0; ^ 4`aONydl  
P3=1; D ,kxB~  
P=0; p:08q B|uQ  
for m1=1:M1                 ,L& yKS@  
p=0.032*m1;                %input amplitude \F|)w|v  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 XvI~"}  
s1=s10; >7W)iwF  
s20=0.*s10;                %input in waveguide 2 <^YvgQ,m  
s30=0.*s10;                %input in waveguide 3 -06G.;W\^  
s2=s20; cL9 gaD$;)  
s3=s30; Q.N!b 7r7  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   hF'VqJS  
%energy in waveguide 1 9]eG |LFD  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ?UsCSJ1V  
%energy in waveguide 2 )LGVR 3#  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   5]&sXs  
%energy in waveguide 3 Mt.Cj;h@^[  
for m3 = 1:1:M3                                    % Start space evolution Y(UK:LZ'  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ad}8~6}_&  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; u+8"W[ZULq  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; L3b0e_8>R  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform SH)-(+72d  
   sca2 = fftshift(fft(s2)); k[f2`o=  
   sca3 = fftshift(fft(s3)); [/a AH<9b  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   JC cYFtW  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); KElEGW  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 9~hW8{#  
   s3 = ifft(fftshift(sc3)); U p@^C"  
   s2 = ifft(fftshift(sc2));                       % Return to physical space <tvLKx  
   s1 = ifft(fftshift(sc1)); w"{DLN[Qw  
end NtM>`5{?  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); gvI!Ice#  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); p7QZn.,=u  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); &g;!n&d zP  
   P1=[P1 p1/p10]; |R.yuSL)(  
   P2=[P2 p2/p10]; [q|W*[B:@  
   P3=[P3 p3/p10]; v~ SM"ky#  
   P=[P p*p]; +zh\W9  
end )Fx]LeI;  
figure(1) S%- kN;  
plot(P,P1, P,P2, P,P3); Gwk$<6E  
kt6)F&;$  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计