| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 S}3fr^{. NYUL:Tp % This Matlab script file solves the coupled nonlinear Schrodinger equations of g/_5unI}u % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ]%SH> % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear u#fM_>ML % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c]-<vkpV mIvx1_[ %fid=fopen('e21.dat','w'); K3&qq[8.e N = 128; % Number of Fourier modes (Time domain sampling points) c]<5zyl"j1 M1 =3000; % Total number of space steps wu6;.xTLl J =100; % Steps between output of space DK~xrU' T =10; % length of time windows:T*T0 q q`4<0 I> T0=0.1; % input pulse width E~T-=ocKE MN1=0; % initial value for the space output location {?0lBfB" dt = T/N; % time step GA)`-*.R n = [-N/2:1:N/2-1]'; % Index b_krk\e@S t = n.*dt; @bLy,Xr& u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 }#+^{P3 ; u20=u10.*0.0; % input to waveguide 2 r<EY]f^`u u1=u10; u2=u20; 59L\|OR U1 = u1; rXq.DvQ U2 = u2; % Compute initial condition; save it in U J{<X7uB ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 3&4(ZH= w=2*pi*n./T; qkqIV^*R g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T RC"MdcD:]y L=4; % length of evoluation to compare with S. Trillo's paper e{H=dIa+ dz=L/M1; % space step, make sure nonlinear<0.05 =I5>$}q_&, for m1 = 1:1:M1 % Start space evolution ~=LE0. 3[ u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS I][*j u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; N>1em!AS ca1 = fftshift(fft(u1)); % Take Fourier transform `RW HN/U ca2 = fftshift(fft(u2)); }v{LRRi c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation MchA{p&Ol c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift YP<ms u2 = ifft(fftshift(c2)); % Return to physical space BOX2O.Pm u1 = ifft(fftshift(c1)); |-ALklXr if rem(m1,J) == 0 % Save output every J steps. e%M;?0j U1 = [U1 u1]; % put solutions in U array 2tO,dx U2=[U2 u2]; R29~~IOqO MN1=[MN1 m1]; {YC@T(
z1=dz*MN1'; % output location d-ko
^Y0 end @
q3k%$4 end 4J?0bZ hg=abs(U1').*abs(U1'); % for data write to excel >'$Mp < ha=[z1 hg]; % for data write to excel q
i;1L
Kc t1=[0 t']; ,p a {qne hh=[t1' ha']; % for data write to excel file /nsX]V6i %dlmwrite('aa',hh,'\t'); % save data in the excel format h#*dI`>l- figure(1) .{^5X)
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn T::85 figure(2) WU`
rh^ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn wlvgg ~?}Emn;t 非线性超快脉冲耦合的数值方法的Matlab程序 gH vZVC[b @mBQ?;qlK 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 0+ '&`Q!u Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !qg`/y9 dT8S~-d% Q&;9x? e :cECRm* % This Matlab script file solves the nonlinear Schrodinger equations 3"e,qY % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of *^4"5X@ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Qv-_ jZ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 b%`1cV q;CiV C=1; B9 uoVcW M1=120, % integer for amplitude @. l@\4m M3=5000; % integer for length of coupler / SB;Von N = 512; % Number of Fourier modes (Time domain sampling points)
(ZizuHC dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. ?l )[7LR4 T =40; % length of time:T*T0. am'7uy!ka~ dt = T/N; % time step 2zb"MEOS5 n = [-N/2:1:N/2-1]'; % Index %$L{R t = n.*dt; * u>\57W ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. AkV#J,
3LC w=2*pi*n./T; aFYIM`?( g1=-i*ww./2; X"Swi&4 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; (A#^l=su g3=-i*ww./2; oPM96
( P1=0; ##*3bDf$-5 P2=0; Y3b *a".X P3=1; `;C V=,M P=0; D,feF9 for m1=1:M1 7:1Lol-V p=0.032*m1; %input amplitude *]X'( /b_ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 ICQKP1WFp s1=s10; Rm( "=( s20=0.*s10; %input in waveguide 2 vs4>T^8e s30=0.*s10; %input in waveguide 3 +e``OeXog s2=s20; |{ip T SH s3=s30; yN-9[P8C p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); {wKB;?fUvk %energy in waveguide 1 7.oM J p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); k,*XG$2h %energy in waveguide 2 S9.o/mr p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); |L ev.,,Ph %energy in waveguide 3 7[)E>XRE for m3 = 1:1:M3 % Start space evolution e^voW"?% s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS /N{*"s2) s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; !Uo4,g6r+ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; WyiQoN'q sca1 = fftshift(fft(s1)); % Take Fourier transform AwR=]W;j sca2 = fftshift(fft(s2)); mfr|:i sca3 = fftshift(fft(s3)); <hyKu
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift 75lA%|
*X sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); z24q3 3O sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ^cWnF0)j. s3 = ifft(fftshift(sc3)); ob]w;" s2 = ifft(fftshift(sc2)); % Return to physical space 6=C<>c%+ s1 = ifft(fftshift(sc1)); /n&&Um\ end 9(Xn>G'iT p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); e0 ecD3 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); >t+P(*u p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); (bS&D/N. P1=[P1 p1/p10];
0y\Z9+G: P2=[P2 p2/p10]; :3 mh@[V P3=[P3 p3/p10]; %cn<ych
G P=[P p*p]; (ZlU^Gw#UB end sI2^Qp@O1 figure(1) KI.hy2?e plot(P,P1, P,P2, P,P3); o mx= .%-8 t{dt 转自:http://blog.163.com/opto_wang/
|
|