首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 *&=sL  
\6{w#HsP8  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of o4^|n1vN  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of `/"rs@  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear fLtN-w6t  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 nQtp4  
|g$n-t  
%fid=fopen('e21.dat','w'); cbton<r~  
N = 128;                       % Number of Fourier modes (Time domain sampling points) ]g3RVA%\l  
M1 =3000;              % Total number of space steps )w t mc4'  
J =100;                % Steps between output of space l\HLlwYO  
T =10;                  % length of time windows:T*T0 @X|Mguq5  
T0=0.1;                 % input pulse width K1gZ>FEY|N  
MN1=0;                 % initial value for the space output location 8JFns-5  
dt = T/N;                      % time step b-`=^ny)K  
n = [-N/2:1:N/2-1]';           % Index }Ai_peO0a  
t = n.*dt;   x$:P;#  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Un~8N  
u20=u10.*0.0;                  % input to waveguide 2 c)b/"  
u1=u10; u2=u20;                 7xhBdi[ dQ  
U1 = u1;   X0}+X'3  
U2 = u2;                       % Compute initial condition; save it in U L/[b~D>T%  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. {\-9^RL  
w=2*pi*n./T; 6w"_sK?  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T SyB2A\A  
L=4;                           % length of evoluation to compare with S. Trillo's paper w|k?2 ?&  
dz=L/M1;                       % space step, make sure nonlinear<0.05 x(tf0[g  
for m1 = 1:1:M1                                    % Start space evolution ]U,c`?[7#  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS BM vGw  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; wDvG5  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform  UZV\]Y  
   ca2 = fftshift(fft(u2)); |*T`3@R;3  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation VqIzDs  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   C)a;zU;9  
   u2 = ifft(fftshift(c2));                        % Return to physical space UG!528;7  
   u1 = ifft(fftshift(c1)); XHh!Q0v;  
if rem(m1,J) == 0                                 % Save output every J steps. F?Fs x)2k  
    U1 = [U1 u1];                                  % put solutions in U array YAc~,N   
    U2=[U2 u2]; ,(@JNtx  
    MN1=[MN1 m1]; TpSv7kT]  
    z1=dz*MN1';                                    % output location k$ORVU  
  end MmbS ["A  
end :;g7T-_q  
hg=abs(U1').*abs(U1');                             % for data write to excel *B3 4  
ha=[z1 hg];                                        % for data write to excel 4%GwCEnS  
t1=[0 t']; jY+u OH  
hh=[t1' ha'];                                      % for data write to excel file V#P`FX  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format :f/T $fa*  
figure(1) D^30R*gV  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn &Rp/y%9  
figure(2) }<9IH%sgF  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 0DB8[#i%:  
r-s9]0"7~  
非线性超快脉冲耦合的数值方法的Matlab程序 kR !O-@GJ]  
v\3 \n3[u  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   <Rb[0E$  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 # GbfFoE  
SqosJ}K  
}ZKG-~  
b;5&V_  
%  This Matlab script file solves the nonlinear Schrodinger equations "T4buTXJ  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of O!U8"Yr$  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear y(fJ{k   
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 DCheG7lo{  
QSNPraT  
C=1;                           E|K|AdL  
M1=120,                       % integer for amplitude Pl\r|gS;  
M3=5000;                      % integer for length of coupler Oj,v88=  
N = 512;                      % Number of Fourier modes (Time domain sampling points) "|^-Yk\U  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. gy*c$[NS$  
T =40;                        % length of time:T*T0. xCYK"v6\  
dt = T/N;                     % time step @r*w 84  
n = [-N/2:1:N/2-1]';          % Index `bJ?8~ 8 *  
t = n.*dt;   TZ+- >CG  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. :AYhBhitC  
w=2*pi*n./T; 5kx-s6 `!  
g1=-i*ww./2; 3Jh!YzI8  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ]5',`~jkF  
g3=-i*ww./2; H 2JKQm_  
P1=0; 6.'j \  
P2=0; 3Ow bU  
P3=1; @9e}kiW  
P=0; xh:A*ZI=7  
for m1=1:M1                 p&$O}AX|  
p=0.032*m1;                %input amplitude WdZ_^  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 w\zNn4B})A  
s1=s10; )C>8B`^S  
s20=0.*s10;                %input in waveguide 2 gjL+8Rk  
s30=0.*s10;                %input in waveguide 3 |r+w(TG  
s2=s20; k4-S:kVo  
s3=s30; { u %xc"0y  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   gA:unsI  
%energy in waveguide 1 wM1&_%N  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   j_{f(.5  
%energy in waveguide 2 ey@{Ng#  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   +:kMYL3  
%energy in waveguide 3 2Bz\Tsp  
for m3 = 1:1:M3                                    % Start space evolution O)8$aAJ)V  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS CxD=8X9m  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; H{4_,2h =m  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ' >k1h.i  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform ,v#O{ma  
   sca2 = fftshift(fft(s2)); T$"sw7<  
   sca3 = fftshift(fft(s3)); n/ZX$?tKAK  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   p|>m 2(|  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); O<P(UT"  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); _-|+k  
   s3 = ifft(fftshift(sc3));  "SA*  
   s2 = ifft(fftshift(sc2));                       % Return to physical space T"/dn%21  
   s1 = ifft(fftshift(sc1)); "9X1T]  
end Vtv~jJ{m  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 64qqJmG 3  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); #H]c/  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); "BZL*hHq  
   P1=[P1 p1/p10]; <<PXh&wu0  
   P2=[P2 p2/p10]; t\WU}aKML  
   P3=[P3 p3/p10]; sV;q(,oru  
   P=[P p*p]; - VdCj%r>  
end pnTz.)'46  
figure(1) $/crb8-C  
plot(P,P1, P,P2, P,P3); 8[H bg  
FA{'Ki`  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计