首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 T[q2quXgk  
eY;XF.mF  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of eUQrn>`  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ;MR8E9  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear =J<3B H^m  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 0.=dOz r  
42~tdD  
%fid=fopen('e21.dat','w'); xrf z-"n4  
N = 128;                       % Number of Fourier modes (Time domain sampling points) F7x]BeTM  
M1 =3000;              % Total number of space steps B[epI3 R  
J =100;                % Steps between output of space _?CyKk\I  
T =10;                  % length of time windows:T*T0 (gQP_Oa(  
T0=0.1;                 % input pulse width Ja"?Pb  
MN1=0;                 % initial value for the space output location VMXccT9i!  
dt = T/N;                      % time step f;x0Ho5C2  
n = [-N/2:1:N/2-1]';           % Index mA@FJK_  
t = n.*dt;   #Ipi3  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 `zw XfY,%  
u20=u10.*0.0;                  % input to waveguide 2 P XKEqcQR  
u1=u10; u2=u20;                 ~l+2Z4nV  
U1 = u1;   f; w\k7 #  
U2 = u2;                       % Compute initial condition; save it in U m %]1~b}"  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Qzt'ZK  
w=2*pi*n./T; ) [+82~F  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T u%!/-&?wF  
L=4;                           % length of evoluation to compare with S. Trillo's paper ;G.5.q[A  
dz=L/M1;                       % space step, make sure nonlinear<0.05 |Bz1u|uc  
for m1 = 1:1:M1                                    % Start space evolution z{`K_s%5  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS w;W# 'pE  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; N?`V;`[  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform Vdd HK  
   ca2 = fftshift(fft(u2)); JlR$"GU  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation %D1 |0v8}  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Bs)'Gk`1  
   u2 = ifft(fftshift(c2));                        % Return to physical space EM QGP<[  
   u1 = ifft(fftshift(c1)); eu={6/O  
if rem(m1,J) == 0                                 % Save output every J steps. 2. '` mGu  
    U1 = [U1 u1];                                  % put solutions in U array )Fon;/p  
    U2=[U2 u2]; V^Y'!w\LGI  
    MN1=[MN1 m1]; *,& 2?E8  
    z1=dz*MN1';                                    % output location z36wWdRa6  
  end ZP{<f~;  
end h?[|1.lJx(  
hg=abs(U1').*abs(U1');                             % for data write to excel 6S`0<Z;;/  
ha=[z1 hg];                                        % for data write to excel )G#mC0?PV  
t1=[0 t']; 76H>ST@G|  
hh=[t1' ha'];                                      % for data write to excel file (qglD  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format ' _d4[Olu  
figure(1) ls7eypKR  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn @<NuuYQ&  
figure(2) wg%g(FO  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn J0V`sK  
3ew4QPT'  
非线性超快脉冲耦合的数值方法的Matlab程序 {ETM >  
qv& Bai[  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Hvb8+"?~  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :*f  2Bn  
.7]P-]uOZ  
3xT9/8*  
rk6K0TQ8  
%  This Matlab script file solves the nonlinear Schrodinger equations Mg #yl\v  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of #u}%r{T  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear m9vX8;.  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Jsl2RdI  
* xCY^_  
C=1;                           84vd~Cf 9  
M1=120,                       % integer for amplitude e2f+Fv 9  
M3=5000;                      % integer for length of coupler ,AmwsXN"F  
N = 512;                      % Number of Fourier modes (Time domain sampling points) yQuL[#p  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ;$W HTO(  
T =40;                        % length of time:T*T0. ,jOJ\WXP  
dt = T/N;                     % time step 'IG@JL'  
n = [-N/2:1:N/2-1]';          % Index P#O2MiG  
t = n.*dt;   H4s~=iB  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. !$A/.;0$  
w=2*pi*n./T; V"m S$MN  
g1=-i*ww./2; U.KQjBi  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; |GtvgvO,  
g3=-i*ww./2;  =*&[K^  
P1=0; W%4=x>J-  
P2=0; p}^5ru  
P3=1; f. "\~  
P=0; E7t;p)x  
for m1=1:M1                 T5 (|{-  
p=0.032*m1;                %input amplitude 4qE95THB  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 @(Y!$><Is  
s1=s10; #0>xa]S  
s20=0.*s10;                %input in waveguide 2 C,An\lsT  
s30=0.*s10;                %input in waveguide 3 yEq7ueJ'  
s2=s20; 7~SwNt,  
s3=s30; x2rAB5r6  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   7Ml4u%?  
%energy in waveguide 1 =eDIvNps  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   .E<nQWz 8  
%energy in waveguide 2 DMM<,1  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   lG}#K^q  
%energy in waveguide 3 N7?B"p/  
for m3 = 1:1:M3                                    % Start space evolution X_]rtG  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS VG);om7`PD  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; O\6U2b~  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 9@lWI  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform /]_t->  
   sca2 = fftshift(fft(s2)); 64<;6*  
   sca3 = fftshift(fft(s3)); /' + >/  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   MKl0 d  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); HeOdCr-PN  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); b6bs .  
   s3 = ifft(fftshift(sc3)); _y@].G  
   s2 = ifft(fftshift(sc2));                       % Return to physical space "f,{d}u  
   s1 = ifft(fftshift(sc1)); 9af.t  
end qI+2,6 sGI  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); p+;& Gg54  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 7l D-|yx  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); >Icr4?zq  
   P1=[P1 p1/p10]; Mfj82rHg  
   P2=[P2 p2/p10]; =V[uXm  
   P3=[P3 p3/p10]; y0%1YY  
   P=[P p*p]; wDJ`#"5p{  
end ilA45@  
figure(1) =~B"8@B  
plot(P,P1, P,P2, P,P3); KJA :;   
V ~C$|+>e  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计