首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 ?8"* B^*Sh  
K xX[8  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of U\?D;ABQ%  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of i`r`Fj}-S-  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear yT@Aj;X0v  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 JpC=ACF  
-?)^ hbr  
%fid=fopen('e21.dat','w'); {jB> ]7  
N = 128;                       % Number of Fourier modes (Time domain sampling points) xBTx`+%WS  
M1 =3000;              % Total number of space steps nJN-U+)u  
J =100;                % Steps between output of space .k]`z>uv  
T =10;                  % length of time windows:T*T0 )0exGx+:  
T0=0.1;                 % input pulse width Gd%i?(U,R  
MN1=0;                 % initial value for the space output location m.m6.  
dt = T/N;                      % time step qs ep9z.  
n = [-N/2:1:N/2-1]';           % Index l1DJ<I2  
t = n.*dt;   jj2iF/  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 w8 :[w  
u20=u10.*0.0;                  % input to waveguide 2 fc*>ky.v  
u1=u10; u2=u20;                 ` 5Kg[nB:  
U1 = u1;   D:U6r^c  
U2 = u2;                       % Compute initial condition; save it in U B\RAX#  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. :C} I6v=  
w=2*pi*n./T; MOaI~xZ  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T s"=TM$Vb  
L=4;                           % length of evoluation to compare with S. Trillo's paper ,Zn6T"[$  
dz=L/M1;                       % space step, make sure nonlinear<0.05 \(i'iC  
for m1 = 1:1:M1                                    % Start space evolution Gg'!(]v  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ; um)JCXz  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; rwLKY .J]  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform {wz)^A sy  
   ca2 = fftshift(fft(u2)); ay7\Ae]  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation *gwlW/%Fz  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   $C7a #?YF,  
   u2 = ifft(fftshift(c2));                        % Return to physical space ,6;n[p"h|r  
   u1 = ifft(fftshift(c1)); %@Gy<t,  
if rem(m1,J) == 0                                 % Save output every J steps. _HHvL=  
    U1 = [U1 u1];                                  % put solutions in U array 8)1q,[:M  
    U2=[U2 u2]; 0* F` h  
    MN1=[MN1 m1]; 2~$S @c  
    z1=dz*MN1';                                    % output location M/p9 I gp  
  end rH`\UZ{cc  
end l|WFS  
hg=abs(U1').*abs(U1');                             % for data write to excel %Z_O\zRqy)  
ha=[z1 hg];                                        % for data write to excel MT~^wI0a  
t1=[0 t']; p [C 9g  
hh=[t1' ha'];                                      % for data write to excel file *ai~!TR  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format u @Ze@N%  
figure(1) $vu*# .w  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn yk8b>.Y\A  
figure(2) ; R+>}6  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn #!F>cez  
v@%4i~N  
非线性超快脉冲耦合的数值方法的Matlab程序 NF8<9  
>g{&Qx`&  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   )ovAGO  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $~b6H]"9  
gvR]"h  
~ZVz sNrx  
lwf4ke  
%  This Matlab script file solves the nonlinear Schrodinger equations U~][ ph  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of dB_0B .  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ?0t^7HMP  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 M)oKtiav*  
lZ-U/$od  
C=1;                           h_(M#gG  
M1=120,                       % integer for amplitude B%6cgm,  
M3=5000;                      % integer for length of coupler $,~Ily7w  
N = 512;                      % Number of Fourier modes (Time domain sampling points) xZ`z+)  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. b~vV++ou_  
T =40;                        % length of time:T*T0. _ACN  
dt = T/N;                     % time step z+yq%O  
n = [-N/2:1:N/2-1]';          % Index 4tCM 2it%  
t = n.*dt;   _!o8s%9be  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 5=C?,1F$A  
w=2*pi*n./T; t/;0/ql\  
g1=-i*ww./2; T9V=#+8#"  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ! eZls  
g3=-i*ww./2; *Mhirz% iD  
P1=0; T>asH  
P2=0;  "M5  
P3=1; 9PKXQp  
P=0; {d[Nc,AMb  
for m1=1:M1                 [cnu K  
p=0.032*m1;                %input amplitude sg7h&<Xx  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 9\.0v{&v  
s1=s10; T]wI)  
s20=0.*s10;                %input in waveguide 2 gF p3=s0~  
s30=0.*s10;                %input in waveguide 3 G~5pMyOR  
s2=s20; Sh!c]r>\Q  
s3=s30; lq:q0>vyI  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   3cghg._  
%energy in waveguide 1 @~$d4K y<  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ] x)>q  
%energy in waveguide 2 {C 5:as  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   D@La-K*5  
%energy in waveguide 3 'l^Bb#)"  
for m3 = 1:1:M3                                    % Start space evolution ! :]_-DX  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS :o!Kz`J  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; A:(|"<lA  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ^!S4?<v  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform "j_iq"J  
   sca2 = fftshift(fft(s2)); w317]-n  
   sca3 = fftshift(fft(s3)); >;4q  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   u9f^wn  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); I4N7wnBp  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ?IAu,s*u  
   s3 = ifft(fftshift(sc3)); h&j2mv(  
   s2 = ifft(fftshift(sc2));                       % Return to physical space Z(6.e8fK  
   s1 = ifft(fftshift(sc1)); {'4#{zmp  
end s@{82}f~  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); F)cCaE;  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); nCi ]6;Y  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ~JT2el2W7p  
   P1=[P1 p1/p10]; )L9eLxI  
   P2=[P2 p2/p10]; + -Rf@  
   P3=[P3 p3/p10]; P{)D_Bi  
   P=[P p*p]; y7UU'k`  
end c)#7T<>*'  
figure(1) L!xFhVA<  
plot(P,P1, P,P2, P,P3); #k9&OS?  
SOR\oZ7  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计