| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 yeLd,M/I mZ g' % This Matlab script file solves the coupled nonlinear Schrodinger equations of M%OUkcWCk % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of HfEl
TC:3f % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ]]T,;|B % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 X2`n&JE M63t4; 0A %fid=fopen('e21.dat','w'); hV NT N = 128; % Number of Fourier modes (Time domain sampling points) >]x%+@{| M1 =3000; % Total number of space steps ^sF(IV[> J =100; % Steps between output of space Nv=&gOy= T =10; % length of time windows:T*T0 PnH5[4&k T0=0.1; % input pulse width y
m?uj4I{ MN1=0; % initial value for the space output location -PaR&0Tt dt = T/N; % time step T2 TWb n = [-N/2:1:N/2-1]'; % Index TiKfIv t = n.*dt; 1-.(pA' u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 jP.dQj^j& u20=u10.*0.0; % input to waveguide 2 ywj'O
e41 u1=u10; u2=u20; 2p~G][ U1 = u1; 7
b{y U2 = u2; % Compute initial condition; save it in U nnTiu,2R ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. ;Q<2Y# w=2*pi*n./T; P&Wf.qr{: g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T @%8$k[ L=4; % length of evoluation to compare with S. Trillo's paper |$[.X3i dz=L/M1; % space step, make sure nonlinear<0.05 >+@EU) for m1 = 1:1:M1 % Start space evolution l - ~PX u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS >gDKkeLD u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; (d['f]S+& ca1 = fftshift(fft(u1)); % Take Fourier transform !.7m4mKzo ca2 = fftshift(fft(u2)); K/$5SN1 c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation lt%9Zgr[u c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift Ue=1NnRDkA u2 = ifft(fftshift(c2)); % Return to physical space =WK's8FB;8 u1 = ifft(fftshift(c1)); }^`5$HEi if rem(m1,J) == 0 % Save output every J steps. - H`,`#{ U1 = [U1 u1]; % put solutions in U array Ki(0s U2=[U2 u2]; =<Ss&p> MN1=[MN1 m1]; K<v:RbU|[1 z1=dz*MN1'; % output location T/tC X[} end GmZ2a-M
end "5"{~3Gw^ hg=abs(U1').*abs(U1'); % for data write to excel vb$i00? ha=[z1 hg]; % for data write to excel "YN6o_*] t1=[0 t']; j|VX6U
hh=[t1' ha']; % for data write to excel file Ci?RuZ" %dlmwrite('aa',hh,'\t'); % save data in the excel format G*g*+D[HM figure(1) < fYcON waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn 7|<-rjz^ figure(2) ;oOv~YB7H waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn "sed{? vAtR\Vh 非线性超快脉冲耦合的数值方法的Matlab程序 Is!+`[ma 8<
"lEL| 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 K*5Ij]j& Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *s?C\)x FLQ^J3A,I ?}No'E1!I @4>?Y=# % This Matlab script file solves the nonlinear Schrodinger equations `&J=3x % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of wvH*<,8Vq % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;W3c|5CE % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 d6A+pa'2 =g)SZK C=1; UZo[]$"Q` M1=120, % integer for amplitude $SU<KNMZ M3=5000; % integer for length of coupler 9w-;d=(Q N = 512; % Number of Fourier modes (Time domain sampling points) tY60~@YO& dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. &7KX`%K"D T =40; % length of time:T*T0. pZ 7KWk4 dt = T/N; % time step `)M&^Z=D n = [-N/2:1:N/2-1]'; % Index X`7O%HiX/` t = n.*dt; 2lxA/.f ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. :V# B]:Z9 w=2*pi*n./T; p%5(Qqmlk g1=-i*ww./2; oSH]TL2@Cd g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; QPW+L*2 g3=-i*ww./2;
WDh*8!) P1=0; QS<)* P2=0; GX N:= P3=1; 1Ch0O__2L P=0; qcfg 55]'c for m1=1:M1 }LX.gm p=0.032*m1; %input amplitude !~]'&9 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 WISeP\:^ s1=s10; Olr'n% } s20=0.*s10; %input in waveguide 2 _:G>bU/^ s30=0.*s10; %input in waveguide 3 XpdjWLO]C< s2=s20; 2l +t- s3=s30; #ihHAiy3 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); `Wu.wx %energy in waveguide 1 <'O|7.
^^ p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); >x${I`2w %energy in waveguide 2 _p%@x:\ p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); 8VMD304 %energy in waveguide 3 _x<7^^VT for m3 = 1:1:M3 % Start space evolution *4g:V;L s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS qhNYQ/uS s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 8[u$CTl7a s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Y%8[bL$
d sca1 = fftshift(fft(s1)); % Take Fourier transform }M${ _D sca2 = fftshift(fft(s2)); 5I0j>{U& sca3 = fftshift(fft(s3)); :qvaI, sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift <2fvEW/#v sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Xl/2-'4 sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); <is%lx(GDX s3 = ifft(fftshift(sc3)); "XKd#ncP s2 = ifft(fftshift(sc2)); % Return to physical space u=sZFr@m[ s1 = ifft(fftshift(sc1)); ,/..f!bp end UvVq# <- p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 0zXF{5Up p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Z|zT%8.8N p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); incUa; P1=[P1 p1/p10]; {(^%2dk83C P2=[P2 p2/p10]; ?yAjxoE~? P3=[P3 p3/p10]; E^t}p[s P=[P p*p]; +JY]J89 end >~\CiV4^ figure(1) pv,I_" plot(P,P1, P,P2, P,P3); >Q|S#(c CR`}{?2H 转自:http://blog.163.com/opto_wang/
|
|