tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 PfnhE>[>cf F5:*;E;$ % This Matlab script file solves the coupled nonlinear Schrodinger equations of i.cSD%* % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ~S|Vd % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear <2A4}+p: % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |xQj2?_z* m
oFK/5cJ %fid=fopen('e21.dat','w'); D: JGd$` N = 128; % Number of Fourier modes (Time domain sampling points) zZDG5_$n M1 =3000; % Total number of space steps '9auQ(2 J =100; % Steps between output of space Ip8 Ap$ T =10; % length of time windows:T*T0 &_" 3~:N8k T0=0.1; % input pulse width F!pUfF,& MN1=0; % initial value for the space output location &^9f)xb dt = T/N; % time step l3-KswU n = [-N/2:1:N/2-1]'; % Index Lrq+0dI 65 t = n.*dt; 8k_,Hni u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 cB.v&BSW u20=u10.*0.0; % input to waveguide 2 #A:I|Q 1$g u1=u10; u2=u20; 8Y5*
1E* U1 = u1; 1(q!.lPc U2 = u2; % Compute initial condition; save it in U RF6(n8["MW ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. >GT0x w=2*pi*n./T; HP]Xh~aP g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T g'pE z L=4; % length of evoluation to compare with S. Trillo's paper @sfV hWG dz=L/M1; % space step, make sure nonlinear<0.05 qf)]!wU9 for m1 = 1:1:M1 % Start space evolution g^B6NF u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS ~p'/Z@Atu u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; %*|XN*i XC ca1 = fftshift(fft(u1)); % Take Fourier transform ucoBeNsHx ca2 = fftshift(fft(u2)); ik&loM_ c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation 3XL0Pm c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift cB -XmX/ u2 = ifft(fftshift(c2)); % Return to physical space "ajZ&{Z u1 = ifft(fftshift(c1)); #\`6ZHW if rem(m1,J) == 0 % Save output every J steps. OE4 2{?) U1 = [U1 u1]; % put solutions in U array +"'h?7'C U2=[U2 u2]; <LBMth MN1=[MN1 m1]; '?3Hy|} z1=dz*MN1'; % output location 4RTEXoXs end ).v;~yE end xFg=Tyq: hg=abs(U1').*abs(U1'); % for data write to excel 9oc[}k-M ha=[z1 hg]; % for data write to excel
diTzolY7 t1=[0 t']; .YS[Md{
hh=[t1' ha']; % for data write to excel file j1/J9F' %dlmwrite('aa',hh,'\t'); % save data in the excel format :&_@U$ figure(1) CZ]+B8Pl(x waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn .>}we ~O figure(2) 4jG@ # waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn .@B\&U7 dZnq 96<:| 非线性超快脉冲耦合的数值方法的Matlab程序 :$P <e~z' z#,?*v 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 o
&Nr5S Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 hfEGkaV._3 |$1j;#h =q6yb@ w5~<jw%> % This Matlab script file solves the nonlinear Schrodinger equations W:9L!+m^ % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of + FLzK( % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear f3yZx!K_Br % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 B623B HwS w7dG=a& C=1; 3!Be kn] M1=120, % integer for amplitude "h:xdaIE/p M3=5000; % integer for length of coupler [0J0<JnK N = 512; % Number of Fourier modes (Time domain sampling points) /]+t$K\cBq dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. hP9+|am% T =40; % length of time:T*T0. 8dL(cC dt = T/N; % time step H 5sj%
v n = [-N/2:1:N/2-1]'; % Index [8)Zhw$ t = n.*dt; p=Vm{i7 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. Y9PG w=2*pi*n./T; W}T+8+RU g1=-i*ww./2; (U|W=@8` g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; j\Q_NevV g3=-i*ww./2; xY_/CR[, P1=0; DoImWNLo P2=0; '<XG@L P3=1; kA#>Xu/ P=0; F'`L~!F for m1=1:M1 ?[VS0IBS p=0.032*m1; %input amplitude l&T;G9z s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 E@[`y:P s1=s10; meIY00 s20=0.*s10; %input in waveguide 2 ,T1t` s30=0.*s10; %input in waveguide 3 O<o_MZN s2=s20; e#16,a-}o s3=s30; z?E:s.4F p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); ]2Lwd@ %energy in waveguide 1 &|gn%<^ p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); wAy;ZNu %energy in waveguide 2 /4=O^; p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); gv<9XYByt %energy in waveguide 3 0!!pNK%( for m3 = 1:1:M3 % Start space evolution 2;6p2GNSh s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS v?Y9z!M s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
neOR/] s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; mtJI#P sca1 = fftshift(fft(s1)); % Take Fourier transform tR2IjvmsX sca2 = fftshift(fft(s2)); =zI
eZ7 sca3 = fftshift(fft(s3)); 5N '
QG<jE sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift zXMIDrq sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); m2VF}%
EIr sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); yQCfn1a) s3 = ifft(fftshift(sc3)); h4.ZR={E s2 = ifft(fftshift(sc2)); % Return to physical space N5oao'7|A s1 = ifft(fftshift(sc1)); 4d6F4G4U end Yo:>m*31 p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); wRU pQ~=B2 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); f3*u_LO p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); tQUp1i{j\ P1=[P1 p1/p10]; PVV \@ P2=[P2 p2/p10]; c< \:lhl P3=[P3 p3/p10]; ~fQ#-ekzqk P=[P p*p]; #nn2odR end OGh bH a figure(1) UyIjM;X plot(P,P1, P,P2, P,P3); ]36 R_Dp %.[GR 转自:http://blog.163.com/opto_wang/
|
|