首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 F>*{e  
\^jjK,OK  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of ;+a2\j+  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of * r;xw  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear fN@{y+6  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 V43TO  
{?Od{d9  
%fid=fopen('e21.dat','w'); =_l)gx+Y+y  
N = 128;                       % Number of Fourier modes (Time domain sampling points) |#k@U6`SG  
M1 =3000;              % Total number of space steps \Wr,<Y  
J =100;                % Steps between output of space =>qTNh*'  
T =10;                  % length of time windows:T*T0 qw<HY$3=  
T0=0.1;                 % input pulse width 7\Co`J>p2  
MN1=0;                 % initial value for the space output location [KSH~:h:NR  
dt = T/N;                      % time step TkRmV6'w  
n = [-N/2:1:N/2-1]';           % Index d`mD!)j  
t = n.*dt;   $#e1SS32  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 -U >y   
u20=u10.*0.0;                  % input to waveguide 2 E;9>ePd@  
u1=u10; u2=u20;                 ZIDbqQu  
U1 = u1;   Or8kp/d  
U2 = u2;                       % Compute initial condition; save it in U RbEKP(uw  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ;'0=T0\  
w=2*pi*n./T; .1#kD M  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 0OnV0SIL  
L=4;                           % length of evoluation to compare with S. Trillo's paper H>XFz(LWh  
dz=L/M1;                       % space step, make sure nonlinear<0.05 Qs%B'9")  
for m1 = 1:1:M1                                    % Start space evolution 2}vNSQvG  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS tlQC6Fb#  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ,$N#Us(Wa  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform Z+4D.bA  
   ca2 = fftshift(fft(u2)); o:~LF6A-  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 2%]Z Kd  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   4t*so~  
   u2 = ifft(fftshift(c2));                        % Return to physical space * ?]~ #  
   u1 = ifft(fftshift(c1)); O$D?A2eI  
if rem(m1,J) == 0                                 % Save output every J steps. Ls}7VKl'   
    U1 = [U1 u1];                                  % put solutions in U array u-3:k  
    U2=[U2 u2]; -DjJ",h( $  
    MN1=[MN1 m1]; UE.4q Y_7  
    z1=dz*MN1';                                    % output location _MuZ4tc  
  end 5)UQWnd5  
end }r%X`i|  
hg=abs(U1').*abs(U1');                             % for data write to excel 'V (,.'  
ha=[z1 hg];                                        % for data write to excel Z"y=sDO{  
t1=[0 t']; BUsV|e\  
hh=[t1' ha'];                                      % for data write to excel file fQdK]rLj  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format tU :EN;H  
figure(1) S6g<M5^R  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn +?dl`!rE  
figure(2) %JyXbv3m,  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Y`BRh9Sa  
%IY``r)j  
非线性超快脉冲耦合的数值方法的Matlab程序 (Un_!)  
m@Rtlb  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   =0    
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;j%BK(5  
k[kju%i4  
Vsnuy8~k  
:O= \<t  
%  This Matlab script file solves the nonlinear Schrodinger equations }`\/f  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of x@KZ ]  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear V[nQQxWp=  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 p B;3bc  
yuhnYR\`m  
C=1;                           .(CP. d  
M1=120,                       % integer for amplitude = ieag7!  
M3=5000;                      % integer for length of coupler D5,P)[  
N = 512;                      % Number of Fourier modes (Time domain sampling points) x@Hd^xH`  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. )#iq4@)|g  
T =40;                        % length of time:T*T0. S* *oA 6  
dt = T/N;                     % time step N!2Rl  
n = [-N/2:1:N/2-1]';          % Index VQ#3#Hj  
t = n.*dt;   O1'm@ q)  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. \Ae9\Jp8M  
w=2*pi*n./T; hC <O`|lF  
g1=-i*ww./2; tptN6Isuh  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; \ZU1J b1c  
g3=-i*ww./2; Q'O[R+YT ,  
P1=0; QPt Gdd  
P2=0; cWyW~Ek  
P3=1; ^ vilgg~  
P=0; !> }.~[M  
for m1=1:M1                 3&&9_`r&_  
p=0.032*m1;                %input amplitude ={>Lrig:l  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 X;v$5UKU  
s1=s10; Vv1|51B  
s20=0.*s10;                %input in waveguide 2  Q6'x\  
s30=0.*s10;                %input in waveguide 3 UFAL1c<V  
s2=s20; \;u@"  
s3=s30;  ,Uhb  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   _j?e~w&0b  
%energy in waveguide 1 1K,1X(0rL8  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   A+J*e  
%energy in waveguide 2 UhA"nt0  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   VA *y|Q6  
%energy in waveguide 3 ,<BbpIQ2o  
for m3 = 1:1:M3                                    % Start space evolution xj5;: g#!  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Sf5X3,Uw  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ^V$Ajt  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; I$N8tn+E  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform X3'H `/  
   sca2 = fftshift(fft(s2)); ]I3!fEAWR  
   sca3 = fftshift(fft(s3)); J:&[ 59  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   EnOU?D  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); MUfG?r\t  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); mKo C.J  
   s3 = ifft(fftshift(sc3)); EBz}|GY;  
   s2 = ifft(fftshift(sc2));                       % Return to physical space 9z)5Mdf1j  
   s1 = ifft(fftshift(sc1)); *HEuorl  
end r'QnX;99T  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); E dZ\1'&/9  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); g~(E>6Y  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); oy<WsbnS  
   P1=[P1 p1/p10]; ^&y$Wd]6  
   P2=[P2 p2/p10]; 34\(7JO  
   P3=[P3 p3/p10]; }!IL]0 q  
   P=[P p*p]; ,^#yo6-  
end pPd#N'\*  
figure(1) 5j~$Mj`  
plot(P,P1, P,P2, P,P3); P#=`2a#G  
 Yn8=  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2026 光行天下 蜀ICP备06003254号-1 网站统计