首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 cc44R|Kr$$  
TH&qX  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of =\{\g7  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of #pHs@uvO  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Y[SU&LM  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c '\SfW<  
7}_!  
%fid=fopen('e21.dat','w'); Bg8#qv  
N = 128;                       % Number of Fourier modes (Time domain sampling points) Hk7K`9  
M1 =3000;              % Total number of space steps ]Zf6Yw.Y  
J =100;                % Steps between output of space HvxJj+X9  
T =10;                  % length of time windows:T*T0 KTEZ4K^o=  
T0=0.1;                 % input pulse width w-$[>R[hw  
MN1=0;                 % initial value for the space output location `8\Ja$ =  
dt = T/N;                      % time step 0qFH s  
n = [-N/2:1:N/2-1]';           % Index \.gEh1HW  
t = n.*dt;   )$Z(|M4  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 9PUes3"v  
u20=u10.*0.0;                  % input to waveguide 2 smQVWs>  
u1=u10; u2=u20;                 Pgp {$ID  
U1 = u1;   VzlDHpG  
U2 = u2;                       % Compute initial condition; save it in U i.1U|Pi  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. sn{AwF%  
w=2*pi*n./T; %}>dqUyQ  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T o5aLU Wi-  
L=4;                           % length of evoluation to compare with S. Trillo's paper W}'WA  
dz=L/M1;                       % space step, make sure nonlinear<0.05 v0l_w  
for m1 = 1:1:M1                                    % Start space evolution iwY'4 Z e  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 'YSuQP>  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; SJgY  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform ;2giZ\  
   ca2 = fftshift(fft(u2)); "zZI S6j  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation f0Hq8qAF;^  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   99 wc  
   u2 = ifft(fftshift(c2));                        % Return to physical space G6`J1Uk  
   u1 = ifft(fftshift(c1)); 2)/NFZ  
if rem(m1,J) == 0                                 % Save output every J steps. F#+.>!  
    U1 = [U1 u1];                                  % put solutions in U array $1*3!}_0  
    U2=[U2 u2]; }{],GHCjQ  
    MN1=[MN1 m1]; l*7?Y7FK  
    z1=dz*MN1';                                    % output location x|~zHFm6  
  end `3iQZu i  
end :wgfW .w  
hg=abs(U1').*abs(U1');                             % for data write to excel kB\kpW  
ha=[z1 hg];                                        % for data write to excel eK`PxoTI-I  
t1=[0 t']; CP` XUpX`&  
hh=[t1' ha'];                                      % for data write to excel file yqSY9EX7  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format ]re'LC!d  
figure(1) =7ydk"xM*  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 2'{}<9  
figure(2) W."f 8ow  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn q^bO*bv  
'dt\db5p  
非线性超快脉冲耦合的数值方法的Matlab程序 S]2 {ZDP  
WtX>Qu|  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   &/ ouW'oP  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 zX5G;,_  
 U w Eiz  
g*-2* \  
E`@43Nz  
%  This Matlab script file solves the nonlinear Schrodinger equations V,LVB_6  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of F!8=FTb  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear :):zNn_>`  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Q_}/ Pn$1  
` Q9+k<  
C=1;                           HcJE0-"  
M1=120,                       % integer for amplitude k90B!kg  
M3=5000;                      % integer for length of coupler &:!ij  
N = 512;                      % Number of Fourier modes (Time domain sampling points) ^g!B.ll`  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. \f"?Tv-C'  
T =40;                        % length of time:T*T0. =s[ &;B`s  
dt = T/N;                     % time step D<nxr~pQ  
n = [-N/2:1:N/2-1]';          % Index 1!/-)1t  
t = n.*dt;   u@D .i4U  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. %ejeyc  
w=2*pi*n./T; H~m]nV,r  
g1=-i*ww./2;  .fJ*c  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 7c::Qf[|  
g3=-i*ww./2; VG#Q;Xd}  
P1=0; ,h!X k  
P2=0; $^Ca: duk  
P3=1; (2%>jg0M  
P=0; 2z-$zB<vyw  
for m1=1:M1                 .Z5[_'T  
p=0.032*m1;                %input amplitude },6*Y*?{  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 +k rFB?>`  
s1=s10; _0]QS4a][c  
s20=0.*s10;                %input in waveguide 2 #Wx=v$"  
s30=0.*s10;                %input in waveguide 3 BE%Z\E[[m  
s2=s20; ;](h2Z`3s  
s3=s30; vPsq<l}  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   GYqJ!,  
%energy in waveguide 1 Mdky^;qq3;  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   l"L+e!B~  
%energy in waveguide 2 s]bPV,"p  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   yfq>,  
%energy in waveguide 3 tDU}rI8?  
for m3 = 1:1:M3                                    % Start space evolution k5s?lWH  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS YOKR//|3  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; xA9V$#d|  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; L?.7\a@  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform l4Y1(  
   sca2 = fftshift(fft(s2)); xSOoIsL[  
   sca3 = fftshift(fft(s3)); ?'f^X$aS  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   pVz pN8!  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 1g81S_T .  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 1<ehV VP   
   s3 = ifft(fftshift(sc3)); y&3TQ]f\  
   s2 = ifft(fftshift(sc2));                       % Return to physical space .m!s". ?[  
   s1 = ifft(fftshift(sc1)); =N;$0 Y(g  
end V^ Y*xZ  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 4)E|&)-fu8  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); F_ _H(}d  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); @[0jFjK  
   P1=[P1 p1/p10]; 4UazD_`'  
   P2=[P2 p2/p10]; X -v~o/r7  
   P3=[P3 p3/p10]; oX#9RW/ >I  
   P=[P p*p]; o6:45  
end &E`9>&~J  
figure(1) ?{n>EvLY  
plot(P,P1, P,P2, P,P3); ?U$}Rsk{#  
:(+]b  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计