| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 77>oQ~q zl0{lV % This Matlab script file solves the coupled nonlinear Schrodinger equations of kAftW
' % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of inut'@=G/ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear I"Oq< _ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 2t= =<x eqx }]# %fid=fopen('e21.dat','w');
RD$:. N = 128; % Number of Fourier modes (Time domain sampling points) TnrBHaxbo4 M1 =3000; % Total number of space steps 2]!@)fio` J =100; % Steps between output of space ?cU,%<r T =10; % length of time windows:T*T0 at uqo3 T0=0.1; % input pulse width ?UnQ?F(+G< MN1=0; % initial value for the space output location <BR^Dv07U dt = T/N; % time step Knwy%5.Z n = [-N/2:1:N/2-1]'; % Index |T:R.=R$~ t = n.*dt; fG0 ?"x@> u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 DiFLat]X u20=u10.*0.0; % input to waveguide 2 sf*4|P} u1=u10; u2=u20; fdl.3~.C U1 = u1; 6VW*8~~Xy U2 = u2; % Compute initial condition; save it in U 0ho;L 0Nr' ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. v$ ti=uk$ w=2*pi*n./T; %:3XYO.w- g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T _w^,j" L=4; % length of evoluation to compare with S. Trillo's paper AuNUW0/
7 dz=L/M1; % space step, make sure nonlinear<0.05 e@D_0OZ for m1 = 1:1:M1 % Start space evolution 1@]&iZ] u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS dNACE*g;q u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; uwwR$
(\7 ca1 = fftshift(fft(u1)); % Take Fourier transform YxF@1_g ca2 = fftshift(fft(u2)); (r|m&/ c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation T#!>mL|9| c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift 0 R6:3fV6R u2 = ifft(fftshift(c2)); % Return to physical space (bwD:G9 u1 = ifft(fftshift(c1)); wZvv5:jKpu if rem(m1,J) == 0 % Save output every J steps. X[B P0:`t U1 = [U1 u1]; % put solutions in U array O(^h_ U2=[U2 u2]; #asg5 } MN1=[MN1 m1]; =?5)M_6) z1=dz*MN1'; % output location =2\2Sp end c^}y9% 4c end C`5'5/-. hg=abs(U1').*abs(U1'); % for data write to excel R%UTYRLUn ha=[z1 hg]; % for data write to excel fU>l:BzJK t1=[0 t']; j|!,^._i hh=[t1' ha']; % for data write to excel file M2Q,&>M
%dlmwrite('aa',hh,'\t'); % save data in the excel format |UTajEL figure(1) 7l *
&Fh9; waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn @*z"Hi>4 figure(2) IO)B3,g waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn Tmzbh 9
3^8Cc(bk 非线性超快脉冲耦合的数值方法的Matlab程序 <)7aNW. s9Hxiw@D 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 D<WnPLA$g Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 U5Hi9fe
"*d6E}wG <KMCNCU\+ T$;S % This Matlab script file solves the nonlinear Schrodinger equations 25>R^2,LiE % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of /U;j-m& % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;Y7'U rn % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 nPyn~3 VbX P7bZ C=1; sT^R0Q'> M1=120, % integer for amplitude JK$3qUDnI M3=5000; % integer for length of coupler 8$IKQNS N = 512; % Number of Fourier modes (Time domain sampling points) jVff@)_S dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. 'f( CN3.! T =40; % length of time:T*T0. q5;dQ8Y? dt = T/N; % time step (*S<2HN5 n = [-N/2:1:N/2-1]'; % Index u)@:V)z t = n.*dt; ,rMf;/[ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. ciS +.%7 w=2*pi*n./T; ~F"S] g1=-i*ww./2; M9iX_4 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; <h -)zI g3=-i*ww./2; \U:OQ.e P1=0; [F6)Z[uG P2=0; ^4`aONydl P3=1; D ,kxB~ P=0; p:08q
B|uQ for m1=1:M1 ,L& yKS@ p=0.032*m1; %input amplitude \F|)w|v s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 XvI~"} s1=s10; >7W)iwF s20=0.*s10; %input in waveguide 2 <^YvgQ,m s30=0.*s10; %input in waveguide 3 -06G.;W\^ s2=s20; cL9gaD$;) s3=s30; Q.N!b7r7 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); hF'VqJS %energy in waveguide 1 9]eG|LFD p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); ?UsCSJ1V %energy in waveguide 2 )LGVR3# p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); 5]&sXs %energy in waveguide 3 Mt.Cj;h@^[ for m3 = 1:1:M3 % Start space evolution Y(UK:LZ' s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS ad}8~6}_& s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; u+8"W[ZULq s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; L3b0e_8>R sca1 = fftshift(fft(s1)); % Take Fourier transform SH)-(+72d sca2 = fftshift(fft(s2)); k[f2`o= sca3 = fftshift(fft(s3)); [/a
AH<9b sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift JCcYFtW sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); KElEGW sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 9~hW8{# s3 = ifft(fftshift(sc3)); Up@^C" s2 = ifft(fftshift(sc2)); % Return to physical space <tvLKx s1 = ifft(fftshift(sc1)); w"{DLN[Qw end NtM>`5{? p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); gvI!Ice# p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); p7QZn.,=u p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); &g;!n&d zP P1=[P1 p1/p10]; |R.yuSL)( P2=[P2 p2/p10]; [q|W*[B:@ P3=[P3 p3/p10]; v~SM"ky# P=[P p*p]; +zh\W9 end )Fx]LeI; figure(1) S%- kN; plot(P,P1, P,P2, P,P3); Gwk$<6E
kt6)F&;$ 转自:http://blog.163.com/opto_wang/
|
|