首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 C q)Cwc[H  
z[+Sb;  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of 8"yZS)09  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of +sFpIiJg  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear v$~$_K  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 r<c&;*  
o9]i {e>L  
%fid=fopen('e21.dat','w'); (C.<H6]=  
N = 128;                       % Number of Fourier modes (Time domain sampling points) "X,*VQl:  
M1 =3000;              % Total number of space steps l?)!^}Qc  
J =100;                % Steps between output of space UAe8Ct=YJ  
T =10;                  % length of time windows:T*T0 +sT S1t  
T0=0.1;                 % input pulse width ?4cj"i  
MN1=0;                 % initial value for the space output location P "%f8C~r  
dt = T/N;                      % time step PWk\#dJN&  
n = [-N/2:1:N/2-1]';           % Index oe<DP7e  
t = n.*dt;   PnZC I!Mw  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 W[<ZI>mf  
u20=u10.*0.0;                  % input to waveguide 2 l!mx,O`  
u1=u10; u2=u20;                 _"[Ls?tRX  
U1 = u1;   2;ju/9 x  
U2 = u2;                       % Compute initial condition; save it in U yS1i$[JV  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. W5,&*mo  
w=2*pi*n./T; r1 [c+Hy  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T C`qE ,2.  
L=4;                           % length of evoluation to compare with S. Trillo's paper aUk]wiwIR9  
dz=L/M1;                       % space step, make sure nonlinear<0.05 XNJ3.w:R  
for m1 = 1:1:M1                                    % Start space evolution 53WCF[  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS X^Fc^U8  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; i ?PgYk&}  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform s;cGf+  
   ca2 = fftshift(fft(u2)); *Gul|Lp$<I  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 1YN w=  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   (0E<Fz V  
   u2 = ifft(fftshift(c2));                        % Return to physical space 1pAcaJzf  
   u1 = ifft(fftshift(c1)); otX/sg.B*  
if rem(m1,J) == 0                                 % Save output every J steps. xVk5%  
    U1 = [U1 u1];                                  % put solutions in U array }0,dG4Oo=  
    U2=[U2 u2]; XK&G`cJ[  
    MN1=[MN1 m1]; foUB/&Ee  
    z1=dz*MN1';                                    % output location 28qlp>U  
  end 8SA" bH:  
end #>6Jsnv1  
hg=abs(U1').*abs(U1');                             % for data write to excel 0D Lw  
ha=[z1 hg];                                        % for data write to excel RM;Uq >l  
t1=[0 t']; P$Q,t2$A  
hh=[t1' ha'];                                      % for data write to excel file }N&? 8s=  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format vXm'ARj  
figure(1) G*_qqb{B  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 60 %VG  
figure(2) C_Z/7x*>d  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Y"L|D,ex  
#p ;O3E@  
非线性超快脉冲耦合的数值方法的Matlab程序 n?U^vK_  
OG9 '[o`8  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   U\(71 =  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 j WSgO(y  
w'E(9gV  
'{-Ic?F<P  
@]!9;?so  
%  This Matlab script file solves the nonlinear Schrodinger equations {Fqwr>e  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of *d`KD64  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear $01csj  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 TF9A4  
W,"Re,`H  
C=1;                           n =WH=:&  
M1=120,                       % integer for amplitude \d*ts(/a*  
M3=5000;                      % integer for length of coupler 4jSYR#Hqp`  
N = 512;                      % Number of Fourier modes (Time domain sampling points) r.lHlHl  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. A{e>7Z72  
T =40;                        % length of time:T*T0. XhA tf @n  
dt = T/N;                     % time step \B^NdG5Y  
n = [-N/2:1:N/2-1]';          % Index C1+f\A|9FP  
t = n.*dt;   +u&[ j/  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. uq ;yR[w"  
w=2*pi*n./T; y+Hz(}4  
g1=-i*ww./2; 9g\;L:'  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; $s4.Aj  
g3=-i*ww./2; J ?EDz,  
P1=0; ANNVE},  
P2=0; I$MlIz$l v  
P3=1; 8N+T=c  
P=0; bL Sc=f&  
for m1=1:M1                 j ijwHL  
p=0.032*m1;                %input amplitude zvVo-{6  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 w $Fg 0JS  
s1=s10; Rj4C-X 4=  
s20=0.*s10;                %input in waveguide 2 YYT#{>&  
s30=0.*s10;                %input in waveguide 3 <_ENC>NP  
s2=s20; TEh.?  
s3=s30; !\$V?*p7  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   !/!ga)Y  
%energy in waveguide 1 -7]j[{?w  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   }i,r{Y]s]  
%energy in waveguide 2 JXMH7  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   zj(V\y&H  
%energy in waveguide 3 % 1$#fxR  
for m3 = 1:1:M3                                    % Start space evolution 7~F~'V  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Sb> &m  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; IRwtM'%0  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; =JW-EQ6[T  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform d$ n31F  
   sca2 = fftshift(fft(s2)); )UM^#<-  
   sca3 = fftshift(fft(s3)); _Z!@#y@j  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   2aX*|DGpw  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); EwX{i}j_V  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); yW (|auq  
   s3 = ifft(fftshift(sc3)); n=bdV(?4  
   s2 = ifft(fftshift(sc2));                       % Return to physical space KbtV>  
   s1 = ifft(fftshift(sc1)); W7 dSx  
end \Dy|}LE  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); #CaPj:>[  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); pmvd%X\f  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); -YAtM-VL  
   P1=[P1 p1/p10];  5QLK  
   P2=[P2 p2/p10]; gK9d `5  
   P3=[P3 p3/p10]; Qj;{Z*l%+  
   P=[P p*p]; ,aLwOmO  
end aY#?QjL  
figure(1) 1kKfFpN  
plot(P,P1, P,P2, P,P3); %^HE^ &  
~^V&n`*7D  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计