tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 q(Q$lRj/I- pXoD*o b % This Matlab script file solves the coupled nonlinear Schrodinger equations of e&R?9z-* % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of f/?uosS % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear // k`X % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 h4 X=d5qd [C>>j;q% %fid=fopen('e21.dat','w'); R^hlfKnt N = 128; % Number of Fourier modes (Time domain sampling points) =._V$:a6o M1 =3000; % Total number of space steps ZC99/NWN J =100; % Steps between output of space 3i*HwEh T =10; % length of time windows:T*T0 3J3Yt` T0=0.1; % input pulse width io[>`@= MN1=0; % initial value for the space output location 6E)emFkQ dt = T/N; % time step @mD$Z09~ n = [-N/2:1:N/2-1]'; % Index ?@>PKUv{ t = n.*dt; j;7:aM"BQW u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 -/g<A~+i]$ u20=u10.*0.0; % input to waveguide 2 OsrHA u1=u10; u2=u20; -4;$NiB? U1 = u1; PwC9@c%c U2 = u2; % Compute initial condition; save it in U x+Ws lN2a ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. G`oY(2U w=2*pi*n./T; ZL7#44 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T _ ;!$1lM[ L=4; % length of evoluation to compare with S. Trillo's paper O30eq 7( dz=L/M1; % space step, make sure nonlinear<0.05 )w_hbU_Pb& for m1 = 1:1:M1 % Start space evolution p=d,kY u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS KHTR oXt u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; K_Q-9j ca1 = fftshift(fft(u1)); % Take Fourier transform L=_ ca2 = fftshift(fft(u2)); 9< |nJt c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation yt4sg/]: c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift u[<ij u2 = ifft(fftshift(c2)); % Return to physical space 2Kmnt(> u1 = ifft(fftshift(c1)); ~p!=w#/ if rem(m1,J) == 0 % Save output every J steps. d%~OEq1i" U1 = [U1 u1]; % put solutions in U array i"h~QEE U2=[U2 u2]; 8o SL3 MN1=[MN1 m1]; MwHxn% z1=dz*MN1'; % output location _, r6t end kZK1{ end \hO}3;*& hg=abs(U1').*abs(U1'); % for data write to excel GQ8A}gwH ha=[z1 hg]; % for data write to excel ] :. t1=[0 t']; "<$JU@P hh=[t1' ha']; % for data write to excel file +Y_]< %dlmwrite('aa',hh,'\t'); % save data in the excel format +UX~TT: figure(1) +=Y$v2BZA3 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn ,GYK3+}Z figure(2)
(RBB0CE waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn fAT+x1J\ r]B`\XWz 非线性超快脉冲耦合的数值方法的Matlab程序 n.b_fkZNr XE`u 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 9TUB3x^ Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Srom@c G2s2i2&6E qir8RPW aE2Yl % This Matlab script file solves the nonlinear Schrodinger equations C>* 1f|< % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 8=,?Bh". % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear J93@\b % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +ZJ1> n 9zNMv- C=1; YfUo=ku M1=120, % integer for amplitude 9`Y\`F#}q M3=5000; % integer for length of coupler c{{RP6o/j= N = 512; % Number of Fourier modes (Time domain sampling points) _ YcIGOL dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. M6lNdK T =40; % length of time:T*T0. ^5Ob(FvU dt = T/N; % time step [N_)V kpr n = [-N/2:1:N/2-1]'; % Index +(m*??TAV t = n.*dt; ?/YT,W<c;& ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. o<L=l Q w=2*pi*n./T; h/NI5 g1=-i*ww./2; eEX* \1Gg g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; IQyw>_~] g3=-i*ww./2; v9GfudTZR P1=0; ]owcx=5q%' P2=0; ^TqR0a-* P3=1; 0O|l7mCr%I P=0; 4p&YhV7j)o for m1=1:M1 ,H@ x. p=0.032*m1; %input amplitude *d}{7UMy# s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 la_FZ s1=s10; \os"j s20=0.*s10; %input in waveguide 2 h9cx~/7,_) s30=0.*s10; %input in waveguide 3 "q7pkxEuJ s2=s20; D%h_V>#z s3=s30; S20E}bS:> p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); !4}Wp. %energy in waveguide 1 K j6@= p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); +|.6xC7U %energy in waveguide 2 g]PC6xr38 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); 2T-3rC) %energy in waveguide 3 8C5*: x9l for m3 = 1:1:M3 % Start space evolution t}2M8ue(& s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS Ht7v+lY90^ s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; (2'q~Z+>' s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; F>"B7:P1:Q sca1 = fftshift(fft(s1)); % Take Fourier transform o(Q='kK sca2 = fftshift(fft(s2)); : G0^t sca3 = fftshift(fft(s3)); mO@Sl(9 sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift SAUG+{Uq sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 'ExTnv ~ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); m8z414o s3 = ifft(fftshift(sc3)); [OwrIL s2 = ifft(fftshift(sc2)); % Return to physical space ]3~X!(O s1 = ifft(fftshift(sc1)); d^G5Pq end )"&\S6*! p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 5`f\[oA p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); >5bd!b, p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); y9-}LET3j
P1=[P1 p1/p10]; ~.<}/GP] _ P2=[P2 p2/p10]; OIrr'uNH P3=[P3 p3/p10]; 2D"\Ox P=[P p*p]; q Qc-;|8 end XO"BEj<x figure(1) m*\XH
DB plot(P,P1, P,P2, P,P3); TuMD+^x j(`V&S 转自:http://blog.163.com/opto_wang/
|
|