首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 r-xP 6  
vqQ)Pu?T  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of ,%N[FZ`|  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of nK+ke)'Zv=  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear _[rQt8zn  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 w xte  
^2 H-_  
%fid=fopen('e21.dat','w'); xyM|q9Gf@  
N = 128;                       % Number of Fourier modes (Time domain sampling points) H~vrCi~t"  
M1 =3000;              % Total number of space steps Sw"h!\c`  
J =100;                % Steps between output of space Z|N$qm}  
T =10;                  % length of time windows:T*T0 i^iu #WC  
T0=0.1;                 % input pulse width Oso**WUOZ&  
MN1=0;                 % initial value for the space output location cLwnV.  
dt = T/N;                      % time step U9^1 A*  
n = [-N/2:1:N/2-1]';           % Index Iy4%,8C]g  
t = n.*dt;   lVq5>:'}^;  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 p4k}B. f  
u20=u10.*0.0;                  % input to waveguide 2 Ee7+ob  
u1=u10; u2=u20;                 GH-Fqz  
U1 = u1;   IvkYM`%  
U2 = u2;                       % Compute initial condition; save it in U GiM-8y~  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. #\}FQl6  
w=2*pi*n./T; 7=u Gf$/  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T V>Z4gZp5sc  
L=4;                           % length of evoluation to compare with S. Trillo's paper pU !:  
dz=L/M1;                       % space step, make sure nonlinear<0.05 ~CV.Ci.dG  
for m1 = 1:1:M1                                    % Start space evolution 6("bdx;!  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS +a|Q)Ob  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; kqj)&0|X  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform Pp8G2|bz  
   ca2 = fftshift(fft(u2)); BgUp~zdo  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ^M q@} 0  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ,"gPd!HD (  
   u2 = ifft(fftshift(c2));                        % Return to physical space %Gyn.9\  
   u1 = ifft(fftshift(c1)); Q8h0.(#-  
if rem(m1,J) == 0                                 % Save output every J steps. G,$nq4  
    U1 = [U1 u1];                                  % put solutions in U array ercXw7{  
    U2=[U2 u2]; Keo<#Cc?  
    MN1=[MN1 m1]; sU*?H`U3d  
    z1=dz*MN1';                                    % output location Z:N;>.3i  
  end 'm6bfS^T  
end <&) hg:  
hg=abs(U1').*abs(U1');                             % for data write to excel -2[4 @  
ha=[z1 hg];                                        % for data write to excel 9@ fSO<  
t1=[0 t']; ]ilLed  
hh=[t1' ha'];                                      % for data write to excel file 1Hr1Ir<KR  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format :n{{\SSIgX  
figure(1) L8h!%56s  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn @M-w8!.~  
figure(2) XL aD#J  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ~D|,$E tX4  
]jVE  
非线性超快脉冲耦合的数值方法的Matlab程序 wn.6l `  
lGR0-Gh2  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   %(khE-SW  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 9m2FH~  
UxHI6,b  
4D<C;>*/b  
<W8 %eRfU  
%  This Matlab script file solves the nonlinear Schrodinger equations =d ;#Nu-  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of *aM7d>nG5  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear tl!dRV92  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 gU|:Y&lFZg  
=6:9y}~  
C=1;                            \SQ4yc  
M1=120,                       % integer for amplitude G]k[A=dg  
M3=5000;                      % integer for length of coupler &a=rJvnIO&  
N = 512;                      % Number of Fourier modes (Time domain sampling points) F>#F@j^c  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. j;y(to-e>D  
T =40;                        % length of time:T*T0. :fL7"\ pf~  
dt = T/N;                     % time step \C>IVz<O  
n = [-N/2:1:N/2-1]';          % Index ~? aFc)  
t = n.*dt;   F5cN F 5  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. $},XRo&R  
w=2*pi*n./T; H3R{+7  
g1=-i*ww./2; NI,>$@{  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; -o"b$[sf=Z  
g3=-i*ww./2; D- C]0Jf3  
P1=0; U n)Xe  
P2=0; *Us}E7/"'  
P3=1; )6p6<y  
P=0; Fy E#@ R  
for m1=1:M1                 ;DnUeE8  
p=0.032*m1;                %input amplitude #>:S&R?2t  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 U@yhFj_y  
s1=s10; LB]3-FsU+  
s20=0.*s10;                %input in waveguide 2 B%Qo6*b  
s30=0.*s10;                %input in waveguide 3 }ixCbuD  
s2=s20; 0H4|}+e  
s3=s30; #V/{DPz  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   viYrPhH+z  
%energy in waveguide 1 *?1\S^7R  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   T}Wbt=\M  
%energy in waveguide 2 ZLKbF9lo  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   IZ>l  
%energy in waveguide 3 VV$#<D<)  
for m3 = 1:1:M3                                    % Start space evolution $X Uck[  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS qP;1LAX  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Q~wS2f`)  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; fOSk > gK  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform pl@K"PRE  
   sca2 = fftshift(fft(s2)); w$iPFZC'  
   sca3 = fftshift(fft(s3)); f!YlYk5  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   J?Y,3cc.  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); jGkDD8K [  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); k.54lNl  
   s3 = ifft(fftshift(sc3)); ZEDvY=@a   
   s2 = ifft(fftshift(sc2));                       % Return to physical space d\3 %5Y  
   s1 = ifft(fftshift(sc1)); + (:Qf+:  
end #0h}{y E  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); @,,G]4zZ!  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); dB#c$1  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); yLCMu | +  
   P1=[P1 p1/p10]; L|#0CRiN  
   P2=[P2 p2/p10]; +\ "NPK@3  
   P3=[P3 p3/p10]; |n;);T(  
   P=[P p*p]; _\k?uUo&,^  
end  H6nH  
figure(1) &gT@oS{  
plot(P,P1, P,P2, P,P3); ^.@%n1I"5y  
V+lS\E.  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计