首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 !T{+s T  
#-0e0  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of Bf ut mI  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of YOl$sgg}  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear @/ z\p7e  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 mZ+!8$1X  
>JpBX+]5m  
%fid=fopen('e21.dat','w'); R}nvSerVb  
N = 128;                       % Number of Fourier modes (Time domain sampling points) D:z'`v0j  
M1 =3000;              % Total number of space steps e\%,\ uV}  
J =100;                % Steps between output of space xfYKUOp/  
T =10;                  % length of time windows:T*T0 5\Q Tm;  
T0=0.1;                 % input pulse width aAg Qv*  
MN1=0;                 % initial value for the space output location Y^fw37b  
dt = T/N;                      % time step &jE\D^>ko  
n = [-N/2:1:N/2-1]';           % Index ,!#Am13  
t = n.*dt;   7(Fas(j3  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 6{h\CU}"  
u20=u10.*0.0;                  % input to waveguide 2 {wqT$( (<  
u1=u10; u2=u20;                 ={g)[:(C.  
U1 = u1;   F&d!fEHU  
U2 = u2;                       % Compute initial condition; save it in U s<I)THC  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ;UQGi}?CD  
w=2*pi*n./T; R"B{IWQi  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ;uBGB h<  
L=4;                           % length of evoluation to compare with S. Trillo's paper c4H6I~2Na  
dz=L/M1;                       % space step, make sure nonlinear<0.05 n7t}G'*Y!^  
for m1 = 1:1:M1                                    % Start space evolution KF%BX ~80C  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS hb`9Vn\-E  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; y=Y k$:-y  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform )z[C=  
   ca2 = fftshift(fft(u2)); [JOa^U=  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation @:N8V[*u  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   7:4c\C0  
   u2 = ifft(fftshift(c2));                        % Return to physical space )N.3Q1g-  
   u1 = ifft(fftshift(c1)); Zbczbnj  
if rem(m1,J) == 0                                 % Save output every J steps. vk7IqlEQ  
    U1 = [U1 u1];                                  % put solutions in U array Z(MZbzY7Hq  
    U2=[U2 u2]; Rhc:szDU  
    MN1=[MN1 m1]; ,r B(WKU  
    z1=dz*MN1';                                    % output location !>48`o ^  
  end HPtMp#`T  
end UC`h o%OBF  
hg=abs(U1').*abs(U1');                             % for data write to excel ;\pr05  
ha=[z1 hg];                                        % for data write to excel ![z2]L+TB  
t1=[0 t']; Cy-p1s  
hh=[t1' ha'];                                      % for data write to excel file |lNp0b  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format f I1CT)0<e  
figure(1) 8m0*89HEu  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn /pF8S!,z  
figure(2) gC$_yd6m L  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn WJ8i=MO67  
 q0ktABB  
非线性超快脉冲耦合的数值方法的Matlab程序 =z. hJu  
?o(284sV3  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   c/ Pql!h+  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 k]ZE j/y~  
V Rv4p5  
 ?s,oH  
ZX/FIxpy  
%  This Matlab script file solves the nonlinear Schrodinger equations #M!u';bZ  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ^_#wo"  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear $~5H-wJ  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 G@P;#l`(D  
#`y[75<n  
C=1;                           //NV_^$y  
M1=120,                       % integer for amplitude '`^~Zy?c  
M3=5000;                      % integer for length of coupler tQ@7cjq8bA  
N = 512;                      % Number of Fourier modes (Time domain sampling points) P[fy  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 4L>8RiiQE;  
T =40;                        % length of time:T*T0.  8s22VL  
dt = T/N;                     % time step Xc[ym  
n = [-N/2:1:N/2-1]';          % Index QyCrz{/  
t = n.*dt;   ~Bl,_?CBr  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. r )~?5d  
w=2*pi*n./T; {ccc[G?>.Q  
g1=-i*ww./2; ?5't1219  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; :.=:N%3[  
g3=-i*ww./2; XR",.3LD  
P1=0; 2XL^A[?   
P2=0; ^+-QY\N j  
P3=1; R@grY:h  
P=0; I]n X6=j5  
for m1=1:M1                 wmV=GV8 d  
p=0.032*m1;                %input amplitude 0#GnmH  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 <mP_K^9c  
s1=s10; ,eTdQI;   
s20=0.*s10;                %input in waveguide 2 !.%*Tp#k#  
s30=0.*s10;                %input in waveguide 3 _*=4xmB.=  
s2=s20; 8\E=p+C  
s3=s30; 8Y%  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   4 dHGU^#WZ  
%energy in waveguide 1 +)h# !/  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   tYMr  
%energy in waveguide 2 [Cd#<Te3  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Jv 5l   
%energy in waveguide 3 L$a{%]I  
for m3 = 1:1:M3                                    % Start space evolution I;AS.y  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS .z$UNB(!M  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; _`C|K>:  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; g<~ODMCO?W  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform StR)O))I  
   sca2 = fftshift(fft(s2)); wmK;0 )|H  
   sca3 = fftshift(fft(s3)); 2N-p97"g  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   P5dD&  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); W|;`R{<I%  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 6t <[-  
   s3 = ifft(fftshift(sc3)); IY~I=}  
   s2 = ifft(fftshift(sc2));                       % Return to physical space 9JMf T]  
   s1 = ifft(fftshift(sc1)); V[^AV"V  
end [vBP,_Tjx  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 1A(f_ 0,.Q  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); W }Ll)7(|T  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); B}y#AVSA  
   P1=[P1 p1/p10]; nR Hl Hu  
   P2=[P2 p2/p10]; b!QRD'31'j  
   P3=[P3 p3/p10]; 4*n1Xu 7^x  
   P=[P p*p]; A[Ce3m  
end N1>M<N03  
figure(1) fP;I{AiN~  
plot(P,P1, P,P2, P,P3); 2nFr?Y3g,  
n68qxD-X  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计