首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 PfnhE>[>cf  
F5:*;E;$  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of i.cSD%*  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ~S|Vd  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear <2A4}+p:  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |xQj2?_z*  
m oFK/5cJ  
%fid=fopen('e21.dat','w'); D: JGd$`  
N = 128;                       % Number of Fourier modes (Time domain sampling points) zZDG5_$n  
M1 =3000;              % Total number of space steps '9auQ(2  
J =100;                % Steps between output of space Ip8 Ap$  
T =10;                  % length of time windows:T*T0 &_" 3~:N8k  
T0=0.1;                 % input pulse width F!pUfF,&  
MN1=0;                 % initial value for the space output location &^9f)xb  
dt = T/N;                      % time step l3-Ksw U  
n = [-N/2:1:N/2-1]';           % Index Lrq+0dI 65  
t = n.*dt;   8k_,Hni  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 cB.v&BSW  
u20=u10.*0.0;                  % input to waveguide 2 #A:I|Q1$g  
u1=u10; u2=u20;                 8Y5* 1E*  
U1 = u1;   1(q!.lPc  
U2 = u2;                       % Compute initial condition; save it in U RF6(n8["MW  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. >GT0 x  
w=2*pi*n./T; HP]Xh~aP  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T g'pE z  
L=4;                           % length of evoluation to compare with S. Trillo's paper @sfV hWG  
dz=L/M1;                       % space step, make sure nonlinear<0.05 qf)]!w U9  
for m1 = 1:1:M1                                    % Start space evolution g^B 6N F  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ~p'/Z@Atu  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; %*|XN*iXC  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform ucoBeNsHx  
   ca2 = fftshift(fft(u2)); ik&loM_  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 3XL0Pm  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   cB -XmX/  
   u2 = ifft(fftshift(c2));                        % Return to physical space "ajZ&{Z  
   u1 = ifft(fftshift(c1)); #\`6ZHW  
if rem(m1,J) == 0                                 % Save output every J steps. OE4 2{?)  
    U1 = [U1 u1];                                  % put solutions in U array +"' h?7'C  
    U2=[U2 u2]; <LBMth  
    MN1=[MN1 m1]; '?3Hy|}  
    z1=dz*MN1';                                    % output location 4RTEXoXs  
  end ).v;~yE   
end xFg=Tyq:  
hg=abs(U1').*abs(U1');                             % for data write to excel 9oc[}k-M  
ha=[z1 hg];                                        % for data write to excel diTzolY7  
t1=[0 t']; .YS[Md{  
hh=[t1' ha'];                                      % for data write to excel file j1/J9F'  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format :&_@U$  
figure(1) CZ]+B8Pl(x  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn .>}we ~O  
figure(2)  4jG@ #  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn .@B \&U7  
dZnq 96<:|  
非线性超快脉冲耦合的数值方法的Matlab程序 :$P < e~z'  
z#,?*v  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   o &Nr5S  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 hfEGkaV._3  
|$1j;#h  
=q6yb@  
w5~<jw%>  
%  This Matlab script file solves the nonlinear Schrodinger equations W:9L!+m^  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of + FLzK(  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear f3yZx!K_Br  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 B623B HwS  
w7dG=a&  
C=1;                           3!Bekn]  
M1=120,                       % integer for amplitude "h:xdaIE/p  
M3=5000;                      % integer for length of coupler [0J0<JnK  
N = 512;                      % Number of Fourier modes (Time domain sampling points) /]+t$K\cBq  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. hP 9+|am%  
T =40;                        % length of time:T*T0. 8dL(cC  
dt = T/N;                     % time step H 5sj% v  
n = [-N/2:1:N/2-1]';          % Index [8)Zhw$  
t = n.*dt;   p=Vm{i7  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1.  Y9PG  
w=2*pi*n./T; W}T+8+RU  
g1=-i*ww./2; (U|W=@8`  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; j\Q_NevV  
g3=-i*ww./2; xY_/CR[,  
P1=0; DoImWNLo  
P2=0; '<XG@L  
P3=1; kA#>Xu/  
P=0; F'`L~!F  
for m1=1:M1                 ?[VS0IBS  
p=0.032*m1;                %input amplitude l&T;G 9z  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 E@[`y:P  
s1=s10; meIY00   
s20=0.*s10;                %input in waveguide 2 ,T1 t`  
s30=0.*s10;                %input in waveguide 3 O<o_MZN  
s2=s20; e#16,a-}o  
s3=s30; z?E:s.4F  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ]2Lwd@  
%energy in waveguide 1 &|gn%<^  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   wAy;ZNu  
%energy in waveguide 2 /4=O^;   
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   gv<9XYByt  
%energy in waveguide 3 0! !pNK%(  
for m3 = 1:1:M3                                    % Start space evolution 2;6p2GNSh  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS v?Y9z!M  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; neOR/]  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; mtJI#P  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform tR2IjvmsX  
   sca2 = fftshift(fft(s2)); =zI eZ7  
   sca3 = fftshift(fft(s3)); 5N ' QG<jE  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   zXMIDrq  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); m2VF}% EIr  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); yQCfn1a)  
   s3 = ifft(fftshift(sc3)); h4.ZR={E  
   s2 = ifft(fftshift(sc2));                       % Return to physical space N5oao'7|A  
   s1 = ifft(fftshift(sc1)); 4d6F4G4U  
end Yo:>m*31  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); wRUpQ~=B2  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); f3*u_LO  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); tQUp1i{j\  
   P1=[P1 p1/p10]; PVV\@  
   P2=[P2 p2/p10]; c< \:lhl  
   P3=[P3 p3/p10]; ~fQ#-ekzqk  
   P=[P p*p]; #nn2odR  
end OGh b Ha  
figure(1) UyIjM;X  
plot(P,P1, P,P2, P,P3); ]36R_Dp  
%.[GR  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计