首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 yeLd,M/I  
mZ g'  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of M%OUkcWCk  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of HfEl TC:3f  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ]] T,;|B  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 X2`n&JE  
M63t4; 0A  
%fid=fopen('e21.dat','w'); hVNT  
N = 128;                       % Number of Fourier modes (Time domain sampling points) >]x%+@{|  
M1 =3000;              % Total number of space steps ^sF(IV[>  
J =100;                % Steps between output of space Nv=&gOy=  
T =10;                  % length of time windows:T*T0 PnH5[4&k  
T0=0.1;                 % input pulse width y m?uj4I{  
MN1=0;                 % initial value for the space output location -PaR&0Tt  
dt = T/N;                      % time step T2TWb  
n = [-N/2:1:N/2-1]';           % Index TiKfIv  
t = n.*dt;   1-.(pA'  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 jP.dQj^j&  
u20=u10.*0.0;                  % input to waveguide 2 ywj'O e41  
u1=u10; u2=u20;                 2p~G][  
U1 = u1;   7 b{y  
U2 = u2;                       % Compute initial condition; save it in U nnTiu,2R  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ;Q<2Y#  
w=2*pi*n./T; P&Wf.qr{:  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T @%8$k[  
L=4;                           % length of evoluation to compare with S. Trillo's paper |$[.X3i  
dz=L/M1;                       % space step, make sure nonlinear<0.05 >+@EU)  
for m1 = 1:1:M1                                    % Start space evolution l - ~PX  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS >gDKkeLD  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; (d['f]S+&  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform !.7m4mKzo  
   ca2 = fftshift(fft(u2)); K/$5SN1  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation lt%9Zgr[u  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Ue=1NnRDkA  
   u2 = ifft(fftshift(c2));                        % Return to physical space =WK's8FB;8  
   u1 = ifft(fftshift(c1)); }^`5$HEi  
if rem(m1,J) == 0                                 % Save output every J steps. - H`, ` #{  
    U1 = [U1 u1];                                  % put solutions in U array Ki(0s  
    U2=[U2 u2]; =<Ss&p>  
    MN1=[MN1 m1]; K<v:RbU|[1  
    z1=dz*MN1';                                    % output location T/tCX[}  
  end GmZ2a-M  
end "5"{~3Gw^  
hg=abs(U1').*abs(U1');                             % for data write to excel vb$i00?  
ha=[z1 hg];                                        % for data write to excel "YN6o_*]  
t1=[0 t']; j|VX6U   
hh=[t1' ha'];                                      % for data write to excel file Ci?RuZ"  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format G*g*+D[HM  
figure(1) < fYcON  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 7|<-rjz^  
figure(2) ;oOv~ YB7H  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn "sed{?  
vAtR\ Vh  
非线性超快脉冲耦合的数值方法的Matlab程序 Is!+ `[ma  
8< "lEL|  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   K*5Ij]j&  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *s?C\)x  
FLQ^J3A,I  
?}No'E1!I  
 @4>?Y=#  
%  This Matlab script file solves the nonlinear Schrodinger equations `&J=3x  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of wvH*<,8V q  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;W3c|5CE  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 d6A+pa'2  
=g)SZK  
C=1;                           UZo[]$"Q`  
M1=120,                       % integer for amplitude $S U<KNMZ  
M3=5000;                      % integer for length of coupler 9w-;d=(Q  
N = 512;                      % Number of Fourier modes (Time domain sampling points) tY60~@YO&  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. &7KX`%K"D  
T =40;                        % length of time:T*T0. pZ 7KWk4  
dt = T/N;                     % time step `)M&^Z=D  
n = [-N/2:1:N/2-1]';          % Index X`7O%HiX/`  
t = n.*dt;   2lxA/.f  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. :V#B]:Z9  
w=2*pi*n./T; p%5(Qqmlk  
g1=-i*ww./2; oSH]TL2@Cd  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; QPW+L*2  
g3=-i*ww./2; WDh*8!)  
P1=0; Q S<)*  
P2=0; GX N:=  
P3=1; 1Ch0O__2L  
P=0; qcfg 55]'c  
for m1=1:M1                 }LX.gm  
p=0.032*m1;                %input amplitude  !~]'&9  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 WISeP\:^  
s1=s10; Olr'n% }  
s20=0.*s10;                %input in waveguide 2 _:G>bU/^  
s30=0.*s10;                %input in waveguide 3 XpdjWLO]C<  
s2=s20; 2l+t-  
s3=s30; #ihHAiy3  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   `W u.wx  
%energy in waveguide 1 <'O|7. ^^  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   >x${I`2w  
%energy in waveguide 2 _p%@x:\  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   8VMD304  
%energy in waveguide 3 _x<7^^VT  
for m3 = 1:1:M3                                    % Start space evolution *4g:V;L  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS qhNYQ/uS  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 8[u$CTl7a  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Y%8[bL$ d  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform }M${ _D  
   sca2 = fftshift(fft(s2)); 5I0j>{U&  
   sca3 = fftshift(fft(s3)); :qvaI,  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   <2fvEW/#v  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Xl/2-'4  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); <is%lx(GDX  
   s3 = ifft(fftshift(sc3)); "XKd#ncP  
   s2 = ifft(fftshift(sc2));                       % Return to physical space u=sZFr@m[  
   s1 = ifft(fftshift(sc1)); ,/..f!bp  
end UvVq#<-  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 0zXF{5Up  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Z|zT%8.8N  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); incUa;  
   P1=[P1 p1/p10]; {(^%2dk83C  
   P2=[P2 p2/p10]; ?yAjxoE~?  
   P3=[P3 p3/p10]; E^t}p[s  
   P=[P p*p]; +JY]J89  
end >~\CiV4^  
figure(1) pv,I_"  
plot(P,P1, P,P2, P,P3); >Q|S#(c  
CR`}{?2H  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计