首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 jK^Q5iD  
.9NYa|+0  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of l+nT$IPF  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of WuuF &0?8C  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear B\54eTn  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %T6 sm  
s$gR;su)g  
%fid=fopen('e21.dat','w'); )JrG`CvdU  
N = 128;                       % Number of Fourier modes (Time domain sampling points) ;kD UQw  
M1 =3000;              % Total number of space steps Lv&9s  
J =100;                % Steps between output of space 9Bao~(j/k  
T =10;                  % length of time windows:T*T0 Y_zMj`HE  
T0=0.1;                 % input pulse width XCyU)[wY  
MN1=0;                 % initial value for the space output location xlcL;e&^P  
dt = T/N;                      % time step &+5ij;AD  
n = [-N/2:1:N/2-1]';           % Index zC,c9b  
t = n.*dt;   W1Vy5V|M  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 $c {fPFe-  
u20=u10.*0.0;                  % input to waveguide 2 Xj9\:M-  
u1=u10; u2=u20;                 +)hxYLk&I  
U1 = u1;   0%<OwA2d  
U2 = u2;                       % Compute initial condition; save it in U ({3Ap{Q}  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. hmkm^2  
w=2*pi*n./T; N7u|< 0[  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T NkV81?  
L=4;                           % length of evoluation to compare with S. Trillo's paper XL[Dmu&  
dz=L/M1;                       % space step, make sure nonlinear<0.05 h! Bg} B~  
for m1 = 1:1:M1                                    % Start space evolution ds2%i  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS S]&:R)#@  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ?W>`skQ  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform M5a&eO  
   ca2 = fftshift(fft(u2)); jM}(?^@  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation {/j gB"9  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   |}?H$d  
   u2 = ifft(fftshift(c2));                        % Return to physical space %M3L<2  
   u1 = ifft(fftshift(c1)); &,P; 7R  
if rem(m1,J) == 0                                 % Save output every J steps. .07"I7  
    U1 = [U1 u1];                                  % put solutions in U array _N {4Rs0  
    U2=[U2 u2]; [D+,I1u2h  
    MN1=[MN1 m1]; 8_VGB0~3i  
    z1=dz*MN1';                                    % output location $1$0M  
  end jddhX]>I  
end aGd wuD  
hg=abs(U1').*abs(U1');                             % for data write to excel ~N%+ZXh&E  
ha=[z1 hg];                                        % for data write to excel -{}h6r  
t1=[0 t']; O{EPq' x  
hh=[t1' ha'];                                      % for data write to excel file dF[|9%)  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format jGi{:}`lB  
figure(1) ,5V6=pr$  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn +_L]d6  
figure(2) 80=LT-%#  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn xG;;ykh.]  
l$Vy\CfK3n  
非线性超快脉冲耦合的数值方法的Matlab程序 qm"SN<2S*  
?nPG#Z|%  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   !?>QN'p.b  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8_E(.]U  
_Vl~'+e  
'A>?aUq]:  
t7xJ$^p[|K  
%  This Matlab script file solves the nonlinear Schrodinger equations dl"=ZI '^  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ttdY]+Fj  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear {i+ o'Lw  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !u'xdV+bf  
gD51N()s,  
C=1;                           u]Q}jqiq"  
M1=120,                       % integer for amplitude S6}_N/;6~  
M3=5000;                      % integer for length of coupler 064k;|>D  
N = 512;                      % Number of Fourier modes (Time domain sampling points) tfe]=_U  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. U3C"o|   
T =40;                        % length of time:T*T0. w\MWr+4  
dt = T/N;                     % time step g^Hf^%3xP  
n = [-N/2:1:N/2-1]';          % Index B~^*@5#0|  
t = n.*dt;   >|c?ZqW  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Ka6u*:/  
w=2*pi*n./T; $#-rOi /  
g1=-i*ww./2; ImG8v[Q E  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Q=8YAiCu  
g3=-i*ww./2; *RxJ8.G  
P1=0; =%<, ^2o  
P2=0; n?nzm "g  
P3=1; 6}m`_d?  
P=0; "0uM%*2  
for m1=1:M1                 O Bcz'f~  
p=0.032*m1;                %input amplitude SzIzQR93&  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 @I-,5F|r  
s1=s10; {ZrlbDQX  
s20=0.*s10;                %input in waveguide 2 Yb^e7Eug  
s30=0.*s10;                %input in waveguide 3 #2s}s<Sc;  
s2=s20; ;-8.~Sm  
s3=s30; JH{/0x#+  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   zt: !hM/Vt  
%energy in waveguide 1 t VO}{[U}  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   4~3 n =T*  
%energy in waveguide 2 G"` }"T0}  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   u.|%@  
%energy in waveguide 3 ~CT]&({  
for m3 = 1:1:M3                                    % Start space evolution +Eh.PWEe  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS nKzm.D gt_  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; z?<B@\~  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; =]]1x_GB  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform 4VZI]3K,  
   sca2 = fftshift(fft(s2)); l99Lxgx=  
   sca3 = fftshift(fft(s3)); ij!d-eM/b  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   _\KFMe= PV  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); )M.s<Y  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); gy%.+!4>v`  
   s3 = ifft(fftshift(sc3)); =TDKU  
   s2 = ifft(fftshift(sc2));                       % Return to physical space ']TWWwj$  
   s1 = ifft(fftshift(sc1)); eJTU'aX*   
end &muBSQ-  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 6`O,mpPu4G  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 8 7(t<3V&  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); WI4<2u;  
   P1=[P1 p1/p10]; w.w{L=p:<"  
   P2=[P2 p2/p10]; L4Zt4Yuw  
   P3=[P3 p3/p10]; I{OizBom  
   P=[P p*p]; ~*7$aj  
end QZ l#^-on  
figure(1) g}v](Q  
plot(P,P1, P,P2, P,P3); Ny2 Z <TW  
udqrHR5  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计