| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 kep/+J-u ~%=MpQ3 % This Matlab script file solves the coupled nonlinear Schrodinger equations of d0Qd$ .%A % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of <Fc;_GG % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 9Ujo/3,Ak % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 z'\_jaj^ #32"=MfQn %fid=fopen('e21.dat','w'); giIWGa.a+ N = 128; % Number of Fourier modes (Time domain sampling points) kZZh"#W: L M1 =3000; % Total number of space steps E5xzy/ZQ J =100; % Steps between output of space 4^~(Mh- Mw T =10; % length of time windows:T*T0 pDIVZC T0=0.1; % input pulse width SB|Qa}62 MN1=0; % initial value for the space output location 48qV>Gwf dt = T/N; % time step 2Mmz %S'd n = [-N/2:1:N/2-1]'; % Index 5^lxj~ F t = n.*dt; u\{ g(li-I u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 s<_)$} u20=u10.*0.0; % input to waveguide 2 tEK my7'# u1=u10; u2=u20; D.Q=]jOs U1 = u1; RBm ;e0 U2 = u2; % Compute initial condition; save it in U JB`\G=PiL ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. bMMh|F w=2*pi*n./T; $yYO_ZBiy g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T v` 7RCg` L=4; % length of evoluation to compare with S. Trillo's paper [uq$5u dz=L/M1; % space step, make sure nonlinear<0.05 uv(Sdiir8 for m1 = 1:1:M1 % Start space evolution R0vI bFwj u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS `[)YEgs u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; >JCM.I0_| ca1 = fftshift(fft(u1)); % Take Fourier transform e5B Qr$j ca2 = fftshift(fft(u2)); ~ZhraSI)G c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation Vle@4]M\ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift $!(pF u2 = ifft(fftshift(c2)); % Return to physical space J}+6UlD u1 = ifft(fftshift(c1)); DRgTe&+ if rem(m1,J) == 0 % Save output every J steps. *
%M3PTY\ U1 = [U1 u1]; % put solutions in U array i2(1ki/|O U2=[U2 u2]; ;YX4:OBqr MN1=[MN1 m1]; ); dT_ z1=dz*MN1'; % output location i Ae<&Ms end {v2|g end }36QsH8 hg=abs(U1').*abs(U1'); % for data write to excel mvZw ha=[z1 hg]; % for data write to excel 1ilBz9x*! t1=[0 t']; o=?C&f{ hh=[t1' ha']; % for data write to excel file ur@Z|5 %dlmwrite('aa',hh,'\t'); % save data in the excel format ;b(p=\i figure(1) oifv+oY waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn okv 1K figure(2) :8+Ni d) waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn xs:n\N c 8>hcV 非线性超快脉冲耦合的数值方法的Matlab程序 tAte)/0C *nsAgGKKM^ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 O1*NzY0Y%- Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .dQQoyR+O dW~*e2nq WRDjh7~Efn 88h3|'* % This Matlab script file solves the nonlinear Schrodinger equations F[[TWf/ % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of $K'|0 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Y=n4K< % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 D{4YxR
PX aj,T)oDbt6 C=1; e `,ds~ M1=120, % integer for amplitude qfz 8jY] M3=5000; % integer for length of coupler .h5[Q/*h N = 512; % Number of Fourier modes (Time domain sampling points) <_Q:'cx' dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. A\#P*+k 0 T =40; % length of time:T*T0. s nnbb0J dt = T/N; % time step eT8} n = [-N/2:1:N/2-1]'; % Index '@CR\5 @ t = n.*dt; Gkv{~?95 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. ?Wt$6{) w=2*pi*n./T; deixy.
| g1=-i*ww./2; >P $;79< g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; w{90` g3=-i*ww./2; Cp]"1%M, P1=0; adi[-L# P2=0; Y.U[wL> P3=1; vp crPVA^ P=0;
\$OF1i@ for m1=1:M1 V-r3-b p=0.032*m1; %input amplitude b2=0}~LK s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 ?zJOh^ s1=s10; 3lq Mucr s20=0.*s10; %input in waveguide 2 S&Ee,((E( s30=0.*s10; %input in waveguide 3 gzD@cx?V s2=s20; V{&rQ@{W s3=s30; qTo-pAG` p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); N**g]T
0` %energy in waveguide 1 $gM8{.! p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); J@ktyd(P %energy in waveguide 2 IMl!,(6; p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); zf>5,k'x'A %energy in waveguide 3 {;
>Q.OX@ for m3 = 1:1:M3 % Start space evolution I1>N4R-j s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS @*DyZB s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; =.`qixN s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; -tI'3oT1 sca1 = fftshift(fft(s1)); % Take Fourier transform Yl$SW;@ sca2 = fftshift(fft(s2)); 5`RiS]IO] sca3 = fftshift(fft(s3)); d{de6 ` sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift 2kUxD8BcN sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); d4 (/m_HMu sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); \yGsr Bl s3 = ifft(fftshift(sc3)); okFvn; s2 = ifft(fftshift(sc2)); % Return to physical space ~|AwN [ s1 = ifft(fftshift(sc1)); 7 +@qB]Bi< end *8tI*Pus p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); KyO8A2'U p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); nbTVU+ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); )
(Tom9^ P1=[P1 p1/p10]; VCcr3Dx()F P2=[P2 p2/p10]; `H3.,] P3=[P3 p3/p10]; GzTq5uU& P=[P p*p]; }O4se"xK end 08m;{+|vY figure(1) K!mOr plot(P,P1, P,P2, P,P3); AisN@ \rV
B5|D? 转自:http://blog.163.com/opto_wang/
|
|