| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 "TQ3{=j{ k6(9Rw8bCk % This Matlab script file solves the coupled nonlinear Schrodinger equations of iC`mj % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of wF\5 X % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ^{l^Z
+b. % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 xlHC?d0} YT@D*\ %fid=fopen('e21.dat','w'); [W*xPXr* N = 128; % Number of Fourier modes (Time domain sampling points) J|gRG0O9Ya M1 =3000; % Total number of space steps Ojwhcb^ J =100; % Steps between output of space 3B^`xnV T =10; % length of time windows:T*T0 QKAt%"1& T0=0.1; % input pulse width o)U4RY* MN1=0; % initial value for the space output location ?E2$ dt = T/N; % time step 9~lC/I')t n = [-N/2:1:N/2-1]'; % Index x[m&ILr t = n.*dt; }z|@X KA# u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 -0G/a&ss u20=u10.*0.0; % input to waveguide 2 pI]tv@>:f u1=u10; u2=u20; B{dR/q3;@ U1 = u1; JsY|Fv U2 = u2; % Compute initial condition; save it in U ,JVWn>s ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 2g`<*u* w=2*pi*n./T;
]$=\zL g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T R>#BJ^>= L=4; % length of evoluation to compare with S. Trillo's paper wusj;v4C4M dz=L/M1; % space step, make sure nonlinear<0.05 y$h.k"x` for m1 = 1:1:M1 % Start space evolution qHtonJc u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS 8
mFy9{M u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; nS$_VJ]~ ca1 = fftshift(fft(u1)); % Take Fourier transform rq]zt2 ca2 = fftshift(fft(u2)); R32A2Ml c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation L &nqlH@+~ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift mcgkNED u2 = ifft(fftshift(c2)); % Return to physical space BnwYyh u1 = ifft(fftshift(c1)); ) Z^b)KAk if rem(m1,J) == 0 % Save output every J steps. m&&Y=2 U1 = [U1 u1]; % put solutions in U array =IC
cN| U2=[U2 u2]; i7#PYt MN1=[MN1 m1]; ,!i!q[YkL9 z1=dz*MN1'; % output location ijuIf9! end M0$wTmXM end .9'bi#:Cw hg=abs(U1').*abs(U1'); % for data write to excel {!]7=K)W9 ha=[z1 hg]; % for data write to excel $?FA7=_ t1=[0 t']; AJWV#J%nB hh=[t1' ha']; % for data write to excel file >$ok3-tuU %dlmwrite('aa',hh,'\t'); % save data in the excel format 90rY:!e figure(1) <GRplkf` waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn Lo-\;%y figure(2) \:[J-ySJ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn K'tckJ#% ^{+,j}V_H 非线性超快脉冲耦合的数值方法的Matlab程序 -z6{! E|`JmfLQu 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 T^F9A55y Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 R'e>YDC VQe@H8>3 ;"T,3JQPn6 R|OY5@ % This Matlab script file solves the nonlinear Schrodinger equations ^.:dT?@R % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 'qt+.vd % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Qi?xx') % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $ytlj1. ?K>=>bS^h C=1; ,2*x4Gycb M1=120, % integer for amplitude M
s5L7S M3=5000; % integer for length of coupler AhauNS^"{R N = 512; % Number of Fourier modes (Time domain sampling points) wB0Ke dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. Rk(2|I T =40; % length of time:T*T0. *s[bq;$ dt = T/N; % time step =T3O; i n = [-N/2:1:N/2-1]'; % Index ?x-:JME0 t = n.*dt; "(cMCBVYdA ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. oD?c]}3 w=2*pi*n./T; _1EWmHZ? g1=-i*ww./2; Pko2fJt1 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 9%MHIY5 g3=-i*ww./2; bzh`s<+ P1=0; s ;N PY P2=0; >?yxig:_ P3=1; m:4Ec>?e P=0; o%1dbbh for m1=1:M1 T>e4Og"? p=0.032*m1; %input amplitude uL1$yf' s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 eABLBsx s1=s10; i<>zN^zn s20=0.*s10; %input in waveguide 2 s?-J`k~q s30=0.*s10; %input in waveguide 3 4qe!+!#$ s2=s20; Zwm2T3@e s3=s30; BH+@!H3hf p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); |',$5!:0O %energy in waveguide 1 hDAxX=FM p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); V3] Z~@ %energy in waveguide 2 sn=_-uoU p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); 2C@s-`b %energy in waveguide 3 hnD=DLW $ for m3 = 1:1:M3 % Start space evolution 2F-
]0kGR| s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS EKTn$k= s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; #G`UR s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; /_g-w93
sca1 = fftshift(fft(s1)); % Take Fourier transform uFH ]w]X sca2 = fftshift(fft(s2)); 4,.B#: 8 sca3 = fftshift(fft(s3)); J~,Ny_L sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift _Vl22'wl sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); $<QOMfY> sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); %M
KZ':m s3 = ifft(fftshift(sc3)); lf?dTPrD s2 = ifft(fftshift(sc2)); % Return to physical space 0Xx&Z8E s1 = ifft(fftshift(sc1)); ^;[|,:8f7L end F9\T< p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); B!X;T9^d p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ehe;<A p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); +`D,7"{Eu P1=[P1 p1/p10]; ` 0}z
;&: P2=[P2 p2/p10]; }_vUs jK P3=[P3 p3/p10]; CQGq}.Jt! P=[P p*p]; Jg:%|g end `eXTVi|0"~ figure(1) t7].33%\ plot(P,P1, P,P2, P,P3); 5:W5@e{ N# ?}r>W3 转自:http://blog.163.com/opto_wang/
|
|