首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 lo*OmAF  
0"7%*n."2  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of :)VO,b~r  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Qb<i,`SN  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear i'9aQi"G  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 IvGQ7 VLr  
wBZ=IMDu\  
%fid=fopen('e21.dat','w'); LVKvPi  
N = 128;                       % Number of Fourier modes (Time domain sampling points) c*2 U'A  
M1 =3000;              % Total number of space steps eygmhaE  
J =100;                % Steps between output of space Z- |.j^n  
T =10;                  % length of time windows:T*T0 {T4F0fu[eR  
T0=0.1;                 % input pulse width ?q a  
MN1=0;                 % initial value for the space output location D\|$ ! i}  
dt = T/N;                      % time step )!.ef6|  
n = [-N/2:1:N/2-1]';           % Index MuXp*s3[  
t = n.*dt;   i ,Cvnp6Lv  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 "%fh`4y3\  
u20=u10.*0.0;                  % input to waveguide 2 MCOiB <L6  
u1=u10; u2=u20;                 I?` }h}7.  
U1 = u1;   $/;D8P5/&=  
U2 = u2;                       % Compute initial condition; save it in U HS>(y2}'  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Y~\71QE>  
w=2*pi*n./T;  [U9b_`  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T x|4m*>Ke  
L=4;                           % length of evoluation to compare with S. Trillo's paper zh`!x{Z?^  
dz=L/M1;                       % space step, make sure nonlinear<0.05 d 90  
for m1 = 1:1:M1                                    % Start space evolution x` T  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS xCN6?  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Zjis0a]v~k  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform X`#,*HkK  
   ca2 = fftshift(fft(u2)); n@5Sp2p  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation |dIP &9  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   \kSoDY`l&  
   u2 = ifft(fftshift(c2));                        % Return to physical space +8qtFog$\g  
   u1 = ifft(fftshift(c1)); BS3Aczwk  
if rem(m1,J) == 0                                 % Save output every J steps. 58xaVOhb  
    U1 = [U1 u1];                                  % put solutions in U array Mx9#YJ?t~  
    U2=[U2 u2]; >[t0a"  
    MN1=[MN1 m1]; 9R_2>BDn  
    z1=dz*MN1';                                    % output location <0lXJqd  
  end $!Z><&^/  
end 0XouHU  
hg=abs(U1').*abs(U1');                             % for data write to excel vHR-mQUs  
ha=[z1 hg];                                        % for data write to excel fH#yJd2?f  
t1=[0 t']; =KQQS6  
hh=[t1' ha'];                                      % for data write to excel file 3 #GZ6:rVJ  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format & \<!{Y<'  
figure(1) 337y,;  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn i%BrnjX  
figure(2) ,TeJx+z^  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 7AwV4r*:  
6cR}Mm9Hx3  
非线性超快脉冲耦合的数值方法的Matlab程序 be&5vl  
vTnrSNdSE  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Mdk(FG(  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 VnlgX\$}  
E/bIq}R6  
&O|!w&  
U@t" o3E  
%  This Matlab script file solves the nonlinear Schrodinger equations 0$=Uhi  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of #'`!*VI  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2n]UNC  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _#[~?g`  
ed3d 6/%HR  
C=1;                           %v}SJEXF p  
M1=120,                       % integer for amplitude 5>9KW7^L  
M3=5000;                      % integer for length of coupler mCM7FFl I  
N = 512;                      % Number of Fourier modes (Time domain sampling points) 05sWN0  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ;8F|Q<`pV  
T =40;                        % length of time:T*T0. ~nit~ ;  
dt = T/N;                     % time step L'i0|_  
n = [-N/2:1:N/2-1]';          % Index WP(+jL^-  
t = n.*dt;   lKVy{X 3]*  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Za,MzKd=  
w=2*pi*n./T; a[e&O&Z  
g1=-i*ww./2; E lf '1  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; $}&r.=J".  
g3=-i*ww./2; (CUrFZT$  
P1=0; g)Ep'd-w"  
P2=0; -dRnozs6W  
P3=1; NO$n-<ag  
P=0; GCrIa Z  
for m1=1:M1                 2bJqZ,@  
p=0.032*m1;                %input amplitude L >* F8|g  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 MHF31/g\  
s1=s10; mT]+wi&  
s20=0.*s10;                %input in waveguide 2 j[E8C$lW  
s30=0.*s10;                %input in waveguide 3 '(ZJsw  
s2=s20; *[ ' n8Z  
s3=s30; >Xz=E0;^Ua  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   bxxazsj^  
%energy in waveguide 1 =J@M, mbHg  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   A/bxxB7w  
%energy in waveguide 2 P<. TiF?@  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   !yUn|v>&p  
%energy in waveguide 3  uj8G6'm%  
for m3 = 1:1:M3                                    % Start space evolution xg:r5Z/|)  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS %:jVx  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ]YQ!i@Y  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; C(w?`]Qs  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform BIu%A]e"  
   sca2 = fftshift(fft(s2)); sObH#/l`  
   sca3 = fftshift(fft(s3)); nqp:nw  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   /KL;%:7  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); {c 82bFiv  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); }JP0q  
   s3 = ifft(fftshift(sc3)); ]1 V,_^D  
   s2 = ifft(fftshift(sc2));                       % Return to physical space q5Bj0r[/o  
   s1 = ifft(fftshift(sc1)); MU  }<-1  
end uq/z.m  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); y15 MWZ  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); K;n2mXYGM  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); V XE85  
   P1=[P1 p1/p10]; L&gC  
   P2=[P2 p2/p10]; mbf'xGO  
   P3=[P3 p3/p10]; Gky e  
   P=[P p*p]; 3CKd[=-Z  
end 7@[HRr  
figure(1) xH,D bAC;  
plot(P,P1, P,P2, P,P3); -dj9(~?^  
v?BVUH>#9  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计