| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 63?)K s midsnG+jnf % This Matlab script file solves the coupled nonlinear Schrodinger equations of ]\RRqLDzkg % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of bN^O}[ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear EliTFxp % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 x( mE<UQN M\b")Tu{0 %fid=fopen('e21.dat','w'); &/.hx(#d N = 128; % Number of Fourier modes (Time domain sampling points) W\f9jfD M1 =3000; % Total number of space steps t0:AScZY J =100; % Steps between output of space ,a?\MM9$ T =10; % length of time windows:T*T0 ]<DNo&fw T0=0.1; % input pulse width %=j3jj[ MN1=0; % initial value for the space output location 6B$q,"%S@ dt = T/N; % time step vhr+g 'tf n = [-N/2:1:N/2-1]'; % Index Kt>X[o3m, t = n.*dt; mmw^{MK! u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 <b+[<@wS u20=u10.*0.0; % input to waveguide 2 /RLq>#:h** u1=u10; u2=u20; o
A*G U1 = u1; Wi n8LOC U2 = u2; % Compute initial condition; save it in U b4Y8N"hL% ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. #n\C
| w=2*pi*n./T; *5$&`&, g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T "HM{b?N L=4; % length of evoluation to compare with S. Trillo's paper $3=:E36K dz=L/M1; % space step, make sure nonlinear<0.05 .'[/|4H for m1 = 1:1:M1 % Start space evolution 8|twV35 u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS uQLlA&I" u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ^C&+
~+ ca1 = fftshift(fft(u1)); % Take Fourier transform `P+(&taT ca2 = fftshift(fft(u2)); vjViX<#(V c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation !}3,B28 c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift (B>Zaro# u2 = ifft(fftshift(c2)); % Return to physical space gM;}#>6 u1 = ifft(fftshift(c1)); f7}"lG]q if rem(m1,J) == 0 % Save output every J steps. bAxTLIf U1 = [U1 u1]; % put solutions in U array NCA{H^CL
U2=[U2 u2]; 6*GjP ;S= MN1=[MN1 m1]; MQ][mMM;w z1=dz*MN1'; % output location z}}]jR\y? end 2>S~I"o0 end dTEJ=d40 hg=abs(U1').*abs(U1'); % for data write to excel Ni[4OR$-O ha=[z1 hg]; % for data write to excel {F*N=pSq t1=[0 t']; .
,NB( s` hh=[t1' ha']; % for data write to excel file #:3r4J%+~ %dlmwrite('aa',hh,'\t'); % save data in the excel format QL"gWr`R figure(1) juToO waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn MBk"KF figure(2) YTY%#"
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn !jS4!2' o}8{Bh^ 非线性超快脉冲耦合的数值方法的Matlab程序 7INk_2
B{,
Bno 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 o%(bQV-T Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 HOYq?40.R j.-VJo) 6X+}>qy <Mgf]v.QS % This Matlab script file solves the nonlinear Schrodinger equations m^!Sv?hV % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of MM#cLw % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ~
}KzJiL % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 eVnbRT2y& % mn /> C=1; {KaN,td9 M1=120, % integer for amplitude 9rj('F&1 M3=5000; % integer for length of coupler 993d/z|DX N = 512; % Number of Fourier modes (Time domain sampling points) 7#4%\f+'t dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. R $b,h T =40; % length of time:T*T0. #-x@"+z dt = T/N; % time step +}!DP~y+ n = [-N/2:1:N/2-1]'; % Index qR,.W/eS8 t = n.*dt; 5 Rz/Ri\c= ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 9\51Z:> w=2*pi*n./T; lC9S\s g1=-i*ww./2; uIP
iM8( g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; O.:I,D&] g3=-i*ww./2; eYP=T+ P1=0; j8HOc( P2=0; GfsBQY/ P3=1; n! .2aq P=0; ]xq::a{Oy for m1=1:M1 n85r^W p=0.032*m1; %input amplitude QaMDGD s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 A o3HX s1=s10; ^tE_LL+ji| s20=0.*s10; %input in waveguide 2 Y$8; Gm<) s30=0.*s10; %input in waveguide 3 \REc8nsLy s2=s20; J/S{FxNe] s3=s30; qc0 B<,x7 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); qyv"Wb6+ %energy in waveguide 1 O_CT+Ou p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); Z\!rH"8 %energy in waveguide 2 }'`xu9< p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); 3_J>y %energy in waveguide 3 hPPB45^ for m3 = 1:1:M3 % Start space evolution _W9&J&l0so s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS ;QidDi_s> s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; IIP.yyh> s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; A[9NP-~ sca1 = fftshift(fft(s1)); % Take Fourier transform b?k4InXh sca2 = fftshift(fft(s2)); _<u;4RO(s sca3 = fftshift(fft(s3)); A9n41,h sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift )VY10R)$ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); {bTeAfbf] sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ,I39&;Iq s3 = ifft(fftshift(sc3)); V Cf|`V~ G s2 = ifft(fftshift(sc2)); % Return to physical space cj^bh s1 = ifft(fftshift(sc1)); Qtnv#9%Vi end Y`]rj-8f0B p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); hZ o5p&b p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); b Fn(w:1Q p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); U3VT*nj' P1=[P1 p1/p10]; L<E/,IdE P2=[P2 p2/p10]; [|z'"Gk{
P3=[P3 p3/p10]; wiBuEaUkW P=[P p*p]; RO$*G
jQd end @H4wHlb figure(1) {_Np<r;j< plot(P,P1, P,P2, P,P3); Loc8eToZ )]}$ 转自:http://blog.163.com/opto_wang/
|
|