| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 7GP?;P _~cmR< % This Matlab script file solves the coupled nonlinear Schrodinger equations of ^5T{x>Lj % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of e;6Sj % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 56bB~=c % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |\_O8=B% 2hu6 %fid=fopen('e21.dat','w'); 2#!$f_ N = 128; % Number of Fourier modes (Time domain sampling points) M}5 C;E* M1 =3000; % Total number of space steps 9M7P]$^ J =100; % Steps between output of space k2@IJ~ T =10; % length of time windows:T*T0 v%FVz T0=0.1; % input pulse width _?r+SRFn MN1=0; % initial value for the space output location }]s~L9_z[' dt = T/N; % time step UJm`GO n = [-N/2:1:N/2-1]'; % Index 16Xwtn72 t = n.*dt; KcU,RTE u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 nu3 A'E`'k u20=u10.*0.0; % input to waveguide 2 FFQF0.@EBi u1=u10; u2=u20; NFSPw`f U1 = u1; q(r2\ U2 = u2; % Compute initial condition; save it in U F@I_sGCcb ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. c"z%AzUV' w=2*pi*n./T; x9ws@=[: g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ~T-.k
7t L=4; % length of evoluation to compare with S. Trillo's paper _N]yI0k( dz=L/M1; % space step, make sure nonlinear<0.05 xxiLi46/ for m1 = 1:1:M1 % Start space evolution Ml3F\ fAW u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS ld?M,Qd u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; OS9v.pz ca1 = fftshift(fft(u1)); % Take Fourier transform 7uDUZdJy ca2 = fftshift(fft(u2)); YW}/C wB c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation C}>)IH c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift aH$~':[93 u2 = ifft(fftshift(c2)); % Return to physical space M)xK+f2_[ u1 = ifft(fftshift(c1)); qQ_B[?+W if rem(m1,J) == 0 % Save output every J steps. 9BY b{<0tS U1 = [U1 u1]; % put solutions in U array kU
Flp U2=[U2 u2]; 5[R}MhLZ MN1=[MN1 m1]; 0I _;?i z1=dz*MN1'; % output location j;y|Ys)I end !^7:Rr_ end # SXXYh-e hg=abs(U1').*abs(U1'); % for data write to excel 5a`}DTB[Co ha=[z1 hg]; % for data write to excel 'I~dJEW7 t1=[0 t']; H xlw1(zS hh=[t1' ha']; % for data write to excel file Kaa*;T![ %dlmwrite('aa',hh,'\t'); % save data in the excel format @$*c0.
|z figure(1) 4(&'V+o waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn F,zJdJ figure(2) /7#&qx8 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn Yru[{h8hw` xH0/R LK3J 非线性超快脉冲耦合的数值方法的Matlab程序 mOB\ `&h5 2ya`2 m 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 G#V22Wca8 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 d5\1-d_uz 6)$_2G%Zq _e3'f:
-^5R51 % This Matlab script file solves the nonlinear Schrodinger equations hmH$_YP} % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of GEA;9TU|V % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear zaZ}:N/w(z % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 LZVO9e] [jw o D C=1; 8zCAy@u M1=120, % integer for amplitude FCWphpz M3=5000; % integer for length of coupler Cg
Sdyg@ N = 512; % Number of Fourier modes (Time domain sampling points) w(j9[ dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. xD=D *W T =40; % length of time:T*T0. 5dF=DCZ dt = T/N; % time step z!+<m< n = [-N/2:1:N/2-1]'; % Index yjq
)}y,tF t = n.*dt; 9zyN8v2 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. s]iOC6v w=2*pi*n./T; XbC8t &Q], g1=-i*ww./2; M9K).P= g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; DX";v
J g3=-i*ww./2; Cf7\>U-> P1=0; /v{[Z&z P2=0;
%\cC]<> P3=1; |DW'RopM P=0; o,yvi for m1=1:M1 VO Qt{v{1| p=0.032*m1; %input amplitude &EPEpN
R s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 Ic
K=E]p s1=s10; h+UscdUl s20=0.*s10; %input in waveguide 2 :RsPGj6 s30=0.*s10; %input in waveguide 3 fF("c6:w( s2=s20; .F2nF8 s3=s30; kA4ei p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); 6iG<"{/U5 %energy in waveguide 1 )^N8L< p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); |S{P`)z%f %energy in waveguide 2 <k](s p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); 3ms/v:\ %energy in waveguide 3 LrMFzd}_O for m3 = 1:1:M3 % Start space evolution $:[BB,$ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS 4E>(Y98 s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; >U<nEnB$? s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; noA\5&hqW sca1 = fftshift(fft(s1)); % Take Fourier transform Nr9[Vz?$P sca2 = fftshift(fft(s2)); /8}+#h)[ sca3 = fftshift(fft(s3)); LG#w/).^ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift \`&pk-uW sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); +^?-}v sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Vb^s 'k s3 = ifft(fftshift(sc3)); J'yN' 0 s2 = ifft(fftshift(sc2)); % Return to physical space s jI[Vq s1 = ifft(fftshift(sc1)); @/~k8M/ end RYl3txw p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); t`T\d\ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); jF{gDK p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); V6MT> T P1=[P1 p1/p10]; #0g#W P2=[P2 p2/p10]; xzl4v=7 P3=[P3 p3/p10]; MQ(/l_=zQ P=[P p*p]; I`W-RWZ end x7Rq|NQ figure(1) Y-q@~vZ] plot(P,P1, P,P2, P,P3); BhW]Oq& s~Wu0%])Q 转自:http://blog.163.com/opto_wang/
|
|