| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 cc44R|Kr$$ TH &qX % This Matlab script file solves the coupled nonlinear Schrodinger equations of =\{\g7 % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of #pHs@uvO % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Y[SU&LM % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c
'\SfW< 7}_! %fid=fopen('e21.dat','w'); Bg8#qv N = 128; % Number of Fourier modes (Time domain sampling points) Hk7K`9 M1 =3000; % Total number of space steps ]Zf6Yw .Y J =100; % Steps between output of space HvxJj+X9 T =10; % length of time windows:T*T0 KTEZ4K^o= T0=0.1; % input pulse width w-$[>R[hw MN1=0; % initial value for the space output location `8\Ja$ = dt = T/N; % time step 0qFH
s n = [-N/2:1:N/2-1]'; % Index \.gEh1HW t = n.*dt; )$Z(|M4 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 9PUes3"v u20=u10.*0.0; % input to waveguide 2 smQVWs> u1=u10; u2=u20; Pgp {$ID U1 = u1; VzlDHpG U2 = u2; % Compute initial condition; save it in U i.1U|Pi ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. sn{A wF% w=2*pi*n./T; %}>dqUyQ g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T o5aLUWi- L=4; % length of evoluation to compare with S. Trillo's paper W}'WA dz=L/M1; % space step, make sure nonlinear<0.05 v0l_w for m1 = 1:1:M1 % Start space evolution iwY'4Z
e u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS 'YSuQP> u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; SJgY ca1 = fftshift(fft(u1)); % Take Fourier transform ;2giZ\ ca2 = fftshift(fft(u2)); "zZI S6j c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation f0Hq8qAF;^ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift 99 wc u2 = ifft(fftshift(c2)); % Return to physical space G6`J1Uk u1 = ifft(fftshift(c1)); 2)/NFZ if rem(m1,J) == 0 % Save output every J steps. F#+ .>!
U1 = [U1 u1]; % put solutions in U array $1*3!}_0 U2=[U2 u2]; }{],GHCjQ MN1=[MN1 m1]; l*7?Y7FK z1=dz*MN1'; % output location x|~zHFm6 end `3iQZui end :wgfW .w hg=abs(U1').*abs(U1'); % for data write to excel kB\kpW ha=[z1 hg]; % for data write to excel eK`PxoTI-I t1=[0 t']; CP`
XUpX`& hh=[t1' ha']; % for data write to excel file yqSY9EX7 %dlmwrite('aa',hh,'\t'); % save data in the excel format ]re'LC!d figure(1) =7ydk"xM* waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn 2'{}<9 figure(2) W."f8ow waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn q^bO*bv 'dt\db5p 非线性超快脉冲耦合的数值方法的Matlab程序 S]2 {ZDP WtX>Qu| 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 &/ouW'oP Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 zX5G;,_
U w Eiz g*-2*
\ E`@43Nz % This Matlab script file solves the nonlinear Schrodinger equations V,LVB_6 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of F!8=FTb % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear :):zNn_>` % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Q_}/ Pn$1 `Q9+k< C=1; HcJE0-" M1=120, % integer for amplitude k90B!kg M3=5000; % integer for length of coupler &:!ij N = 512; % Number of Fourier modes (Time domain sampling points) ^g!B.ll` dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. \f"?Tv-C' T =40; % length of time:T*T0. =s[&;B`s dt = T/N; % time step D<nxr~pQ n = [-N/2:1:N/2-1]'; % Index 1!/-)1t t = n.*dt; u@D.i4U ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. %ejeyc w=2*pi*n./T; H~m]nV,r g1=-i*ww./2;
.fJ*c g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 7c::Qf[| g3=-i*ww./2; VG#Q;Xd} P1=0; ,h!X k P2=0; $^Ca:duk P3=1; (2%>jg0M P=0; 2z-$zB<vyw for m1=1:M1 .Z5[_'T p=0.032*m1; %input amplitude },6*Y*?{ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 +k
rFB?>` s1=s10; _0]QS4a][c s20=0.*s10; %input in waveguide 2 #Wx=v$" s30=0.*s10; %input in waveguide 3 BE%Z\E[[m s2=s20; ;](h2Z`3s s3=s30; vPsq<l} p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); GYqJ!, %energy in waveguide 1 Mdky^;qq3; p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); l"L+e! B~ %energy in waveguide 2 s]bPV,"p p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); yfq>, %energy in waveguide 3 tDU}rI8? for m3 = 1:1:M3 % Start space evolution k5s ?lWH s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS YOKR//|3 s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; xA9V$# d| s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; L?.7\a@ sca1 = fftshift(fft(s1)); % Take Fourier transform l4Y1( sca2 = fftshift(fft(s2)); xSOoIsL[ sca3 = fftshift(fft(s3)); ?'f^X$aS sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift pVz pN8! sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 1g81S_T
. sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 1<ehV
VP s3 = ifft(fftshift(sc3)); y&3TQ]f\ s2 = ifft(fftshift(sc2)); % Return to physical space .m!s". ?[ s1 = ifft(fftshift(sc1)); =N;$0Y(g end V^ Y*xZ p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 4)E|&)-fu8 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); F_ _H(}d p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); @[0jFjK P1=[P1 p1/p10]; 4UazD_`' P2=[P2 p2/p10]; X-v~o/r7 P3=[P3 p3/p10]; oX#9RW/ >I P=[P p*p]; o6:45 end &E`9>&~J figure(1) ?{n>EvLY plot(P,P1, P,P2, P,P3); ?U$}Rsk{# :(+]b 转自:http://blog.163.com/opto_wang/
|
|