首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 7GP?;P  
_~cmR<  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of ^5T{x>Lj  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of e;6Sj  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 56bB~ =c  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |\_O8=B%  
2hu6  
%fid=fopen('e21.dat','w'); 2#!$f_  
N = 128;                       % Number of Fourier modes (Time domain sampling points) M}5C;E*  
M1 =3000;              % Total number of space steps 9M7P]$^  
J =100;                % Steps between output of space k2@IJ~  
T =10;                  % length of time windows:T*T0 v%FVz  
T0=0.1;                 % input pulse width _?r+SRFn  
MN1=0;                 % initial value for the space output location }]s~L9_z['  
dt = T/N;                      % time step UJm`GO  
n = [-N/2:1:N/2-1]';           % Index 16 Xwtn72  
t = n.*dt;   KcU,RTE  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 nu3 A'E`'k  
u20=u10.*0.0;                  % input to waveguide 2 FFQF0.@EBi  
u1=u10; u2=u20;                 NFSPw` f  
U1 = u1;   q(r2\  
U2 = u2;                       % Compute initial condition; save it in U F@I_sGCcb  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. c"z%AzUV'  
w=2*pi*n./T; x9ws@=[:  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ~T-.k 7t  
L=4;                           % length of evoluation to compare with S. Trillo's paper _N]yI0k(  
dz=L/M1;                       % space step, make sure nonlinear<0.05 xxiLi46/  
for m1 = 1:1:M1                                    % Start space evolution Ml3F\ fAW  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ld?M,Qd  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; OS9v.pz  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform 7uDUZdJy  
   ca2 = fftshift(fft(u2)); YW}/C wB  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation C}>&#)IH  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   aH$~':[93  
   u2 = ifft(fftshift(c2));                        % Return to physical space M)xK+f2_[  
   u1 = ifft(fftshift(c1)); qQ_B[?+W  
if rem(m1,J) == 0                                 % Save output every J steps. 9BY b{<0tS  
    U1 = [U1 u1];                                  % put solutions in U array kU Flp  
    U2=[U2 u2]; 5[R}MhLZ  
    MN1=[MN1 m1]; 0I_;?i  
    z1=dz*MN1';                                    % output location j;y|Ys)I  
  end !^7:Rr _  
end #SXXYh-e  
hg=abs(U1').*abs(U1');                             % for data write to excel 5a`}DTB[Co  
ha=[z1 hg];                                        % for data write to excel 'I~dJEW7  
t1=[0 t']; H xlw1(zS  
hh=[t1' ha'];                                      % for data write to excel file Kaa*;T![  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format @$*c0 . |z  
figure(1) 4(&'V+o  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn F,zJdJ  
figure(2) /7#&qx8  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Yru[{h8hw`  
xH0/R LK3J  
非线性超快脉冲耦合的数值方法的Matlab程序 mOB\ `&h5  
2ya`2 m  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   G#V22Wca8  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 d5\1-d_uz  
6)$_2G%Zq  
_e 3'f:  
-^5R51  
%  This Matlab script file solves the nonlinear Schrodinger equations hmH$_YP}  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of GEA;9TU|V  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear zaZ}:N/w(z  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 LZVO9e]  
[jw o D  
C=1;                           8z CAy@u  
M1=120,                       % integer for amplitude FCWphpz  
M3=5000;                      % integer for length of coupler Cg Sdyg@  
N = 512;                      % Number of Fourier modes (Time domain sampling points) w(j9[  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. xD=D *W  
T =40;                        % length of time:T*T0. 5dF=DCZ  
dt = T/N;                     % time step z!+<m<  
n = [-N/2:1:N/2-1]';          % Index yjq )}y,tF  
t = n.*dt;   9zyN8v2  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. s]iOC6v  
w=2*pi*n./T; XbC8t &Q],  
g1=-i*ww./2;  M9K).P=  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; DX"; v J  
g3=-i*ww./2; Cf7\>U->  
P1=0; /v{[Z&z  
P2=0; %\cC]<>  
P3=1; |DW'RopM  
P=0;  o,yvi  
for m1=1:M1                 VO Qt{v{1|  
p=0.032*m1;                %input amplitude &EPEpN R  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Ic K=E ]p  
s1=s10; h+UscdU l  
s20=0.*s10;                %input in waveguide 2 :RsPGj6   
s30=0.*s10;                %input in waveguide 3 fF("c6:w(  
s2=s20; .F2nF8  
s3=s30; kA4ei  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   6iG<"{/U5  
%energy in waveguide 1 )^N8L<   
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   |S{P`)z%f  
%energy in waveguide 2 <k](s  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   3 ms/v:\  
%energy in waveguide 3 LrMFzd}_O  
for m3 = 1:1:M3                                    % Start space evolution $:[BB ,$  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 4E>(Y98  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; >U<nEnB$?  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; noA\5&hqW  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform Nr9[Vz?$P  
   sca2 = fftshift(fft(s2)); /8}+# h)[  
   sca3 = fftshift(fft(s3)); LG#w/).^  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   \`&pk-uW  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); +^? -}v  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Vb^s 'k  
   s3 = ifft(fftshift(sc3)); J'yN' 0  
   s2 = ifft(fftshift(sc2));                       % Return to physical space sjI[Vq  
   s1 = ifft(fftshift(sc1)); @/~k8M/  
end RYl3txw  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); t`T\d\  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); jF{gDK  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); V6MT>T  
   P1=[P1 p1/p10]; #0g#W  
   P2=[P2 p2/p10]; xzl4v=7  
   P3=[P3 p3/p10]; MQ(/l_=zQ  
   P=[P p*p]; I`W-RWZ  
end x7Rq|NQ  
figure(1) Y-q@~v Z]  
plot(P,P1, P,P2, P,P3); BhW]Oq&  
s~Wu0%])Q  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计