tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 lo*OmAF 0"7%*n."2 % This Matlab script file solves the coupled nonlinear Schrodinger equations of :)VO,b~r % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Qb<i,`SN % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear i'9aQi"G % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 IvGQ7
VLr wBZ=IMDu\ %fid=fopen('e21.dat','w'); LVKvPi N = 128; % Number of Fourier modes (Time domain sampling points) c* 2U'A M1 =3000; % Total number of space steps eygmh aE J =100; % Steps between output of space Z-|.j^n T =10; % length of time windows:T*T0 {T4F0fu[eR T0=0.1; % input pulse width ?q a MN1=0; % initial value for the space output location D\|$!i} dt = T/N; % time step )!.ef6| n = [-N/2:1:N/2-1]'; % Index MuXp*s3[ t = n.*dt; i
,Cvnp6Lv u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 "%fh`4y3\ u20=u10.*0.0; % input to waveguide 2 MCOiB<L6 u1=u10; u2=u20; I?`}h}7. U1 = u1; $/;D8P5/&= U2 = u2; % Compute initial condition; save it in U HS> (y2}' ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. Y~\71QE> w=2*pi*n./T;
[U9b_` g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T x|4m*>Ke
L=4; % length of evoluation to compare with S. Trillo's paper zh`!x{Z?^ dz=L/M1; % space step, make sure nonlinear<0.05 d 90 for m1 = 1:1:M1 % Start space evolution x`T u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS xC N6? u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Zjis0a]v~k ca1 = fftshift(fft(u1)); % Take Fourier transform X`#,*HkK ca2 = fftshift(fft(u2)); n@5Sp2p c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation |dIP &9 c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift \kSoDY`l& u2 = ifft(fftshift(c2)); % Return to physical space +8qtFog$\g u1 = ifft(fftshift(c1)); BS3Aczwk if rem(m1,J) == 0 % Save output every J steps. 58xaVOhb U1 = [U1 u1]; % put solutions in U array Mx9#YJ?t~ U2=[U2 u2]; >[t0a"
MN1=[MN1 m1]; 9R_2>BDn z1=dz*MN1'; % output location <0lXJqd end $!Z><&^/ end 0XouHU hg=abs(U1').*abs(U1'); % for data write to excel vHR-mQUs ha=[z1 hg]; % for data write to excel fH#yJd2?f t1=[0 t']; =KQQS6 hh=[t1' ha']; % for data write to excel file 3#GZ6:rVJ %dlmwrite('aa',hh,'\t'); % save data in the excel format &\<!{Y<' figure(1) 337y,; waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn i%BrnjX figure(2) ,TeJx+z^ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn 7AwV4r*: 6cR}Mm9Hx3 非线性超快脉冲耦合的数值方法的Matlab程序 be&5vl vTnrSNdSE 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 Mdk(FG( Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 VnlgX\$} E/bIq}R6 &O|!w& U@t"o3E % This Matlab script file solves the nonlinear Schrodinger equations 0$=Uhi
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of #'`!*VI % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2n]UNC % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _#[~?g` ed3d 6/%HR C=1; %v}SJEXFp M1=120, % integer for amplitude 5>9KW7^L M3=5000; % integer for length of coupler mCM7FFl I N = 512; % Number of Fourier modes (Time domain sampling points) 05sWN 0 dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. ;8F|Q<`pV T =40; % length of time:T*T0. ~nit~; dt = T/N; % time step L'i0|_ n = [-N/2:1:N/2-1]'; % Index WP(+jL^- t = n.*dt; lKVy{X3]* ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. Za,MzKd= w=2*pi*n./T; a[e&O&Z g1=-i*ww./2; E lf'1 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; $}&r.=J". g3=-i*ww./2; (CUrFZT$ P1=0; g)Ep'd-w" P2=0; -dRnozs6W P3=1; NO$n-<ag P=0; GCrIaZ for m1=1:M1 2bJqZ,@ p=0.032*m1; %input amplitude L >*
F8|g s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 MHF31/g\ s1=s10; mT]+wi& s20=0.*s10; %input in waveguide 2 j[E8C$lW s30=0.*s10; %input in waveguide 3 '(ZJsw s2=s20; *[
' n8Z s3=s30; >Xz=E0;^Ua p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); bxxazsj^ %energy in waveguide 1 =J@M,mbHg p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); A/bxxB7w %energy in waveguide 2 P<.
TiF?@ p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); !yUn|v>&p %energy in waveguide 3 uj8G6'm% for m3 = 1:1:M3 % Start space evolution xg:r5Z/|) s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS %:jVx s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ]YQ!i@Y s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; C(w?`]Qs sca1 = fftshift(fft(s1)); % Take Fourier transform BIu%A]e" sca2 = fftshift(fft(s2)); sObH#/l` sca3 = fftshift(fft(s3)); nqp:nw sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift /KL;%:7 sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); {c
82bFiv sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); }JP0q s3 = ifft(fftshift(sc3)); ]1 V,_^D s2 = ifft(fftshift(sc2)); % Return to physical space q5Bj0r[/o s1 = ifft(fftshift(sc1)); MU
}<-1 end uq/z.m p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); y15 MWZ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); K;n2mXYGM p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); VXE85 P1=[P1 p1/p10]; L&gC P2=[P2 p2/p10]; mbf'xGO P3=[P3 p3/p10]; Gky
e P=[P p*p]; 3CKd[=-Z end 7@[HRr figure(1) xH,D
bAC; plot(P,P1, P,P2, P,P3); -d j9(~?^ v?BVUH>#9 转自:http://blog.163.com/opto_wang/
|
|