首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 r k;k:<c  
-! Hn,93  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of 9nlfb~ F~P  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of abkl)X>k  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear e.jrX;;$!&  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *Hy-D</w%  
[ps5;  
%fid=fopen('e21.dat','w'); ]7n+|@3x  
N = 128;                       % Number of Fourier modes (Time domain sampling points) "Q6oPDX(  
M1 =3000;              % Total number of space steps @6 uB78U4O  
J =100;                % Steps between output of space eWSA  
T =10;                  % length of time windows:T*T0 Ehu^_HZ  
T0=0.1;                 % input pulse width [ !/u,  
MN1=0;                 % initial value for the space output location Y&KI/]ly,L  
dt = T/N;                      % time step I~?D^   
n = [-N/2:1:N/2-1]';           % Index (:Rj:8{  
t = n.*dt;   wgxr8;8`q  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 js)M c*]&  
u20=u10.*0.0;                  % input to waveguide 2 t7tX<|aN  
u1=u10; u2=u20;                 `z%f@/:fG  
U1 = u1;   0]=|3-n  
U2 = u2;                       % Compute initial condition; save it in U r$}M,! J  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. z&[Rw<{Psb  
w=2*pi*n./T; Ahk6{uz  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 4Ei*\:  
L=4;                           % length of evoluation to compare with S. Trillo's paper Z .VIb|  
dz=L/M1;                       % space step, make sure nonlinear<0.05 Gs;wx_k^  
for m1 = 1:1:M1                                    % Start space evolution )isz }?Dj  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS }Tf~)x  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; \,)('tUE  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform /]m5HW(P7K  
   ca2 = fftshift(fft(u2)); SYd4 3P A  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Z8*E-y0  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   F8mS5oB|^  
   u2 = ifft(fftshift(c2));                        % Return to physical space L#mf[a@pCn  
   u1 = ifft(fftshift(c1)); <VI.A" Qk~  
if rem(m1,J) == 0                                 % Save output every J steps. ^N#B( F  
    U1 = [U1 u1];                                  % put solutions in U array 6U5L>sQ  
    U2=[U2 u2]; 2\80S[f  
    MN1=[MN1 m1]; 7{>mm$^|V  
    z1=dz*MN1';                                    % output location Uo?g@D  
  end _K["qm{X_  
end H <41H;m  
hg=abs(U1').*abs(U1');                             % for data write to excel vFm8T58 7  
ha=[z1 hg];                                        % for data write to excel %0l'Nuz  
t1=[0 t']; b>SG5EqU@  
hh=[t1' ha'];                                      % for data write to excel file ,]RMa\Q4Wg  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format cB#5LXbCE  
figure(1) y"6;O0  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn =p~k5k4  
figure(2) 6D3hX>K4  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn mh&wvT<:{  
o;5 J=  
非线性超快脉冲耦合的数值方法的Matlab程序 Em8q1P$tm>  
=y+gS%o$  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Gy 0 m  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 k|V%*BvY>  
e>z   
&z kuL  
2$ m#)*\  
%  This Matlab script file solves the nonlinear Schrodinger equations VwJ A  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ?5'EP|<  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear qj|P0N{7  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 cW%QKdTQY0  
I!sh+e  
C=1;                           &w15 GO;4  
M1=120,                       % integer for amplitude \%& BK.t  
M3=5000;                      % integer for length of coupler  ;;>hWAS  
N = 512;                      % Number of Fourier modes (Time domain sampling points) Y$JGpeq8w  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. A#NJ8_  
T =40;                        % length of time:T*T0. ; '6`hZ  
dt = T/N;                     % time step 9~3;upWu!  
n = [-N/2:1:N/2-1]';          % Index s4V-brCM$|  
t = n.*dt;   ZAATV+Z  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. -DAkVFsN  
w=2*pi*n./T; |q| ?y`X4/  
g1=-i*ww./2; _[%2QwAUj*  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; b;Nm$`2  
g3=-i*ww./2; c,@&Z#IZ`  
P1=0; Rhw- 49AWx  
P2=0; ?X $#J'U;  
P3=1; .M(')$\U  
P=0; gR5 EK$  
for m1=1:M1                 ZVu_E.4.  
p=0.032*m1;                %input amplitude o,qq*}=  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 q|7i6jq\*R  
s1=s10; R:N4_4& C~  
s20=0.*s10;                %input in waveguide 2 sr S2v\1:  
s30=0.*s10;                %input in waveguide 3 <'T:9  
s2=s20; +lYo5\1=  
s3=s30; @ FNaCmBX  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   {"v~1W)  
%energy in waveguide 1 ^Pwtu  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   S7!+8$2mc_  
%energy in waveguide 2 Fh8 8DDJ  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   DsJ ikg(J  
%energy in waveguide 3 g2 RrBK,  
for m3 = 1:1:M3                                    % Start space evolution \_v jc]?  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ~Un+Zs%24  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 7{z\^R^O  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; =Ff _)k  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform 5& 2([  
   sca2 = fftshift(fft(s2)); 8'sT zB]  
   sca3 = fftshift(fft(s3)); 7];AB;0"  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   yN@3uYBF  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ()}(3>O-  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); $Wy(Wtrx|  
   s3 = ifft(fftshift(sc3)); 8_W=)w6  
   s2 = ifft(fftshift(sc2));                       % Return to physical space rtSG- _[i  
   s1 = ifft(fftshift(sc1)); 9ZJn 8ki  
end -s3q(SH  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ZA1:Y{ V  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); :QoW*Gs1  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); omP\qOc  
   P1=[P1 p1/p10]; r5,V-5b  
   P2=[P2 p2/p10]; qkbGM-H%U  
   P3=[P3 p3/p10]; REg&[e+%  
   P=[P p*p]; Sj'Iz #  
end N%f% U  
figure(1) :kMF.9U:  
plot(P,P1, P,P2, P,P3); AAXlBY6Y-  
b)+;=o%  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2026 光行天下 蜀ICP备06003254号-1 网站统计