首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 q(Q$lRj/I-  
pXoD*o b  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of e&R?9z-*  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of f/?uo sS  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear // k`X  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 h4 X=d5qd  
[C>>j;q%  
%fid=fopen('e21.dat','w'); R^hlfKnt  
N = 128;                       % Number of Fourier modes (Time domain sampling points) =._V$:a6o  
M1 =3000;              % Total number of space steps ZC99/NWN  
J =100;                % Steps between output of space 3 i*HwEh  
T =10;                  % length of time windows:T*T0 3J3Yt`  
T0=0.1;                 % input pulse width io[>`@=  
MN1=0;                 % initial value for the space output location 6E)emFkQ  
dt = T/N;                      % time step  @mD$Z09~  
n = [-N/2:1:N/2-1]';           % Index ?@>PKUv{  
t = n.*dt;   j;7:aM"BQW  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 -/g<A~+i]$  
u20=u10.*0.0;                  % input to waveguide 2 Os rHA  
u1=u10; u2=u20;                 -4;$NiB?  
U1 = u1;   PwC9@c%c  
U2 = u2;                       % Compute initial condition; save it in U x+Ws lN 2a  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. G`oY(2U  
w=2*pi*n./T; ZL7#44  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T _;!$1lM[  
L=4;                           % length of evoluation to compare with S. Trillo's paper O30eq 7(  
dz=L/M1;                       % space step, make sure nonlinear<0.05 )w_hbU_Pb&  
for m1 = 1:1:M1                                    % Start space evolution p=d,kY  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS KHT RoXt  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; K_Q-9j  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform L=_   
   ca2 = fftshift(fft(u2)); 9<|nJt  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation yt4sg/] :  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   u[<ij  
   u2 = ifft(fftshift(c2));                        % Return to physical space 2Kmnt(>  
   u1 = ifft(fftshift(c1)); ~p!=w#/  
if rem(m1,J) == 0                                 % Save output every J steps. d%~OEq1i"  
    U1 = [U1 u1];                                  % put solutions in U array i"h~QEE  
    U2=[U2 u2]; 8o  SL3  
    MN1=[MN1 m1]; MwHxn%  
    z1=dz*MN1';                                    % output location _, r6t  
  end kZK1{  
end \hO}3;*&  
hg=abs(U1').*abs(U1');                             % for data write to excel GQ8A}gwH  
ha=[z1 hg];                                        % for data write to excel ] :.  
t1=[0 t']; "<$JU@P  
hh=[t1' ha'];                                      % for data write to excel file +Y_]<  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format +UX~TT:  
figure(1) +=Y$v2BZA3  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ,GY K3+}Z  
figure(2) (RBB0CE  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn fAT+x1J\  
r]B`\XWz  
非线性超快脉冲耦合的数值方法的Matlab程序 n.b_fkZNr  
XE`u  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   9TU B3x^  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 S rom@c  
G2s2i2& 6E  
qir8RPW  
aE2Yl  
%  This Matlab script file solves the nonlinear Schrodinger equations C>*1f|<  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 8=,?B h".  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear J93@\b  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +ZJ1> n  
9zNMv-  
C=1;                           YfUo=ku  
M1=120,                       % integer for amplitude 9`Y\`F#}q  
M3=5000;                      % integer for length of coupler c{{RP6o/j=  
N = 512;                      % Number of Fourier modes (Time domain sampling points) _ YcIG OL  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. M6lNdK  
T =40;                        % length of time:T*T0. ^5Ob(FvU  
dt = T/N;                     % time step [N_)V kpr  
n = [-N/2:1:N/2-1]';          % Index +(m*??TAV  
t = n.*dt;   ?/YT,W<c;&  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. o<L=l Q  
w=2*pi*n./T; h/NI5   
g1=-i*ww./2; eEX*\1Gg  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; IQyw>_~]  
g3=-i*ww./2; v9GfudTZR  
P1=0; ]owcx=5q%'  
P2=0; ^TqR0a-*  
P3=1; 0O|l7mCr%I  
P=0; 4p&YhV7j)o  
for m1=1:M1                 ,H@ x.  
p=0.032*m1;                %input amplitude *d}{7UMy#  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 la_FZ  
s1=s10; \os"j  
s20=0.*s10;                %input in waveguide 2 h9cx~/7,_)  
s30=0.*s10;                %input in waveguide 3 "q7pkxEuJ  
s2=s20; D%h_V>#z  
s3=s30; S20E}bS:>  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   !4}Wp.  
%energy in waveguide 1 Kj6@=  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   +|.6xC7U  
%energy in waveguide 2 g]PC6xr38  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   2T-3rC)  
%energy in waveguide 3 8C5*:x9l  
for m3 = 1:1:M3                                    % Start space evolution t}2M8ue(&  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Ht7v+lY90^  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; (2'q~Z+>'  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; F>"B7:P1:Q  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform o(Q='kK  
   sca2 = fftshift(fft(s2)); : G0^t  
   sca3 = fftshift(fft(s3)); mO @Sl(9  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   SAUG+{Uq  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 'ExTnv ~  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);  m8z414o  
   s3 = ifft(fftshift(sc3)); [OwrIL  
   s2 = ifft(fftshift(sc2));                       % Return to physical space ]3~X!(O  
   s1 = ifft(fftshift(sc1)); d^G5Pq  
end )"&\S6*!  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 5`f\[oA  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); >5bd !b,  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); y9-}LET3j  
   P1=[P1 p1/p10]; ~.<}/GP]_  
   P2=[P2 p2/p10]; OIrr'uNH  
   P3=[P3 p3/p10];  2D"\Ox  
   P=[P p*p]; q Qc-;|8  
end XO"BEj<x  
figure(1) m*\XH DB  
plot(P,P1, P,P2, P,P3); TuMD+^x  
j(`V& S  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计