首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 63?)K s  
midsnG+jnf  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of ]\RRqLDzkg  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of bN^O }[  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear EliTFxp  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 x( mE<UQN  
M\b")Tu{0  
%fid=fopen('e21.dat','w'); &/.hx(#d  
N = 128;                       % Number of Fourier modes (Time domain sampling points) W\f9jfD  
M1 =3000;              % Total number of space steps t0:AScZY   
J =100;                % Steps between output of space ,a?\M M9$  
T =10;                  % length of time windows:T*T0 ]<DNo&fw  
T0=0.1;                 % input pulse width %=j3jj[  
MN1=0;                 % initial value for the space output location 6B$q,"%S@  
dt = T/N;                      % time step vhr+g 'tf  
n = [-N/2:1:N/2-1]';           % Index Kt>X3m,  
t = n.*dt;   mmw^{MK!  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 <b+[<@wS  
u20=u10.*0.0;                  % input to waveguide 2 /RLq>#:h**  
u1=u10; u2=u20;                 o  A* G  
U1 = u1;   Wi n8LOC  
U2 = u2;                       % Compute initial condition; save it in U b4Y8N"hL%  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. #n\C |  
w=2*pi*n./T; *5$&`&,  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T "HM{b?N  
L=4;                           % length of evoluation to compare with S. Trillo's paper $3=:E36K  
dz=L/M1;                       % space step, make sure nonlinear<0.05 .'[/|4H  
for m1 = 1:1:M1                                    % Start space evolution 8|twV35  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS uQLlA&I"  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ^C&+ ~+  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform `P+(&taT  
   ca2 = fftshift(fft(u2)); vjViX<#(V  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation !}3,B28  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   (B>Zaro#  
   u2 = ifft(fftshift(c2));                        % Return to physical space gM;}#>6  
   u1 = ifft(fftshift(c1)); f7}"lG]q  
if rem(m1,J) == 0                                 % Save output every J steps. bAxTLIf  
    U1 = [U1 u1];                                  % put solutions in U array NCA {H^CL  
    U2=[U2 u2]; 6*GjP ;S =  
    MN1=[MN1 m1]; MQ][mMM;w  
    z1=dz*MN1';                                    % output location z}}]jR \y?  
  end 2>S~I"o0  
end dTEJ=d40  
hg=abs(U1').*abs(U1');                             % for data write to excel Ni[4OR$-O  
ha=[z1 hg];                                        % for data write to excel {F*N=pSq  
t1=[0 t']; . ,NB( s`  
hh=[t1' ha'];                                      % for data write to excel file #:3r4J%+~  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format QL"gWr`R  
figure(1) juToO  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn MBk"KF  
figure(2) YTY%#"  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn !jS4!2'  
o}8{Bh^  
非线性超快脉冲耦合的数值方法的Matlab程序 7INk_2  
B{, Bno  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   o%(bQV-T  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 HOYq?40.R  
j.-VJo)   
6X+}>qy  
<Mgf]v.QS  
%  This Matlab script file solves the nonlinear Schrodinger equations m^!Sv?hV  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of MM#cLw  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ~ }KzJiL  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 eVnbRT2y&  
% mn />  
C=1;                           {K aN,td9  
M1=120,                       % integer for amplitude 9rj('F & 1  
M3=5000;                      % integer for length of coupler 993d/z|DX  
N = 512;                      % Number of Fourier modes (Time domain sampling points) 7#4%\f+'t  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. R$b,h  
T =40;                        % length of time:T*T0. #-x@"+z  
dt = T/N;                     % time step +}!DP~y+  
n = [-N/2:1:N/2-1]';          % Index qR,.W/eS8  
t = n.*dt;   5 Rz/Ri\c=  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 9\51Z:>  
w=2*pi*n./T; lC9S\s  
g1=-i*ww./2; uIP iM8(  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; O.:I,D&]  
g3=-i*ww./2; eYP=T+  
P1=0; j8 H Oc(  
P2=0; GfsBQY/  
P3=1; n!.2aq  
P=0; ]xq::a{Oy  
for m1=1:M1                 n85r^W  
p=0.032*m1;                %input amplitude QaMDGD  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 A o3HX  
s1=s10; ^tE_LL+ji|  
s20=0.*s10;                %input in waveguide 2 Y$8; Gm<)  
s30=0.*s10;                %input in waveguide 3 \RE c8nsLy  
s2=s20; J/S{FxNe]  
s3=s30; qc0 B<,x7  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   qyv"Wb6+  
%energy in waveguide 1 O_CT+Ou  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Z\!rH "8  
%energy in waveguide 2 }'`xu9<  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   3_J>y  
%energy in waveguide 3 hPPB45^  
for m3 = 1:1:M3                                    % Start space evolution _W9&J&l0so  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ;QidDi_s>  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; IIP.yyh>  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; A[9NP-~  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform b?k4InXh  
   sca2 = fftshift(fft(s2)); _<u;4RO(s  
   sca3 = fftshift(fft(s3)); A9 n41,h  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   )VY10 R)$  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); {bTeAfbf]  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ,I39&;Iq  
   s3 = ifft(fftshift(sc3)); VCf|`V~G  
   s2 = ifft(fftshift(sc2));                       % Return to physical space cj^bh  
   s1 = ifft(fftshift(sc1)); Qtnv#9%Vi  
end Y`]rj-8f0B  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); hZ o5p&b  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); bFn(w:1Q  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); U3VT*nj'  
   P1=[P1 p1/p10]; L<E/,IdE  
   P2=[P2 p2/p10]; [|z'"Gk{  
   P3=[P3 p3/p10]; wi BuEaUkW  
   P=[P p*p]; RO$*G jQd  
end @H4wHlb  
figure(1) {_Np<r;j<  
plot(P,P1, P,P2, P,P3); Loc8eToZ  
)]}$   
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计