首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 kep/+J-u  
~%=MpQ3  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of d0Qd$ .%A  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of <Fc;_GG  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 9Ujo/3,Ak  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 z'\_jaj^  
#32"=MfQn  
%fid=fopen('e21.dat','w'); giIWGa.a+  
N = 128;                       % Number of Fourier modes (Time domain sampling points) kZZh"#W: L  
M1 =3000;              % Total number of space steps E5xzy/ZQ  
J =100;                % Steps between output of space 4^~(Mh-Mw  
T =10;                  % length of time windows:T*T0 pDIVZC  
T0=0.1;                 % input pulse width SB|Qa}62  
MN1=0;                 % initial value for the space output location 48qV >Gwf  
dt = T/N;                      % time step 2Mmz%S'd  
n = [-N/2:1:N/2-1]';           % Index 5^lxj~ F  
t = n.*dt;   u\{ g(li-I  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 s<_)$}  
u20=u10.*0.0;                  % input to waveguide 2 tEKmy7'#  
u1=u10; u2=u20;                 D.Q=]jOs  
U1 = u1;   RBm ;e0  
U2 = u2;                       % Compute initial condition; save it in U JB`\G=PiL  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. bMMh|F  
w=2*pi*n./T; $yYO_ZBiy  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T v` 7RCg`  
L=4;                           % length of evoluation to compare with S. Trillo's paper [uq$5u  
dz=L/M1;                       % space step, make sure nonlinear<0.05 uv(Sdiir8  
for m1 = 1:1:M1                                    % Start space evolution R0vIbFwj  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS `[)YEg s  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; >JCM.I0_|  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform e5B Qr$j  
   ca2 = fftshift(fft(u2)); ~ZhraSI) G  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Vle@4 ]M\  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   $!(pF  
   u2 = ifft(fftshift(c2));                        % Return to physical space J}+6UlD  
   u1 = ifft(fftshift(c1)); DRgTe&+  
if rem(m1,J) == 0                                 % Save output every J steps. * %M3PTY\  
    U1 = [U1 u1];                                  % put solutions in U array i2(1ki/|O  
    U2=[U2 u2]; ;YX4:OBqr  
    MN1=[MN1 m1]; ); dT_  
    z1=dz*MN1';                                    % output location i Ae<&Ms  
  end {v2|g  
end }36QsH8  
hg=abs(U1').*abs(U1');                             % for data write to excel mvZw  
ha=[z1 hg];                                        % for data write to excel 1ilBz9x*!  
t1=[0 t']; o=?C&f{  
hh=[t1' ha'];                                      % for data write to excel file u r@Z|5  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format ;b(p=\i  
figure(1) oifv+oY  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn okv1K  
figure(2) :8+Nid)  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn xs:n\N  
c8>hc V  
非线性超快脉冲耦合的数值方法的Matlab程序 tAte)/0C  
*nsAgGKKM^  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   O1*NzY0Y%-  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .dQQoyR+O  
dW~*e2nq  
WRDjh7~Efn  
88h3|'*  
%  This Matlab script file solves the nonlinear Schrodinger equations F[[TWf/  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of $K'|0   
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Y=n4K<  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 D{4YxR PX  
aj,T)oDbt6  
C=1;                           e `,ds~  
M1=120,                       % integer for amplitude qfz8jY]  
M3=5000;                      % integer for length of coupler .h5[Q/*h  
N = 512;                      % Number of Fourier modes (Time domain sampling points) <_Q:'cx'  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. A\#P*+k0  
T =40;                        % length of time:T*T0. snnbb0J  
dt = T/N;                     % time step eT8}  
n = [-N/2:1:N/2-1]';          % Index '@CR\5 @  
t = n.*dt;   Gkv{~?95  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ?Wt$6{)  
w=2*pi*n./T; deixy. |  
g1=-i*ww./2; >P $;79<  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; w{90`  
g3=-i*ww./2; Cp]"1%M,  
P1=0; a di [-L#  
P2=0; Y.U[wL>  
P3=1; vp crPVA^  
P=0; \$OF1i@  
for m1=1:M1                 V-r3-b  
p=0.032*m1;                %input amplitude b2=0}~LK  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ?zJOh^  
s1=s10; 3lq Mucr  
s20=0.*s10;                %input in waveguide 2 S&Ee,((E(  
s30=0.*s10;                %input in waveguide 3 gzD@cx?V  
s2=s20; V{&rQ@{W  
s3=s30; qTo-pA G`  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   N**g]T 0`  
%energy in waveguide 1 $gM8{.!  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   J@ktyd(P  
%energy in waveguide 2 IMl!,(6;  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   zf>5,k'x'A  
%energy in waveguide 3 {; >Q.OX@  
for m3 = 1:1:M3                                    % Start space evolution I1>N4R-j  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS @*DyZB  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; =.`qixN  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; -tI'3oT1  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform Yl$SW;@  
   sca2 = fftshift(fft(s2)); 5 `RiS]IO]  
   sca3 = fftshift(fft(s3)); d{de6 `  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   2kUxD8BcN  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); d4 (/m_HMu  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); \yGsr Bl  
   s3 = ifft(fftshift(sc3)); okFvn;  
   s2 = ifft(fftshift(sc2));                       % Return to physical space ~|AwN [  
   s1 = ifft(fftshift(sc1)); 7 +@qB]Bi<  
end *8tI*Pus  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); KyO8A2'U  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); nbTVU+  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ) (Tom9 ^  
   P1=[P1 p1/p10]; VCcr3Dx()F  
   P2=[P2 p2/p10]; `H3.,]  
   P3=[P3 p3/p10]; GzTq5uU&  
   P=[P p*p]; }O4se"xK  
end 08m;{+|vY  
figure(1) K!mOr  
plot(P,P1, P,P2, P,P3); AisN@  
\rV B5|D?  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计