首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 7!2 HNg  
Rf[V)x  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of Dl;d33  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of {K7YTLWY  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 6f] rQ9  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ESDB[ O+`x  
v$$]Gv(  
%fid=fopen('e21.dat','w');  H+cNX\,  
N = 128;                       % Number of Fourier modes (Time domain sampling points) 8sw,k   
M1 =3000;              % Total number of space steps 5()Fvae{k  
J =100;                % Steps between output of space 7U:=~7GH  
T =10;                  % length of time windows:T*T0 W (& 6  
T0=0.1;                 % input pulse width ?q%b*Ek  
MN1=0;                 % initial value for the space output location ^g!B.ll`  
dt = T/N;                      % time step D@vMAW  
n = [-N/2:1:N/2-1]';           % Index lfy7w|  
t = n.*dt;   Vm!i  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 4MX7=!E  
u20=u10.*0.0;                  % input to waveguide 2 %D^bah f  
u1=u10; u2=u20;                  wOHEv^,  
U1 = u1;   k!E"wJkpz  
U2 = u2;                       % Compute initial condition; save it in U 3Xdn62[&  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. #AncOo  
w=2*pi*n./T; o =9'  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T QHQj/)J8  
L=4;                           % length of evoluation to compare with S. Trillo's paper V.,bwPb{9  
dz=L/M1;                       % space step, make sure nonlinear<0.05 aJ2H.E  
for m1 = 1:1:M1                                    % Start space evolution /2h][zrZ[.  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS BW71 s  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; u33zceE8  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform 5<N~3 1z  
   ca2 = fftshift(fft(u2)); @+dHF0aXd  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation WEVl9]b'e+  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   X')S;KW  
   u2 = ifft(fftshift(c2));                        % Return to physical space 8_iHVc;<  
   u1 = ifft(fftshift(c1)); S OI)/u  
if rem(m1,J) == 0                                 % Save output every J steps. e\~l!f'z  
    U1 = [U1 u1];                                  % put solutions in U array sV'v* 1|  
    U2=[U2 u2]; VR v02m5  
    MN1=[MN1 m1]; n2E4!L|q  
    z1=dz*MN1';                                    % output location l"L+e!B~  
  end ji##$xC  
end #PH#2/[  
hg=abs(U1').*abs(U1');                             % for data write to excel yiO31uQt  
ha=[z1 hg];                                        % for data write to excel M c@GH  
t1=[0 t']; I{<;;;a  
hh=[t1' ha'];                                      % for data write to excel file -aN":?8(G  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format > Z++^YVE  
figure(1) lWlUWhLnP  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ^^ j/  
figure(2) `5<1EGJsD  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn R .UumBM  
eE,;K1  
非线性超快脉冲耦合的数值方法的Matlab程序 LJ l1v  
O=`o'%K<  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   pVz pN8!  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 (uT^Nn9L=  
)"-fHW+fy  
z'e1"Y.  
zf7rF}  
%  This Matlab script file solves the nonlinear Schrodinger equations c 85O_J  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of X{'wWWZC  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear kDg{ >mf  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 =N;$0 Y(g  
xiJz`KD&  
C=1;                           c&A]pLn+x  
M1=120,                       % integer for amplitude 8L{$v~+  
M3=5000;                      % integer for length of coupler W60Q3  
N = 512;                      % Number of Fourier modes (Time domain sampling points) J 5- rp|  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. $~Tf L{$  
T =40;                        % length of time:T*T0. taixBNv  
dt = T/N;                     % time step Q_v\1"c  
n = [-N/2:1:N/2-1]';          % Index B%y! aQep  
t = n.*dt;   F*X%N_n  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ?.~]mvOR  
w=2*pi*n./T; #a.\P.{L  
g1=-i*ww./2; CHg]Ul  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 9g4QVo|  
g3=-i*ww./2; UMv"7~  
P1=0; l&$*}yCK  
P2=0; 8`DO[Z  
P3=1; $Llv p bl  
P=0; I=K[SY,]9  
for m1=1:M1                 +=Yk-nJ  
p=0.032*m1;                %input amplitude (}6wAfGo  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 i@Vs4E[b  
s1=s10;  srvYAAE  
s20=0.*s10;                %input in waveguide 2 N]V/83_  
s30=0.*s10;                %input in waveguide 3 %OuX`w=  
s2=s20; m^5s >hUl  
s3=s30; _>;&-e  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   FBcm;cjH  
%energy in waveguide 1 N:A3kp  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   7<fL[2-  
%energy in waveguide 2 {$3j/b  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   kRQ~hRT6  
%energy in waveguide 3 9y;y7i{>?  
for m3 = 1:1:M3                                    % Start space evolution j,Pwket  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS z( *]'Y  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; t2Ip\>;9f  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 4Fh&V{`W  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform vT&j{2U7XW  
   sca2 = fftshift(fft(s2)); w< v1 N  
   sca3 = fftshift(fft(s3)); <&KLo>B^  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   qjJ{+Rz2  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); u0wn=Dg  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 2\DTJ`Y,  
   s3 = ifft(fftshift(sc3)); 4n#YDZ  
   s2 = ifft(fftshift(sc2));                       % Return to physical space ~v^%ze  
   s1 = ifft(fftshift(sc1)); jC#`PA3m=  
end `Fz\wPd  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); /*AJ+K._  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); v/]Qq  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); te4F"SEf  
   P1=[P1 p1/p10]; ]Jja  
   P2=[P2 p2/p10]; _E3U.mV  
   P3=[P3 p3/p10]; LG"c8Vv&)~  
   P=[P p*p]; |)m*EME  
end ULV)0SB  
figure(1) 44Q6vb?  
plot(P,P1, P,P2, P,P3); 'y'T'2N3  
#4Dn@Gqh.Y  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计