首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 qYiv   
z=qWJQ  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of q-YL]PgV  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of I:F <vE  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear NEMEY7De2  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 0pD[7~^o  
*6XRjq^#  
%fid=fopen('e21.dat','w'); pajy#0 U  
N = 128;                       % Number of Fourier modes (Time domain sampling points) AuAT]`  
M1 =3000;              % Total number of space steps y1iX!m~)  
J =100;                % Steps between output of space vevf[eO-  
T =10;                  % length of time windows:T*T0 usy,V"{  
T0=0.1;                 % input pulse width bo1I&I  
MN1=0;                 % initial value for the space output location ^#;RLSv   
dt = T/N;                      % time step >60"p~t  
n = [-N/2:1:N/2-1]';           % Index yw'ezpO"  
t = n.*dt;   pw3 (t  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ;|!MI'Af  
u20=u10.*0.0;                  % input to waveguide 2 ailG./I+  
u1=u10; u2=u20;                 ';6X!KY+]  
U1 = u1;   #&V5H{  
U2 = u2;                       % Compute initial condition; save it in U Y''6NGf  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ENq"mwV|  
w=2*pi*n./T; !R74J=#(  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T i j/o;_  
L=4;                           % length of evoluation to compare with S. Trillo's paper z?kd'j`FG  
dz=L/M1;                       % space step, make sure nonlinear<0.05 Ihg~Q4t  
for m1 = 1:1:M1                                    % Start space evolution i:d`{kJ|[  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS @^!\d#/M  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Ukc'?p,*  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform 1i3V!!r  
   ca2 = fftshift(fft(u2)); >ZeEX, N  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation B'p5M.6d#:  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   9#Y2`p T  
   u2 = ifft(fftshift(c2));                        % Return to physical space -2 x E#r  
   u1 = ifft(fftshift(c1)); y\#o2PVmY  
if rem(m1,J) == 0                                 % Save output every J steps. $6!i BX@  
    U1 = [U1 u1];                                  % put solutions in U array b =b :  
    U2=[U2 u2]; WYLX?x  
    MN1=[MN1 m1]; @+&'%1  
    z1=dz*MN1';                                    % output location /PqUXF  
  end W`x)=y]Z  
end C_G1P)k  
hg=abs(U1').*abs(U1');                             % for data write to excel e!Br>^8l  
ha=[z1 hg];                                        % for data write to excel ~KRnr0  
t1=[0 t']; K2HvI7$-  
hh=[t1' ha'];                                      % for data write to excel file :tLbFW[  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format E eB3 }  
figure(1) Cw#V`70a  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn iNJAZ6@+  
figure(2) <tuS,.  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn _CE9B e\  
lR@& Z6lw  
非线性超快脉冲耦合的数值方法的Matlab程序 ~^7r?<aKc  
:B.G)M\  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   A"4@L*QV  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 S?4KC^Y5  
~<,Sh~Ana.  
U5<@<j(@  
W-XpJ\_  
%  This Matlab script file solves the nonlinear Schrodinger equations oLS7`+b$  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of !M(:U,?B  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear XWtiwf'K  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7Z0/(V.-  
SF< [FM%1  
C=1;                           $XGtS$  
M1=120,                       % integer for amplitude JIxiklk  
M3=5000;                      % integer for length of coupler gxmc|  
N = 512;                      % Number of Fourier modes (Time domain sampling points) gz61FW  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. v[&'k\  
T =40;                        % length of time:T*T0. \_VmY!I5\  
dt = T/N;                     % time step y5u\j{?Te  
n = [-N/2:1:N/2-1]';          % Index HO5d%85  
t = n.*dt;   yM ,VrUh  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 6Z8l8:r-6  
w=2*pi*n./T; Qq3fZ=  
g1=-i*ww./2; t`u!]DHv  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Tpzw=bC^  
g3=-i*ww./2; }OrYpZob  
P1=0; N9]xJgTze  
P2=0; A[H;WKn0  
P3=1; 3LW[H+k  
P=0; 2 B` 8eb  
for m1=1:M1                 ]l[2hy= cV  
p=0.032*m1;                %input amplitude +'XhC#:  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 hYb9`0G"2  
s1=s10; ?@UAL .y  
s20=0.*s10;                %input in waveguide 2 2EfflZL3  
s30=0.*s10;                %input in waveguide 3 Mm#[&j[Y  
s2=s20; <Wy>^<`  
s3=s30; D{C:d\ e)$  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   maDz W_3  
%energy in waveguide 1 zu<3^=3  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ><Uk*mwL  
%energy in waveguide 2 ~G `J r  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Ei~f`{i  
%energy in waveguide 3 O&'/J8  
for m3 = 1:1:M3                                    % Start space evolution [ /ohk&  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ` X}85  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; uRQ_'l  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 16$y`~c-z  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform !kXeO6X@m  
   sca2 = fftshift(fft(s2)); Y&~M7TYb  
   sca3 = fftshift(fft(s3)); 9+Nw/eszO  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift    (M`|'o!  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);  Oh`2tc-  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); d+}kg  
   s3 = ifft(fftshift(sc3));  U:|H9+5  
   s2 = ifft(fftshift(sc2));                       % Return to physical space sKfXg`0  
   s1 = ifft(fftshift(sc1)); aws"3O% uW  
end U CY2 ]E  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 3ATjsOL  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 9#rt:&xo0  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); H?U't 09  
   P1=[P1 p1/p10]; <4mQ*6  
   P2=[P2 p2/p10]; qI2'u%  
   P3=[P3 p3/p10]; {$fsS&aPg  
   P=[P p*p]; A/ 0qk  
end j|K.i/  
figure(1) 1r 571B*O  
plot(P,P1, P,P2, P,P3); +v15[^F  
>V!LitdJ  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计