首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 J]S30&?  
8Exky^OT|  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of 6|3 X*Orn  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 60A!Gob  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2$!,$J-<Y  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 QOrMz`OA  
\.sC{@5K  
%fid=fopen('e21.dat','w'); Lpkx$QZ  
N = 128;                       % Number of Fourier modes (Time domain sampling points) `Eu,SvkFw  
M1 =3000;              % Total number of space steps X !0 7QKs  
J =100;                % Steps between output of space JTBt=u{6^  
T =10;                  % length of time windows:T*T0 Df*<3G  
T0=0.1;                 % input pulse width >py[g0J  
MN1=0;                 % initial value for the space output location k2,`W2] ^E  
dt = T/N;                      % time step ru`U/6 n  
n = [-N/2:1:N/2-1]';           % Index VGxab;#,:3  
t = n.*dt;   :~srl)|)  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 }fo_"bs@  
u20=u10.*0.0;                  % input to waveguide 2 /4;A.r`;  
u1=u10; u2=u20;                 ~@X3qja  
U1 = u1;   98?O[=  
U2 = u2;                       % Compute initial condition; save it in U e m)%U  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. wxPl[)E  
w=2*pi*n./T; \)>#`X  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T \QF0(*!!  
L=4;                           % length of evoluation to compare with S. Trillo's paper W$;qhB  
dz=L/M1;                       % space step, make sure nonlinear<0.05 gV h&c 4  
for m1 = 1:1:M1                                    % Start space evolution &V+KM"Ow  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 9Hb|$/FD  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Y{#*;p*I  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform /'_<~A  
   ca2 = fftshift(fft(u2)); M3F1O6=4j  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation dw5"}-D  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   zF{~Md1  
   u2 = ifft(fftshift(c2));                        % Return to physical space Y}t)!}p$r  
   u1 = ifft(fftshift(c1)); >BK/HuS  
if rem(m1,J) == 0                                 % Save output every J steps. 6Uq;]@k%  
    U1 = [U1 u1];                                  % put solutions in U array JEWc{)4QD  
    U2=[U2 u2]; R2C~.d_TDu  
    MN1=[MN1 m1]; >#l: ]T  
    z1=dz*MN1';                                    % output location `"yxmo*0  
  end soQ[Zg4}  
end AL,7rYZG$  
hg=abs(U1').*abs(U1');                             % for data write to excel .sM,U  
ha=[z1 hg];                                        % for data write to excel FeO1%#2<y  
t1=[0 t']; J-uQF|   
hh=[t1' ha'];                                      % for data write to excel file 6\I1J= C  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format l Ib d9F  
figure(1) /N<aN9Z<x,  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn r7R.dD /.  
figure(2) )s, t BU+N  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn )S`[ gK  
&nI>`Q'  
非线性超快脉冲耦合的数值方法的Matlab程序 yqL"YD  
PUZcb+%]h  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   %eIaH!x:  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 TBO g.y]  
=_ N[mR^  
w4}Q6_0v  
N!wuBRWR  
%  This Matlab script file solves the nonlinear Schrodinger equations B9$f y).Gp  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of xfI0P0+  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear rWDD$4y  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *l"CIG'  
^E8qI8s  
C=1;                           ~x<?Pj  
M1=120,                       % integer for amplitude (U# Oj"  
M3=5000;                      % integer for length of coupler 8-k`"QI=  
N = 512;                      % Number of Fourier modes (Time domain sampling points) 5G(dvM-n  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. yZ)9Hd   
T =40;                        % length of time:T*T0. xf,A<j (o  
dt = T/N;                     % time step k0ai#3iJ  
n = [-N/2:1:N/2-1]';          % Index + WMXd.iN,  
t = n.*dt;   \f(zMP  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. .|hsn6i/-  
w=2*pi*n./T; vyJ8" #]qY  
g1=-i*ww./2; w%iw xo   
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ){'<67dK  
g3=-i*ww./2; e`LkCy[_  
P1=0; !5?_)  
P2=0; /VufL+q1  
P3=1; j3`YaWw  
P=0; }d>.Nj#zh  
for m1=1:M1                 S1Od&v[R  
p=0.032*m1;                %input amplitude ITqAy1m@C  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 YG:^gi  
s1=s10; Y~{<Hs  
s20=0.*s10;                %input in waveguide 2 ZN;ondp4  
s30=0.*s10;                %input in waveguide 3 NQZ /E )f  
s2=s20; u%yYLpaKf  
s3=s30; Eri007?D  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   a@|H6:|  
%energy in waveguide 1 cb0rkmO  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   fpC":EX@r  
%energy in waveguide 2 kp<Au)u  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   00dY?d{[D  
%energy in waveguide 3 3F!)7  
for m3 = 1:1:M3                                    % Start space evolution \#) YS  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS kBrA ?   
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; W#NZnxOX"  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; |nnFjGC`~  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform 'kC#GTZi  
   sca2 = fftshift(fft(s2)); fKr_u<|  
   sca3 = fftshift(fft(s3)); |gu@b~8  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ZX`x9/0&  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); D86F5HT}}  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 3%GsTq2o  
   s3 = ifft(fftshift(sc3)); oA~0"}eS  
   s2 = ifft(fftshift(sc2));                       % Return to physical space HK<S|6B7V  
   s1 = ifft(fftshift(sc1)); {^N,$,Ab.  
end U YJ>L  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); f"*4R kG  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 71P. 9Iz  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); J(/J;PW  
   P1=[P1 p1/p10]; ]S@T|08b  
   P2=[P2 p2/p10]; uM\\(g}  
   P3=[P3 p3/p10]; Kg>B$fBx)  
   P=[P p*p]; Z]TQ+9t  
end |;)_-=L0P  
figure(1) O|=?!|`o  
plot(P,P1, P,P2, P,P3); j?]+~  
0n`Temb/  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计