首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 NR8`nc1~  
(>x05nh  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of _$D!"z7i  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of \.H9e/vU`  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear -D=Sj@G  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @^ -Y&N!b=  
>D~8iuy]8.  
%fid=fopen('e21.dat','w'); F$'u`  
N = 128;                       % Number of Fourier modes (Time domain sampling points) $>yfu=]?  
M1 =3000;              % Total number of space steps (&v|,.c^)1  
J =100;                % Steps between output of space d-tg^Ot#  
T =10;                  % length of time windows:T*T0 S|LY U!IWZ  
T0=0.1;                 % input pulse width (F.w?f4B3  
MN1=0;                 % initial value for the space output location Qf ~$9?z  
dt = T/N;                      % time step 1>L'F8"  
n = [-N/2:1:N/2-1]';           % Index zG9D Ph  
t = n.*dt;   vZ srlHb  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 * O?Yp%5NH  
u20=u10.*0.0;                  % input to waveguide 2 \>lA2^E f  
u1=u10; u2=u20;                 wJq$yqos{  
U1 = u1;   .S/zxf~h  
U2 = u2;                       % Compute initial condition; save it in U G?XA",AC  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. "gm5 DE  
w=2*pi*n./T; t[X^4bZd  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T cYC^;,C &|  
L=4;                           % length of evoluation to compare with S. Trillo's paper &$_!S!Sa/  
dz=L/M1;                       % space step, make sure nonlinear<0.05 W,CAg7:*  
for m1 = 1:1:M1                                    % Start space evolution /w5*R5B{  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS hf2bM `d  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; X~"p]V_  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform `Z5dRLrd  
   ca2 = fftshift(fft(u2)); s>L.V2!$0  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation l*&N<Yu  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Mz2TwU_  
   u2 = ifft(fftshift(c2));                        % Return to physical space ,&M#[>\(3  
   u1 = ifft(fftshift(c1)); rQ]JM  
if rem(m1,J) == 0                                 % Save output every J steps. M")/6PH8  
    U1 = [U1 u1];                                  % put solutions in U array g\.$4N  
    U2=[U2 u2]; ~ *"iLf@,  
    MN1=[MN1 m1]; vWeY[>oGur  
    z1=dz*MN1';                                    % output location Jx}-Y* o  
  end gSw <C+  
end ]|,}hsN  
hg=abs(U1').*abs(U1');                             % for data write to excel m26YAcip}  
ha=[z1 hg];                                        % for data write to excel \$Wpt#V  
t1=[0 t']; YOGj__:  
hh=[t1' ha'];                                      % for data write to excel file #m?)XB^_  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format >jIn&s!}  
figure(1) @/^mFqr2  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn z5M6  
figure(2) V8B4e4F  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ][?J8F  
&b5(Su  
非线性超快脉冲耦合的数值方法的Matlab程序 vMEN14;yH_  
`kQosQV  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   T~Bj],k_  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 y<Xu65  
C]5 kQ1Og  
wDW%v@  
.yXqa"p  
%  This Matlab script file solves the nonlinear Schrodinger equations H~Vf;k>  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 9.M'FCd~M  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ug2W{D  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +#BOWz  
] T]{VB  
C=1;                           8^j~uH  
M1=120,                       % integer for amplitude 7(.Z8AO  
M3=5000;                      % integer for length of coupler N=2T~M 1  
N = 512;                      % Number of Fourier modes (Time domain sampling points) /R=MX>JA;  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. , %z HykP  
T =40;                        % length of time:T*T0. ztSQrDbbb4  
dt = T/N;                     % time step =NC??e{  
n = [-N/2:1:N/2-1]';          % Index !.mR]El{K  
t = n.*dt;   h`1<+1J9  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. MAFdJ +n#  
w=2*pi*n./T; +c<iVc|  
g1=-i*ww./2; ]&Y^  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Z8xB a0  
g3=-i*ww./2; 1r$-Uh  
P1=0; ~d]v{<3  
P2=0; G|1.qHP[F  
P3=1; Uz!3){E  
P=0; <O'U-. Gc  
for m1=1:M1                 j;coPehB  
p=0.032*m1;                %input amplitude 3_XLx{["'  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 13 #ff  
s1=s10; Muk J^h*V  
s20=0.*s10;                %input in waveguide 2 t sUu  
s30=0.*s10;                %input in waveguide 3 <YFDS;b|  
s2=s20; 4mo/MK&M:  
s3=s30; <F0^+Pf/  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ;i6~iLY  
%energy in waveguide 1 bGeIb-|(  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ")uKDq  
%energy in waveguide 2 ?}s;,_GH  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   L>sLb(2\i  
%energy in waveguide 3 9Tt%~m^  
for m3 = 1:1:M3                                    % Start space evolution <5z!0m-G  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS r4 *H96l  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Pa3-0dUr  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; U; oXX  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform 'A:Y&w"r  
   sca2 = fftshift(fft(s2)); %`5 (SC].  
   sca3 = fftshift(fft(s3)); lF!PiL  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   '|ntwK*f  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); diJpbR^JP  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); mk1R~4v  
   s3 = ifft(fftshift(sc3)); LsERcjwwK  
   s2 = ifft(fftshift(sc2));                       % Return to physical space d[3me{Rs  
   s1 = ifft(fftshift(sc1)); mv8H:T  
end C 6 \  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); xc}[q`vK  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); X#$ oV#  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));  1}=D  
   P1=[P1 p1/p10]; ,#ZPg_x?1  
   P2=[P2 p2/p10]; R'c dEoy  
   P3=[P3 p3/p10]; JL87a^ro  
   P=[P p*p]; E72N=7v"  
end }/1^Lqfnz  
figure(1) YTefEG]|q  
plot(P,P1, P,P2, P,P3); :;e OhZ=_  
La1:WYt  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计