首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 |xQG  
5p"n g8nR  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of 4Ub_;EI>  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of hJ.XG<?]$  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear "UKX~}8T  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 SPOg'  
|TF,Aj   
%fid=fopen('e21.dat','w'); 6:>4}WOP  
N = 128;                       % Number of Fourier modes (Time domain sampling points) r!V#@Md  
M1 =3000;              % Total number of space steps ^~-i>gTD  
J =100;                % Steps between output of space 4Cke(G  
T =10;                  % length of time windows:T*T0 \2-!%i,  
T0=0.1;                 % input pulse width .3qaaXeH  
MN1=0;                 % initial value for the space output location dG.s8r*?M  
dt = T/N;                      % time step )XMSQ ="m  
n = [-N/2:1:N/2-1]';           % Index NSHWs%Zc  
t = n.*dt;   #6fp "  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 #!rng]p  
u20=u10.*0.0;                  % input to waveguide 2 w;0NtV|  
u1=u10; u2=u20;                 "p.MJxH  
U1 = u1;   R!W!8rr3  
U2 = u2;                       % Compute initial condition; save it in U \    
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ] M "{=z  
w=2*pi*n./T; sn_]7d+ Q  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T [%YA42_`LD  
L=4;                           % length of evoluation to compare with S. Trillo's paper * gr{{c  
dz=L/M1;                       % space step, make sure nonlinear<0.05 K+dkImkh  
for m1 = 1:1:M1                                    % Start space evolution Z66akr  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS v~q2D"  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; D^=_408\  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform epCU(d*b  
   ca2 = fftshift(fft(u2)); go m< V?$  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation zBay 3a  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ?,%vndI  
   u2 = ifft(fftshift(c2));                        % Return to physical space uTA /E9OY  
   u1 = ifft(fftshift(c1)); TU$/3fp*  
if rem(m1,J) == 0                                 % Save output every J steps. &zlwV"W  
    U1 = [U1 u1];                                  % put solutions in U array A|CW4f,  
    U2=[U2 u2]; Zq2dCp%  
    MN1=[MN1 m1]; n*CH,fih:  
    z1=dz*MN1';                                    % output location 3qiE#+dC  
  end +8."z"i3lE  
end vvv~n ]S6  
hg=abs(U1').*abs(U1');                             % for data write to excel />Tyiy]2uu  
ha=[z1 hg];                                        % for data write to excel ^)rX27!G  
t1=[0 t']; zAC   
hh=[t1' ha'];                                      % for data write to excel file 2uZ <q?=  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format LVq3 R 8A  
figure(1) y1,L0v$=}  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn bRJYw6oA<  
figure(2) _2q4Aaza  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 1 <.I2\^  
)W:`Q&/G  
非线性超快脉冲耦合的数值方法的Matlab程序 kCL)F\v"iT  
a k@0M[d  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   &1%W-&bc6  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 m/| >4~  
f*Xonb  
N $M#3Y;  
/gL(40  
%  This Matlab script file solves the nonlinear Schrodinger equations p H5IBIf'  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of >"f,'S5*  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Ow wH 45  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Ht5 %fcD  
=<_xUh.  
C=1;                           J<p<5):R;  
M1=120,                       % integer for amplitude }el. qZ  
M3=5000;                      % integer for length of coupler 00Tm0rY  
N = 512;                      % Number of Fourier modes (Time domain sampling points) :J@q Xa  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Vpt)?];P  
T =40;                        % length of time:T*T0. _K )B  
dt = T/N;                     % time step <P3r+ 1|R  
n = [-N/2:1:N/2-1]';          % Index l:a+o gm3  
t = n.*dt;   K%Mm'$fTw  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. !.zUY6  
w=2*pi*n./T; ;j-@ $j  
g1=-i*ww./2; @BbZ(cZ*  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; w (W+Y+up  
g3=-i*ww./2; 9<k<HmkD  
P1=0; [3nhf<O  
P2=0; _J 6|ju\  
P3=1; d;|e7$F'  
P=0; ZwAX+0  
for m1=1:M1                 Cc0`Ylx~(  
p=0.032*m1;                %input amplitude 6`]R)i]  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 k;3Bv 6  
s1=s10; jj0@ez{3  
s20=0.*s10;                %input in waveguide 2 O_ nk8  
s30=0.*s10;                %input in waveguide 3 f_Y[I :  
s2=s20; o$'Fz[U  
s3=s30; p>Ju)o  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ,ZJI]Q=!  
%energy in waveguide 1 VCiJ]$`M  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   V`TXn[7  
%energy in waveguide 2 ;Z-Cn.  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   2xZg, \  
%energy in waveguide 3 BcX}[?c  
for m3 = 1:1:M3                                    % Start space evolution K?BWl:^x  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS i92{N$*x  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; &vj+3<2  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; /SY40;k:  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform G-G!c2o  
   sca2 = fftshift(fft(s2)); gT<E4$I69  
   sca3 = fftshift(fft(s3)); xp7,0'(;  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   aj20, w  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); WVftLIJ  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); /1h`O@VA  
   s3 = ifft(fftshift(sc3)); _0)#-L>xKF  
   s2 = ifft(fftshift(sc2));                       % Return to physical space Gs7mO  
   s1 = ifft(fftshift(sc1)); ?6p6OB  
end .lb2`!'r&  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); CJJ 1aM  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); E(4ti]'4  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); W:3u$LTf*f  
   P1=[P1 p1/p10]; ~{n_rKYV  
   P2=[P2 p2/p10]; :u'X ~ID[  
   P3=[P3 p3/p10]; '<!/\Jz9l  
   P=[P p*p]; YdV5\!  
end R# 8D}5[&  
figure(1) ""^9WLH4g-  
plot(P,P1, P,P2, P,P3); hAOXOj1  
A%"XNk  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计