首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 bOi};/f  
5aa}FdUq  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of /5&3WG&<u  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of )j]gm i"  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ys:1Z\$P  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 M?QQr~a  
.i1jFwOd|G  
%fid=fopen('e21.dat','w'); +oE7~64LL  
N = 128;                       % Number of Fourier modes (Time domain sampling points) JHnk%h0  
M1 =3000;              % Total number of space steps #FrwfJOV  
J =100;                % Steps between output of space Pn~pej5'K  
T =10;                  % length of time windows:T*T0 4he v ;  
T0=0.1;                 % input pulse width 45]Ym{]  
MN1=0;                 % initial value for the space output location t-3v1cv"  
dt = T/N;                      % time step yBpW#1=  
n = [-N/2:1:N/2-1]';           % Index eD>-`'7<  
t = n.*dt;   MzBfHt'Rk  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ]#vvlM>/  
u20=u10.*0.0;                  % input to waveguide 2 [Q2S3szbt6  
u1=u10; u2=u20;                 =NVZ$KOZ  
U1 = u1;   G%V=idU*"  
U2 = u2;                       % Compute initial condition; save it in U D#vn {^c8O  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. xi Ov$.@q  
w=2*pi*n./T; YyQf  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T [ZL r:2+z  
L=4;                           % length of evoluation to compare with S. Trillo's paper  [%gK^Zt  
dz=L/M1;                       % space step, make sure nonlinear<0.05 .N2nJ/   
for m1 = 1:1:M1                                    % Start space evolution ];d5X  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS S0Rf>Eo4  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; `? 9] '  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform |k['wqn"  
   ca2 = fftshift(fft(u2)); +O.&64(  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation hJ$C%1;  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   d[P>jl%7  
   u2 = ifft(fftshift(c2));                        % Return to physical space |p=.Gg=2  
   u1 = ifft(fftshift(c1)); R:pBbA7E  
if rem(m1,J) == 0                                 % Save output every J steps. ~vjr;a(B  
    U1 = [U1 u1];                                  % put solutions in U array \>aa8LOe  
    U2=[U2 u2]; %z!d4J75  
    MN1=[MN1 m1]; x3Dg%=R  
    z1=dz*MN1';                                    % output location &4[#_(pk  
  end \Z6gXO_  
end :#Ex3H7  
hg=abs(U1').*abs(U1');                             % for data write to excel ]"2 v7)e  
ha=[z1 hg];                                        % for data write to excel N,sqrk]  
t1=[0 t']; \KnD"0KW   
hh=[t1' ha'];                                      % for data write to excel file  n_xa)  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format  Vgru, '  
figure(1) X,JWLS J  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn #BT6bH08X  
figure(2) [-:<z?(n4  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn esC\R4he  
<p L;-  
非线性超快脉冲耦合的数值方法的Matlab程序 ~D`oP/6  
eB/hyC1  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   x9o^9QJh  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 F)<G]i8n~  
2 Zjb/  
q:~`7I  
YL&b9e4  
%  This Matlab script file solves the nonlinear Schrodinger equations !MF"e|W  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of M:1F@\<  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear zQ6 -2 A  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 BqEubP(si  
@#ho(_U8  
C=1;                           TLL[F;uZ  
M1=120,                       % integer for amplitude tx1m36a"  
M3=5000;                      % integer for length of coupler +q_lYGTiO  
N = 512;                      % Number of Fourier modes (Time domain sampling points) -JQg ~1  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. U37?P7i's  
T =40;                        % length of time:T*T0. Sc"4%L  
dt = T/N;                     % time step 2}#wd J`  
n = [-N/2:1:N/2-1]';          % Index s3E~X  
t = n.*dt;   [sY1|eX   
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. F6GZZKj  
w=2*pi*n./T; ~ ew**@N  
g1=-i*ww./2; <iprPk  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Lv5 ==w}  
g3=-i*ww./2; =wR]X*Pan  
P1=0; JQh s=Xg  
P2=0; AoOG[to7  
P3=1; `0G.Y  
P=0; Gx*0$4xJ3  
for m1=1:M1                 *=0r>]  
p=0.032*m1;                %input amplitude \^(vlcy  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ^FMa8;'o  
s1=s10; Yg,WdVI&@  
s20=0.*s10;                %input in waveguide 2 aE cg_es  
s30=0.*s10;                %input in waveguide 3 GuY5 % wr  
s2=s20; 8\.1m9&r>o  
s3=s30; WAmoKZw2  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   [ EID27P  
%energy in waveguide 1 CU`Oc>;*T  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   wfTv<WG,.E  
%energy in waveguide 2 <J }9.k  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ,p`b Wm  
%energy in waveguide 3 xPJJ !mY  
for m3 = 1:1:M3                                    % Start space evolution p'!,F; xX  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS rJQ|Oi&1i  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; UpseU8Wo  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; k8wi-z[dV  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform ;xtb2c8HT  
   sca2 = fftshift(fft(s2)); AG\ 852`1m  
   sca3 = fftshift(fft(s3)); j~f 7WJ  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   AbI*/ |sY  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); {#M{~  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); (0m$W<  
   s3 = ifft(fftshift(sc3)); _"bvT?|  
   s2 = ifft(fftshift(sc2));                       % Return to physical space zp-~'kIJ  
   s1 = ifft(fftshift(sc1)); 35kbE'  
end E^W*'D  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); n]c,0N  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); #&KE_ n  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); -?`l<y(  
   P1=[P1 p1/p10]; '?GZ"C2  
   P2=[P2 p2/p10]; D c.WvUM  
   P3=[P3 p3/p10]; C\@YH]  
   P=[P p*p]; V*uu:  
end L\CM);y  
figure(1) x)Kh _G  
plot(P,P1, P,P2, P,P3); @Hdg-f>y]  
']e4 !  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计