| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 ?8"*B^*Sh KxX [8 % This Matlab script file solves the coupled nonlinear Schrodinger equations of U\?D;ABQ% % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of i`r`Fj}-S- % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear yT@Aj;X0v % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 JpC=ACF -?)^
hbr %fid=fopen('e21.dat','w'); {jB>]7 N = 128; % Number of Fourier modes (Time domain sampling points) xBTx`+%WS M1 =3000; % Total number of space steps nJN-U+)u J =100; % Steps between output of space .k]`z>uv T =10; % length of time windows:T*T0 )0exGx+: T0=0.1; % input pulse width Gd%i?(U,R MN1=0; % initial value for the space output location m.m6. dt = T/N; % time step qsep9z. n = [-N/2:1:N/2-1]'; % Index l1DJ<I2 t = n.*dt; jj2iF/ u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 w8 :[w u20=u10.*0.0; % input to waveguide 2 fc*>ky.v u1=u10; u2=u20; `5Kg[nB: U1 = u1; D :U6r^c U2 = u2; % Compute initial condition; save it in U B\RAX# ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. :C} I6v= w=2*pi*n./T; MOaI~xZ g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T s"=TM$Vb L=4; % length of evoluation to compare with S. Trillo's paper ,Zn6T"[$ dz=L/M1; % space step, make sure nonlinear<0.05 \(i'i C for m1 = 1:1:M1 % Start space evolution Gg'!(]v u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS ;um)JCXz u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; rwLKY.J] ca1 = fftshift(fft(u1)); % Take Fourier transform {wz)^A
sy ca2 = fftshift(fft(u2)); ay7\Ae] c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation *gwlW/%Fz c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift $C7a#?YF, u2 = ifft(fftshift(c2)); % Return to physical space ,6;n[p"h|r u1 = ifft(fftshift(c1)); %@Gy<t, if rem(m1,J) == 0 % Save output every J steps. _HHvL= U1 = [U1 u1]; % put solutions in U array 8)1q,[:M U2=[U2 u2]; 0* F` h MN1=[MN1 m1]; 2~$S @c z1=dz*MN1'; % output location M/p9 I
gp end rH`\UZ{cc end l|WFS hg=abs(U1').*abs(U1'); % for data write to excel %Z_O\zRqy) ha=[z1 hg]; % for data write to excel MT~^wI0a t1=[0 t']; p [C
9g hh=[t1' ha']; % for data write to excel file *ai~!TR %dlmwrite('aa',hh,'\t'); % save data in the excel format u @Ze@N% figure(1) $vu*# .w waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn yk8b>.Y\A figure(2) ; R+>}6 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn #!F>cez v@%4i~N 非线性超快脉冲耦合的数值方法的Matlab程序 NF8<9 >g{&Qx`& 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 )ovAG O Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $~b6H]"9 gvR]"h ~ZVz
sNrx lwf4ke % This Matlab script file solves the nonlinear Schrodinger equations U~][
ph % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of dB_0B. % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ?0t^7HMP % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 M)oKtiav* lZ-U/$od C=1; h_(M#gG M1=120, % integer for amplitude B%6cgm, M3=5000; % integer for length of coupler $,~Ily7w N = 512; % Number of Fourier modes (Time domain sampling points) xZ`z+) dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. b~vV++ou_ T =40; % length of time:T*T0. _A C N dt = T/N; % time step z+yq%O n = [-N/2:1:N/2-1]'; % Index 4tCM2it% t = n.*dt; _!o8s%9be ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 5=C?,1F$A w=2*pi*n./T; t/;0/ql\ g1=-i*ww./2; T9V=#+8#" g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ! eZls g3=-i*ww./2; *Mhirz%iD P1=0; T>asH P2=0; "M5 P3=1; 9PKXQp P=0; {d[Nc,AMb for m1=1:M1 [cnuK p=0.032*m1; %input amplitude sg7h&<Xx s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 9\.0v{&v s1=s10; T]wI) s20=0.*s10; %input in waveguide 2 gFp3=s0~ s30=0.*s10; %input in waveguide 3 G~5pMyOR s2=s20; Sh!c]r>\Q s3=s30; lq:q0>vyI p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); 3cghg._ %energy in waveguide 1 @~$d4K
y< p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); ] x)>q %energy in waveguide 2 {C5:as p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); D@La-K*5 %energy in waveguide 3 'l^Bb#)" for m3 = 1:1:M3 % Start space evolution ! :]_-DX s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS :o!Kz`J s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; A:(|"<lA s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ^!S4?<v sca1 = fftshift(fft(s1)); % Take Fourier transform "j_iq"J sca2 = fftshift(fft(s2)); w317]-n sca3 = fftshift(fft(s3)); >;4q sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift u9f^wn sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); I4N7wnBp sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ?IAu,s*u s3 = ifft(fftshift(sc3)); h&j2mv( s2 = ifft(fftshift(sc2)); % Return to physical space Z (6.e8fK s1 = ifft(fftshift(sc1)); {'4#{zmp end s@{82}f~ p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); F)cCaE; p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); nCi
]6;Y p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ~JT2el2W7p P1=[P1 p1/p10]; )L9eLxI P2=[P2 p2/p10]; +
-Rf@ P3=[P3 p3/p10]; P{)D_Bi P=[P p*p]; y7UU'k` end c)#7T<>*' figure(1) L!xFhVA< plot(P,P1, P,P2, P,P3); #k9&OS? SOR\oZ7 转自:http://blog.163.com/opto_wang/
|
|