首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 o2hk!#5[4  
G,c2?^#n  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of kwqY~@W  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of : 2$*'{mM  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ?=^\kXc[  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4*9t:D|}  
[Y?Y@x"MZ  
%fid=fopen('e21.dat','w'); ?FUK_]  
N = 128;                       % Number of Fourier modes (Time domain sampling points) @|sBnerE  
M1 =3000;              % Total number of space steps wr=K AsH<  
J =100;                % Steps between output of space "nb.!OG~(  
T =10;                  % length of time windows:T*T0 ^nNpT!o  
T0=0.1;                 % input pulse width }N).$  
MN1=0;                 % initial value for the space output location ].5q,A]  
dt = T/N;                      % time step c53:E'g  
n = [-N/2:1:N/2-1]';           % Index ^ERdf2  
t = n.*dt;   $cc]Av4c2  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 1 ?Zw  
u20=u10.*0.0;                  % input to waveguide 2 L, #|W  
u1=u10; u2=u20;                 [}GK rI  
U1 = u1;   ij~-  
U2 = u2;                       % Compute initial condition; save it in U ](8F]J ,  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. W}2!~ep!  
w=2*pi*n./T; b62B|0i  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Q4/BpKL  
L=4;                           % length of evoluation to compare with S. Trillo's paper LH=^3Gw  
dz=L/M1;                       % space step, make sure nonlinear<0.05 C^;8M'8z0  
for m1 = 1:1:M1                                    % Start space evolution >;bym)  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS -^(KGu&L&u  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; #$W0%7  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform 1-N+qNSD`  
   ca2 = fftshift(fft(u2)); I"x~ 7  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation z}.6yHS  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   'Ha> >2M  
   u2 = ifft(fftshift(c2));                        % Return to physical space ;ND[+i2MN  
   u1 = ifft(fftshift(c1)); aI ;$N|]u  
if rem(m1,J) == 0                                 % Save output every J steps. 5*-RIs! 2  
    U1 = [U1 u1];                                  % put solutions in U array ;hV|W{=w  
    U2=[U2 u2]; YTmHht{j#  
    MN1=[MN1 m1]; 98O]tL+k/u  
    z1=dz*MN1';                                    % output location *5*#Z~dut8  
  end GoAh{=s  
end *]h"J]  
hg=abs(U1').*abs(U1');                             % for data write to excel ' Q(kx*;  
ha=[z1 hg];                                        % for data write to excel /':64#'  
t1=[0 t']; WiB~sIp  
hh=[t1' ha'];                                      % for data write to excel file S w%6-  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format )bL(\~0g~  
figure(1) jpS$5Ct  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn zS|4@t\__  
figure(2) o|y_j4 9  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn d=8.cQL:E  
a~a:mM > p  
非线性超快脉冲耦合的数值方法的Matlab程序 QRrAyRf[  
^Go,HiB  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   @9n|5.i  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 T0"nzukd  
v_pe=LC{-e  
O"EL3$9V  
Hm!"%  
%  This Matlab script file solves the nonlinear Schrodinger equations !L q'o ?  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ~o|sma5.  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2p#d  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "aI)LlyCY  
m ie~. "  
C=1;                           m[Ihte->  
M1=120,                       % integer for amplitude 1#7|au%:)  
M3=5000;                      % integer for length of coupler pU<J?cU8N  
N = 512;                      % Number of Fourier modes (Time domain sampling points) )\VuN-d  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. <Opw"yY&q]  
T =40;                        % length of time:T*T0. ~6Fh,S1?  
dt = T/N;                     % time step 3`{;E{  
n = [-N/2:1:N/2-1]';          % Index ::iYydpM  
t = n.*dt;   L kl E,W  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. UF6U5],`u  
w=2*pi*n./T; ?I? ~BWu  
g1=-i*ww./2; T}1"  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; cJ@fJ|  
g3=-i*ww./2; =uNc\a(  
P1=0; 5pDE!6gQ  
P2=0; #W|Obc]K  
P3=1; =54D#,[B  
P=0; .m8l\h^3  
for m1=1:M1                  4q7H  
p=0.032*m1;                %input amplitude E'D16Rhp  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Rx"+i0  
s1=s10; eN </H.bm]  
s20=0.*s10;                %input in waveguide 2 htL1aQ.  
s30=0.*s10;                %input in waveguide 3 59SL mj  
s2=s20; N%Y!{k5T7  
s3=s30; iHf):J?8 y  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   (jhi<eV  
%energy in waveguide 1 K0C"s 'q  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   IBeorDIZ  
%energy in waveguide 2 x7^VU5w#  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   l<4P">M!.  
%energy in waveguide 3 0<uLQVoR2n  
for m3 = 1:1:M3                                    % Start space evolution .o]I^3tf c  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS yih|6sd$F  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; H Q[  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; I0Allw[  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform >eo[)Y  
   sca2 = fftshift(fft(s2)); }:{ @nP  
   sca3 = fftshift(fft(s3)); >@cBDS<6R  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   p^q/u  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); lg2I|Z6DH  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 8d8jUPFQ  
   s3 = ifft(fftshift(sc3)); &s}sA+w  
   s2 = ifft(fftshift(sc2));                       % Return to physical space pCo3%(  
   s1 = ifft(fftshift(sc1)); _%Xp2`m  
end A Y<L8  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); bo<.pK$  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); E $\nb]JQ  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); b&4JHyleF  
   P1=[P1 p1/p10]; Nl,iz_2]  
   P2=[P2 p2/p10]; aJjUy%  
   P3=[P3 p3/p10]; p< 0=. ~  
   P=[P p*p]; B<-("P(q  
end SB('Nqih  
figure(1) f_LXp$n  
plot(P,P1, P,P2, P,P3); !t~tIJ>6  
4 $Kzh  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计