niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 o(fy d)t function z = zernfun(n,m,r,theta,nflag) PIxjM> %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8wmQ4){ % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N MUwxgAG`G % and angular frequency M, evaluated at positions (R,THETA) on the d.AC%&W % unit circle. N is a vector of positive integers (including 0), and #U"1 9@|} % M is a vector with the same number of elements as N. Each element J@Yj\9U % k of M must be a positive integer, with possible values M(k) = -N(k) J>h;_jA % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, wE6A
7\k% % and THETA is a vector of angles. R and THETA must have the same ShGp^xVj % length. The output Z is a matrix with one column for every (N,M) }#/lN % pair, and one row for every (R,THETA) pair. JDlBVZ! % Y0Rg Jn % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike f GarUV % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), T8Na]V5 % with delta(m,0) the Kronecker delta, is chosen so that the integral ?1w"IjUS % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u"Y]P*[k % and theta=0 to theta=2*pi) is unity. For the non-normalized Hi8Y6|y$D % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %/pc=i|+ % |}Ph"g2D, % The Zernike functions are an orthogonal basis on the unit circle. -N# #w= % They are used in disciplines such as astronomy, optics, and ^P$7A]! % optometry to describe functions on a circular domain. X<euD9? % }-nU3{1 % The following table lists the first 15 Zernike functions. B9#;- QO % d.r Y-k % n m Zernike function Normalization qqvF-mDN % -------------------------------------------------- R=$Ls6z % 0 0 1 1 wW5Yw
i % 1 1 r * cos(theta) 2 I$j|Rq % 1 -1 r * sin(theta) 2 e=>%^F % 2 -2 r^2 * cos(2*theta) sqrt(6) 5[R?iSGL1 % 2 0 (2*r^2 - 1) sqrt(3) (STx$cya % 2 2 r^2 * sin(2*theta) sqrt(6) fp;a5||5 % 3 -3 r^3 * cos(3*theta) sqrt(8) m~>@BCn; % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) S^j,f'2 % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) BS2?!;,8 % 3 3 r^3 * sin(3*theta) sqrt(8) nk/vGa4 % 4 -4 r^4 * cos(4*theta) sqrt(10) %5Rq1 $D % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w}`3 d@ % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 6+PGwCS % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &t3Jv{ % 4 4 r^4 * sin(4*theta) sqrt(10) sfI N)jh % -------------------------------------------------- ;k}H(QI % mx}E$b$<CY % Example 1: a.,_4;'UE1 % i@,]Z~] % % Display the Zernike function Z(n=5,m=1) }N,>A-P % x = -1:0.01:1; &J(!8y*QyE % [X,Y] = meshgrid(x,x); r/PKrw sC % [theta,r] = cart2pol(X,Y); .@k *p >K % idx = r<=1; &t_h'JX& % z = nan(size(X)); ,Rz}=j % z(idx) = zernfun(5,1,r(idx),theta(idx)); 8R4qU!M % figure #{,h@g}W % pcolor(x,x,z), shading interp ~ 5"J( % axis square, colorbar mHs:t{q % title('Zernike function Z_5^1(r,\theta)') x+:zq<0| % 7#pZa.B)k % Example 2: H.~bD[gA % RGp'b % % Display the first 10 Zernike functions W4vBf^eC % x = -1:0.01:1; aQ|hi F} % [X,Y] = meshgrid(x,x); ps+:</;Z % [theta,r] = cart2pol(X,Y); [`nY2[A$ % idx = r<=1; 3cThu43c % z = nan(size(X)); q%S8\bt % n = [0 1 1 2 2 2 3 3 3 3]; euZI`*0 % m = [0 -1 1 -2 0 2 -3 -1 1 3]; ML=z<u+ % Nplot = [4 10 12 16 18 20 22 24 26 28]; {D,RU8& % y = zernfun(n,m,r(idx),theta(idx)); $?f]ZyZr. % figure('Units','normalized') A.U'Q| % for k = 1:10 %U?)?iZdL % z(idx) = y(:,k); oAz<G % subplot(4,7,Nplot(k)) v{koKQ'Y() % pcolor(x,x,z), shading interp <25ccE9^c % set(gca,'XTick',[],'YTick',[]) w-FHhf % axis square 2.qpt'p[ % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) kqf8=y % end Fu##'# % u[EK#% % See also ZERNPOL, ZERNFUN2. 5"gL.Ez ZNL5({lv % Paul Fricker 11/13/2006 CQ1 8%w6 1b[NgOXY= ; )|nkI % Check and prepare the inputs: r|-J8s# % ----------------------------- jY+Do:#/wO if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) FmI;lVF0j error('zernfun:NMvectors','N and M must be vectors.') :8]6#c6`74 end B5`;MQJ 4)nt$fW if length(n)~=length(m) wY`#$)O0* error('zernfun:NMlength','N and M must be the same length.') OG}KqG!n end f?-J#x) ]_#SAhOR) n = n(:); Yb9cW\lr m = m(:); iT$d;5_pU if any(mod(n-m,2)) ]-Lruq# error('zernfun:NMmultiplesof2', ... 24X=5Aj 'All N and M must differ by multiples of 2 (including 0).') K?YEoz'y[ end ]}~4J.Yn "XB4yExy if any(m>n) k=|K| error('zernfun:MlessthanN', ... ?Cc :) 'Each M must be less than or equal to its corresponding N.') ;@4sd%L8V end Hz? ,#>{ 8]]@S"ZM,\ if any( r>1 | r<0 ) =mLeMk/7 w error('zernfun:Rlessthan1','All R must be between 0 and 1.') Xi+n`T'i end Da CblX W0?JVtq0Z if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) AysL-sqR error('zernfun:RTHvector','R and THETA must be vectors.') dk:xnX% end Om6Mmoqh 2-7Z(7G{ F r = r(:); Wl
TpX` theta = theta(:); RNe9h lr length_r = length(r); -R8/`M8GbD if length_r~=length(theta) -#OwJ*-U error('zernfun:RTHlength', ... =h7[E./U1 'The number of R- and THETA-values must be equal.') e# <4/FR end g/B\ObY Rdj8*f % Check normalization: PJ;.31u % -------------------- cdDY]"k if nargin==5 && ischar(nflag) K4Y'B
o4 isnorm = strcmpi(nflag,'norm'); )*W=GY* if ~isnorm bq: [Nj error('zernfun:normalization','Unrecognized normalization flag.') X98#QR#m end Cy6%S).c else OQ,}/ isnorm = false; G
~A$jStm end Nuo^+z
E ajGcKyj8i %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nfa_8 % Compute the Zernike Polynomials 0W_mCV %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y,V6h*x2 |zh + % Determine the required powers of r: M6&~LI.We= % ----------------------------------- n_1jHJo m_abs = abs(m); \*Ts)EW rpowers = []; J ZA*{n2 for j = 1:length(n) V&g)m.d:n rpowers = [rpowers m_abs(j):2:n(j)]; !"`Jqs end aU4R+.M7@ rpowers = unique(rpowers); ^glX1 ) "A]?M<R % Pre-compute the values of r raised to the required powers, ;}UzJe ,S % and compile them in a matrix: gU+ss % ----------------------------- lS#7xh if rpowers(1)==0 PP],HB+*[ rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D$QGL I9( rpowern = cat(2,rpowern{:}); x\6];SXX rpowern = [ones(length_r,1) rpowern]; "cNg: else
[A|(A$jl rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); xUIvLH= rpowern = cat(2,rpowern{:}); [#IBYJ.6 end \zBd<H4S: ^u3*hl}YKy % Compute the values of the polynomials: WFRsSp2 % -------------------------------------- c5<kbe y = zeros(length_r,length(n)); p?}f|mQS) for j = 1:length(n) #t){ 4J s = 0:(n(j)-m_abs(j))/2; zf`5>h| pows = n(j):-2:m_abs(j); j{)fC]8H for k = length(s):-1:1 re]%f"v:5 p = (1-2*mod(s(k),2))* ... 1k$2LQ prod(2:(n(j)-s(k)))/ ...
ccRlql( prod(2:s(k))/ ... $y8mK|3.3u prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... JR])xPI` prod(2:((n(j)+m_abs(j))/2-s(k))); s%5Uj} idx = (pows(k)==rpowers); ZT r:xX{R6 y(:,j) = y(:,j) + p*rpowern(:,idx); EN)YoVk end NWw<B3aL Ih(:HFRMq6 if isnorm Fs?( UM y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); qI(W$ end oN_S}o
end " 98/HzR % END: Compute the Zernike Polynomials m\_+)eI| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LFl2uV" *@CVYJ'< % Compute the Zernike functions: !&qx7eOSpP % ------------------------------ ^g}L`9fL idx_pos = m>0; 3(aRs?/O idx_neg = m<0; D% oueW NAJ '><2 z = y; <}<#W/ if any(idx_pos) TViBCed40 z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4s[`yV
end B.V?s,U if any(idx_neg) tX@0:RX% z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ixIh
T end k&WUv0 5P-K *C& % EOF zernfun
|
|