首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ~BC~^ D&WD  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! }oL l? L  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 XBm ^7'  
function z = zernfun(n,m,r,theta,nflag) ;umbld0  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. `k -|G2  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gR${S|Z#u4  
%   and angular frequency M, evaluated at positions (R,THETA) on the [tkP2%1  
%   unit circle.  N is a vector of positive integers (including 0), and ->'xjD  
%   M is a vector with the same number of elements as N.  Each element +wcif-  
%   k of M must be a positive integer, with possible values M(k) = -N(k) wPvYnhr|G-  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, J~}i}|YC>  
%   and THETA is a vector of angles.  R and THETA must have the same Uy<n7*H  
%   length.  The output Z is a matrix with one column for every (N,M) [6CWgQ%Ue  
%   pair, and one row for every (R,THETA) pair. /0r6/ _5-.  
% >/'/^h  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike bd&Nf2  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ok{ F=z  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral W)Mc$`nX  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, jZ0/@zOf  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized z}-8pDD'  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. EMf"rGXu(  
% Hv</Xam  
%   The Zernike functions are an orthogonal basis on the unit circle. sOm&7A?  
%   They are used in disciplines such as astronomy, optics, and {-51rAyi  
%   optometry to describe functions on a circular domain. K1t>5zm  
% `!C5"i8+i2  
%   The following table lists the first 15 Zernike functions. \9 k3;zw  
% Hlz$@[$  
%       n    m    Zernike function           Normalization $1n\jN  
%       -------------------------------------------------- 9'A^n~JHF  
%       0    0    1                                 1 @;Xa&*   
%       1    1    r * cos(theta)                    2 rSKZc`<^  
%       1   -1    r * sin(theta)                    2 8@]vvZ2/gj  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) YXIAVSnr  
%       2    0    (2*r^2 - 1)                    sqrt(3) -*;JUSGh  
%       2    2    r^2 * sin(2*theta)             sqrt(6) [s F/sa 3  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) 5>>JQ2'W  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) c3J12+~;  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8)  q{pa _  
%       3    3    r^3 * sin(3*theta)             sqrt(8) i!+0''i{#  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) +0M0g_sk  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U,V+qnS  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Sz>Lbs  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hu"TEhW(2  
%       4    4    r^4 * sin(4*theta)             sqrt(10) hlGrnL  
%       -------------------------------------------------- {YEGy  
% gaR~K  
%   Example 1: vOU9[n N[  
% b5W(}ka+  
%       % Display the Zernike function Z(n=5,m=1) 7%5EBH &  
%       x = -1:0.01:1; WNF#eM?[a  
%       [X,Y] = meshgrid(x,x); 0xc|Wn>  
%       [theta,r] = cart2pol(X,Y); v8>bR|n5  
%       idx = r<=1; 2I{kLN1TY  
%       z = nan(size(X)); '1b4nj|<m  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); &e99P{\D  
%       figure uYXkD#{  
%       pcolor(x,x,z), shading interp {tUxRX  
%       axis square, colorbar z7R2viR[  
%       title('Zernike function Z_5^1(r,\theta)') qb +Gjgp  
% Y, {pG]B$w  
%   Example 2: 7,FhKTV1/  
% 0HDL;XY6  
%       % Display the first 10 Zernike functions ilwIqj  
%       x = -1:0.01:1; &[kFl\  
%       [X,Y] = meshgrid(x,x); F87c?Vh)K  
%       [theta,r] = cart2pol(X,Y); PBgU/zVn  
%       idx = r<=1; I[bWd{i:  
%       z = nan(size(X)); ;8yEhar  
%       n = [0  1  1  2  2  2  3  3  3  3]; yo :63CPP  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; wS+j^ ;"  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; Gq{);fq  
%       y = zernfun(n,m,r(idx),theta(idx)); w 9C?wT  
%       figure('Units','normalized') L4v26*P  
%       for k = 1:10 JwdvY]  
%           z(idx) = y(:,k); 6)_h'v<|M  
%           subplot(4,7,Nplot(k)) S%3&Y3S  
%           pcolor(x,x,z), shading interp O T .bXr~  
%           set(gca,'XTick',[],'YTick',[]) ~$m:j];  
%           axis square z~#d@c\  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) x2tcr+o  
%       end kn}bb*eZ  
% C&;m56  
%   See also ZERNPOL, ZERNFUN2. K?*p|&Fi?8  
N$M:&m3^  
%   Paul Fricker 11/13/2006 9}' 92  
c6tH'oV  
[H {2<!  
% Check and prepare the inputs: SDko#  
% ----------------------------- $~NB .SY  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LKYcE;n  
    error('zernfun:NMvectors','N and M must be vectors.') WMnxN34  
end CRu {Ie5B  
{}"a_L&[;  
if length(n)~=length(m) afd.v$63  
    error('zernfun:NMlength','N and M must be the same length.') EXti  
end eHU b4,%P  
vCn\_Nu;W&  
n = n(:); a"phwCc"%  
m = m(:); WP !u3\91  
if any(mod(n-m,2)) #Ht;5p>5  
    error('zernfun:NMmultiplesof2', ... Yduj3Ht:w  
          'All N and M must differ by multiples of 2 (including 0).') R/l/GNm  
end &<t`EI];)4  
i&0Zli  
if any(m>n) |N:kf&]b  
    error('zernfun:MlessthanN', ... C;oO=R3r  
          'Each M must be less than or equal to its corresponding N.') #2;8/"v  
end {0 L)B{|  
.J \i!  
if any( r>1 | r<0 ) ]*<!|;q  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') 90gKGyxF  
end .cB>ab&  
rN`-ak  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) eOJ_L]y-  
    error('zernfun:RTHvector','R and THETA must be vectors.') fK+[r1^  
end ]P)2Q!X  
(>`S{L C>s  
r = r(:); [uFv_G{H  
theta = theta(:); +{WZpP},v  
length_r = length(r); n_4BNOZ~  
if length_r~=length(theta) NGkWr  
    error('zernfun:RTHlength', ... -+kTw06_C  
          'The number of R- and THETA-values must be equal.') 6k;>:[p  
end L 7l"*w(  
i7\MVI 8  
% Check normalization: f!J?n]  
% -------------------- Xuj=V?5  
if nargin==5 && ischar(nflag) 0r]-Ltvl?}  
    isnorm = strcmpi(nflag,'norm'); ##'uekSJ  
    if ~isnorm jV(b?r)eT{  
        error('zernfun:normalization','Unrecognized normalization flag.') bDnT><eH  
    end pXK-,7-  
else '-_tF3x  
    isnorm = false; ;Ngu(es6  
end ~>rn q7j  
a<P?4tbF  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NUX$)c  
% Compute the Zernike Polynomials e%^PVi  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4_ kg/  
Gg6<4T1  
% Determine the required powers of r: oPrK{flm  
% ----------------------------------- jk1mP6'P|  
m_abs = abs(m); "` kSI&2  
rpowers = []; GW0e=Y=LR  
for j = 1:length(n) K.42 VM)F  
    rpowers = [rpowers m_abs(j):2:n(j)]; Z%QU5.  
end WTwura,  
rpowers = unique(rpowers); d%#5roR4<  
7|X.E  
% Pre-compute the values of r raised to the required powers, 6d;RtCENo  
% and compile them in a matrix: 'y|p)r"  
% ----------------------------- \!zM4ppr  
if rpowers(1)==0 h3MZLPe  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2]+f<Z[/  
    rpowern = cat(2,rpowern{:}); 4AYW'j C  
    rpowern = [ones(length_r,1) rpowern]; #Wely~  
else `$ZBIe/u  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); X"S")BQ q  
    rpowern = cat(2,rpowern{:}); i:x<Vi  
end 2 xt$w%  
6dKJt  
% Compute the values of the polynomials: DVw 04ay%  
% -------------------------------------- yX CJ?  
y = zeros(length_r,length(n)); 2(25IYMS8  
for j = 1:length(n) g.COKA  
    s = 0:(n(j)-m_abs(j))/2; BZk0B ?  
    pows = n(j):-2:m_abs(j); &cT@MV5  
    for k = length(s):-1:1 :F pt>g  
        p = (1-2*mod(s(k),2))* ... j:[ #eC  
                   prod(2:(n(j)-s(k)))/              ... E6clVa  
                   prod(2:s(k))/                     ... 2I0Zr;\f  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Dj'+,{7,u  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); r^;1Sm  
        idx = (pows(k)==rpowers); }/aqh;W  
        y(:,j) = y(:,j) + p*rpowern(:,idx); (gF{S* `  
    end @^,9O92l  
     sEcg;LFp  
    if isnorm y#-~L-J_R  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); lnt}l  
    end 7-4S'rq+  
end r%xf=};  
% END: Compute the Zernike Polynomials Imz1"+E~  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Tr "Bz!  
B\6%.R  
% Compute the Zernike functions: 1_5]3+r_U-  
% ------------------------------ z{A~d  
idx_pos = m>0; UI74RP  
idx_neg = m<0; b$=c(@]  
RpU.v `  
z = y; l vfplA  
if any(idx_pos) b^WF R   
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); qw}. QwPT  
end 7>xfQ  
if any(idx_neg) |^ J5YwCf  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +lw*/\7  
end "1ov<  
S=g E'"LT  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) _TjRvILC  
%ZERNFUN2 Single-index Zernike functions on the unit circle. m " c6^)U  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated TQ25"bWi  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive :djbZ><  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, i} ?\K>BWq  
%   and THETA is a vector of angles.  R and THETA must have the same P7 R}oO_n:  
%   length.  The output Z is a matrix with one column for every P-value, ->5[C0: ]  
%   and one row for every (R,THETA) pair. k5eTfaxl  
% KqFiS9 N5  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike yIqRSqM  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) RwDXOdgu  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) cb%ML1c  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 o3a%u(   
%   for all p. M`QK{$1p  
% /R[P sB  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 7nk3^$|  
%   Zernike functions (order N<=7).  In some disciplines it is x(y=.4Yf+  
%   traditional to label the first 36 functions using a single mode (?kCo  
%   number P instead of separate numbers for the order N and azimuthal DUyUA'*4n|  
%   frequency M. #s|,o Im  
% ?EA&kZR]  
%   Example: (]sk3 A  
% ad`=A V]  
%       % Display the first 16 Zernike functions YbP}d&L  
%       x = -1:0.01:1; 06>+loBG  
%       [X,Y] = meshgrid(x,x); HC(o;,spO  
%       [theta,r] = cart2pol(X,Y); drh,=M\F  
%       idx = r<=1; s|-g)  
%       p = 0:15; b%|6y  
%       z = nan(size(X)); Wo<kKkx2  
%       y = zernfun2(p,r(idx),theta(idx)); ZG1 {"J/z  
%       figure('Units','normalized') \v p^[,SI  
%       for k = 1:length(p) )C%S`d<%,  
%           z(idx) = y(:,k); ANXN.V  
%           subplot(4,4,k) 0{sYD*gK]  
%           pcolor(x,x,z), shading interp uAv'%/  
%           set(gca,'XTick',[],'YTick',[]) !sav~dB)  
%           axis square ?tf<AZ=+^L  
%           title(['Z_{' num2str(p(k)) '}']) V;1i/{  
%       end trM)&aQto  
% s-),Pv|  
%   See also ZERNPOL, ZERNFUN. {#H'K*j{  
Tizjh&*^  
%   Paul Fricker 11/13/2006 !E9A=u{  
c$~J7e6$  
Qd"u$~ qC  
% Check and prepare the inputs: zH1ChgF=}  
% ----------------------------- ?CZ*MMV  
if min(size(p))~=1 Pc=:j(  
    error('zernfun2:Pvector','Input P must be vector.') "Sd2VSLg  
end }R)A%FKi@  
uG 7ll5Yy  
if any(p)>35 m'5rzZP  
    error('zernfun2:P36', ... psB9~EU&Q  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... f<P>IE  
           '(P = 0 to 35).']) Tg/r V5@ka  
end o3>D~9  
lZ5TDS  
% Get the order and frequency corresonding to the function number: ,[)f-FmcU  
% ---------------------------------------------------------------- CB>O%m[1  
p = p(:); k"J=CDP\  
n = ceil((-3+sqrt(9+8*p))/2); 19;F+%no#  
m = 2*p - n.*(n+2); +y|H#(wBP  
?8R  
% Pass the inputs to the function ZERNFUN: LKI2R_|n  
% ---------------------------------------- #GA6vJ4^s  
switch nargin Z*lZl8(`  
    case 3 dJUI.!hv;  
        z = zernfun(n,m,r,theta); s&Ml1 A:  
    case 4 & *!) d"  
        z = zernfun(n,m,r,theta,nflag); 5.FAuzz  
    otherwise oSB0P  
        error('zernfun2:nargin','Incorrect number of inputs.') eVujur$P  
end ,: 4+hJ<q  
_-bEnF+/0  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) ?)'+l   
%ZERNPOL Radial Zernike polynomials of order N and frequency M. Pqb])-M9p  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 50^T \u  
%   order N and frequency M, evaluated at R.  N is a vector of $sBje*;  
%   positive integers (including 0), and M is a vector with the IL N0/eH  
%   same number of elements as N.  Each element k of M must be a rdQ'#}I x  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) Vh;P,no#  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ,?Nc\Q<:  
%   a vector of numbers between 0 and 1.  The output Z is a matrix y|[YEY U)  
%   with one column for every (N,M) pair, and one row for every #J)83  
%   element in R. 0FEn& \2<  
% )Qx&m}  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- JBvP {5  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is _!C'oG6s?  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to #\r5Q>  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ik Pm,ZN  
%   for all [n,m]. QX&1BKqWn  
% xlU:&=|  
%   The radial Zernike polynomials are the radial portion of the 0I \l_St@  
%   Zernike functions, which are an orthogonal basis on the unit /J` ZO$  
%   circle.  The series representation of the radial Zernike k4Ub+F  
%   polynomials is kmfxk/F}  
% > ;zQ.2*  
%          (n-m)/2 #ZvDf5A  
%            __ / |z_z%=  
%    m      \       s                                          n-2s <zE~N~;  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r XZ!^kftyW  
%    n      s=0 $7JWA9#N!  
% )k'4]=d <  
%   The following table shows the first 12 polynomials. ;L.RfP"5<  
% #{oGmzG!  
%       n    m    Zernike polynomial    Normalization sQ8_j  
%       --------------------------------------------- -Rz%<`  
%       0    0    1                        sqrt(2) Th[Gu8b3  
%       1    1    r                           2 lL{1wCsl  
%       2    0    2*r^2 - 1                sqrt(6) VUE6M\&z>  
%       2    2    r^2                      sqrt(6) HtbN7V/  
%       3    1    3*r^3 - 2*r              sqrt(8) Bfz]PN78.G  
%       3    3    r^3                      sqrt(8) qz2j55j   
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) f))'8  
%       4    2    4*r^4 - 3*r^2            sqrt(10) 5u3SP?.&  
%       4    4    r^4                      sqrt(10) o?\v 8.n  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) !>Ru= $9  
%       5    3    5*r^5 - 4*r^3            sqrt(12) |g}~7*+i  
%       5    5    r^5                      sqrt(12) I3$/ #  
%       --------------------------------------------- bEc @"^)  
% 7o5~J)qIC  
%   Example: yJ!x`RD),w  
% *)4 `"D  
%       % Display three example Zernike radial polynomials :k*3?*'K  
%       r = 0:0.01:1; n:d7 Tv1Z8  
%       n = [3 2 5]; fPLi8`r  
%       m = [1 2 1]; b`Agb <x"  
%       z = zernpol(n,m,r); EM&;SQ;C9  
%       figure T nG=X:+=  
%       plot(r,z) jWL;ElM'  
%       grid on uEPdL':}2  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') `zZGL&9m`  
% t<QSp6n""  
%   See also ZERNFUN, ZERNFUN2. #(KE9h%  
O=LiCSNEV  
% A note on the algorithm. Lj(y>{y  
% ------------------------ d|c> Y(  
% The radial Zernike polynomials are computed using the series =u^{Jvl[  
% representation shown in the Help section above. For many special 7 ,![oY[  
% functions, direct evaluation using the series representation can (#"iZv,  
% produce poor numerical results (floating point errors), because jLLZZPBK  
% the summation often involves computing small differences between kbF+aS  
% large successive terms in the series. (In such cases, the functions XdR^,;pWE  
% are often evaluated using alternative methods such as recurrence hXE_OXZ  
% relations: see the Legendre functions, for example). For the Zernike D+:}D*_&  
% polynomials, however, this problem does not arise, because the 4M4oI .  
% polynomials are evaluated over the finite domain r = (0,1), and uNcE_<  
% because the coefficients for a given polynomial are generally all yA#-}Y|]b  
% of similar magnitude. l~v BA$,  
% RU' WHk  
% ZERNPOL has been written using a vectorized implementation: multiple Q:4euhz*  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] 4:Bpz;x  
% values can be passed as inputs) for a vector of points R.  To achieve lx!9KQAM*  
% this vectorization most efficiently, the algorithm in ZERNPOL `p. O  
% involves pre-determining all the powers p of R that are required to c 8 xZT  
% compute the outputs, and then compiling the {R^p} into a single s[HQq;S  
% matrix.  This avoids any redundant computation of the R^p, and  b jq1",  
% minimizes the sizes of certain intermediate variables. "ccP,#Y  
% 7Vd"AVn}g  
%   Paul Fricker 11/13/2006 M9aVE)*!I  
,n &e,I  
iA[WDB\|0  
% Check and prepare the inputs: />i~No#Xm  
% ----------------------------- MSMgaw?  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ^8#;>+7R  
    error('zernpol:NMvectors','N and M must be vectors.') * ydU3LG7  
end HAi'0%"  
-'9sn/  
if length(n)~=length(m) QE8aYPSFf  
    error('zernpol:NMlength','N and M must be the same length.') z'FJx2  
end XZk?aik}`  
Lb>UraUvL  
n = n(:); @4Ox$M  
m = m(:); @6roW\'$  
length_n = length(n); 6_w;dnVA  
o|v_+<zD!  
if any(mod(n-m,2)) mJ3|UClPS  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') =n}+p>\s  
end d&'}~C`~k  
zeZ}P>C  
if any(m<0) #(5hV7i  
    error('zernpol:Mpositive','All M must be positive.') @%5$x]^  
end :&/b}b!)AX  
C6XZZ  
if any(m>n) |Ir&C[QS{y  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') q i27:oJ  
end ^j1WF[GiSO  
h!"| Q"18  
if any( r>1 | r<0 ) e uF@SS  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') f[b x|6  
end 7:h8b/9  
;DkX"X+  
if ~any(size(r)==1) X R =^zp?  
    error('zernpol:Rvector','R must be a vector.') LJ+fZ N  
end *c[X{  
YMSA[hm  
r = r(:); 8u401ddg  
length_r = length(r); oA _,jsD4  
wjr1?c  
if nargin==4 c%|18dV  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); KV!!D{VS`@  
    if ~isnorm > 4zH\T!  
        error('zernpol:normalization','Unrecognized normalization flag.') E_aDkNT  
    end A7;|~??  
else RK*ZlD<  
    isnorm = false; V=@M!;'<  
end !]W}I  
vB:_|B  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Iaq7<$XU  
% Compute the Zernike Polynomials O%(E 6 n  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Wa8?o~0"L  
azj:Hru&t#  
% Determine the required powers of r: 1w)#BYc=L  
% -----------------------------------  {ws:g![  
rpowers = []; drJ<&1O  
for j = 1:length(n) 0V5 RZ`.  
    rpowers = [rpowers m(j):2:n(j)]; gUo L8~  
end %D(% lh2  
rpowers = unique(rpowers); `[.':"~2N  
B/(]AWi+  
% Pre-compute the values of r raised to the required powers, K#B)@W?9  
% and compile them in a matrix: O>=D1no*  
% ----------------------------- W6&s_ (  
if rpowers(1)==0 H)s$0Xd  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); `XwFH#_  
    rpowern = cat(2,rpowern{:}); +,xl_,Z6  
    rpowern = [ones(length_r,1) rpowern]; Z|FWQ8gZ4m  
else ]#C;)Vy  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); FM c9oyU~  
    rpowern = cat(2,rpowern{:}); `dH[&=S  
end fE\;Cbi  
kp~@Ub @O3  
% Compute the values of the polynomials: BwN65_5p  
% -------------------------------------- {%S>!RA  
z = zeros(length_r,length_n); >g+ogwZ  
for j = 1:length_n 'NM$<<0  
    s = 0:(n(j)-m(j))/2; q L6Rs  
    pows = n(j):-2:m(j); *Ge2P3  
    for k = length(s):-1:1 W2F %E  
        p = (1-2*mod(s(k),2))* ... tFvc~zz9  
                   prod(2:(n(j)-s(k)))/          ... pq"3)+3:  
                   prod(2:s(k))/                 ... ,= ;d<O8  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... MYzyg  
                   prod(2:((n(j)+m(j))/2-s(k))); : kVEB<G  
        idx = (pows(k)==rpowers); $e=pdD~  
        z(:,j) = z(:,j) + p*rpowern(:,idx); tN' -4<+  
    end Rw$>()}H8  
     \X5>HPB  
    if isnorm 3Z *'  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); k!gft'iU  
    end GW_@hYIqD  
end 6.z8!4fpl  
{2`:7U ~|  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  @q9uU9c  
\>NjeMuWU  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ^E&':6(  
L^:+8g  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计