首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 MZ>Q Rf  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! F:LrQu  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 'AZxR4W  
function z = zernfun(n,m,r,theta,nflag) @su!9]o  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]6,D 9^{;  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N s $ ?;C  
%   and angular frequency M, evaluated at positions (R,THETA) on the U"a7myB+jX  
%   unit circle.  N is a vector of positive integers (including 0), and xggF:El3{  
%   M is a vector with the same number of elements as N.  Each element mBQpf/PG  
%   k of M must be a positive integer, with possible values M(k) = -N(k) m1M6N`f  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, >".@;  
%   and THETA is a vector of angles.  R and THETA must have the same =tl~@~pqI  
%   length.  The output Z is a matrix with one column for every (N,M) Ei89Ngp\}  
%   pair, and one row for every (R,THETA) pair. z</^qy  
% -:Bgp*S  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike d"thM  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), X#o;`QM  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral P[jh^!<j  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, l/A!ofc#)  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized N3w y][bo  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. $ SZIJe"K  
% uFFC.w  
%   The Zernike functions are an orthogonal basis on the unit circle. GZm=>!T  
%   They are used in disciplines such as astronomy, optics, and 6sT( t8[  
%   optometry to describe functions on a circular domain. cvYKZB  
% IH.EvierJ  
%   The following table lists the first 15 Zernike functions. *?+2%zP  
% XY<KLO%  
%       n    m    Zernike function           Normalization =FfR?6 ~  
%       -------------------------------------------------- {a(<E8-^  
%       0    0    1                                 1 }Ggn2 X  
%       1    1    r * cos(theta)                    2 Is9.A_0h  
%       1   -1    r * sin(theta)                    2 8#HQ05q>  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) !(y(6u#  
%       2    0    (2*r^2 - 1)                    sqrt(3) ovaX_d)cU  
%       2    2    r^2 * sin(2*theta)             sqrt(6) zo@,>'m  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) uxL3 8d]  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) )))AxgM  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) /Z]hX*QR  
%       3    3    r^3 * sin(3*theta)             sqrt(8) j?VHR$  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) ^MVOaV65  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) P1<McQ  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) aj-:JTf  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !e('T@^u6u  
%       4    4    r^4 * sin(4*theta)             sqrt(10) /9| 2uw`  
%       -------------------------------------------------- S(lqj6aa}  
% qBZ;S3  
%   Example 1: *Zn,v-d  
% ,<[x9 "3\  
%       % Display the Zernike function Z(n=5,m=1) {vur9L  
%       x = -1:0.01:1; ]-l4  
%       [X,Y] = meshgrid(x,x); s:I 8~Cc  
%       [theta,r] = cart2pol(X,Y); %h v-3L#V  
%       idx = r<=1; 5'_:>0}  
%       z = nan(size(X)); <ILi38%Y  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); muO;g&  
%       figure K] &GSro  
%       pcolor(x,x,z), shading interp ,? Q1JZPy@  
%       axis square, colorbar &+GbklUB~  
%       title('Zernike function Z_5^1(r,\theta)') ,/[1hhP@  
% Gi&/`vm  
%   Example 2: WL3J>S_  
% T;i+az{N:V  
%       % Display the first 10 Zernike functions z]j_,3Hff  
%       x = -1:0.01:1; y tTppmJF  
%       [X,Y] = meshgrid(x,x); zoj w^%W  
%       [theta,r] = cart2pol(X,Y); _V` QvnT}  
%       idx = r<=1; Ef=4yH?\j  
%       z = nan(size(X)); @"m+9ZY  
%       n = [0  1  1  2  2  2  3  3  3  3]; 5,R<9FjW  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; y/+y |.Xg  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; _HkQv6fXpE  
%       y = zernfun(n,m,r(idx),theta(idx)); t`1~5#?Du(  
%       figure('Units','normalized') B'6(Ao=3/  
%       for k = 1:10 =-G4 BQ  
%           z(idx) = y(:,k); ~-~iCIaTb  
%           subplot(4,7,Nplot(k)) (>dL  
%           pcolor(x,x,z), shading interp $C8s  
%           set(gca,'XTick',[],'YTick',[]) %@%~<U)W  
%           axis square 0p'g+ 2  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |2I p*  
%       end c32"$g  
% M$3/jl*#}  
%   See also ZERNPOL, ZERNFUN2. ~~#/jULbV  
^L'<%_# .  
%   Paul Fricker 11/13/2006 ]K<7A!+@@p  
##U/Wa3  
A$TF a:O|  
% Check and prepare the inputs: mQ\oR|  
% ----------------------------- @! jpJ}  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "p&4Sn3T2?  
    error('zernfun:NMvectors','N and M must be vectors.') +sXnC\  
end B:)vPO+ d  
H#QPcp@  
if length(n)~=length(m) YV6w}b:  
    error('zernfun:NMlength','N and M must be the same length.') ^!SwY_>  
end Qe=eer~jI  
Rtai?  
n = n(:); mm N $\2  
m = m(:); +b{tk=Q:  
if any(mod(n-m,2)) `>`{DEDx{5  
    error('zernfun:NMmultiplesof2', ... 5NMju!/  
          'All N and M must differ by multiples of 2 (including 0).') ))J#t{X/8v  
end ZMch2 U8  
;(LC{jY  
if any(m>n) "=0JYh)%_  
    error('zernfun:MlessthanN', ... gn[h:+H&  
          'Each M must be less than or equal to its corresponding N.') wA6<Buj D  
end jDW$}^ 6  
8 HdjZ!  
if any( r>1 | r<0 ) OP DRV\  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') KPa&P:R3  
end U?ZxQj66}  
-yY]0  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) AaJz3oncJ  
    error('zernfun:RTHvector','R and THETA must be vectors.') 1i 6>~  
end d C6t+  
OI)/J;[-e  
r = r(:); `R:HMO[ow  
theta = theta(:); 1@Rl^ey  
length_r = length(r); w5mSoK b  
if length_r~=length(theta) k7bfgb {  
    error('zernfun:RTHlength', ... n^rzl6dy  
          'The number of R- and THETA-values must be equal.') 1!2,K ot  
end 1$uO%  
7XiR)jYo*  
% Check normalization: 1Gk'f?dw  
% -------------------- .p\<niu7  
if nargin==5 && ischar(nflag) AO0aOX8_+D  
    isnorm = strcmpi(nflag,'norm'); ['@R]Si"!  
    if ~isnorm wTVd){q`.  
        error('zernfun:normalization','Unrecognized normalization flag.') t8S,C4  
    end gOn^}%4.I  
else ~`VD}{[,B  
    isnorm = false; )}T0SGY  
end CGCSfoS9f  
W$u/tRF  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QCvst*  
% Compute the Zernike Polynomials P\.1w>X  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +q)B4A'J!  
_,E! <  
% Determine the required powers of r: bOdyrynh  
% ----------------------------------- M\bea  
m_abs = abs(m); m#t  
rpowers = []; r`d.Wy Zj  
for j = 1:length(n) @m ?&7{y#?  
    rpowers = [rpowers m_abs(j):2:n(j)]; Pqv9> N|  
end r!O4]j_3  
rpowers = unique(rpowers); 8J+:5b_?  
*qL"&h5W  
% Pre-compute the values of r raised to the required powers, F5/,H:K\  
% and compile them in a matrix: x-ZCaa}O  
% ----------------------------- >[TJ-%V>oR  
if rpowers(1)==0 NFlrr*=t>  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); H%`|yUE(  
    rpowern = cat(2,rpowern{:}); ? Eh)JJt  
    rpowern = [ones(length_r,1) rpowern]; -nC!kpo  
else <!.Qn Y  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jR o4+8  
    rpowern = cat(2,rpowern{:}); . g95E<bd  
end *6 1G<I  
}TAHVcX*p  
% Compute the values of the polynomials: X4:SH> U!  
% -------------------------------------- EXTQ:HSES  
y = zeros(length_r,length(n)); >&2n\HR\  
for j = 1:length(n) ~:lN("9OI  
    s = 0:(n(j)-m_abs(j))/2; BX6]d:S  
    pows = n(j):-2:m_abs(j); ;l2pdP4jf  
    for k = length(s):-1:1 eXZH#K7S#  
        p = (1-2*mod(s(k),2))* ... N"#=Q=)x  
                   prod(2:(n(j)-s(k)))/              ... %4HpTx  
                   prod(2:s(k))/                     ... MbeO(Q  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... jCv%[H7  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); 0`l(c  
        idx = (pows(k)==rpowers); \Dn an5H/  
        y(:,j) = y(:,j) + p*rpowern(:,idx); dzwto;  
    end K=X13As_  
     h> A}vI*:  
    if isnorm \3v}:E+3  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ITu5Y"x  
    end l:rT{l=8*  
end W-ll2b  
% END: Compute the Zernike Polynomials !]z6?kUK  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $mp'/]  
$f]dL};  
% Compute the Zernike functions: 8]-c4zK  
% ------------------------------ o{wXq)b  
idx_pos = m>0; V;-YM W  
idx_neg = m<0; BSib/)p   
>,. x'{  
z = y; |=9=a@l]P  
if any(idx_pos) R-2V C  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {]CO;5:  
end z^r  
if any(idx_neg) m6=Jp<  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !K$qh{n  
end `;fk,\8t%  
3m9ab"  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag)  E\! <=  
%ZERNFUN2 Single-index Zernike functions on the unit circle. urK[v  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated RRH[$jk  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive zU$S#4/C  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, d*{NAq'9X  
%   and THETA is a vector of angles.  R and THETA must have the same XLNR%)l  
%   length.  The output Z is a matrix with one column for every P-value, +P. }<  
%   and one row for every (R,THETA) pair. HQO z  
% ?H2{R:  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike )+S^{tt  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 8S_v} NUm  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) aV'r oxM  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 U F ]g6u  
%   for all p. -I\Y m_)  
% `K^j:fE7n  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 L)Iv] u  
%   Zernike functions (order N<=7).  In some disciplines it is Q7-d]xJ^  
%   traditional to label the first 36 functions using a single mode Z-D4~?Tv  
%   number P instead of separate numbers for the order N and azimuthal 2l9RU}  
%   frequency M. xYGB{g]  
% L93KsI  
%   Example: 7CKh?>  
% c<gvUVHIxR  
%       % Display the first 16 Zernike functions {tlt5p!4  
%       x = -1:0.01:1; ;%H/^b.c  
%       [X,Y] = meshgrid(x,x); >x$.mXX{  
%       [theta,r] = cart2pol(X,Y); )ZA3m _w]  
%       idx = r<=1; LYv$U;*+  
%       p = 0:15; +bbhm0f  
%       z = nan(size(X)); 6GZ zNhz  
%       y = zernfun2(p,r(idx),theta(idx)); Jm l4EW7  
%       figure('Units','normalized') tL!R^Tf  
%       for k = 1:length(p) gADEjr*H  
%           z(idx) = y(:,k); },G>+ s8h  
%           subplot(4,4,k) '[nH] N  
%           pcolor(x,x,z), shading interp JWuF ?<+k  
%           set(gca,'XTick',[],'YTick',[]) UmRI! WQl  
%           axis square )j[rm   
%           title(['Z_{' num2str(p(k)) '}']) V!Q1o!J  
%       end rfdT0xfcU  
% </OZ,3J=  
%   See also ZERNPOL, ZERNFUN. [e:mRMi  
8=%%C:  
%   Paul Fricker 11/13/2006 KF#,Q  
oq<n5  
2sOV3~bB  
% Check and prepare the inputs: b:,S  
% ----------------------------- M@n9i@UsO  
if min(size(p))~=1 QlHxdRK`.  
    error('zernfun2:Pvector','Input P must be vector.') Yb<t~jm  
end xgi/,Nk '  
N!fTt,  
if any(p)>35 Wy2 pa #Q  
    error('zernfun2:P36', ... Y!8Ik(/~i  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... $RYsqX\v  
           '(P = 0 to 35).']) P1Z+XRWOM  
end ,c%>M^d  
WzC_M>_  
% Get the order and frequency corresonding to the function number: V _&>0P{q  
% ---------------------------------------------------------------- )4hb%U  
p = p(:); F .(zS(q  
n = ceil((-3+sqrt(9+8*p))/2); XkWO-L  
m = 2*p - n.*(n+2); U/e$.K3v  
wi]F\ q"Y^  
% Pass the inputs to the function ZERNFUN: g?'4G$M  
% ---------------------------------------- i9NUv3#  
switch nargin ~ cKmf]  
    case 3 1?6;Oc^  
        z = zernfun(n,m,r,theta); f\ wP}c'  
    case 4 p#~Dq(Q  
        z = zernfun(n,m,r,theta,nflag); nQ0g,'o  
    otherwise 4&Q.6HkL  
        error('zernfun2:nargin','Incorrect number of inputs.') tntQO!pM  
end 5/:BtlFx  
a]<y*N?qu  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) GgoPwl#{  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. *LTFDC  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of gg>O:np8  
%   order N and frequency M, evaluated at R.  N is a vector of r*|#*"K"a  
%   positive integers (including 0), and M is a vector with the 9Ytf7NpR  
%   same number of elements as N.  Each element k of M must be a X\r?g  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) eB`7C"Z  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is uY,(3x  
%   a vector of numbers between 0 and 1.  The output Z is a matrix A8?uCkG  
%   with one column for every (N,M) pair, and one row for every HQ8oOn  
%   element in R. D0(%{S^  
% O<&8 gk~  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- L#Mul&r3x0  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is [MmOPm}@  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to +ht -Bl  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 wzr3 y}fCe  
%   for all [n,m]. hrpql_9.  
% Tl.dr   
%   The radial Zernike polynomials are the radial portion of the Oy :;v7  
%   Zernike functions, which are an orthogonal basis on the unit x \.q zi  
%   circle.  The series representation of the radial Zernike 6!|-,t><  
%   polynomials is a9CY,+ z5B  
% SjT8 eH #  
%          (n-m)/2 jl;%?bx  
%            __ Sga/i?!  
%    m      \       s                                          n-2s tpJe1J<  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ~ kdxJP"  
%    n      s=0 O@@=ZyYwc  
% WD=#. $z$  
%   The following table shows the first 12 polynomials. 1}A1P&2>  
% 1m*fkM#  
%       n    m    Zernike polynomial    Normalization :G/T{87H  
%       --------------------------------------------- @`&kn;7T  
%       0    0    1                        sqrt(2) qNI2+<u)j  
%       1    1    r                           2 50 :gk*hy  
%       2    0    2*r^2 - 1                sqrt(6) p`@7hf|hm  
%       2    2    r^2                      sqrt(6) F;5S2:a@Z  
%       3    1    3*r^3 - 2*r              sqrt(8) A.a UWh  
%       3    3    r^3                      sqrt(8) ,J|8P{ZO  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) vf=b5s(7Q  
%       4    2    4*r^4 - 3*r^2            sqrt(10) kW"6Gc&HUN  
%       4    4    r^4                      sqrt(10) }<y-`WB  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) [whX),3>  
%       5    3    5*r^5 - 4*r^3            sqrt(12) ~J}{'l1{yf  
%       5    5    r^5                      sqrt(12) czMThm  
%       --------------------------------------------- Y#9dVUS  
% _~?N3G  
%   Example: 3snr-)   
% Rf)lFi  
%       % Display three example Zernike radial polynomials h|^RM*x  
%       r = 0:0.01:1; /&g5f4[|p  
%       n = [3 2 5]; qJ).;S{AAt  
%       m = [1 2 1]; cNi)[2o7  
%       z = zernpol(n,m,r); O s*B%,}  
%       figure K:PPZ|  
%       plot(r,z) oxN~(H)/ #  
%       grid on jmgU'w-s  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') C5Fk>[fS  
% p>w{.hC@  
%   See also ZERNFUN, ZERNFUN2. ][b_l(r$?  
~)';[Ha  
% A note on the algorithm. V=)0{7-9  
% ------------------------ %d<uOCf\Q  
% The radial Zernike polynomials are computed using the series l+e L:C!  
% representation shown in the Help section above. For many special XH_XGzBQS  
% functions, direct evaluation using the series representation can UZ8 vZ  
% produce poor numerical results (floating point errors), because |a7W@LVYD  
% the summation often involves computing small differences between 95Q{d'&  
% large successive terms in the series. (In such cases, the functions Q~R7]AyR  
% are often evaluated using alternative methods such as recurrence XU f]gQu3=  
% relations: see the Legendre functions, for example). For the Zernike }!tJ3G  
% polynomials, however, this problem does not arise, because the a!Z.ZA  
% polynomials are evaluated over the finite domain r = (0,1), and `~zY!sK  
% because the coefficients for a given polynomial are generally all A^/$ |@  
% of similar magnitude. "I"(yiKD  
% JI{|8)S  
% ZERNPOL has been written using a vectorized implementation: multiple jfxW9][   
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] mTG v*=l  
% values can be passed as inputs) for a vector of points R.  To achieve !+qy~h  
% this vectorization most efficiently, the algorithm in ZERNPOL ?LP&VU1  
% involves pre-determining all the powers p of R that are required to 1 J3h_z6/  
% compute the outputs, and then compiling the {R^p} into a single p~ `f.q$'  
% matrix.  This avoids any redundant computation of the R^p, and DOi\DJV!  
% minimizes the sizes of certain intermediate variables. J&%d(EJM  
% u="VJ3  
%   Paul Fricker 11/13/2006 &X 0qH8W  
ES~ykE  
C]22 [v4  
% Check and prepare the inputs:  2=X\G~a  
% ----------------------------- -p|@Enn  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nl9G1Sm(E  
    error('zernpol:NMvectors','N and M must be vectors.') yFp8 >  
end %]/O0#E3Kz  
%xE9vN;  
if length(n)~=length(m) *ujn+0)[  
    error('zernpol:NMlength','N and M must be the same length.') "Dbjp5_  
end OidF{I*O  
n@9*>D U  
n = n(:); S`yY<1[O  
m = m(:); bL`O k  
length_n = length(n); sxq'uF(K  
n:c)R8X]  
if any(mod(n-m,2)) vi+k#KE  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ;U6z|O7L  
end GT|=Kx$;  
,U_p6 TV5  
if any(m<0) pgK)  
    error('zernpol:Mpositive','All M must be positive.') mz\d>0F U.  
end k@qn' Zi  
Go>_4)jy  
if any(m>n) KNtsz[#b  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') K8 Y/sHl  
end *M*:3 v 0  
s_} 1J,Y  
if any( r>1 | r<0 ) $i@~$m7d-  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') E}S)uI,gn  
end )M5:aSRz  
*c}MI e'&  
if ~any(size(r)==1) AhOvI {  
    error('zernpol:Rvector','R must be a vector.') >mzK96  
end o g.LD7&/  
%a-:f)@  
r = r(:); #`P4s>IL1  
length_r = length(r); C!N&uNp@s  
uVJ;1H!  
if nargin==4 >SA?lG8f%  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); MW%EJT>@z  
    if ~isnorm Z2d,J>-  
        error('zernpol:normalization','Unrecognized normalization flag.') T9enyYt%  
    end q|)8VmVV  
else Fxwe,  
    isnorm = false; @C40H/dE  
end #7OUqp  
(Sc]dH  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [G{{f  
% Compute the Zernike Polynomials Yrp WGK520  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %h;~@-$  
Lc;4 Hg  
% Determine the required powers of r: h amn9  
% ----------------------------------- r 5::c= Cl  
rpowers = []; 2[i:bksjW  
for j = 1:length(n) V6'"J  
    rpowers = [rpowers m(j):2:n(j)]; v*}r<} j  
end yP\KIm!  
rpowers = unique(rpowers); 09y%FzV  
F)4Y;;#  
% Pre-compute the values of r raised to the required powers, pv%UsbY  
% and compile them in a matrix: :AYp{"{  
% ----------------------------- wJA`e)>  
if rpowers(1)==0 MH|!tkW>:  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); w|?<;+  
    rpowern = cat(2,rpowern{:}); Sw~jyUEr  
    rpowern = [ones(length_r,1) rpowern]; "#x<>a )O\  
else w4Nm4To  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); M{$EJS\d=  
    rpowern = cat(2,rpowern{:}); Jvt| q5  
end 4[t1"s~Wg  
_+%RbJ~H  
% Compute the values of the polynomials: zrYhx!@  
% -------------------------------------- `Y `Ujr\6  
z = zeros(length_r,length_n); _W]qV2j  
for j = 1:length_n h32QEz-+  
    s = 0:(n(j)-m(j))/2; !kZ9Ox9^  
    pows = n(j):-2:m(j); dXgj  
    for k = length(s):-1:1 f Co-ony  
        p = (1-2*mod(s(k),2))* ... cA_77#<8  
                   prod(2:(n(j)-s(k)))/          ... 5I9~OJ>  
                   prod(2:s(k))/                 ... v5U\E`)s  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... [r%WVf.#d  
                   prod(2:((n(j)+m(j))/2-s(k))); :lQl;Q -e  
        idx = (pows(k)==rpowers); D. !m*oq  
        z(:,j) = z(:,j) + p*rpowern(:,idx); iK{ a9pt  
    end a]^hcKo4  
     fNOsB^Y  
    if isnorm p$^}g:  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 1qXqQA  
    end T-x1jC!B'  
end  ?CKINN  
4G;FpWQm  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  #iD5& klo\  
hY=#_r8  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 v|acKux=t  
AP.WTFf  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计