首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 hGUQdTNP  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! hH?ke(&=f  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Zl2doXC  
function z = zernfun(n,m,r,theta,nflag) 7H[.o~\  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3ZYrNul"  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ljh,%#95=  
%   and angular frequency M, evaluated at positions (R,THETA) on the -]Oi/i,{  
%   unit circle.  N is a vector of positive integers (including 0), and .Ag)/Xm(?  
%   M is a vector with the same number of elements as N.  Each element Yd~Tzh  
%   k of M must be a positive integer, with possible values M(k) = -N(k)  $)(Zt^  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Pv8AWQQJ  
%   and THETA is a vector of angles.  R and THETA must have the same _1\H{x  
%   length.  The output Z is a matrix with one column for every (N,M) .noY[P 8i  
%   pair, and one row for every (R,THETA) pair. vRO`hGH  
% +$G P(Uu,  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike DJNM =v  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), M""X_~&I"  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral 072`i 46  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mw=keY9]  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized 7I6& *I  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !z?:Y#P3  
% [#2z=Xg  
%   The Zernike functions are an orthogonal basis on the unit circle. G9> 0w)r  
%   They are used in disciplines such as astronomy, optics, and S3 /Z]?o  
%   optometry to describe functions on a circular domain. }/.b@`Dh;  
% IAbH_+7O  
%   The following table lists the first 15 Zernike functions. gO! :WD  
% #!M;4~Sfx  
%       n    m    Zernike function           Normalization ezk:XDi4  
%       -------------------------------------------------- Cx`?}A\%  
%       0    0    1                                 1 Gh{vExH@5(  
%       1    1    r * cos(theta)                    2 ZCkwK  
%       1   -1    r * sin(theta)                    2 /57)y_ \  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) ]P(_ d'}  
%       2    0    (2*r^2 - 1)                    sqrt(3) mv9@Az9  
%       2    2    r^2 * sin(2*theta)             sqrt(6) 7ZpU -':  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) ljj}X JQ  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) uTUkRqtD!  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ?s{Pp  
%       3    3    r^3 * sin(3*theta)             sqrt(8) 80O[pf*?  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) km!jxs  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '[Ch8Yf\  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ;z^C\=om  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KZTT2KsYl  
%       4    4    r^4 * sin(4*theta)             sqrt(10) >PiEu->P,  
%       -------------------------------------------------- ;(9q, )  
% ucC'SS  
%   Example 1: cH\.-5NQ  
% =wX(a  
%       % Display the Zernike function Z(n=5,m=1) 5?4jD]Z  
%       x = -1:0.01:1; *.NVc  
%       [X,Y] = meshgrid(x,x); 1'[_J  
%       [theta,r] = cart2pol(X,Y); /=ro$@  
%       idx = r<=1; 9mH/xP:y  
%       z = nan(size(X)); n8>( m,  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); q%GlS=o "  
%       figure 5J8U] :Y)  
%       pcolor(x,x,z), shading interp @phb5  
%       axis square, colorbar cYp]zn+6  
%       title('Zernike function Z_5^1(r,\theta)') D[ (A`!)  
% ibskce{H  
%   Example 2: 'I roQ M  
% E h>qUa  
%       % Display the first 10 Zernike functions ~!a~ -:#  
%       x = -1:0.01:1; Zo|# ,AdE>  
%       [X,Y] = meshgrid(x,x); 8!{F6DG  
%       [theta,r] = cart2pol(X,Y); MHkTN  
%       idx = r<=1; E"$AOM?(*i  
%       z = nan(size(X)); E%6}p++  
%       n = [0  1  1  2  2  2  3  3  3  3];  \>*B  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; n[pW^&7x  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; 9.qjEe  
%       y = zernfun(n,m,r(idx),theta(idx)); YYUWBnf30G  
%       figure('Units','normalized') E)w^odwMU  
%       for k = 1:10 H$i4OQ2  
%           z(idx) = y(:,k); 8P= z"y  
%           subplot(4,7,Nplot(k)) ]%VR Nm  
%           pcolor(x,x,z), shading interp VCZ.{MD  
%           set(gca,'XTick',[],'YTick',[]) D|p`~(  
%           axis square c>%+y+b{  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R3SAt-IE  
%       end |+Fko8-  
% }&OgIo+  
%   See also ZERNPOL, ZERNFUN2. &k4)&LQJ  
WS?"OTH.^\  
%   Paul Fricker 11/13/2006 y QxzFy  
qZ6Mk9@M  
'X$2gD3c9  
% Check and prepare the inputs: Oy^)lF/  
% ----------------------------- i?&g;_n^  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .Bu?=+O~  
    error('zernfun:NMvectors','N and M must be vectors.') d)&}% 2ku  
end s<t*g]0`/  
>Hq)1o  
if length(n)~=length(m) HTz&h#)JQ  
    error('zernfun:NMlength','N and M must be the same length.')  X)^kJ`  
end kF lq@['U  
&v\  
n = n(:); 3~7X2}qU  
m = m(:); t_PAXj  
if any(mod(n-m,2)) @3hA\3ot^  
    error('zernfun:NMmultiplesof2', ... ' ?3e1  
          'All N and M must differ by multiples of 2 (including 0).') IOx9".  
end &xG>"sJ  
jF}u%T)HL  
if any(m>n) :eIu<_,}  
    error('zernfun:MlessthanN', ... "r Bb2.  
          'Each M must be less than or equal to its corresponding N.') z+>FKAF  
end k<098F  
M}]E,[  
if any( r>1 | r<0 ) n9}3>~ll  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') k/&~8l.$  
end #&A)%Qbg  
Bg?f}nu7  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]D@_cxud3  
    error('zernfun:RTHvector','R and THETA must be vectors.') yaiw|j`A  
end tw/~z2G  
9#CE m &c  
r = r(:); }6;v`1Hr  
theta = theta(:); gi|j ! m  
length_r = length(r); brk>oM;t  
if length_r~=length(theta) ^Gc#D:zU  
    error('zernfun:RTHlength', ... mlsM;A d2  
          'The number of R- and THETA-values must be equal.') |]tIE{d  
end %. =B=*  
~@=*JzP?  
% Check normalization: xWv@PqXD  
% -------------------- nwOT%@nw  
if nargin==5 && ischar(nflag) <g SZt\  
    isnorm = strcmpi(nflag,'norm'); TmZ% ;TN  
    if ~isnorm qHT_,\l2  
        error('zernfun:normalization','Unrecognized normalization flag.') dD Qx[  
    end b '1n1L  
else kf3 u',}R  
    isnorm = false; |;XkU`G  
end +}eGCZra  
nU{ }R"|  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r~&[Gaw  
% Compute the Zernike Polynomials 8CR b6  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RqV* O}Am  
-RisZ-n*  
% Determine the required powers of r: .DzFt c  
% ----------------------------------- W$g<nhLK  
m_abs = abs(m); VM 3~W  
rpowers = []; n&? --9r  
for j = 1:length(n) yMdE[/+3  
    rpowers = [rpowers m_abs(j):2:n(j)]; ;<j[0~qp:  
end Y7TW_[_u  
rpowers = unique(rpowers); r5h+_&v,M  
eI%{/>  
% Pre-compute the values of r raised to the required powers, Sn(e@|!G  
% and compile them in a matrix: `1AVw] k  
% ----------------------------- ~J :cod  
if rpowers(1)==0 I{e[Y_  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Pz+2(Z  
    rpowern = cat(2,rpowern{:}); f,Z* o  
    rpowern = [ones(length_r,1) rpowern]; i%M6$or  
else {h< V^r  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l :e&w(1H  
    rpowern = cat(2,rpowern{:}); qD@]FEw!O  
end g j(|#n5C  
=UGyZV:z5  
% Compute the values of the polynomials: rD"$,-h  
% -------------------------------------- v}vwk8  
y = zeros(length_r,length(n)); p_^Jr*Mv  
for j = 1:length(n) M0+xl+c+  
    s = 0:(n(j)-m_abs(j))/2; yK1@`3@?  
    pows = n(j):-2:m_abs(j); m?Tv8-1  
    for k = length(s):-1:1 wZ&l6J4L  
        p = (1-2*mod(s(k),2))* ... ?Xdb%.   
                   prod(2:(n(j)-s(k)))/              ... _,,w>q6K  
                   prod(2:s(k))/                     ... 4^3}+cJ7j  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... FTVV+9.l:  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); F$tshe(  
        idx = (pows(k)==rpowers); zSJSus  
        y(:,j) = y(:,j) + p*rpowern(:,idx); v:$Ka@v6  
    end  I&m C  
     } D'pyTf[  
    if isnorm T?4pV#  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ^Z dDs8j  
    end XfYMv38(  
end -rn%ASye  
% END: Compute the Zernike Polynomials 8h,>f#)0c  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (:g ZZG  
y\?T%g  
% Compute the Zernike functions: T[M:%vjYF  
% ------------------------------ Fv| )[>z0  
idx_pos = m>0; tsYBZaH  
idx_neg = m<0; Gx&o3^t  
+4*3aWf`  
z = y; CXI%8eFXe$  
if any(idx_pos) ;hz;|\ko5  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *Y:;fl +v  
end G\X}gqe(OJ  
if any(idx_neg) >cTSX  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zs=[C+Z\  
end yH9(ru  
}0y2k7^]  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) 51sn+h<w  
%ZERNFUN2 Single-index Zernike functions on the unit circle. Q\QSnMM&]  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated )z" .lw  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive rf ?\s/#OY  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, 4#^E$N:  
%   and THETA is a vector of angles.  R and THETA must have the same y#B4m`9  
%   length.  The output Z is a matrix with one column for every P-value, eBZ94rA]  
%   and one row for every (R,THETA) pair. io[>`@=  
% 6E)emFkQ  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike  @mD$Z09~  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) }xA Eu,n^  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) j;7:aM"BQW  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 +u[^@>_I0  
%   for all p. _9pcHhJux  
% (:9=M5d  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 2FE13{+f  
%   Zernike functions (order N<=7).  In some disciplines it is +jPJv[W  
%   traditional to label the first 36 functions using a single mode X-_ $jKfM  
%   number P instead of separate numbers for the order N and azimuthal @'~7O4WH  
%   frequency M. BzXTHFMSy  
% 83i;:cn  
%   Example: ja-,6*"k  
% _?I6[Mz  
%       % Display the first 16 Zernike functions aA6m5  
%       x = -1:0.01:1; Ux!q(9<_  
%       [X,Y] = meshgrid(x,x); Clo}kdkd_  
%       [theta,r] = cart2pol(X,Y); nu6p{_M  
%       idx = r<=1; * YR>u @  
%       p = 0:15; 3nbTK3,  
%       z = nan(size(X)); u[<ij  
%       y = zernfun2(p,r(idx),theta(idx)); 2Kmnt(>  
%       figure('Units','normalized') %W8*vSbx  
%       for k = 1:length(p) SR$?pJh D%  
%           z(idx) = y(:,k); d(_;@%p1X  
%           subplot(4,4,k) N|3a(mtiZ'  
%           pcolor(x,x,z), shading interp n w  
%           set(gca,'XTick',[],'YTick',[]) 8=-/0y9,  
%           axis square c D5N'3  
%           title(['Z_{' num2str(p(k)) '}']) (R|_6[zy  
%       end d1>L&3HKx  
% X 2Zp @q(  
%   See also ZERNPOL, ZERNFUN. *km!<L7Y  
e` eh;@9p  
%   Paul Fricker 11/13/2006 rUW/d3y  
k++"  
$lAQcG&Q  
% Check and prepare the inputs: T!2gOe  
% ----------------------------- -\[&<o@/D  
if min(size(p))~=1 2~ y<l  
    error('zernfun2:Pvector','Input P must be vector.') "+Kp8n6  
end (Rs|"];?Z  
7csMk5NU'<  
if any(p)>35 b^'>XT~1J&  
    error('zernfun2:P36', ... mcb|N_#n/  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... iI$;%uY3g  
           '(P = 0 to 35).']) eAK=ylF;  
end !E~czC\p6  
W5(.Hub}  
% Get the order and frequency corresonding to the function number: tL\L4>^7T  
% ---------------------------------------------------------------- P_F0lO  
p = p(:); cq4sgQ?sW  
n = ceil((-3+sqrt(9+8*p))/2); p1']+4r%  
m = 2*p - n.*(n+2); Rebo.6rG  
v m.%)F#@  
% Pass the inputs to the function ZERNFUN: ?2<V./2F  
% ---------------------------------------- I~&*8)xM  
switch nargin j-k]|0ea}  
    case 3 THcX.%ToT  
        z = zernfun(n,m,r,theta); 'p&q}IO  
    case 4 av>Ff6w)Y  
        z = zernfun(n,m,r,theta,nflag); 'R nvQ""  
    otherwise | E\u  
        error('zernfun2:nargin','Incorrect number of inputs.') 2Xqa?ay0>  
end \Z^Tk   
-uhg7N[3  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) Ih%LKFT  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. 4v#A#5+O E  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of PcEE@W9  
%   order N and frequency M, evaluated at R.  N is a vector of | W<jN  
%   positive integers (including 0), and M is a vector with the yUX<W'-Hev  
%   same number of elements as N.  Each element k of M must be a P] Xl  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) '=(@3ggA:  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is G8@LH   
%   a vector of numbers between 0 and 1.  The output Z is a matrix FJIo] p  
%   with one column for every (N,M) pair, and one row for every 7,2#0Z`ge  
%   element in R. %5Zhq>  
% nq*D91Q  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- hOr4C4  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is >$_@p(w  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 4=ZN4=(_[  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ,Ad{k   
%   for all [n,m]. f"d4HZD^  
% ?dQ#%06mn  
%   The radial Zernike polynomials are the radial portion of the nT%<!/}!  
%   Zernike functions, which are an orthogonal basis on the unit f=Kt[|%'e  
%   circle.  The series representation of the radial Zernike 43/!pW  
%   polynomials is dRXdV7-!  
% otJHcGv  
%          (n-m)/2 @ iaz_;  
%            __ }EJ't io]  
%    m      \       s                                          n-2s ~uweBp~O  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Wq/0}W.  
%    n      s=0 &` weW  
% M%N_4j.  
%   The following table shows the first 12 polynomials. `E5vO1Pl  
% FSyeDC^@  
%       n    m    Zernike polynomial    Normalization Wf9K+my  
%       --------------------------------------------- p&cJo<]=LE  
%       0    0    1                        sqrt(2) l~$Od jf  
%       1    1    r                           2 m.>y(TI  
%       2    0    2*r^2 - 1                sqrt(6) 3R[,,WAj$  
%       2    2    r^2                      sqrt(6) !K/zFYl  
%       3    1    3*r^3 - 2*r              sqrt(8) fXB64MNo  
%       3    3    r^3                      sqrt(8) IK|W^hH\8  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) m95;NT1N/g  
%       4    2    4*r^4 - 3*r^2            sqrt(10) V1\x.0Fs  
%       4    4    r^4                      sqrt(10) V>B*_J,z.  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 'sN (=CQ  
%       5    3    5*r^5 - 4*r^3            sqrt(12) zK ir  
%       5    5    r^5                      sqrt(12) \ Q0-yNt  
%       --------------------------------------------- t zSg`7H!  
% O<`\9  
%   Example: few=`%/  
% Xd@x(T~'X  
%       % Display three example Zernike radial polynomials n Y=]KU  
%       r = 0:0.01:1; uJ>_ 2  
%       n = [3 2 5]; f*GdHUZ*  
%       m = [1 2 1]; D3kx&AR  
%       z = zernpol(n,m,r); #wL8=QTcNC  
%       figure m/>z}d05h  
%       plot(r,z) q NE( @at  
%       grid on bx%P-r31  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 7Jvb6V<R  
% 8CN 0Q&|  
%   See also ZERNFUN, ZERNFUN2. ^fbw0  
'X1fb:8m8  
% A note on the algorithm. 62z"cFN  
% ------------------------ `DcZpd.n  
% The radial Zernike polynomials are computed using the series bF{14F$  
% representation shown in the Help section above. For many special <aEY=IF4  
% functions, direct evaluation using the series representation can } l4d/I  
% produce poor numerical results (floating point errors), because WMXk-?v4  
% the summation often involves computing small differences between VS_xC $X!S  
% large successive terms in the series. (In such cases, the functions YF(TG]?6  
% are often evaluated using alternative methods such as recurrence SSG}'W!z  
% relations: see the Legendre functions, for example). For the Zernike c=A)_ZFg  
% polynomials, however, this problem does not arise, because the Kh;jiK !  
% polynomials are evaluated over the finite domain r = (0,1), and fxL0"Ry  
% because the coefficients for a given polynomial are generally all Q )b*; @  
% of similar magnitude. +x"cWOg  
% _'47yq^O  
% ZERNPOL has been written using a vectorized implementation: multiple #.z`clK#  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] 6Y(Vs>  
% values can be passed as inputs) for a vector of points R.  To achieve cWG?`6xU&  
% this vectorization most efficiently, the algorithm in ZERNPOL 7Yrp#u1!  
% involves pre-determining all the powers p of R that are required to 6Jf\}^4@k  
% compute the outputs, and then compiling the {R^p} into a single X6lR?6u%|  
% matrix.  This avoids any redundant computation of the R^p, and FtL{ f=  
% minimizes the sizes of certain intermediate variables. qC?\i['`  
% G~;hD-D~.  
%   Paul Fricker 11/13/2006 WSPlM"h  
GMO|A.bzzN  
]Y@ia]x&P  
% Check and prepare the inputs: X #!oG)or  
% ----------------------------- 3d0Yq  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ]rP'\a  
    error('zernpol:NMvectors','N and M must be vectors.') ntT~_Ba8;u  
end [$b\#{shtP  
b#<@&0KE  
if length(n)~=length(m) < BNCo5*  
    error('zernpol:NMlength','N and M must be the same length.') R^=)Ucj  
end "L p"o  
G~\ SI.  
n = n(:); xRx8E;Q@h?  
m = m(:); Cyw cJ  
length_n = length(n); eVYUJ,  
x>yeF,q1  
if any(mod(n-m,2)) }4n?k'_s?  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') {} 11U0  
end #n_uELE  
'<YVDB&-d,  
if any(m<0) FOU^Wcop%  
    error('zernpol:Mpositive','All M must be positive.') uJP9J  U  
end n^7$ST#'bV  
-gP4| r8&  
if any(m>n) J0hY~B~X  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') m8|&z{  
end mf>cv2+  
MFyMo  
if any( r>1 | r<0 ) jBvZ>H+w~  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') "c  S?t  
end !y>MchNv  
(HUGgX"=  
if ~any(size(r)==1) ?OU+)kgzh  
    error('zernpol:Rvector','R must be a vector.') I=,u7w`m  
end cQaEh1n  
J6H3X;vxQw  
r = r(:); #z\{BtK  
length_r = length(r); / !*gH1 s  
[We(0wF[`  
if nargin==4 ;b""N,  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); xCd9b:jG  
    if ~isnorm +C{ %pF  
        error('zernpol:normalization','Unrecognized normalization flag.') *Iu .>nw  
    end YJO,"7+  
else h%Nbx:vKk  
    isnorm = false; Z81{v<c;  
end AID}NQ Qj_  
i8`&XGEd  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (\si/&  
% Compute the Zernike Polynomials BW>f@;egg  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LW;UL}av  
hwmpiyu   
% Determine the required powers of r: 5O9Oi:-!c  
% ----------------------------------- G B+U>nf  
rpowers = []; eTc0u;{V  
for j = 1:length(n) r"a4 ;&mf  
    rpowers = [rpowers m(j):2:n(j)]; x0])&':!  
end >Hr0ScmN@"  
rpowers = unique(rpowers); $+Hv5]/hb  
iz`u@QKc%  
% Pre-compute the values of r raised to the required powers, 7/;Xt&  
% and compile them in a matrix: =s P6  
% ----------------------------- :B=p%C  
if rpowers(1)==0 XV2f|8d>  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <dTo-P  
    rpowern = cat(2,rpowern{:}); lA39$oJ  
    rpowern = [ones(length_r,1) rpowern]; ?Rl?Pp=>  
else /tno`su;  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); n_@YKz;8  
    rpowern = cat(2,rpowern{:}); f8E S GU  
end H ~c+L'=  
(U/xpj}  
% Compute the values of the polynomials: Ed|7E_v  
% -------------------------------------- |52VHW8 c  
z = zeros(length_r,length_n); HF wT  
for j = 1:length_n GA6)O-^G  
    s = 0:(n(j)-m(j))/2; AM}-dKei|  
    pows = n(j):-2:m(j); TA=Ij,z~  
    for k = length(s):-1:1 SvH=P !`+  
        p = (1-2*mod(s(k),2))* ... S ~lw5  
                   prod(2:(n(j)-s(k)))/          ... O'deQq[  
                   prod(2:s(k))/                 ... voaRh@DZ%/  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... 5:f}bW*  
                   prod(2:((n(j)+m(j))/2-s(k))); >Lanuv)O  
        idx = (pows(k)==rpowers); nTj Q4y  
        z(:,j) = z(:,j) + p*rpowern(:,idx); _OTkv6;4n  
    end -5A@FGh  
     AKM\1H3U  
    if isnorm kX {c+qHM  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ||7r'Q  
    end B$Jn|J"/6  
end knypSgk_  
Dw{C_e  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  |; {wy  
$CHr i|  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ^"l>;.w  
ZxbWgM5rm  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计