| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .OS?^\ function z = zernfun(n,m,r,theta,nflag) v^_]W3K %ZERNFUN Zernike functions of order N and frequency M on the unit circle. b\m(0/x % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 'N ::MN % and angular frequency M, evaluated at positions (R,THETA) on the psy(]Pf % unit circle. N is a vector of positive integers (including 0), and Rbc2g"] % M is a vector with the same number of elements as N. Each element |Umfq:W`y_ % k of M must be a positive integer, with possible values M(k) = -N(k) WTv\HI2X
! % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, nL07^6( % and THETA is a vector of angles. R and THETA must have the same ]J=)pDrk % length. The output Z is a matrix with one column for every (N,M) <?7,`P:h[ % pair, and one row for every (R,THETA) pair. GiO#1gA % cYy@ % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D)7$M]d% % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B5H&DqWzr % with delta(m,0) the Kronecker delta, is chosen so that the integral wK`ieHmp % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 02#Iip3t % and theta=0 to theta=2*pi) is unity. For the non-normalized rIfGmh%H % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. a;T[%'in % jTUf4&b- % The Zernike functions are an orthogonal basis on the unit circle. "M0l; % They are used in disciplines such as astronomy, optics, and #L=
eK8^e % optometry to describe functions on a circular domain. %R*vSRG/U % )u )$ `a % The following table lists the first 15 Zernike functions. !Fg4Au % {2gd4[: % n m Zernike function Normalization [67E5rk- % -------------------------------------------------- pW--^aHu % 0 0 1 1 S}Y|s]6 % 1 1 r * cos(theta) 2 n,:.]3v% % 1 -1 r * sin(theta) 2 -@V"i~g<e % 2 -2 r^2 * cos(2*theta) sqrt(6) %x8`fm % 2 0 (2*r^2 - 1) sqrt(3) a(DZGQ-as
% 2 2 r^2 * sin(2*theta) sqrt(6) u#@{%kPW % 3 -3 r^3 * cos(3*theta) sqrt(8) S{(p<%)[ % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) j484b2uj1 % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) $gl<{{ % 3 3 r^3 * sin(3*theta) sqrt(8) O:=|b]t % 4 -4 r^4 * cos(4*theta) sqrt(10) xm,`4WdG % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +\8 krA % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) BS,5W]ervE % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) , 64t % 4 4 r^4 * sin(4*theta) sqrt(10) ;,vL % -------------------------------------------------- xgT~b9 % 27 145
% Example 1: zP h\3B % {+6D-rDw % % Display the Zernike function Z(n=5,m=1) mV*/zWh_ % x = -1:0.01:1; :{WrS % [X,Y] = meshgrid(x,x); dbuJ~?D, % [theta,r] = cart2pol(X,Y); .F$|j1y
% idx = r<=1; uGUv~bE % z = nan(size(X)); mh#FYSp % z(idx) = zernfun(5,1,r(idx),theta(idx)); ;y~{+{{Ow % figure )x8;.@U % pcolor(x,x,z), shading interp )dIfr % axis square, colorbar |!?WQ[ % title('Zernike function Z_5^1(r,\theta)') >g>`!Sf % lHKf#| % Example 2: :IR9=nhS] % 4o4 = % % Display the first 10 Zernike functions 2Jo~m_ % x = -1:0.01:1; ?cs]#6^ % [X,Y] = meshgrid(x,x); {`H<=h__ % [theta,r] = cart2pol(X,Y); 9sU+IT K4 % idx = r<=1; T~o{woq}g % z = nan(size(X)); <{cNgKd9 % n = [0 1 1 2 2 2 3 3 3 3]; b WbXh$ % m = [0 -1 1 -2 0 2 -3 -1 1 3]; ]Q4PbW % Nplot = [4 10 12 16 18 20 22 24 26 28]; oO#xx)b % y = zernfun(n,m,r(idx),theta(idx)); :K^gu%,&$ % figure('Units','normalized') "7yNKO;W % for k = 1:10 )b&-3$? % z(idx) = y(:,k); W[>iJJwz % subplot(4,7,Nplot(k)) R{)
Q1~H=q % pcolor(x,x,z), shading interp /j' B\, % set(gca,'XTick',[],'YTick',[]) Wyq~:vU.S % axis square MZ5Y\-nq\ % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) J}(6>iuQY? % end GjeUUmr % hr[B^?6 % See also ZERNPOL, ZERNFUN2. a4T~\\,dZ> V@v1a@=W % Paul Fricker 11/13/2006 ,'C30 A*p ss`P QN ;n}
>C' : % Check and prepare the inputs: >sQ2@"y)s2 % ----------------------------- `s`C{|wv if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -Aa]aDAz68 error('zernfun:NMvectors','N and M must be vectors.') fimb]C I|x end h@~:(:zU$ \9] I#Ih}M if length(n)~=length(m) Z6Nj<2u2 error('zernfun:NMlength','N and M must be the same length.') ]^:hyOK end aUW/1nQHa T~%H%O(F n = n(:); /Fv/oY m = m(:); Z&FkLww if any(mod(n-m,2)) OGJ=VQA error('zernfun:NMmultiplesof2', ... 2'wr={>W 'All N and M must differ by multiples of 2 (including 0).') JBR[;
zM end WY+(]Wkao g.x=pt if any(m>n) 9<|m4 error('zernfun:MlessthanN', ... Ys-Keyg 'Each M must be less than or equal to its corresponding N.') _+twqi end ch@x]@-;A3 JbE?a[Eg? if any( r>1 | r<0 ) d/XlV]#2x\ error('zernfun:Rlessthan1','All R must be between 0 and 1.') ~ww?Emrw end ^
<qrM [N)#/6j if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) GS\%mPZ error('zernfun:RTHvector','R and THETA must be vectors.') 1GtOA3,~;- end `gBD_0<T7 of9q"h r = r(:); M@|w[ydQG theta = theta(:); zwK
}7h6] length_r = length(r); k$C"xg2 if length_r~=length(theta) (/"thv5vT{ error('zernfun:RTHlength', ... g b -Bxf 'The number of R- and THETA-values must be equal.') W*k` end /7bw: h; Zj qA30! % Check normalization: c~P)4(udT % -------------------- Nd`HB=ShJ if nargin==5 && ischar(nflag) ZP"yq6!i isnorm = strcmpi(nflag,'norm'); $#5klA if ~isnorm n`]l^qE error('zernfun:normalization','Unrecognized normalization flag.') ><[|
G9 end W1vCN31 else EMLx?JnP isnorm = false; a`#S|'oatC end (]2<?x* Cz_AJ-WR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *|mz_cKu % Compute the Zernike Polynomials Q6=MS>JW]w %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MRQZIi ;Xqn-R % Determine the required powers of r: K<FKu $= % ----------------------------------- ! ,@ZQS m_abs = abs(m); -Q#o)o
rpowers = []; rJu[N(2k for j = 1:length(n) C1d
04Q rpowers = [rpowers m_abs(j):2:n(j)]; jZRh KT end *vYn_wE rpowers = unique(rpowers); 8Jr1_a ~;[&K%n % Pre-compute the values of r raised to the required powers, G*B$%?n % and compile them in a matrix: W6vf=I@f % ----------------------------- )R~aA#<> if rpowers(1)==0 I~)cYl:|G rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \^LWCp,C" rpowern = cat(2,rpowern{:}); ]u+MTW; rpowern = [ones(length_r,1) rpowern]; W<v_2iVu else P*YK9Hl< rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); tRteyNA rpowern = cat(2,rpowern{:}); SET-8f end BEWro|]cM j&WL*XP&5 % Compute the values of the polynomials: [EgW/\35 % -------------------------------------- SG:bM7*1' y = zeros(length_r,length(n)); tjj^O%SV< for j = 1:length(n) r0\?WoF2C s = 0:(n(j)-m_abs(j))/2; }p=g*Zo*C; pows = n(j):-2:m_abs(j); M'q'$)e for k = length(s):-1:1 qK?$=h. p = (1-2*mod(s(k),2))* ... jq(qo4~; prod(2:(n(j)-s(k)))/ ... DR@1z9 a prod(2:s(k))/ ... j$vK<SF prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... |g<* Rk0
prod(2:((n(j)+m_abs(j))/2-s(k))); dCe X}Z idx = (pows(k)==rpowers); pj!:[d y(:,j) = y(:,j) + p*rpowern(:,idx); T1W:>~T5# end KXf<$\+zO A " S/^< if isnorm !,Nwts>m y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); WS:5MI,OL end 4PWAGuN^ end JO=1ivZl % END: Compute the Zernike Polynomials MS*G-C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FW#P*}# 44HiTWQS?l % Compute the Zernike functions: _yv Luj % ------------------------------ l}rS{+:wK idx_pos = m>0; xx }GOY.J idx_neg = m<0; +?[BU<X6u 7J|&U2}c z = y; FRZs[\I|iT if any(idx_pos) ``u:lL z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _dU8'H end d"ZU y!a if any(idx_neg) nWJ:=JQ i" z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zE|Wn3_sd end f<<rTE6 R J~%0 % EOF zernfun
|
|