首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 %esZ}U   
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! G3^]Wwu  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有  .OS?^\  
function z = zernfun(n,m,r,theta,nflag) v^_]W3K  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. b\m( 0/x  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 'N ::MN  
%   and angular frequency M, evaluated at positions (R,THETA) on the psy(]Pf  
%   unit circle.  N is a vector of positive integers (including 0), and R bc2g"]  
%   M is a vector with the same number of elements as N.  Each element |Umfq:W`y_  
%   k of M must be a positive integer, with possible values M(k) = -N(k) WTv\HI2X !  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, nL 07^6(  
%   and THETA is a vector of angles.  R and THETA must have the same ]J=)pD rk  
%   length.  The output Z is a matrix with one column for every (N,M) <?7,`P:h[  
%   pair, and one row for every (R,THETA) pair. GiO#1gA  
% cYy @  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D)7$M]d%  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B5H&DqWzr  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral wK`ieHmp  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 02#Iip3t  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized rIfGmh%H  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. a;T[%'in  
% jTUf4&b-  
%   The Zernike functions are an orthogonal basis on the unit circle. "M0l;  
%   They are used in disciplines such as astronomy, optics, and #L= eK8^e  
%   optometry to describe functions on a circular domain. %R*vSRG/U  
% )u)$ `a  
%   The following table lists the first 15 Zernike functions. !Fg4Au  
% {2gd4[:  
%       n    m    Zernike function           Normalization [67E5rk-  
%       -------------------------------------------------- pW--^aHu  
%       0    0    1                                 1 S}Y|s]6  
%       1    1    r * cos(theta)                    2 n ,:.]3v%  
%       1   -1    r * sin(theta)                    2 -@V"i~g<e  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) %x8`fm  
%       2    0    (2*r^2 - 1)                    sqrt(3) a(DZGQ-as  
%       2    2    r^2 * sin(2*theta)             sqrt(6) u#@{%kPW  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) S{(p<%)[  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) j484b2uj1  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) $gl<{{  
%       3    3    r^3 * sin(3*theta)             sqrt(8) O:=|b]t  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) xm,`4WdG  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +\8krA  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) BS,5W]ervE  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) , 64t  
%       4    4    r^4 * sin(4*theta)             sqrt(10) ;, v L  
%       -------------------------------------------------- x gT~b9  
% 27 145  
%   Example 1: zPh\3B  
% {+ 6D-rDw  
%       % Display the Zernike function Z(n=5,m=1) mV*/zWh_  
%       x = -1:0.01:1; :{ WrS  
%       [X,Y] = meshgrid(x,x); dbuJ~?D,  
%       [theta,r] = cart2pol(X,Y); .F$|j1y  
%       idx = r<=1; uGUv~bE  
%       z = nan(size(X)); mh#FY Sp  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); ;y~{+{{Ow  
%       figure )x8;.@U  
%       pcolor(x,x,z), shading interp )dIfr  
%       axis square, colorbar |!?WQ[  
%       title('Zernike function Z_5^1(r,\theta)') >g>`!Sf  
% lHKf#|  
%   Example 2: :IR9=nhS]  
% 4o4 =  
%       % Display the first 10 Zernike functions 2Jo~m_  
%       x = -1:0.01:1; ?cs]#6^  
%       [X,Y] = meshgrid(x,x); {`H<=h__  
%       [theta,r] = cart2pol(X,Y); 9sU+IT K4  
%       idx = r<=1; T~o{woq}g  
%       z = nan(size(X)); <{cNgKd9  
%       n = [0  1  1  2  2  2  3  3  3  3]; b WbXh$  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ]Q4PbW  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; oO#xx)b  
%       y = zernfun(n,m,r(idx),theta(idx)); :K^gu%,&$  
%       figure('Units','normalized') "7yNKO;W  
%       for k = 1:10 )b&-3$?  
%           z(idx) = y(:,k); W[>iJJwz  
%           subplot(4,7,Nplot(k)) R{) Q1~H=q  
%           pcolor(x,x,z), shading interp /j' B\,  
%           set(gca,'XTick',[],'YTick',[]) Wyq~:vU.S  
%           axis square MZ5Y\-nq\  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) J}(6>iuQY?  
%       end GjeUUmr  
% hr[B^?6  
%   See also ZERNPOL, ZERNFUN2. a4T~\\,dZ>  
V@v1a@=W  
%   Paul Fricker 11/13/2006 ,'C30A*p  
ss`P QN  
;n} >C' :  
% Check and prepare the inputs: >sQ2@"y)s2  
% ----------------------------- `s`C{|wv  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -Aa]aDAz68  
    error('zernfun:NMvectors','N and M must be vectors.') fimb]C I|x  
end h@~:(:zU$  
\9]I#Ih}M  
if length(n)~=length(m) Z6Nj<2u2  
    error('zernfun:NMlength','N and M must be the same length.') ]^:hyO K  
end aUW/1nQHa  
T~%H%O(F  
n = n(:); /Fv/oY  
m = m(:); Z&FkLww  
if any(mod(n-m,2)) OGJ=VQA  
    error('zernfun:NMmultiplesof2', ... 2'wr={>W  
          'All N and M must differ by multiples of 2 (including 0).') JBR[; zM  
end WY+(]Wkao  
g .x=pt  
if any(m>n)  9<|m4  
    error('zernfun:MlessthanN', ... Ys-Keyg  
          'Each M must be less than or equal to its corresponding N.') _+ twq i  
end ch@x]@-;A3  
JbE?a[Eg?  
if any( r>1 | r<0 ) d/XlV]#2x\  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') ~ww?Emrw  
end ^ <qrM  
[N)#/ 6j  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) GS\%mPZ  
    error('zernfun:RTHvector','R and THETA must be vectors.') 1GtOA3,~;-  
end `gBD_0<T7  
of9q"h  
r = r(:); M@|w[ydQG  
theta = theta(:); zwK }7h6]  
length_r = length(r); k$C"xg2  
if length_r~=length(theta) (/"thv5vT{  
    error('zernfun:RTHlength', ... g b -Bxf  
          'The number of R- and THETA-values must be equal.') W*k`  
end /7bw: h;  
ZjqA30!  
% Check normalization: c~P)4(udT  
% -------------------- Nd`HB=ShJ  
if nargin==5 && ischar(nflag) ZP"yq6!i  
    isnorm = strcmpi(nflag,'norm'); $#5klA  
    if ~isnorm n`]l^qE  
        error('zernfun:normalization','Unrecognized normalization flag.') ><[| G9  
    end W1v CN31  
else EMLx?JnP  
    isnorm = false; a`#S|'oatC  
end (]2<?x*  
Cz_AJ-WR  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *|mz_cKu  
% Compute the Zernike Polynomials Q6=MS>JW]w  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MRQZIi  
;Xqn-R  
% Determine the required powers of r: K<FKu $=  
% ----------------------------------- ! ,@ZQS  
m_abs = abs(m); -Q#o)o  
rpowers = []; rJu[ N(2k  
for j = 1:length(n) C1d 04Q  
    rpowers = [rpowers m_abs(j):2:n(j)]; jZRhKT  
end *vYn_wE  
rpowers = unique(rpowers); 8Jr1_a  
~;[&K%n  
% Pre-compute the values of r raised to the required powers, G*B$%?n  
% and compile them in a matrix: W6vf=I@f  
% ----------------------------- )R~aA#<>  
if rpowers(1)==0 I~)cYl:|G  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \^LWCp,C"  
    rpowern = cat(2,rpowern{:}); ]u+MTW;  
    rpowern = [ones(length_r,1) rpowern]; W<v_2iVu  
else P*YK9Hl<  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); tRteyNA  
    rpowern = cat(2,rpowern{:}); SET-8f  
end BEWro|]cM  
j&WL*XP&5  
% Compute the values of the polynomials: [EgW/\35  
% -------------------------------------- SG:bM7*1'  
y = zeros(length_r,length(n)); tjj^O%SV<  
for j = 1:length(n) r0\?WoF2C  
    s = 0:(n(j)-m_abs(j))/2; }p=g*Zo*C;  
    pows = n(j):-2:m_abs(j); M'q'$)e  
    for k = length(s):-1:1 qK?$= h.  
        p = (1-2*mod(s(k),2))* ... jq(qo4~;  
                   prod(2:(n(j)-s(k)))/              ... DR@1z9 a  
                   prod(2:s(k))/                     ... j$vK<SF  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... |g<*Rk0  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); dCeX}Z  
        idx = (pows(k)==rpowers); pj!:[d  
        y(:,j) = y(:,j) + p*rpowern(:,idx); T1W:>~T5#  
    end KXf<$\+zO  
     A "S/^<  
    if isnorm !,Nwts>m  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); WS:5MI,OL  
    end 4PWAGuN^  
end JO=1ivZl  
% END: Compute the Zernike Polynomials MS*G-C  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FW#P*}#  
44HiTWQS?l  
% Compute the Zernike functions: _y vLu j  
% ------------------------------ l}rS{+:wK  
idx_pos = m>0; xx }GOY.J  
idx_neg = m<0; +?[BU<X6u  
7J|&U2}c  
z = y; FRZs[\I|iT  
if any(idx_pos) ``u:lL  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _dU8'H  
end d"ZU y!a  
if any(idx_neg) nWJ:=JQ i"  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zE|Wn3_sd  
end f<<rTE6  
RJ~ %0  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) %}&(h/= e  
%ZERNFUN2 Single-index Zernike functions on the unit circle. "NzD1k6.L  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Kesy2mE  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive C5@V/vA  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, fP[& a9l  
%   and THETA is a vector of angles.  R and THETA must have the same <7XT\?%F  
%   length.  The output Z is a matrix with one column for every P-value, p!zJ;rh)  
%   and one row for every (R,THETA) pair. T6M+|"92  
% ys'T~Cs  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike s-*._;  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) p $ouh  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) --fFpM3EvS  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 1A<,TFg  
%   for all p. o' 'wCr%  
% ;%!B[+ut"  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36  c</1  
%   Zernike functions (order N<=7).  In some disciplines it is ;%Hf)F  
%   traditional to label the first 36 functions using a single mode > cN~U3  
%   number P instead of separate numbers for the order N and azimuthal *7$P]  
%   frequency M. tX%`#hb?s  
% P0Z! ?`e=M  
%   Example: /6+NU^  
% -#s [F S  
%       % Display the first 16 Zernike functions L}sx<=8.m  
%       x = -1:0.01:1; 8VQ 24r  
%       [X,Y] = meshgrid(x,x); H'=(`  
%       [theta,r] = cart2pol(X,Y); l=}~v  
%       idx = r<=1; p$E8Bn%[  
%       p = 0:15; lfN~A"X  
%       z = nan(size(X)); v [njdP  
%       y = zernfun2(p,r(idx),theta(idx)); ][;G=oCT  
%       figure('Units','normalized') 9GLb"6+PK  
%       for k = 1:length(p) EME.h&A\G`  
%           z(idx) = y(:,k); :5fAPK2r<  
%           subplot(4,4,k) `ln1$  
%           pcolor(x,x,z), shading interp hk>;pU(  
%           set(gca,'XTick',[],'YTick',[]) TsQU6NNE  
%           axis square $s5a G)?7  
%           title(['Z_{' num2str(p(k)) '}']) i38[hQR9a  
%       end *|#T8t,}n  
% @b#^ -  
%   See also ZERNPOL, ZERNFUN. g I]GUD-  
<Fz~7WVd  
%   Paul Fricker 11/13/2006 \ I`p|&vG  
Q{g;J`Z)p  
h"+ `13  
% Check and prepare the inputs: 3AcD,,M>>  
% ----------------------------- BX+.0M  
if min(size(p))~=1 ?.=}pAub  
    error('zernfun2:Pvector','Input P must be vector.') &>g'$a<[  
end dt}_D={Be  
-O!/Jv"{,[  
if any(p)>35 a2 +~;{?g  
    error('zernfun2:P36', ... jE2}p-2Q0  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... tWeFEVg  
           '(P = 0 to 35).']) = u[#2!  
end . Dg*\ h  
m!tx(XsXU  
% Get the order and frequency corresonding to the function number: )\uO9PB[O  
% ---------------------------------------------------------------- p>vU?eF  
p = p(:); Vr[czfROz'  
n = ceil((-3+sqrt(9+8*p))/2); /4\wn?f  
m = 2*p - n.*(n+2); cTTW06^  
j=?'4sF  
% Pass the inputs to the function ZERNFUN: ikD1N  
% ---------------------------------------- b75 $?_+  
switch nargin }Z-Z|G)#  
    case 3 F[ ajOb8  
        z = zernfun(n,m,r,theta); 7CXW#H  
    case 4 d?AlI  
        z = zernfun(n,m,r,theta,nflag); \%Ves@hG>  
    otherwise 39wa|:I  
        error('zernfun2:nargin','Incorrect number of inputs.') wr(*?p]R  
end %WTEv?I{Ga  
5irwz4.4  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) GeszgtK{T  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. j>uj=B@  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of X$%4$  
%   order N and frequency M, evaluated at R.  N is a vector of W&(k!6<x  
%   positive integers (including 0), and M is a vector with the *]hBGr#6  
%   same number of elements as N.  Each element k of M must be a ;9o;r)9~  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) p'7*6bj1  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is i%e7LJ@5AW  
%   a vector of numbers between 0 and 1.  The output Z is a matrix h$eEn l}  
%   with one column for every (N,M) pair, and one row for every yRp"jcD  
%   element in R. wo_,Y0vfB  
% BH]Ynu&o  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ^7zu<lX  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is z#BR5jF  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to s,#>m*Rh  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 kKC9{^%)  
%   for all [n,m]. s .Wdxh  
% V%$/#sza  
%   The radial Zernike polynomials are the radial portion of the ]Q]W5WDe:  
%   Zernike functions, which are an orthogonal basis on the unit 8-<:i  
%   circle.  The series representation of the radial Zernike ifN64`AhRX  
%   polynomials is ()&~@1U  
% }neY<{z  
%          (n-m)/2 iq( )8nxi  
%            __ pTIf@n6I  
%    m      \       s                                          n-2s (/35p g6\  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r bfo["  
%    n      s=0 cw iX8e"3  
% )K &(  
%   The following table shows the first 12 polynomials. McB[|PmC  
% q, O$ %-70  
%       n    m    Zernike polynomial    Normalization :y7c k/>  
%       ---------------------------------------------  : ]C~gc  
%       0    0    1                        sqrt(2) k)EX(T\  
%       1    1    r                           2 2-Y<4'>  
%       2    0    2*r^2 - 1                sqrt(6) fb^fVSh>  
%       2    2    r^2                      sqrt(6) MEB it  
%       3    1    3*r^3 - 2*r              sqrt(8) .^B*e6DAD  
%       3    3    r^3                      sqrt(8) Lemui)  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) M4as  
%       4    2    4*r^4 - 3*r^2            sqrt(10) )1X#*mCxk  
%       4    4    r^4                      sqrt(10) E>l~-PaZY  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) .Wjs~0c  
%       5    3    5*r^5 - 4*r^3            sqrt(12) '],J$ge  
%       5    5    r^5                      sqrt(12) >2~=)L  
%       --------------------------------------------- ]+X@ 7  
% a+n0|CvF  
%   Example: Gz .|]:1  
% Hh+ 2mkg  
%       % Display three example Zernike radial polynomials |\pbir  
%       r = 0:0.01:1; %c4Hse#Y  
%       n = [3 2 5]; 82l~G;.n3  
%       m = [1 2 1]; Jv^h\~*jH  
%       z = zernpol(n,m,r); Bz,?{o6s)Q  
%       figure wmTb97o  
%       plot(r,z) P&f7@MOV.P  
%       grid on -B +4+&{T  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') )ut&@]  
% B {>7-0  
%   See also ZERNFUN, ZERNFUN2. =E.wv  
$< JaLS  
% A note on the algorithm. |ZmUNiAa  
% ------------------------ 7 qS""f7  
% The radial Zernike polynomials are computed using the series =i[\-  
% representation shown in the Help section above. For many special q@{Bt{$x  
% functions, direct evaluation using the series representation can &q9T9A OS  
% produce poor numerical results (floating point errors), because PUUwv_  
% the summation often involves computing small differences between n@) K #  
% large successive terms in the series. (In such cases, the functions |:gf lseE  
% are often evaluated using alternative methods such as recurrence 4%4 }5UYN  
% relations: see the Legendre functions, for example). For the Zernike %KLpig  
% polynomials, however, this problem does not arise, because the PpzP7  
% polynomials are evaluated over the finite domain r = (0,1), and E 7{U |\  
% because the coefficients for a given polynomial are generally all V-BiF>+  
% of similar magnitude. o2F)%TDY  
% y+NN< EY@  
% ZERNPOL has been written using a vectorized implementation: multiple *}*FX+px)  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] A*\.NTM  
% values can be passed as inputs) for a vector of points R.  To achieve U>Slc08N  
% this vectorization most efficiently, the algorithm in ZERNPOL F1yqxWHeo  
% involves pre-determining all the powers p of R that are required to Tc? $>'  
% compute the outputs, and then compiling the {R^p} into a single Vh4X%b$TV  
% matrix.  This avoids any redundant computation of the R^p, and p^w;kN  
% minimizes the sizes of certain intermediate variables. .:F%_dS D  
% ;>Ib^ov  
%   Paul Fricker 11/13/2006 xA$XT[D  
2fL;-\!y(  
?Wlb3;  
% Check and prepare the inputs: T{-CkHf9Q  
% ----------------------------- JxM]9<a=4  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J| w>a  
    error('zernpol:NMvectors','N and M must be vectors.') ds<2I,t  
end GBPo8L"9  
|Y ,b?*UF  
if length(n)~=length(m) asppRL||  
    error('zernpol:NMlength','N and M must be the same length.') Li4zTR|U  
end X aMJDa|M  
;~m8;8)  
n = n(:); k5'Vy8q  
m = m(:); 5@~ Q^r:%  
length_n = length(n); 0Qf,@^zL*  
Po^?QVJ7  
if any(mod(n-m,2)) Q' {M L4  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') z7fp#>uw  
end ~qTx|",  
L0TFo_  
if any(m<0) p8Qk 'F=h  
    error('zernpol:Mpositive','All M must be positive.') 1~NT.tY  
end KW pVw!  
I;wp':  
if any(m>n) Rl?_^dPx  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') G3Hx! YW  
end ;U+3w~  
iP ->S\  
if any( r>1 | r<0 ) Yg||{  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') <L8'!q}  
end *k.G5>@  
;n*.W|Uph  
if ~any(size(r)==1) EE06h-ns  
    error('zernpol:Rvector','R must be a vector.') #A JDWelD  
end (R=:X+ k  
(c=6yV@  
r = r(:); ?BeiY zg  
length_r = length(r); dO! kk"qn  
 UD2C>1j  
if nargin==4 6]WAUK%h  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); %K=?@M9i  
    if ~isnorm B" 1c  
        error('zernpol:normalization','Unrecognized normalization flag.') JcsHt;  
    end he;dq)-e9  
else IL#"~D?  
    isnorm = false; 6*78cg Io  
end 2*;~S4 4  
HdUQCugxx:  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gwuI-d^  
% Compute the Zernike Polynomials >* f-Wde  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Tztu}t]N  
U)] oO  
% Determine the required powers of r: -P$PAg5"2  
% ----------------------------------- @zW]2 c  
rpowers = []; aFX=C >M  
for j = 1:length(n) )-I { ^(  
    rpowers = [rpowers m(j):2:n(j)]; & p  
end *5C7d*'  
rpowers = unique(rpowers); ;#W2|'HD  
}c,}V  
% Pre-compute the values of r raised to the required powers, C!<Ou6}!b  
% and compile them in a matrix: t6 "%3#s  
% ----------------------------- %HhnSi1K  
if rpowers(1)==0 l`lk-nb  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); v!~fs)cdE|  
    rpowern = cat(2,rpowern{:}); U`(ee*}o  
    rpowern = [ones(length_r,1) rpowern]; V(I8=rVH  
else ,aZ[R27rpL  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {L{o]Ii?g  
    rpowern = cat(2,rpowern{:}); J5K^^RUR  
end  ~d.Y&b  
5uGq%(24  
% Compute the values of the polynomials: ?=sDM& '  
% -------------------------------------- LYTdTP  
z = zeros(length_r,length_n); hR?{3d#x2  
for j = 1:length_n EeE7#$l  
    s = 0:(n(j)-m(j))/2; I3L<[-ZE  
    pows = n(j):-2:m(j); ~w+c8c8pW  
    for k = length(s):-1:1 <44G]eb  
        p = (1-2*mod(s(k),2))* ... BA:VPTZq  
                   prod(2:(n(j)-s(k)))/          ... I5 p ? [  
                   prod(2:s(k))/                 ... Z"xvh81P  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... reu*53r]  
                   prod(2:((n(j)+m(j))/2-s(k)));  ?(1 y  
        idx = (pows(k)==rpowers); 76{G'}B  
        z(:,j) = z(:,j) + p*rpowern(:,idx); 6P l<'3&  
    end v0{i0%d,?  
     >y7?-*0  
    if isnorm k(nW#*N_  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Tx# Mn~xD  
    end eF$x1|  
end j_?FmX _  
iOghb*aW  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  $'M!HJxb  
on `3&0,.  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 )3EY;  
E ~<JC"]  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计