niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 8e'0AI_> function z = zernfun(n,m,r,theta,nflag) !lSxBr[dQ %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]~,V(K % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ez2 gy" % and angular frequency M, evaluated at positions (R,THETA) on the u@`)u# % unit circle. N is a vector of positive integers (including 0), and <JA`e+Bi % M is a vector with the same number of elements as N. Each element @G
vDl=. % k of M must be a positive integer, with possible values M(k) = -N(k) 9`8\<a'rU % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 728}K^7: % and THETA is a vector of angles. R and THETA must have the same s*g yk % length. The output Z is a matrix with one column for every (N,M) #\+TKK % pair, and one row for every (R,THETA) pair. fwy-M: % kT(}>=]g % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike K>k MKd1 % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), xM1>kbo| % with delta(m,0) the Kronecker delta, is chosen so that the integral HQ%-e5Q % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $*| :A % and theta=0 to theta=2*pi) is unity. For the non-normalized Nxu10 % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. L3Leb%,! % (K$K;f$"r % The Zernike functions are an orthogonal basis on the unit circle. B|IQ/g? % They are used in disciplines such as astronomy, optics, and 2Yx6.e< % optometry to describe functions on a circular domain. 9Z0(e!b4S % (}Ql#q
K % The following table lists the first 15 Zernike functions. fhu-YYJt % p{j
}%)6n % n m Zernike function Normalization JM{S49Lx % -------------------------------------------------- '3>kD H+ % 0 0 1 1 /EUv=89{! % 1 1 r * cos(theta) 2 #e.2m5T % 1 -1 r * sin(theta) 2 H_'i.t 'SS % 2 -2 r^2 * cos(2*theta) sqrt(6) {~yj]+Im % 2 0 (2*r^2 - 1) sqrt(3) Kp*nOZ % 2 2 r^2 * sin(2*theta) sqrt(6) z_#B 4 % 3 -3 r^3 * cos(3*theta) sqrt(8) EXDtVa Ot % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) fGiN`j}j % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 9l+`O0.@ % 3 3 r^3 * sin(3*theta) sqrt(8) \?[#>L4 % 4 -4 r^4 * cos(4*theta) sqrt(10) 4BG6C'`% % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @18"o"c7j % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ?)#dP8n % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L!E/ )#{ % 4 4 r^4 * sin(4*theta) sqrt(10) zCD?5*7 % -------------------------------------------------- {&G7 Xa % ;T2)nSAqt % Example 1: v]g/
5qI& % buo_H@@p{s % % Display the Zernike function Z(n=5,m=1) b=a&!r5M % x = -1:0.01:1; b .k
J&c % [X,Y] = meshgrid(x,x); -
Z "w % [theta,r] = cart2pol(X,Y); &0Zn21q % idx = r<=1; ~V?O%1)k?\ % z = nan(size(X)); E|D~:M%~ % z(idx) = zernfun(5,1,r(idx),theta(idx)); Nt#zr]Fz % figure PY:
l % pcolor(x,x,z), shading interp t=iSMe % axis square, colorbar )t{oyBT % title('Zernike function Z_5^1(r,\theta)') e*uaxh+7 % SsDz>PP % Example 2: R2Fh
WiL % wJJ4F$"b % % Display the first 10 Zernike functions %4U;Rdq&Ud % x = -1:0.01:1;
ykSn=0 % [X,Y] = meshgrid(x,x); ]]$s"F< % [theta,r] = cart2pol(X,Y); i TY4X:x % idx = r<=1; U9IP`)z_5t % z = nan(size(X)); [JFmhLP9 % n = [0 1 1 2 2 2 3 3 3 3]; o|8
5<~` % m = [0 -1 1 -2 0 2 -3 -1 1 3]; < pI2} % Nplot = [4 10 12 16 18 20 22 24 26 28]; KotJ,s]B % y = zernfun(n,m,r(idx),theta(idx)); S#qd#Zk|Y % figure('Units','normalized') goi.'8M|/b % for k = 1:10 ,#&lNQ'I % z(idx) = y(:,k); ,v:m % subplot(4,7,Nplot(k)) .MuS"R{y % pcolor(x,x,z), shading interp <3z]d?u % set(gca,'XTick',[],'YTick',[]) C$\|eC j % axis square !8vHN=)z % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) XF(I$Mxl6 % end km'3[}8o& % tfj6#{M5 % See also ZERNPOL, ZERNFUN2. +Y,>ftN A1@tp/L=o % Paul Fricker 11/13/2006 9 )u*IGj =?T\zLN= vrdlI^ % Check and prepare the inputs: *. l,_68 % ----------------------------- K8doYN if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LF
<fp&C)h error('zernfun:NMvectors','N and M must be vectors.') z71.5n!C end xf<D5 olZ $"C]y$} if length(n)~=length(m) p>=YPi/d error('zernfun:NMlength','N and M must be the same length.') /HgdTyR) end {bL6%._C j]}A"8=1 n = n(:); _)Q)tOW m = m(:); cBM
A.'uIL if any(mod(n-m,2)) fM?HZKo error('zernfun:NMmultiplesof2', ... U .hV1 'All N and M must differ by multiples of 2 (including 0).') +ZtqR end |r 1\ R_\{a*lV0 if any(m>n) ZO{uG(u error('zernfun:MlessthanN', ... .MMFN}1O 'Each M must be less than or equal to its corresponding N.') n;Tpf<*U end |Y"q. n77 CL|t!+wU/ if any( r>1 | r<0 ) _ 0%sYkUc error('zernfun:Rlessthan1','All R must be between 0 and 1.') z$oA6qB) end IBb3A EcrM`E#kaZ if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,x!P|\w.G{ error('zernfun:RTHvector','R and THETA must be vectors.') (Mhj-0xf$ end .2/(G{}U z+FhWze r = r(:); Q^/66"Z:Z theta = theta(:); jFpXTy[> length_r = length(r); 0e9W>J9 if length_r~=length(theta) m `~/]QQ error('zernfun:RTHlength', ... ~PP*k QZlJ 'The number of R- and THETA-values must be equal.') g<{/mxv/ end vE7 L> 7 P!:Y<p{=> % Check normalization: GM|gm-t<@ % -------------------- "2(lgxhj if nargin==5 && ischar(nflag) RS!~5nk5 isnorm = strcmpi(nflag,'norm'); G*uy@s: if ~isnorm lb5Y$ZC error('zernfun:normalization','Unrecognized normalization flag.') D`0II= end E.Xfb"] else N_Cu%HP isnorm = false; .cN\x@3-j end x:b0G ViQxOUE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H>_ FCV8 % Compute the Zernike Polynomials #qT 97NQ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dbSIC[q 1BwCJ7?8 % Determine the required powers of r: +b1(sk=4z % ----------------------------------- ~{iBm"4 m_abs = abs(m); hL~@Ah5&t rpowers = []; HiCNs;t for j = 1:length(n) GJai!$v rpowers = [rpowers m_abs(j):2:n(j)]; Xg?hh 0s end dN\Byl(6 rpowers = unique(rpowers); _JOrGVmD o1YX^-<[F % Pre-compute the values of r raised to the required powers, 5 :6^533] % and compile them in a matrix: R<{bb' % ----------------------------- 9V`/zq? if rpowers(1)==0 bPEf2Z
G4 rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )+RTA
y [k rpowern = cat(2,rpowern{:}); csz/[* rpowern = [ones(length_r,1) rpowern]; //]g78]=O else zm)
]cq rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &Z/aM? rpowern = cat(2,rpowern{:}); gN1b?_g end L0ig% DvHcT]l>5 % Compute the values of the polynomials: F7gipCc1We % -------------------------------------- =i } y = zeros(length_r,length(n)); =($RT for j = 1:length(n) &1YqPk s = 0:(n(j)-m_abs(j))/2; )n}Wb+2I pows = n(j):-2:m_abs(j); f@l$52f3D for k = length(s):-1:1 m5Q,RwJ!xK p = (1-2*mod(s(k),2))* ... <8yzBp4gZ prod(2:(n(j)-s(k)))/ ... WM5s prod(2:s(k))/ ... QCQku\GLV prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _"SE^ _& | |