首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 X*QQVj  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! 4ynGXJmMlR  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 B +<i=w  
function z = zernfun(n,m,r,theta,nflag) ^w6~?'}  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. <F6LC_  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =?oYEO7  
%   and angular frequency M, evaluated at positions (R,THETA) on the %XiF7<A &  
%   unit circle.  N is a vector of positive integers (including 0), and m$!Ex}2  
%   M is a vector with the same number of elements as N.  Each element kB3@;z:  
%   k of M must be a positive integer, with possible values M(k) = -N(k) mh" 9V5T  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ;{:bq`56f  
%   and THETA is a vector of angles.  R and THETA must have the same ? e<D +  
%   length.  The output Z is a matrix with one column for every (N,M) T'${*NVn  
%   pair, and one row for every (R,THETA) pair. RM6*c .  
% aYrbB#  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike W~Ae&gcn#  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ipH'}~=ID  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral dQ`=CIr  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, I6lWB(H!u  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized 7I;A5f  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. $-p#4^dg  
% KbM1b  
%   The Zernike functions are an orthogonal basis on the unit circle. (!"&c* <  
%   They are used in disciplines such as astronomy, optics, and {}DoRp q=  
%   optometry to describe functions on a circular domain. a*bAf'=  
% 6X[Mn2wYW  
%   The following table lists the first 15 Zernike functions. 6u [ B}%l  
% -W'T3_  
%       n    m    Zernike function           Normalization :=e"D;5  
%       -------------------------------------------------- rJw Ws  
%       0    0    1                                 1 bW?cb5C  
%       1    1    r * cos(theta)                    2 b 67l\L  
%       1   -1    r * sin(theta)                    2 ^udl&>  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) " gQJeMU  
%       2    0    (2*r^2 - 1)                    sqrt(3) {2=f,,|+f  
%       2    2    r^2 * sin(2*theta)             sqrt(6) r9y(j z  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) V8-*dE  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) u)9YRMl  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Y wu > k  
%       3    3    r^3 * sin(3*theta)             sqrt(8) )=5 ,S~IT  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) ^j *H  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .Hm1ispq  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [/GCy0jk  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y@2v/O,\  
%       4    4    r^4 * sin(4*theta)             sqrt(10) =l+~}/7'Z  
%       -------------------------------------------------- !.@F,wZvY  
% [|tlTk   
%   Example 1: QUK v :;  
% RZbiiMC>  
%       % Display the Zernike function Z(n=5,m=1) "pTU&He  
%       x = -1:0.01:1; qj1Fj  
%       [X,Y] = meshgrid(x,x); _qvzZ6  
%       [theta,r] = cart2pol(X,Y); c$b~? Mx  
%       idx = r<=1; Bh5z4  
%       z = nan(size(X)); 'h3yxf}\  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); -n~%v0D8c  
%       figure A# Ne07d  
%       pcolor(x,x,z), shading interp YlJ_$Q[  
%       axis square, colorbar \kEC|O)8  
%       title('Zernike function Z_5^1(r,\theta)') qt`HP3J&  
% ]*TW%mY  
%   Example 2: h42dk(B  
% nl+8C}=u  
%       % Display the first 10 Zernike functions mIah[~G  
%       x = -1:0.01:1; O*udVE>  
%       [X,Y] = meshgrid(x,x); *_H^]wNJG  
%       [theta,r] = cart2pol(X,Y); l9vJ]   
%       idx = r<=1; ,&iZ*6=X?0  
%       z = nan(size(X)); n0%5mTUN  
%       n = [0  1  1  2  2  2  3  3  3  3]; o|Kd\<rY  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; bu,xIT^  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; M@<r8M]G  
%       y = zernfun(n,m,r(idx),theta(idx)); Wo7`gf_(  
%       figure('Units','normalized') oz&RNB.K  
%       for k = 1:10 t-?#x   
%           z(idx) = y(:,k); *^i"q\n5(  
%           subplot(4,7,Nplot(k)) P0ZY;/e5h  
%           pcolor(x,x,z), shading interp 4MPR  
%           set(gca,'XTick',[],'YTick',[]) 8 Az|SJ<  
%           axis square ]6@6g>f?  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;uN&yj<}a  
%       end 8c5=Px2\  
% Uc( z|  
%   See also ZERNPOL, ZERNFUN2. nQ08(8  
>Y=qSg>Ik  
%   Paul Fricker 11/13/2006 9T%b#~?3P  
d5#z\E??  
q]#j,}cN9  
% Check and prepare the inputs: h.4FY<  
% ----------------------------- 4a zqH;i  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #+(@i|!ifo  
    error('zernfun:NMvectors','N and M must be vectors.') =h,J!0Y  
end bA\(oD+:  
$%.,=~W7  
if length(n)~=length(m) VYnB&3 %DF  
    error('zernfun:NMlength','N and M must be the same length.') NS){D7T  
end =F/EzS  
zvR;Tl6]  
n = n(:); <6.?:Jj  
m = m(:); a^7QHYJ6  
if any(mod(n-m,2)) =+w/t9I[  
    error('zernfun:NMmultiplesof2', ... ~WKWx.ul  
          'All N and M must differ by multiples of 2 (including 0).') FXh*!%"*  
end TFDzTD  
kJpr:4;@_  
if any(m>n) 3hfv^H  
    error('zernfun:MlessthanN', ... BMItHn].  
          'Each M must be less than or equal to its corresponding N.') bJ^Jmb  
end 2?kVbF  
-FQc_k?VF  
if any( r>1 | r<0 ) ;^cMP1SH  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') O:Wd ,3_  
end 2Ws'3Jz  
X/FRe[R  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) uTNy{RBD+  
    error('zernfun:RTHvector','R and THETA must be vectors.') dpcU`$kt  
end X3HJ3F;==  
Uj^Y\w-@Z  
r = r(:); %e+{wU}w?2  
theta = theta(:); py$i{v%  
length_r = length(r); ]-jaIvM  
if length_r~=length(theta) Mo]aB:a  
    error('zernfun:RTHlength', ... [~ !9t9+~  
          'The number of R- and THETA-values must be equal.') 00pe4^U  
end q@i.4>x  
]0=THq\H  
% Check normalization: _7<G6q2(  
% -------------------- H/l,;/q]b  
if nargin==5 && ischar(nflag) IwR=@Ne8  
    isnorm = strcmpi(nflag,'norm'); *1h@Jb34  
    if ~isnorm Kl]l[!c7$  
        error('zernfun:normalization','Unrecognized normalization flag.') )3^#CD  
    end @ 1FWBH~  
else 3`Dyrj#!  
    isnorm = false; Z/LYTo$Bz  
end LBIEG_/m  
%' eaW  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .&.L@CRH  
% Compute the Zernike Polynomials Iv/h1j> H  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7%W@Hr,%F  
2]}e4@{  
% Determine the required powers of r: 2=$ F*B>9  
% ----------------------------------- e}iv vs2  
m_abs = abs(m); 4%7Oaf>9  
rpowers = []; |WSm puf  
for j = 1:length(n) vj"['6Xa  
    rpowers = [rpowers m_abs(j):2:n(j)]; S2?)Sb`  
end QB*n [(?  
rpowers = unique(rpowers); Y#FSU# a$<  
aT8A +=K6  
% Pre-compute the values of r raised to the required powers, pp()Hu3J  
% and compile them in a matrix: E//*bmww  
% ----------------------------- gF\ac%9  
if rpowers(1)==0 4F+G;'JV  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); pIY3ft\  
    rpowern = cat(2,rpowern{:}); 1-PFM-  
    rpowern = [ones(length_r,1) rpowern]; JC9OL.Ob  
else +f,I$&d.V  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j#${L6  
    rpowern = cat(2,rpowern{:}); aZ}z/.b]  
end 1~vv<`-  
qot {#tk d  
% Compute the values of the polynomials: xLw[ aYy4  
% -------------------------------------- X [;n149o  
y = zeros(length_r,length(n)); cq9d;~q  
for j = 1:length(n) Oyp)Wm;@  
    s = 0:(n(j)-m_abs(j))/2; c[EG cY={  
    pows = n(j):-2:m_abs(j); *2Q x69`  
    for k = length(s):-1:1 gXB&Sgjo  
        p = (1-2*mod(s(k),2))* ... BG+X8t8\  
                   prod(2:(n(j)-s(k)))/              ... cBU@853  
                   prod(2:s(k))/                     ... =<U'Jtu6'  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \>+BvF  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); `!.c_%m2  
        idx = (pows(k)==rpowers); ihIRB9  
        y(:,j) = y(:,j) + p*rpowern(:,idx); BXr._y, cr  
    end m^4Ojik  
     <9`/Y"\p  
    if isnorm :U-yO 9!j  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); t_Ul;HVPS  
    end M B,Z4 ^  
end &sGLm~m#  
% END: Compute the Zernike Polynomials /_r{7Gq.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fw0Z- 9*  
kaVYe)~  
% Compute the Zernike functions: K555z+,'e  
% ------------------------------ +N!/>w]n  
idx_pos = m>0; >Yfo $S_  
idx_neg = m<0; e_Q(l'f  
 DIh[%  
z = y; Og kb N`  
if any(idx_pos) cQh=Mri]  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); T7Yg^ -"  
end ,@t#)HV  
if any(idx_neg) }j,G)\g#  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,tuZ_"?M  
end #4!6pMW(&7  
RueL~$*6.~  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) {1W,-%  
%ZERNFUN2 Single-index Zernike functions on the unit circle. !Ly1!;<  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated VB{G% !}  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive BO;LK-V  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, 'w}/ o+x@  
%   and THETA is a vector of angles.  R and THETA must have the same eXMl3Lxf  
%   length.  The output Z is a matrix with one column for every P-value, e6^iakSd.L  
%   and one row for every (R,THETA) pair. SZD@<3Nb  
% /ee4 v!  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike JC4Z^/\.  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) E)F"!56lV  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ,T7(!)dR  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 SL>0_  
%   for all p. $ -f(.S  
% xsXf_gGu  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 }L|XZL_Jo#  
%   Zernike functions (order N<=7).  In some disciplines it is vm"dE4W=  
%   traditional to label the first 36 functions using a single mode 1 *$-.  
%   number P instead of separate numbers for the order N and azimuthal 0G/_"} @  
%   frequency M. q=cH ^`<.  
% h:'wtn@l(  
%   Example: I`EgR?5 `  
% XJi^gT N  
%       % Display the first 16 Zernike functions #[Vk#BIiv8  
%       x = -1:0.01:1; 8BwJWxBQ  
%       [X,Y] = meshgrid(x,x); 6o ]X.plr  
%       [theta,r] = cart2pol(X,Y); PQ[x A*  
%       idx = r<=1; Hsz).u  
%       p = 0:15; A+F@JpV  
%       z = nan(size(X)); 8VZLwhj  
%       y = zernfun2(p,r(idx),theta(idx)); lDhuL;9e  
%       figure('Units','normalized') *|k/lI  
%       for k = 1:length(p) Y/< ],1U  
%           z(idx) = y(:,k); SiSx ym  
%           subplot(4,4,k) M]OZS\9.B  
%           pcolor(x,x,z), shading interp 7 {#^ zr  
%           set(gca,'XTick',[],'YTick',[]) .(2ui~ed  
%           axis square h^"OC$  
%           title(['Z_{' num2str(p(k)) '}']) bO?Us  
%       end # :3~I  
% G=%SMl>[  
%   See also ZERNPOL, ZERNFUN. ~eHu +pv  
`@|Kx\y4=j  
%   Paul Fricker 11/13/2006 .[4Dv t|>6  
0|_d{/VK4  
j #)K/`  
% Check and prepare the inputs: >0qe*4n|M  
% ----------------------------- ]pP [0 S  
if min(size(p))~=1 DG"Z:^`*  
    error('zernfun2:Pvector','Input P must be vector.') O<?z\yBtS^  
end lGtTZ cg  
iSxuor ^;  
if any(p)>35 2DTBL:?`  
    error('zernfun2:P36', ... ThSB\  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... _ -/<bO  
           '(P = 0 to 35).']) rfS kQT  
end !o&b:7  
OAXF=V F#  
% Get the order and frequency corresonding to the function number: 1 ojy_  
% ---------------------------------------------------------------- /xcl0oe(  
p = p(:); $q~:%pQv  
n = ceil((-3+sqrt(9+8*p))/2); /{d5$(Y"  
m = 2*p - n.*(n+2); <i!7f26r  
{y k0Zef_  
% Pass the inputs to the function ZERNFUN: N/&t) 7  
% ---------------------------------------- x#_0 6  
switch nargin R s)Nz< d  
    case 3 q!P{a^Fnc  
        z = zernfun(n,m,r,theta); @ "=wn:O+  
    case 4 U}Aoz|  
        z = zernfun(n,m,r,theta,nflag); k3wAbGp  
    otherwise o7W1sD1O  
        error('zernfun2:nargin','Incorrect number of inputs.') o|BEY3|  
end tX#8 G09G+  
bM"crRG"  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) P@z,[,sy"$  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. )W& $FU4JK  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of q|+`ihut  
%   order N and frequency M, evaluated at R.  N is a vector of $M=W`E[g  
%   positive integers (including 0), and M is a vector with the ZNEWUt{+;^  
%   same number of elements as N.  Each element k of M must be a u`2[V4=L  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) .\X;VWTI  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is fmhqm"  
%   a vector of numbers between 0 and 1.  The output Z is a matrix o@&d d NO  
%   with one column for every (N,M) pair, and one row for every F};G&  
%   element in R. <) ` ?s  
% BcvCm+.S:  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Z `)}1|~B  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is TE.O@:7Z  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Y@Zv52,  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 jw"]U jub  
%   for all [n,m]. VTt{ 0 ~  
% +w]KK6  
%   The radial Zernike polynomials are the radial portion of the >$yqx1=jW  
%   Zernike functions, which are an orthogonal basis on the unit _s_%}8o  
%   circle.  The series representation of the radial Zernike xC,;IS k,  
%   polynomials is =#"ZO  
% _26<}&]b*  
%          (n-m)/2 TEK]$%2  
%            __ 1[;~>t@C  
%    m      \       s                                          n-2s 7:D@6<J?  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r +W6QtB6  
%    n      s=0 C;6Nu W  
% oe8sixZ[  
%   The following table shows the first 12 polynomials. [0(+E2/:2  
% ?<iinx   
%       n    m    Zernike polynomial    Normalization E?z~)0z2`  
%       --------------------------------------------- l?N|Gj;ZFZ  
%       0    0    1                        sqrt(2) AMhHq/Dw  
%       1    1    r                           2 jd]YKaI  
%       2    0    2*r^2 - 1                sqrt(6) Z7X_U` Q  
%       2    2    r^2                      sqrt(6) J AK+v  
%       3    1    3*r^3 - 2*r              sqrt(8) 6jKZ.S+s)  
%       3    3    r^3                      sqrt(8) $dp;$X3  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) n!r<\4I  
%       4    2    4*r^4 - 3*r^2            sqrt(10) o"Dk`L2  
%       4    4    r^4                      sqrt(10)  jx3J$5  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) M%evk4_27  
%       5    3    5*r^5 - 4*r^3            sqrt(12) XRMYR97  
%       5    5    r^5                      sqrt(12) &C.{7ZNt  
%       --------------------------------------------- V4PV@{G  
% ;e>pu"#  
%   Example: Vk/!_)  
% \!erP!$x .  
%       % Display three example Zernike radial polynomials ?4kM5NtP  
%       r = 0:0.01:1; Y'YvVI  
%       n = [3 2 5]; .^fVm  
%       m = [1 2 1]; oM&}akPE  
%       z = zernpol(n,m,r); .@  3  
%       figure }J~ d6m  
%       plot(r,z) _7h:NLd  
%       grid on @MS}tZ5  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') fr\"MP  
% 9\_^"5l  
%   See also ZERNFUN, ZERNFUN2. V6:S<A  
Y~P1r]piB  
% A note on the algorithm. eCDwY:t`  
% ------------------------ A{HP*x~t  
% The radial Zernike polynomials are computed using the series [ p+]H?(A  
% representation shown in the Help section above. For many special @2Lp I*]C  
% functions, direct evaluation using the series representation can m+t<<5I[-  
% produce poor numerical results (floating point errors), because ]Kutuf$t  
% the summation often involves computing small differences between ^ucmScl  
% large successive terms in the series. (In such cases, the functions |4J ;s7us  
% are often evaluated using alternative methods such as recurrence Z#O )0ou  
% relations: see the Legendre functions, for example). For the Zernike p f\ Ybbs  
% polynomials, however, this problem does not arise, because the ig Q,ZY1  
% polynomials are evaluated over the finite domain r = (0,1), and }=dUASL  
% because the coefficients for a given polynomial are generally all jvI!BZ  
% of similar magnitude. C#^V<:9  
% vn]e`O>y  
% ZERNPOL has been written using a vectorized implementation: multiple e ej:  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] ZU=om Rh5  
% values can be passed as inputs) for a vector of points R.  To achieve Yq6e=?-  
% this vectorization most efficiently, the algorithm in ZERNPOL ^V1.Y  
% involves pre-determining all the powers p of R that are required to 9h Jlc  
% compute the outputs, and then compiling the {R^p} into a single @O!BQ^'hk#  
% matrix.  This avoids any redundant computation of the R^p, and |XDbf3^6  
% minimizes the sizes of certain intermediate variables. +b =X~>vZ  
% Hwz.5hV"  
%   Paul Fricker 11/13/2006 +f}u.T_#  
h U3!  
f,jN"  
% Check and prepare the inputs: Qj1q x;S  
% ----------------------------- eK=W'cNu  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \E(Negt7  
    error('zernpol:NMvectors','N and M must be vectors.') |61W-9;  
end }f l4^F  
%4=r .9  
if length(n)~=length(m) m-< "`:+  
    error('zernpol:NMlength','N and M must be the same length.') wM-I*<L>  
end F}f/cG<X  
4Y2!q$}I+  
n = n(:); -4%{Jb-1  
m = m(:); 8h.Dc&V  
length_n = length(n); !Ojf9 6is  
:t7M'BSm2z  
if any(mod(n-m,2)) d)R7#HLZ7  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') \CY_nn|&g  
end T 5AoBUw  
=tKb7:KU  
if any(m<0) G~VukW<e  
    error('zernpol:Mpositive','All M must be positive.') TtWE:xE  
end + a,x  
LX!MDZz  
if any(m>n) _^k9!V jo  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') F> H5 ww9E  
end 6EX_IDb  
R5,ISD +s  
if any( r>1 | r<0 ) DjMhI_Yu  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') J7RO*.O&Iq  
end RBA{!  
sTb@nrRxH  
if ~any(size(r)==1) C$<['D?8  
    error('zernpol:Rvector','R must be a vector.') b9%G"?~Zz  
end DNyU]+\L[l  
&gr)U3w  
r = r(:); xoYaL  
length_r = length(r); )LdS1%  
k-;A9!^h  
if nargin==4 ] 'B4O1  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 0dKv%X#\  
    if ~isnorm Lj,!0 25  
        error('zernpol:normalization','Unrecognized normalization flag.') 67{3/(`x  
    end vJ a?5Jr  
else 0sR+@\  
    isnorm = false; "Yy)&zKr  
end .szc-r{  
{S Oy-  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gz~)v\5D/  
% Compute the Zernike Polynomials Wu1">|  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %u@}lG k  
{ ML)F]]  
% Determine the required powers of r: /hC'-6:]^  
% ----------------------------------- ukAE7O(W&  
rpowers = []; .!^}sp,E  
for j = 1:length(n) ]iHSUP  
    rpowers = [rpowers m(j):2:n(j)]; xV+cX*4h  
end H7}@56  
rpowers = unique(rpowers); B']}n`g  
3yXSv1  
% Pre-compute the values of r raised to the required powers, DQ{"6-  
% and compile them in a matrix: dJf#j?\[  
% ----------------------------- ;&~9k?v7L  
if rpowers(1)==0 O~bJ<O=?  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +W}dO#  
    rpowern = cat(2,rpowern{:}); SU$%nK)  
    rpowern = [ones(length_r,1) rpowern]; +DR,&;  
else =kiDW6 JJU  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); KrzIL[;2o  
    rpowern = cat(2,rpowern{:}); ~1g)4g~  
end q Xj]O3 mm  
Ce.*yO<-  
% Compute the values of the polynomials: j3$\+<m]  
% -------------------------------------- a*3h|b<  
z = zeros(length_r,length_n); zAA3bgaa  
for j = 1:length_n #BOLq`9 f  
    s = 0:(n(j)-m(j))/2; J*zm*~8\  
    pows = n(j):-2:m(j); -S6^D/(;  
    for k = length(s):-1:1 rT/4w#_3  
        p = (1-2*mod(s(k),2))* ... s^lm 81;  
                   prod(2:(n(j)-s(k)))/          ... e{k)]]J  
                   prod(2:s(k))/                 ... @Z[XV"w|  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... #P/}'rdt  
                   prod(2:((n(j)+m(j))/2-s(k))); $:!L38[7$  
        idx = (pows(k)==rpowers); mO0a: i!  
        z(:,j) = z(:,j) + p*rpowern(:,idx); _WB*ArR  
    end j@778fvM\t  
     *T:gx:Sg/  
    if isnorm r(i!".Z  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ZD`p$:pT  
    end &$<7]a\dM  
end UkzLUok]U  
_2p D  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  <lFQ4<"m  
Zg2F%f$Y  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 [2Rw)!N  
Yh 9fIRR  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计