niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6QS[mWU function z = zernfun(n,m,r,theta,nflag) b[p<kMTir %ZERNFUN Zernike functions of order N and frequency M on the unit circle. tTrUVuZ % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cfI5KLG~# % and angular frequency M, evaluated at positions (R,THETA) on the pgT XyAP{ % unit circle. N is a vector of positive integers (including 0), and $T7hY$2Ql % M is a vector with the same number of elements as N. Each element ZK,}3b{ % k of M must be a positive integer, with possible values M(k) = -N(k) ~um+r],@@ % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, wXw pKm % and THETA is a vector of angles. R and THETA must have the same EGMj5@> % length. The output Z is a matrix with one column for every (N,M) xHEkmL`)4 % pair, and one row for every (R,THETA) pair. $[9,1.?C % clfi)-^{K % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike rx`G*k{X % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {6MLbL{ % with delta(m,0) the Kronecker delta, is chosen so that the integral nsR^TD;
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @?ntMh6 % and theta=0 to theta=2*pi) is unity. For the non-normalized JmN,:bI % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Q)N$h07R % FkJa+ZA % The Zernike functions are an orthogonal basis on the unit circle. [XFZ2'OO % They are used in disciplines such as astronomy, optics, and 86d* % optometry to describe functions on a circular domain. CORX .PQ % ?3
J % The following table lists the first 15 Zernike functions. f:iK5g % -f?Rr:# % n m Zernike function Normalization %-"? % -------------------------------------------------- ,Yhy7w % 0 0 1 1 x h[4d % 1 1 r * cos(theta) 2 w`XwW#!}@$ % 1 -1 r * sin(theta) 2 K@xp! % 2 -2 r^2 * cos(2*theta) sqrt(6) EN@LB2 % 2 0 (2*r^2 - 1) sqrt(3) ^9T6Ix{= % 2 2 r^2 * sin(2*theta) sqrt(6) U!m-{7s$ % 3 -3 r^3 * cos(3*theta) sqrt(8) 4f,D3e%T| % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) !fdni}f) % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) pNpj, H*4 % 3 3 r^3 * sin(3*theta) sqrt(8) B.fLgQK0 % 4 -4 r^4 * cos(4*theta) sqrt(10) PHRc*G{ % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =y >P>&sI % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Gjuc"JR7 % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -k\7k2 % 4 4 r^4 * sin(4*theta) sqrt(10) ll;#4~iA % -------------------------------------------------- 20 gPx; % =!NYvwg6;o % Example 1: =DTn9}u % #|*;~:fz % % Display the Zernike function Z(n=5,m=1) u#=Yv|9 % x = -1:0.01:1; ~h -G % [X,Y] = meshgrid(x,x); :6LOb f\01 % [theta,r] = cart2pol(X,Y); uF5d
]{Qt % idx = r<=1; 2YK4SL % z = nan(size(X)); M%4o0k]E,s % z(idx) = zernfun(5,1,r(idx),theta(idx)); Q(m} Sr4 % figure tF)K$!GR[ % pcolor(x,x,z), shading interp bTC2Ya % axis square, colorbar "hz(A.THi % title('Zernike function Z_5^1(r,\theta)') l/OG79qq % }4xxge?r % Example 2: 1DcYc-k# % +Cx~4zEq % % Display the first 10 Zernike functions g=; rM8W % x = -1:0.01:1; mm%w0dOb" % [X,Y] = meshgrid(x,x); b0LjNO@< % [theta,r] = cart2pol(X,Y); <Xw 6m$fr: % idx = r<=1; en7i})v\". % z = nan(size(X)); "Gcr1$xG8! % n = [0 1 1 2 2 2 3 3 3 3]; D+rDgrv % m = [0 -1 1 -2 0 2 -3 -1 1 3]; ]>E9v&X0 % Nplot = [4 10 12 16 18 20 22 24 26 28]; Fy-nV%P % y = zernfun(n,m,r(idx),theta(idx)); d T/*O8 % figure('Units','normalized') '.~vN L+
O % for k = 1:10 DMcvu*A % z(idx) = y(:,k); ,IuO;UV#) % subplot(4,7,Nplot(k)) +`f gn9p % pcolor(x,x,z), shading interp QHr
3J
% set(gca,'XTick',[],'YTick',[]) [.< | |