首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ~S}>|q$  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! -o\$.Q3  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 }OO(uC2  
function z = zernfun(n,m,r,theta,nflag) 8 [i#x|`g  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. v0!>":  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N md7Aqh  
%   and angular frequency M, evaluated at positions (R,THETA) on the j"o`K}C  
%   unit circle.  N is a vector of positive integers (including 0), and =W)Fa6P3j(  
%   M is a vector with the same number of elements as N.  Each element rP.qCl+J  
%   k of M must be a positive integer, with possible values M(k) = -N(k)  mfOr+   
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, "- xm+7  
%   and THETA is a vector of angles.  R and THETA must have the same r,=xI` XH  
%   length.  The output Z is a matrix with one column for every (N,M)  FRI<A8  
%   pair, and one row for every (R,THETA) pair. I@P[}XS  
% 3/8o)9f.  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike  r(pp =  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0-"ps]X  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral vPEL'mw/3#  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, NGB%fJ  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized x8%Q TTY  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _F xq  
% uy\< t  
%   The Zernike functions are an orthogonal basis on the unit circle. N8(xz-6  
%   They are used in disciplines such as astronomy, optics, and VVeO>jd  
%   optometry to describe functions on a circular domain. {:40Jf  
% -xq)brG  
%   The following table lists the first 15 Zernike functions. B1m@  
% r AMnM>`  
%       n    m    Zernike function           Normalization uRG0} >]|U  
%       -------------------------------------------------- BDZB;DPb  
%       0    0    1                                 1 F.c`0u;=  
%       1    1    r * cos(theta)                    2 &'V_80vA  
%       1   -1    r * sin(theta)                    2 +<6L>ZAL  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) G T#hqt'1x  
%       2    0    (2*r^2 - 1)                    sqrt(3) +B^ / =3P  
%       2    2    r^2 * sin(2*theta)             sqrt(6) e/lfT?J\  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) QlI g'B6  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) CF9a~^+%  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) yCkfAx8 ]  
%       3    3    r^3 * sin(3*theta)             sqrt(8) ,GXwi|Y  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) h8 >7si  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iaXNf ])?  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) t ),~w,7(J  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .Tt \U  
%       4    4    r^4 * sin(4*theta)             sqrt(10) T+NEw8C?/  
%       -------------------------------------------------- Zoj.F  
% {g\Yy(r  
%   Example 1: CyO2Z  
% vn3<LQ]  
%       % Display the Zernike function Z(n=5,m=1) =[(1u|H 9  
%       x = -1:0.01:1; {YWj`K  
%       [X,Y] = meshgrid(x,x); ,WA7Kp9  
%       [theta,r] = cart2pol(X,Y); t5N@ z  
%       idx = r<=1; *3WK:0  
%       z = nan(size(X)); ;YNN)P%"  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); ~\4l*$3(^  
%       figure LtbL[z>]  
%       pcolor(x,x,z), shading interp ZgF-.(GV  
%       axis square, colorbar 4>>{}c!nf  
%       title('Zernike function Z_5^1(r,\theta)') WK0?$[|=r  
% A=!&2(  
%   Example 2: hLGUkG?6G  
% AuHOdiJ  
%       % Display the first 10 Zernike functions 67%eAS  
%       x = -1:0.01:1; |\@e  
%       [X,Y] = meshgrid(x,x); nH}api^0A  
%       [theta,r] = cart2pol(X,Y); UevbLt1Y  
%       idx = r<=1; OP]=MZP|  
%       z = nan(size(X)); A?|KA<&m#u  
%       n = [0  1  1  2  2  2  3  3  3  3]; ?l`DkUo*j  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; QKc3Q5)@j  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; 6@g2v^ %  
%       y = zernfun(n,m,r(idx),theta(idx)); 4ao oBY$  
%       figure('Units','normalized') 2,puu2F  
%       for k = 1:10 4Ub_;EI>  
%           z(idx) = y(:,k); hJ.XG<?]$  
%           subplot(4,7,Nplot(k)) ?;> s<  
%           pcolor(x,x,z), shading interp y/mxdP w  
%           set(gca,'XTick',[],'YTick',[]) ur={+0 y  
%           axis square *!%y.$\cE  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) iq,qf)BY.|  
%       end ~[Mk QJxe  
% #9EpQc[4  
%   See also ZERNPOL, ZERNFUN2. ~cy/\/oO  
nf+8OH7  
%   Paul Fricker 11/13/2006 suj? e6  
3ag*dBbs  
g2;JJ}  
% Check and prepare the inputs: 5fv eQI~!  
% ----------------------------- dm,7OQ  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) iU9de  
    error('zernfun:NMvectors','N and M must be vectors.') 'Fo*h6=  
end f3lFpS  
0`"]mYH  
if length(n)~=length(m) {5 -4^|!  
    error('zernfun:NMlength','N and M must be the same length.') |@]J*Kh  
end :N\*;>  
Z}f$ KWj  
n = n(:); H:#b(&qw2  
m = m(:); sI/Hcm  
if any(mod(n-m,2)) 7A8jnq7m/  
    error('zernfun:NMmultiplesof2', ... =#^%; 66z  
          'All N and M must differ by multiples of 2 (including 0).') yU\&\fD>j  
end +c/am``  
s6OnHX\it7  
if any(m>n) gZ   
    error('zernfun:MlessthanN', ... CY)/1 # J  
          'Each M must be less than or equal to its corresponding N.') B @HW@j  
end dl'pl  
HC*=E.J  
if any( r>1 | r<0 ) Wd_bDZQ  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5,I'6$J  
end z!)_'A  
!e&ZhtTuC  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Z*.fSmT8)  
    error('zernfun:RTHvector','R and THETA must be vectors.') qw&Wfk\}  
end iN0pYqY*  
apF!@O^}y  
r = r(:); C 6Bh[:V&  
theta = theta(:); l^:m!SA_  
length_r = length(r); m'KY;C  
if length_r~=length(theta) jiYYDGs77  
    error('zernfun:RTHlength', ... ~KD x  
          'The number of R- and THETA-values must be equal.') enj Ti5X  
end <_uLf9j a  
skR/Wf9DH  
% Check normalization: ct3QtX0B  
% -------------------- 1}tZ,w>  
if nargin==5 && ischar(nflag) :7D&=n)  
    isnorm = strcmpi(nflag,'norm'); 2JYp.CJv  
    if ~isnorm %Xh/16X${  
        error('zernfun:normalization','Unrecognized normalization flag.') |]RV[S3v  
    end `i8osX[&p  
else .S`Ue,H  
    isnorm = false; gq*- v:P>  
end r*N:-I~z  
Pg-~^"?y  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v$K`C;  
% Compute the Zernike Polynomials pB@8b$8(Z  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PYkcGtVa_  
; @ h{-@  
% Determine the required powers of r: +)^F9LPl  
% ----------------------------------- iH#~eg  
m_abs = abs(m); ;y%lOYm  
rpowers = []; `x lsvK>  
for j = 1:length(n) H;k;%Zg;  
    rpowers = [rpowers m_abs(j):2:n(j)]; 7fLLV2  
end Dp6]!;kx  
rpowers = unique(rpowers); bESmKe(  
a^ <  
% Pre-compute the values of r raised to the required powers, Nb>|9nu O  
% and compile them in a matrix: R@5jEf  
% ----------------------------- ilw<Q-o4(  
if rpowers(1)==0 @X>k@M  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6i( V+  
    rpowern = cat(2,rpowern{:}); Ox8dnPcx  
    rpowern = [ones(length_r,1) rpowern]; ZwAX+0  
else Cc0`Ylx~(  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); D'YF [l  
    rpowern = cat(2,rpowern{:}); k;3Bv 6  
end Nv,[E+a2  
O_ nk8  
% Compute the values of the polynomials: b,Ed}Ir  
% -------------------------------------- nZfTK>)A0  
y = zeros(length_r,length(n)); +uM1#-+h  
for j = 1:length(n) {:IOTy  
    s = 0:(n(j)-m_abs(j))/2; -g]/Ko]2@$  
    pows = n(j):-2:m_abs(j); 3I^KJ/)A  
    for k = length(s):-1:1 4))u*c/,  
        p = (1-2*mod(s(k),2))* ... >@[`,  
                   prod(2:(n(j)-s(k)))/              ... bS3qX{5  
                   prod(2:s(k))/                     ... I--WS[  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {p|OKf  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); *ys@ 'Ai?  
        idx = (pows(k)==rpowers); W:aAe%S  
        y(:,j) = y(:,j) + p*rpowern(:,idx); q =b.!AZy  
    end 2}'qu)  
     {0lY\#qcE  
    if isnorm kI<C\ *N  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Bg-C:Ok 2'  
    end - DlKFN  
end k)'hNk"x  
% END: Compute the Zernike Polynomials M/5/Tp  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% doBfpQ2  
MnO,Cd6{%d  
% Compute the Zernike functions: ":"QsS#*"#  
% ------------------------------  / >Wh  
idx_pos = m>0; RI:x`do  
idx_neg = m<0; <.HHV91  
PkLRQ}  
z = y; zpZlA_   
if any(idx_pos) L4zSro:Si  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =3{h9  
end @ ~ N:F~  
if any(idx_neg) 0Q;T <% U  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); $ e+@9LNK  
end %aaOws  
W2wDSP-   
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) doFp53NhV  
%ZERNFUN2 Single-index Zernike functions on the unit circle. "@gJ[BL#  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 1i_~ZzX8  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive q5BJsw  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, NSOWn]E  
%   and THETA is a vector of angles.  R and THETA must have the same "]LNw=S  
%   length.  The output Z is a matrix with one column for every P-value, }[!;c+ke  
%   and one row for every (R,THETA) pair. .Y&_k  
% .Ap[C? mV  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 7\"-<z;kK  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) l'W?X '  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) x~$P.X7(~  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 $sU?VA'h  
%   for all p. ";`ddN3  
% 6vX+- f  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Umv_{n`  
%   Zernike functions (order N<=7).  In some disciplines it is !#rZ eDmw  
%   traditional to label the first 36 functions using a single mode F@ZG| &  
%   number P instead of separate numbers for the order N and azimuthal +=$\7z>s  
%   frequency M. Y5-X)f  
% nv{ou [vQ  
%   Example: 6"|PJ_@P  
% W$EX6jTGI  
%       % Display the first 16 Zernike functions <z#r3J  
%       x = -1:0.01:1; Cs^o- g!L  
%       [X,Y] = meshgrid(x,x); <!y_L5S|   
%       [theta,r] = cart2pol(X,Y); VDPqI+z  
%       idx = r<=1; J%aW^+O  
%       p = 0:15; 3 cT  
%       z = nan(size(X)); Yl&eeM  
%       y = zernfun2(p,r(idx),theta(idx)); bsr  
%       figure('Units','normalized') n j; KnZ  
%       for k = 1:length(p) ?b#/*T}ac  
%           z(idx) = y(:,k); ,G"?fQ7zR  
%           subplot(4,4,k) x)BG%{h  
%           pcolor(x,x,z), shading interp csRba;Z[  
%           set(gca,'XTick',[],'YTick',[]) 7vNS@[8  
%           axis square 6:v8J1G(<  
%           title(['Z_{' num2str(p(k)) '}']) qI<*Cze  
%       end k,X)PQc  
% PgB=<#9  
%   See also ZERNPOL, ZERNFUN. I4m)5G?O2  
K.o?g?&<  
%   Paul Fricker 11/13/2006 6du"^g  
y|.wL=;  
q<oA%yR  
% Check and prepare the inputs: Cla Yy58v  
% ----------------------------- E4}MvV=  
if min(size(p))~=1 ,{J2i#g<  
    error('zernfun2:Pvector','Input P must be vector.') ;f?OT7>kN  
end vIN6W   
6@H& S  
if any(p)>35 J-Sf9^G  
    error('zernfun2:P36', ... .a;-7|x  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... zFP}=K:o)  
           '(P = 0 to 35).']) (cC5zv*E  
end ~`*:E'/5k]  
z]Ql/AK  
% Get the order and frequency corresonding to the function number: BzTm[`(h  
% ---------------------------------------------------------------- CrS[FM= +W  
p = p(:); gJs~kQU  
n = ceil((-3+sqrt(9+8*p))/2); #g~~zwx/N  
m = 2*p - n.*(n+2); #0!C3it6c  
+8Peh9"  
% Pass the inputs to the function ZERNFUN: um&N|5lHb  
% ---------------------------------------- SkvKzV.R;  
switch nargin ; wW6x  
    case 3 O- |RPW}  
        z = zernfun(n,m,r,theta); YV! !bI  
    case 4 %{zM> le9  
        z = zernfun(n,m,r,theta,nflag); OX8jCW  
    otherwise tE>3.0U0Q  
        error('zernfun2:nargin','Incorrect number of inputs.') JC>}(yQA  
end /%)M lG  
7:bqh$3!s  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) (O?z6g  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. gMHH3^\VH)  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 7-^df0  
%   order N and frequency M, evaluated at R.  N is a vector of ,wRrx&  
%   positive integers (including 0), and M is a vector with the JXPn <  
%   same number of elements as N.  Each element k of M must be a `kekc.*-[@  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) Ls|;gewp  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ;GH(A=}/Y  
%   a vector of numbers between 0 and 1.  The output Z is a matrix T,WWQm  
%   with one column for every (N,M) pair, and one row for every t{?_]2vl  
%   element in R. WY*}|R2R  
% _r^&.'q  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- egr@:5QwZ{  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ^e&,<+qY  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ef!I |.FW  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 0n(Q@O  
%   for all [n,m]. T}u'  
% >"`:w  
%   The radial Zernike polynomials are the radial portion of the foL`{fA  
%   Zernike functions, which are an orthogonal basis on the unit @B&hR} 4  
%   circle.  The series representation of the radial Zernike q!O~*   
%   polynomials is K32eZv`T7  
% 72v 9S T  
%          (n-m)/2 x;b'y4kH  
%            __ YVs{\1|'  
%    m      \       s                                          n-2s J+.t \R  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r !w C4ei`  
%    n      s=0 '}!dRpx  
% }cS3mJ  
%   The following table shows the first 12 polynomials. JBU qZ  
% f(##P|3>R  
%       n    m    Zernike polynomial    Normalization \!w7 N :m  
%       --------------------------------------------- :;7qup  
%       0    0    1                        sqrt(2) Ge97e/ CY  
%       1    1    r                           2 %mxG;w$  
%       2    0    2*r^2 - 1                sqrt(6) D ORFK  
%       2    2    r^2                      sqrt(6) Z ,T TI>P  
%       3    1    3*r^3 - 2*r              sqrt(8) %/sf#8^m  
%       3    3    r^3                      sqrt(8) 3}N:oJI$z  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) wz:wR+  
%       4    2    4*r^4 - 3*r^2            sqrt(10) 'etCIl3  
%       4    4    r^4                      sqrt(10) X7n~Ws&s@  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ;zh|*F>  
%       5    3    5*r^5 - 4*r^3            sqrt(12) ~L}0) FZ\9  
%       5    5    r^5                      sqrt(12) -><?q t  
%       --------------------------------------------- xvrCm`3n@  
% >O?EFd>E  
%   Example: (# ?~^ut  
% l'o'q7&=z  
%       % Display three example Zernike radial polynomials X1" `0r3  
%       r = 0:0.01:1; yWX:`*GV  
%       n = [3 2 5]; E%40u.0  
%       m = [1 2 1]; O #0:6QX  
%       z = zernpol(n,m,r); /yH:ur  
%       figure o#6j+fo!n  
%       plot(r,z) .m+KXlP  
%       grid on ea B-u  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') f+F /`P%  
% ^WUF3Q**OU  
%   See also ZERNFUN, ZERNFUN2. Bj\0RmVa1  
Va !HcG1^:  
% A note on the algorithm. J6f;dF^  
% ------------------------ .}z&$:U9[  
% The radial Zernike polynomials are computed using the series 3RGVH,  
% representation shown in the Help section above. For many special G>H&M#7K  
% functions, direct evaluation using the series representation can KDCq::P<  
% produce poor numerical results (floating point errors), because dIK!xOStA  
% the summation often involves computing small differences between H!s &]b  
% large successive terms in the series. (In such cases, the functions Kh%9Oy  
% are often evaluated using alternative methods such as recurrence BWQ (>Z"  
% relations: see the Legendre functions, for example). For the Zernike 1_yUv7uhX  
% polynomials, however, this problem does not arise, because the $XaZqzeVI  
% polynomials are evaluated over the finite domain r = (0,1), and c%v%U &  
% because the coefficients for a given polynomial are generally all 3+(Fq5I  
% of similar magnitude. #t{?WkO[  
% 9ft7  
% ZERNPOL has been written using a vectorized implementation: multiple w3B*%x)  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] f? ko%c_p  
% values can be passed as inputs) for a vector of points R.  To achieve M22 ^.,Z  
% this vectorization most efficiently, the algorithm in ZERNPOL 69CH W&  
% involves pre-determining all the powers p of R that are required to 44b'40  
% compute the outputs, and then compiling the {R^p} into a single T!J\Dm-  
% matrix.  This avoids any redundant computation of the R^p, and }Z%*gfp  
% minimizes the sizes of certain intermediate variables. N{E >R&,q  
% >JnEhVRQJ9  
%   Paul Fricker 11/13/2006 rTK/WZs8  
6g7 X1C  
pn'*w 1i  
% Check and prepare the inputs: y 37n~~%  
% ----------------------------- k>2 xm  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2uU~$7~N  
    error('zernpol:NMvectors','N and M must be vectors.') Mi S$Y  
end 8[xb+_  
*mq+w&  
if length(n)~=length(m) a0y;c@pkO  
    error('zernpol:NMlength','N and M must be the same length.') C>t1~^Q},9  
end O cm  
ud! iy  
n = n(:); V. :imj  
m = m(:); .GkH^9THP  
length_n = length(n); uKhfZSx0 w  
t0Ec` +)  
if any(mod(n-m,2)) 5C2 *f 4|  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ^Cpvh}1#  
end |>VDMezy  
RqH"+/wR  
if any(m<0) K4A=lD+  
    error('zernpol:Mpositive','All M must be positive.') !`Bb[BTf  
end 2h u;N  
@cSz!E}  
if any(m>n) IO|">a6  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') n T\ W|  
end D4;V8(w=#  
[u/g =^+u  
if any( r>1 | r<0 ) &LHQ) ?  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') 8?P@<Do%  
end wnha c}  
G^j/8e  
if ~any(size(r)==1) Vc c/  
    error('zernpol:Rvector','R must be a vector.') `ag>4?7?  
end Rq9v+Xq2  
P\N$TYeH  
r = r(:); +7d%)t  
length_r = length(r); VA.:'yQtJ  
~Ui<y=d  
if nargin==4 wD}[XE?S  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ysDfp'C,  
    if ~isnorm M}3>5*!=  
        error('zernpol:normalization','Unrecognized normalization flag.') -=O9D- x=  
    end (&+ ~hW5d  
else g:O~1jq  
    isnorm = false; >\3=h8zw  
end ~vBmW_j  
YD7i6A  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -=5z&) X  
% Compute the Zernike Polynomials U!^\DocAY  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F;5.nKo  
[6)`wi  
% Determine the required powers of r: ES }@mO  
% ----------------------------------- ;40!2P8t  
rpowers = []; Z/6B[,V  
for j = 1:length(n) O0';j!?X  
    rpowers = [rpowers m(j):2:n(j)]; _`*x}  
end >jRz4%  
rpowers = unique(rpowers); kbBX\*{yh  
tDF6%RG  
% Pre-compute the values of r raised to the required powers, ko $bCG%  
% and compile them in a matrix: Quc9lL  
% ----------------------------- HE7JQP!q  
if rpowers(1)==0 a[[u>oHyd  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); srO {Ci0  
    rpowern = cat(2,rpowern{:}); F+v?2|03  
    rpowern = [ones(length_r,1) rpowern]; 2< w/GX.  
else f[!N]*  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); d&PXJ  
    rpowern = cat(2,rpowern{:}); i~PN(h  
end `2Ju[P  
KYu3dC'/,&  
% Compute the values of the polynomials: I[WW1P5  
% -------------------------------------- p4bQCI  
z = zeros(length_r,length_n); WojZ[j>  
for j = 1:length_n K q: +{'  
    s = 0:(n(j)-m(j))/2; 0^?(;AK  
    pows = n(j):-2:m(j); :|EM1-lwf  
    for k = length(s):-1:1 4\Mh2z5  
        p = (1-2*mod(s(k),2))* ... &d[&8V5S  
                   prod(2:(n(j)-s(k)))/          ... C>4y<,Q  
                   prod(2:s(k))/                 ... 6Z\[{S];  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... ~^w;`~L  
                   prod(2:((n(j)+m(j))/2-s(k))); S%R:GZEf_  
        idx = (pows(k)==rpowers); )PVX)2P_C  
        z(:,j) = z(:,j) + p*rpowern(:,idx); +8 ]}'6m  
    end o{(-jhR  
     l5l:'EY>  
    if isnorm (S&X??jfB5  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); M%/ML=eLi  
    end gmJiKuAL5  
end /g< T)$2  
s>9w+|6Ji  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  bEfxu;Su 3  
w8:~LX.n  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 R;,+0r^i  
r in#lu& N  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计