首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 0sh~I  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! Zi*%*nX  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 o(fyd)t  
function z = zernfun(n,m,r,theta,nflag) PIxjM>  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8wmQ4){  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N MUwxgAG`G  
%   and angular frequency M, evaluated at positions (R,THETA) on the d.AC%&W  
%   unit circle.  N is a vector of positive integers (including 0), and #U"1 9@|}  
%   M is a vector with the same number of elements as N.  Each element J@Yj\9U  
%   k of M must be a positive integer, with possible values M(k) = -N(k) J>h;_jA  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, wE6A 7\k%  
%   and THETA is a vector of angles.  R and THETA must have the same ShGp^xVj  
%   length.  The output Z is a matrix with one column for every (N,M) }#/l N  
%   pair, and one row for every (R,THETA) pair. JD lBVZ!  
% Y0RgJn  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fGarUV  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), T8Na]V5  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral ?1w"IjUS  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u"Y]P*[k  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized Hi8Y6|y$D  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %/pc=i|+  
% |}Ph"g2D,  
%   The Zernike functions are an orthogonal basis on the unit circle. -N# #w=  
%   They are used in disciplines such as astronomy, optics, and ^P$7A]!  
%   optometry to describe functions on a circular domain. X<euD9?  
% }-nU3{1  
%   The following table lists the first 15 Zernike functions. B9#;-QO  
% d.r Y-k  
%       n    m    Zernike function           Normalization q qvF-mDN  
%       -------------------------------------------------- R=$Ls6z  
%       0    0    1                                 1 wW5Yw i  
%       1    1    r * cos(theta)                    2 I$j|Rq  
%       1   -1    r * sin(theta)                    2 e=>% ^F  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) 5[R?iSGL1  
%       2    0    (2*r^2 - 1)                    sqrt(3) (STx$cya  
%       2    2    r^2 * sin(2*theta)             sqrt(6) fp;a5||5  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) m~>@BCn;  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) S^j,f'2  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) BS2?!;,8  
%       3    3    r^3 * sin(3*theta)             sqrt(8) nk/vGa4  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) %5Rq1$D  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w}`3 d@  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 6+PGwCS  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &t3Jv{  
%       4    4    r^4 * sin(4*theta)             sqrt(10) sfI N)jh  
%       -------------------------------------------------- ; k}H(QI  
% mx}E$b$<CY  
%   Example 1: a.,_4;'UE1  
% i@,]Z~]  
%       % Display the Zernike function Z(n=5,m=1) }N,>A-P  
%       x = -1:0.01:1; &J(!8y*QyE  
%       [X,Y] = meshgrid(x,x); r/PKrw sC  
%       [theta,r] = cart2pol(X,Y); .@k*p>K  
%       idx = r<=1; &t_h'JX&  
%       z = nan(size(X)); ,Rz }=j  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); 8R4qU!M  
%       figure #{,h@g}W  
%       pcolor(x,x,z), shading interp ~ 5"J(  
%       axis square, colorbar mHs:t{q  
%       title('Zernike function Z_5^1(r,\theta)') x+:zq<0|  
% 7#pZa.B)k  
%   Example 2: H.~bD[gA  
% RGp'b  
%       % Display the first 10 Zernike functions W4vBf^eC  
%       x = -1:0.01:1; aQ|hi F}  
%       [X,Y] = meshgrid(x,x); ps+:</;Z  
%       [theta,r] = cart2pol(X,Y); [`nY2[A$  
%       idx = r<=1; 3cThu43c  
%       z = nan(size(X)); q%S8\bt  
%       n = [0  1  1  2  2  2  3  3  3  3]; euZ I`*0  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ML= z<u+  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; {D,RU8&  
%       y = zernfun(n,m,r(idx),theta(idx)); $?f]ZyZr.  
%       figure('Units','normalized') A.U'Q|  
%       for k = 1:10 %U?)?iZdL  
%           z(idx) = y(:,k); oAz<G  
%           subplot(4,7,Nplot(k)) v{koKQ'Y()  
%           pcolor(x,x,z), shading interp <25ccE9^c  
%           set(gca,'XTick',[],'YTick',[]) w-FHhf  
%           axis square 2.qpt'p[  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) kqf8=y  
%       end Fu##'#  
% u[EK#%  
%   See also ZERNPOL, ZERNFUN2. 5"gL.Ez  
ZNL5({lv  
%   Paul Fricker 11/13/2006 CQ18%w6  
1b[NgOXY=  
;)|nkI  
% Check and prepare the inputs: r|-J8s#  
% ----------------------------- jY+Do:#/wO  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) FmI;lVF0j  
    error('zernfun:NMvectors','N and M must be vectors.') :8]6#c6`74  
end B5`;MQJ  
4)nt$fW  
if length(n)~=length(m) wY`#$)O0*  
    error('zernfun:NMlength','N and M must be the same length.') OG}KqG!n  
end f?-J#x)  
]_ #SAhOR)  
n = n(:); Yb9cW\lr  
m = m(:); iT$d;5_pU  
if any(mod(n-m,2)) ]-Lruq#  
    error('zernfun:NMmultiplesof2', ... 24X=5Aj  
          'All N and M must differ by multiples of 2 (including 0).') K?YEoz'y[  
end ]}~4J.Yn  
"XB4yExy  
if any(m>n) k =|K|  
    error('zernfun:MlessthanN', ... ?Cc :)  
          'Each M must be less than or equal to its corresponding N.') ;@4sd%L8V  
end Hz?,#>{  
8]]@S"ZM,\  
if any( r>1 | r<0 ) =mLeMk/7 w  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') Xi+n`T'i  
end DaCblX  
W0?JVtq0Z  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Ays L-sqR  
    error('zernfun:RTHvector','R and THETA must be vectors.') dk:xnX%  
end Om6Mmoqh  
2-7Z(7G{ F  
r = r(:); Wl TpX`  
theta = theta(:); RNe9h lr  
length_r = length(r); -R8/`M8GbD  
if length_r~=length(theta) -#OwJ*-U  
    error('zernfun:RTHlength', ... =h7[E./U1  
          'The number of R- and THETA-values must be equal.') e# <4/FR  
end g/B\ObY  
Rdj8 *f  
% Check normalization: PJ;.31u  
% -------------------- c dDY]"k  
if nargin==5 && ischar(nflag) K4Y'B o4  
    isnorm = strcmpi(nflag,'norm'); )*W=GY*  
    if ~isnorm bq: [Nj  
        error('zernfun:normalization','Unrecognized normalization flag.') X98#QR#m  
    end Cy6%S).c  
else OQ,}/  
    isnorm = false; G ~A$jStm  
end Nuo^+z E   
ajGcKyj8i  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nfa_8  
% Compute the Zernike Polynomials 0W_mCV  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y,V6h*x2  
|zh +  
% Determine the required powers of r: M6&~LI.We=  
% ----------------------------------- n_1jHJo  
m_abs = abs(m); \*Ts)EW  
rpowers = []; J ZA*{n2  
for j = 1:length(n) V&g)m.d:n  
    rpowers = [rpowers m_abs(j):2:n(j)]; !"`Jqs  
end aU4R+.M7@  
rpowers = unique(rpowers); ^glX1 )  
"A]?M<R  
% Pre-compute the values of r raised to the required powers, ;}UzJe ,S  
% and compile them in a matrix: gU+ss  
% ----------------------------- lS#7x h  
if rpowers(1)==0 PP],HB+*[  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D$QGLI9(  
    rpowern = cat(2,rpowern{:}); x\6] ;SXX  
    rpowern = [ones(length_r,1) rpowern]; " cNg :  
else [A|(A$jl  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); xUIvLH=  
    rpowern = cat(2,rpowern{:}); [#IBYJ.6  
end \zBd<H4S:  
^u3*hl}YKy  
% Compute the values of the polynomials: WFRsSp2  
% -------------------------------------- c5<kbe  
y = zeros(length_r,length(n)); p?}f|mQS)  
for j = 1:length(n) #t){4J  
    s = 0:(n(j)-m_abs(j))/2; zf`5>h|  
    pows = n(j):-2:m_abs(j); j{)fC]8H  
    for k = length(s):-1:1 re]%f"v:5  
        p = (1-2*mod(s(k),2))* ... 1k$2LQ  
                   prod(2:(n(j)-s(k)))/              ...  ccRlql(  
                   prod(2:s(k))/                     ... $y8mK|3.3u  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... JR] )xPI`  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); s%5Uj }  
        idx = (pows(k)==rpowers); ZTr:xX{R6  
        y(:,j) = y(:,j) + p*rpowern(:,idx); E N)YoVk  
    end NWw<B3aL  
     Ih(:HFRMq6  
    if isnorm Fs?( UM  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); qI(W$  
    end oN_S}o  
end " 98/HzR  
% END: Compute the Zernike Polynomials m\_+)eI|  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LFl2uV"  
*@CVYJ'<  
% Compute the Zernike functions: !&qx7eOSpP  
% ------------------------------ ^g}L`9fL  
idx_pos = m>0; 3(aRs?/ O  
idx_neg = m<0; D% oueW  
NAJ '><2  
z = y; < }<#W/  
if any(idx_pos) TViBCed40  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4s[`yV  
end B.V?s,U  
if any(idx_neg) tX@ 0:RX%  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ixIh T  
end k&WUv0  
5P-K *C&  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) CR%D\I$o  
%ZERNFUN2 Single-index Zernike functions on the unit circle. qsD?dHi7  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated VEL:JsY  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive 1R5Yn(  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, XPar_8I  
%   and THETA is a vector of angles.  R and THETA must have the same 3X,]=f@_  
%   length.  The output Z is a matrix with one column for every P-value, ue,#, 3{m  
%   and one row for every (R,THETA) pair. ~D<7W4c  
% _`TepX R  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike x*NqA( r  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) &r&;<Q  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) >L#];|  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 <]Ij(+J;  
%   for all p. ^RYn8I  
% D."cQ<sxpN  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 CkmlqqUHC  
%   Zernike functions (order N<=7).  In some disciplines it is ev~dsk6k  
%   traditional to label the first 36 functions using a single mode (J6" ;  
%   number P instead of separate numbers for the order N and azimuthal |Dl*w/n  
%   frequency M. !Sh^LYqn  
% 6Hc H'nmeN  
%   Example: MDMtOfe|  
% k)?,xY\AV  
%       % Display the first 16 Zernike functions \;nD)<)J  
%       x = -1:0.01:1; 9zXu6<|qrL  
%       [X,Y] = meshgrid(x,x); \pjRv  
%       [theta,r] = cart2pol(X,Y); 3$GY,B  
%       idx = r<=1; r^?)F?n!  
%       p = 0:15; | \ s2  
%       z = nan(size(X)); N BV}4  
%       y = zernfun2(p,r(idx),theta(idx));  !7 ei1  
%       figure('Units','normalized') >t 1_5  
%       for k = 1:length(p) z7O Z4R:  
%           z(idx) = y(:,k); J xA^DH  
%           subplot(4,4,k) ;X?Ah  
%           pcolor(x,x,z), shading interp r]8wOu-'  
%           set(gca,'XTick',[],'YTick',[]) 0_YxZS\  
%           axis square y #hga5  
%           title(['Z_{' num2str(p(k)) '}']) F{#N6,T  
%       end 1Z^`l6|2  
% ?b!CV   
%   See also ZERNPOL, ZERNFUN. bBkm]  >  
!!?+M @  
%   Paul Fricker 11/13/2006 \>*MMe  
'Qm` A=  
u=p ;A1oy  
% Check and prepare the inputs: /e-ka{WS  
% ----------------------------- 8>C; >v  
if min(size(p))~=1 \zk?$'d  
    error('zernfun2:Pvector','Input P must be vector.') kx"hWG4  
end 3v8V*48B$  
MgJ%26TZ  
if any(p)>35 y3 ({(URU  
    error('zernfun2:P36', ... Uq<a22t@  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Y9IJ   
           '(P = 0 to 35).']) ?z\q Mu  
end ikEWY_1Y  
]`#xR *a  
% Get the order and frequency corresonding to the function number: uM6CG0  
% ---------------------------------------------------------------- m.\ >95!  
p = p(:); `c qH}2s#  
n = ceil((-3+sqrt(9+8*p))/2); 9 _M H  
m = 2*p - n.*(n+2); N<#S3B?.  
=yk Rki  
% Pass the inputs to the function ZERNFUN: QLn5#x~xb  
% ---------------------------------------- Jcwh|w9D8  
switch nargin !$:0E y(S  
    case 3 Ze$^UR  
        z = zernfun(n,m,r,theta); u4b3bH9U  
    case 4 !SLP8|Cd  
        z = zernfun(n,m,r,theta,nflag); d-6sC@PB  
    otherwise P?Gd}mdX?m  
        error('zernfun2:nargin','Incorrect number of inputs.') ql#{=oGDnA  
end +z]:CF  
lfU"SSQ  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) J)7,&Gc6  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. E)&NP}k-P  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of "K}W^J9v  
%   order N and frequency M, evaluated at R.  N is a vector of nhVK?  
%   positive integers (including 0), and M is a vector with the LW83Y/7  
%   same number of elements as N.  Each element k of M must be a _Ep{|]:gw  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) >\6jb&,%O  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is yiv RpSL  
%   a vector of numbers between 0 and 1.  The output Z is a matrix -dc5D@4`#s  
%   with one column for every (N,M) pair, and one row for every K^z5x#Yj  
%   element in R. {<- ouD  
% ;X*K*q  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 4*N@=v  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is yBYuDfeZ  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to g[=\KrTSg  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 JqVBT+:  
%   for all [n,m]. )*^OPVt  
% ^G'yaaLXR  
%   The radial Zernike polynomials are the radial portion of the |?;"B:0  
%   Zernike functions, which are an orthogonal basis on the unit E i\J9zt  
%   circle.  The series representation of the radial Zernike bBeFL~  
%   polynomials is 1}n)J6m  
% t?%}hs\!  
%          (n-m)/2 +YQ)}v  
%            __ + ,vJ7  
%    m      \       s                                          n-2s jt'Y(u]2  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 3&a*]  
%    n      s=0 ,%)WT>  
% 9:CVN@E  
%   The following table shows the first 12 polynomials. @,y FY  
% fJF8/IQ4  
%       n    m    Zernike polynomial    Normalization T(sG.%  
%       --------------------------------------------- wa(Wit"-  
%       0    0    1                        sqrt(2) w{YtTZp3  
%       1    1    r                           2 DiGUxnP  
%       2    0    2*r^2 - 1                sqrt(6) ^V XXq  
%       2    2    r^2                      sqrt(6) ${TB2q}%  
%       3    1    3*r^3 - 2*r              sqrt(8) J#Ne:Aj_  
%       3    3    r^3                      sqrt(8) IxEQh)J X  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) }Yo15BN+  
%       4    2    4*r^4 - 3*r^2            sqrt(10) o3TBRn,  
%       4    4    r^4                      sqrt(10) |04}zU%N  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) /_zF?5h  
%       5    3    5*r^5 - 4*r^3            sqrt(12) iP#A-du  
%       5    5    r^5                      sqrt(12) *FLTz(T  
%       --------------------------------------------- ZaNyNxbp>z  
% Vne. HFXA  
%   Example: \DcC1W  
% %T,\xZ  
%       % Display three example Zernike radial polynomials ?Qo_ KQ%sn  
%       r = 0:0.01:1; iaa (ce  
%       n = [3 2 5]; -?%{A%'  
%       m = [1 2 1]; "u,~yxYWl  
%       z = zernpol(n,m,r); 8ZNd|\  
%       figure 8&2gM  
%       plot(r,z) {Gb)Et]<  
%       grid on !cFE^VM_;  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') x w?9W4<  
%  a`h$lUb-  
%   See also ZERNFUN, ZERNFUN2. R<0!?`b  
n_xQSVI0F  
% A note on the algorithm. [r/Seg"  
% ------------------------ JI[rIL \Ey  
% The radial Zernike polynomials are computed using the series fbx;-He!  
% representation shown in the Help section above. For many special qI V`zZc  
% functions, direct evaluation using the series representation can  7 zP  
% produce poor numerical results (floating point errors), because g6a3MJV`  
% the summation often involves computing small differences between 9V4V}[%  
% large successive terms in the series. (In such cases, the functions bbPd&7  
% are often evaluated using alternative methods such as recurrence 7"CH\*%  
% relations: see the Legendre functions, for example). For the Zernike ! 4^L $  
% polynomials, however, this problem does not arise, because the w3?t})PB&  
% polynomials are evaluated over the finite domain r = (0,1), and @=zBF'<.9  
% because the coefficients for a given polynomial are generally all Kj<<&_B.H  
% of similar magnitude. E*T84Jh6  
% c&I,eds  
% ZERNPOL has been written using a vectorized implementation: multiple {</$ObK  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] $RFu m'`5  
% values can be passed as inputs) for a vector of points R.  To achieve &_%+r5  
% this vectorization most efficiently, the algorithm in ZERNPOL _I70qz8  
% involves pre-determining all the powers p of R that are required to 7i|hlk;  
% compute the outputs, and then compiling the {R^p} into a single RWh}?vs_  
% matrix.  This avoids any redundant computation of the R^p, and 3xCA\*  
% minimizes the sizes of certain intermediate variables. `bi_)i6Low  
% ?=@Q12R)X  
%   Paul Fricker 11/13/2006 WbDC  
Q]?J%P.  
OrH1fhh   
% Check and prepare the inputs: $b 71  
% ----------------------------- Xde=}9  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !#|fuOWe  
    error('zernpol:NMvectors','N and M must be vectors.') )'I<xx'1  
end gZ=9Y:$  
{ZIFj.2  
if length(n)~=length(m) buM>^A"  
    error('zernpol:NMlength','N and M must be the same length.') ;0X|*w1JO  
end 3<' Q`H>  
Vqp.jF1|  
n = n(:); +sbacMfq  
m = m(:); vhe Ah`u^&  
length_n = length(n); +fQ$~vr{'  
Ug'nr  
if any(mod(n-m,2)) +&zuI  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') K'rs9v"K|  
end 7;s0m0<%~  
Ky~~Cd$  
if any(m<0) ^fiRRFr[  
    error('zernpol:Mpositive','All M must be positive.') ToXFMkwY  
end PH4bM  
j 8AR#  
if any(m>n)  9DAwC:<r  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') p YvF}8  
end te4"+[ $|  
iuk8c.TAR  
if any( r>1 | r<0 ) GDQg:MgX  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') 1#_j6 Q2  
end OuIW|gIu0  
mt]YY<l  
if ~any(size(r)==1) EsxTBg  
    error('zernpol:Rvector','R must be a vector.') [Ik B/Xbw|  
end UHl/AM> !  
Oy`\8*Uy__  
r = r(:); 5Fm? ,^  
length_r = length(r); nk,Mo5iqV  
&$Ip$"H  
if nargin==4 nPX'E`ut-V  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Tu#k+f*s  
    if ~isnorm q9z!g/,d/  
        error('zernpol:normalization','Unrecognized normalization flag.') LzSusjEW@  
    end Y~ ?YA/.x  
else E1Aa2  
    isnorm = false; 5:3$VWLa <  
end $[;eb,  
U~@B%Msb L  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s+G9L)b'  
% Compute the Zernike Polynomials |N.q[>^R  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -@?>nLQb  
a9JJuSRC  
% Determine the required powers of r: x(6.W"-S  
% ----------------------------------- Uy'ZL(2  
rpowers = []; XzFqQ- H  
for j = 1:length(n) z#67rh {  
    rpowers = [rpowers m(j):2:n(j)]; r<H^%##,w  
end dOgM9P  
rpowers = unique(rpowers); j`M<M[C*4N  
wm[d5A4  
% Pre-compute the values of r raised to the required powers, =U|SK"oO  
% and compile them in a matrix: u+FftgA  
% ----------------------------- ?bi^h/ f  
if rpowers(1)==0  .5r0%  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Mo r-$a8  
    rpowern = cat(2,rpowern{:}); lFt{:HfX-  
    rpowern = [ones(length_r,1) rpowern]; .f<,H+m^  
else Nxk'!:  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9cPucKuj  
    rpowern = cat(2,rpowern{:}); p tfADG  
end :#KURYO<  
iJ#oI@s  
% Compute the values of the polynomials: GgZf6~b1J  
% -------------------------------------- 9:5NX3"p  
z = zeros(length_r,length_n); KywT Oq  
for j = 1:length_n !t{!.  
    s = 0:(n(j)-m(j))/2; TyXOd,%zl  
    pows = n(j):-2:m(j); m5g: Q  
    for k = length(s):-1:1 )Em,3I/.l  
        p = (1-2*mod(s(k),2))* ... HYa!$P3}[  
                   prod(2:(n(j)-s(k)))/          ... 7-B'G/PS/  
                   prod(2:s(k))/                 ... Mi-9sW  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... #>NZN1  
                   prod(2:((n(j)+m(j))/2-s(k))); YH$`r6\S  
        idx = (pows(k)==rpowers); K?eo)|4)DB  
        z(:,j) = z(:,j) + p*rpowern(:,idx); :Dm@3S$4<  
    end \wd`6  
     OPh@H.)^  
    if isnorm ew~FN  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 5n#&Hjb*F0  
    end ZXkAw sr  
end m>:ig\  
l/M+JT~R  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  IuL ]V TY  
%8/$CR  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 3]Mx,u  
3m'6cMQ  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计