| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .O lq_wuH function z = zernfun(n,m,r,theta,nflag) v}[7)oj| %ZERNFUN Zernike functions of order N and frequency M on the unit circle. #M8"b]oh6 % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N A
u(Ng q % and angular frequency M, evaluated at positions (R,THETA) on the WU}JArX9 % unit circle. N is a vector of positive integers (including 0), and -
d>)
% M is a vector with the same number of elements as N. Each element n]_8!NU % k of M must be a positive integer, with possible values M(k) = -N(k) lfWxdi % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ^#"!uCq]gM % and THETA is a vector of angles. R and THETA must have the same ~W`upx)j % length. The output Z is a matrix with one column for every (N,M) *4+;Ey % pair, and one row for every (R,THETA) pair. 2&5"m;< % =DF7l<&km % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )!M:=}." % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P_i2yhpK % with delta(m,0) the Kronecker delta, is chosen so that the integral vp-)$f& % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, uZW1
:cx % and theta=0 to theta=2*pi) is unity. For the non-normalized FtE%<QHt % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \.Q"fd?a_D % {) jQbAr(G % The Zernike functions are an orthogonal basis on the unit circle. G~^Pkl3%T % They are used in disciplines such as astronomy, optics, and 6)DYQ^4y % optometry to describe functions on a circular domain. 3pq&TYQU % n; !t?jnf. % The following table lists the first 15 Zernike functions. Ku&0bXP % AA yzT*^ % n m Zernike function Normalization | F:? % -------------------------------------------------- @\[&_DZ % 0 0 1 1 VJJw"4DJ % 1 1 r * cos(theta) 2 ywCE2N<-V? % 1 -1 r * sin(theta) 2 n_?<q{GW % 2 -2 r^2 * cos(2*theta) sqrt(6) %'t~+_ % 2 0 (2*r^2 - 1) sqrt(3) v#D9yttO{ % 2 2 r^2 * sin(2*theta) sqrt(6) 9j9A'Y9( % 3 -3 r^3 * cos(3*theta) sqrt(8) 3Jk;+< % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) PZH]9[H % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) GD.mB[f* % 3 3 r^3 * sin(3*theta) sqrt(8) K+Ehj(eF % 4 -4 r^4 * cos(4*theta) sqrt(10) v)J6}H}e % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~vaV=}) % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) q6/ o.j % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lusINILc % 4 4 r^4 * sin(4*theta) sqrt(10) H}JH339 % -------------------------------------------------- /koNcpJ % #p*OLQ3~ % Example 1: mVU(u_lh % mKWA-h+f % % Display the Zernike function Z(n=5,m=1) vNi7=3 % x = -1:0.01:1; aI+:rk^ % [X,Y] = meshgrid(x,x); 6}{2W< % [theta,r] = cart2pol(X,Y); PX(Gx%s| % idx = r<=1; =s1"<hH}O) % z = nan(size(X)); MT;<\T % z(idx) = zernfun(5,1,r(idx),theta(idx)); ZYrd;9zB % figure /3rt]h" % pcolor(x,x,z), shading interp ':F{st>&H % axis square, colorbar )"|g&= % title('Zernike function Z_5^1(r,\theta)') a*74FVZo.; % $7M64K{ % Example 2: I=Ws
/+ % -4Y}Y59\ % % Display the first 10 Zernike functions ma?569Z8~0 % x = -1:0.01:1; OFCkQEG=y> % [X,Y] = meshgrid(x,x); mNm
8I8 % [theta,r] = cart2pol(X,Y); <k}>eGn % idx = r<=1; L{'qZ#N[ % z = nan(size(X)); XQ,IEj| % n = [0 1 1 2 2 2 3 3 3 3]; 5K{(V^88F % m = [0 -1 1 -2 0 2 -3 -1 1 3]; rWi9'6 % Nplot = [4 10 12 16 18 20 22 24 26 28]; "t`r_Aw % y = zernfun(n,m,r(idx),theta(idx)); d*8 c,x % figure('Units','normalized') esbxx##\ % for k = 1:10 #C4 % z(idx) = y(:,k); VLu_SXlo* % subplot(4,7,Nplot(k)) M)Tv(7 % pcolor(x,x,z), shading interp D-A#{e _ % set(gca,'XTick',[],'YTick',[]) @+B
.<@V % axis square E^#|1Kpq % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 44RZk|U1J{ % end J'^BxN& % !W]># Pm % See also ZERNPOL, ZERNFUN2. 3 +BPqhzf
QH9(l % Paul Fricker 11/13/2006 Z(*nZT, a%Cq?HZ7 ?GB($D=Y'& % Check and prepare the inputs: _(J- MCY\ % ----------------------------- M+)%gnq`u if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +5?sYp\ error('zernfun:NMvectors','N and M must be vectors.') [WX+/pm7> end NQ@ EZoJ \9@*Jgpd6* if length(n)~=length(m) 0%`\8 error('zernfun:NMlength','N and M must be the same length.') WO^smCk end ldanM>5 (.
1<.PZp) n = n(:); J
A4'e@ m = m(:); hH )jX`Ta if any(mod(n-m,2)) f![x7D$ error('zernfun:NMmultiplesof2', ... 0MrtJNF]_O 'All N and M must differ by multiples of 2 (including 0).') ?VS {,"X end JR'Q Th:z _6^ vxlF if any(m>n) dGP*bMCT error('zernfun:MlessthanN', ... =u${2= 'Each M must be less than or equal to its corresponding N.') \qV5mD]"M end /$&~0pk T*-*U/ if any( r>1 | r<0 ) 4x e:+sA.N error('zernfun:Rlessthan1','All R must be between 0 and 1.') </:f-J%U/ end /=,^fCCN 9SC#N5V if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @ g~kp error('zernfun:RTHvector','R and THETA must be vectors.') G/2@Mn- end [UR+G8X21m 5#$E4k:YV r = r(:); ~9h6"0K! theta = theta(:); +=$]f jE? length_r = length(r); NTs< ;ED if length_r~=length(theta) n_.2B$JD error('zernfun:RTHlength', ... OA4NXl' 'The number of R- and THETA-values must be equal.') {BY`Wu:w end @<W"$_r- 6"-LGK: % Check normalization: "&Q-'L!M'/ % -------------------- K)l{3\9l| if nargin==5 && ischar(nflag) hY-;Wfg isnorm = strcmpi(nflag,'norm'); QRgWzaI if ~isnorm jWUN~#p! error('zernfun:normalization','Unrecognized normalization flag.') 7{v0K"E{ end (gl CTF9v else o@EV>4e y isnorm = false; kOFEH!9& end L.l"'=M JjyQ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <*2.B~ % Compute the Zernike Polynomials 4-ZiKM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >(`|oD`,Y Y]&HU) u % Determine the required powers of r: Q(oWaG % ----------------------------------- 8kH'ai m_abs = abs(m); 84e)huAs rpowers = []; F{bET for j = 1:length(n) }Jjq] lW rpowers = [rpowers m_abs(j):2:n(j)]; !COaPrg end @ DU]XKv rpowers = unique(rpowers); 3ZC to[Y }1N)3~ % Pre-compute the values of r raised to the required powers, h"#^0$f % and compile them in a matrix: }\*dD2qNL} % ----------------------------- H]}Iw5Z if rpowers(1)==0 ULjW589zb rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W%Br%VQJ rpowern = cat(2,rpowern{:}); qNC.|R rpowern = [ones(length_r,1) rpowern]; 3L=vsvO4 else |~8iNcIS rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); M\e%GJ0 rpowern = cat(2,rpowern{:}); [<`xAh_, end m#grtmyMrI WTY{sq\'
o % Compute the values of the polynomials: Ocx=)WKdW % -------------------------------------- \hv*`ukF y = zeros(length_r,length(n)); 9.#\GI ; for j = 1:length(n) Lo7R^> s = 0:(n(j)-m_abs(j))/2; `"A\8)6- pows = n(j):-2:m_abs(j); @6h=O`X> for k = length(s):-1:1 ~Jmn?9 3 p = (1-2*mod(s(k),2))* ... qJ5Y}/r prod(2:(n(j)-s(k)))/ ... vRRi"bo prod(2:s(k))/ ... ]Ol@^$8} prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... n&FN?"I/] prod(2:((n(j)+m_abs(j))/2-s(k))); <y-KWWE idx = (pows(k)==rpowers); Kdik7jL/J y(:,j) = y(:,j) + p*rpowern(:,idx); 3$(1LN end amlE5GK; M!!W>A@T[g if isnorm b==<7[8 y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); S-.!BQ@RMZ end 5<,}^4wWZ end @xSS`&b % END: Compute the Zernike Polynomials C1)TEkc"C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A;Xn#t ,(K VAsaJ`vcb % Compute the Zernike functions: 224I%x., % ------------------------------ 2+sNt6B2 idx_pos = m>0; vxk1RL*Xu idx_neg = m<0; Z fL\3Mn J3S@1"
z = y; B07(15y] if any(idx_pos) "eZNci z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); BT`D|< end nd'zO#"m? if any(idx_neg) {p
yo z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Ol{)U;,` end _Bb/~^ nFX8:fZ$> % EOF zernfun
|
|