| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 G)v
#+4 function z = zernfun(n,m,r,theta,nflag) X4l@woh%
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. xj5;: g#! % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?;/^Ya1;Z % and angular frequency M, evaluated at positions (R,THETA) on the ivDGZI9 % unit circle. N is a vector of positive integers (including 0), and w}Uhd, % M is a vector with the same number of elements as N. Each element Mj[f~ % k of M must be a positive integer, with possible values M(k) = -N(k) )q7UxzE+ % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, `Qr%+OD
% and THETA is a vector of angles. R and THETA must have the same MUfG?r\t % length. The output Z is a matrix with one column for every (N,M) mKo C.J % pair, and one row for every (R,THETA) pair. !aO` AC=5u % ;4N;D % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;qH O OT % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7qTE('zt % with delta(m,0) the Kronecker delta, is chosen so that the integral hW!)w % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ZaNQpH. % and theta=0 to theta=2*pi) is unity. For the non-normalized 3bnS
W5 % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -'~LjA( % ,|&9M^ % The Zernike functions are an orthogonal basis on the unit circle. x#Sqn# % They are used in disciplines such as astronomy, optics, and ]Oq[gBL"A % optometry to describe functions on a circular domain. ]?*I9 % S[WG$ % The following table lists the first 15 Zernike functions. C8z{XSo % 23~Sjr
% n m Zernike function Normalization @E:,lA % -------------------------------------------------- xhcK~5C % 0 0 1 1 4Y[1aQ(% % 1 1 r * cos(theta) 2 _h}kp\sps % 1 -1 r * sin(theta) 2 e=O,B8)_ % 2 -2 r^2 * cos(2*theta) sqrt(6) "
Hd|7F'u= % 2 0 (2*r^2 - 1) sqrt(3) +\v?d&.f0 % 2 2 r^2 * sin(2*theta) sqrt(6) zOQ>d|p?X % 3 -3 r^3 * cos(3*theta) sqrt(8) "etPT@gF % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 9k{PBAP % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) w*R$o % 3 3 r^3 * sin(3*theta) sqrt(8) itC-4^ % 4 -4 r^4 * cos(4*theta) sqrt(10) lok= % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6?w0 % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Yk=PS[f % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M![J2= % 4 4 r^4 * sin(4*theta) sqrt(10) CHz+814 % -------------------------------------------------- IIbYfPiO % 812$`5l % Example 1: /~3r;M % 6i}iAP|0 % % Display the Zernike function Z(n=5,m=1) 7Hs%Cc" % x = -1:0.01:1; S\;V4@<Kn % [X,Y] = meshgrid(x,x); Qjb:WC7he % [theta,r] = cart2pol(X,Y); >p"c>V& 8 % idx = r<=1; Dd\jHF>u % z = nan(size(X)); )rC6*eR % z(idx) = zernfun(5,1,r(idx),theta(idx)); '*3h!lW1. % figure ?"g! % pcolor(x,x,z), shading interp
P
Y % axis square, colorbar OLE[UXD-E % title('Zernike function Z_5^1(r,\theta)') D|{jR~J)xK % >Z5gSs0 % Example 2: DP|D\+YyYA % V;v8=1t! % % Display the first 10 Zernike functions Ig
f&l`\ % x = -1:0.01:1; mGK|ihYu % [X,Y] = meshgrid(x,x); o7$'cn % [theta,r] = cart2pol(X,Y); 3U0`,c\ao* % idx = r<=1; (=om,g} % z = nan(size(X)); h5^Z2:# % n = [0 1 1 2 2 2 3 3 3 3]; P(f0R8BE % m = [0 -1 1 -2 0 2 -3 -1 1 3]; V{!J-nO % Nplot = [4 10 12 16 18 20 22 24 26 28]; 5;YMqUkw % y = zernfun(n,m,r(idx),theta(idx)); Rx}$0c0 % figure('Units','normalized') R21b!Pd\ % for k = 1:10 |EJD3& % z(idx) = y(:,k); 85LAYaw % subplot(4,7,Nplot(k)) ]jo1{IcI % pcolor(x,x,z), shading interp IhVO@KJI % set(gca,'XTick',[],'YTick',[]) 7Mg=b%IYs % axis square sG92XJ % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?M\{&mlF % end ~
Q. 7VDz % 'ZDp5pCC; % See also ZERNPOL, ZERNFUN2. ,)vDeU &tg&5_ % Paul Fricker 11/13/2006 kH
G"XTL u=`L) !:q/Ye3. % Check and prepare the inputs: X\bOz[\ % ----------------------------- ~?K ~L~f5 if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) xLK<W"%0 error('zernfun:NMvectors','N and M must be vectors.') ww],y@da end CEX"D` hhCrUn" if length(n)~=length(m) VHIOwzC error('zernfun:NMlength','N and M must be the same length.') B><d9d end qVH1}9_ v>Q#B n = n(:); 1;Ou7T9w m = m(:); E2R&[Q"% if any(mod(n-m,2)) RBs-_o+ % error('zernfun:NMmultiplesof2', ... Y^$X*U/q%U 'All N and M must differ by multiples of 2 (including 0).') {>hC~L?6 end ;DFSzbF` j+$rj if any(m>n) r]:(Vk]|F error('zernfun:MlessthanN', ... *Q?tl\E 'Each M must be less than or equal to its corresponding N.') |)(VsVG& end /_I]H 1g8_Xe4 if any( r>1 | r<0 ) }fb#G<3 error('zernfun:Rlessthan1','All R must be between 0 and 1.') a7r%X - end TO]@
Zu1 $u]jy0X<Y; if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _K l_61k error('zernfun:RTHvector','R and THETA must be vectors.') c;Pe/ d end 6-$jkto 2$+bJJM r = r(:); ,,%i; theta = theta(:); {.C!i{| length_r = length(r); %5M/s'O?i if length_r~=length(theta) J:CXW%\ <q error('zernfun:RTHlength', ... ,(qRc(Ho 'The number of R- and THETA-values must be equal.') s4A43i'g!h end YIoQL}pX
mF*2#]%dx % Check normalization: 7puFz4+f % -------------------- m$}R% if nargin==5 && ischar(nflag)
P5a4ze isnorm = strcmpi(nflag,'norm'); Ql/cN%^j$ if ~isnorm ]zE;Tw.S error('zernfun:normalization','Unrecognized normalization flag.') de.&`lPRf end WA)yfo0A else ]O+Ma}dxz: isnorm = false; ^1iSn)& end ,J,/."Y T!+5[ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x+Ttl4 % Compute the Zernike Polynomials Q sZx)
bO %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *scVJ KHe=O1 %QO % Determine the required powers of r: >7lx=T
x % ----------------------------------- [I'0,y m_abs = abs(m); *6sl rpowers = []; (G zb for j = 1:length(n) 27
]':A4_ rpowers = [rpowers m_abs(j):2:n(j)]; [ey:e6,T9 end N60rgSzI rpowers = unique(rpowers); ^U
`[(kz= ")O%86_Q: % Pre-compute the values of r raised to the required powers, G`SUxhC k % and compile them in a matrix: i6dHrx]:, % ----------------------------- GPkmf%FJ if rpowers(1)==0 HW3 }uP\c rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3h;{!|-3 rpowern = cat(2,rpowern{:}); -G}[AkmS rpowern = [ones(length_r,1) rpowern]; e-:yb^ else u$DHVRrF< rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); R)_%i<nq\ rpowern = cat(2,rpowern{:}); /Y9>8XSc end EN$2,qf K&vF0*gN3 % Compute the values of the polynomials: ah+~y,Gl % -------------------------------------- f,h J~ y = zeros(length_r,length(n)); x'+T/zw for j = 1:length(n) ',Y.v"']4 s = 0:(n(j)-m_abs(j))/2; Dd'm U pows = n(j):-2:m_abs(j); I8wXuIN_ for k = length(s):-1:1 iq8GrdL" p = (1-2*mod(s(k),2))* ... $@z5kwx:P prod(2:(n(j)-s(k)))/ ... Eo{"9j\ prod(2:s(k))/ ... i!J8 d" prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... rf
$ QxJ prod(2:((n(j)+m_abs(j))/2-s(k))); 5:pM4J idx = (pows(k)==rpowers); AJh w y(:,j) = y(:,j) + p*rpowern(:,idx); +MR.>" end VPO
N-{=` !TAlBkj if isnorm zz+$=(T:M y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);
@G8lr end _wTOmz%|R end 5Sm}nH % END: Compute the Zernike Polynomials &ib5*4! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -8; 7Sp1 'C`U"I % Compute the Zernike functions: H\h3TdL % ------------------------------ d;zai]] idx_pos = m>0; E)TN,@% idx_neg = m<0; u?4:H=;> TT2d81I3m z = y; J3e96t~u if any(idx_pos) GC>e26\: z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {9?Jj A end g
l^<Q if any(idx_neg) k`So -e- z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~<O7$~ end a6D &/8 /I1h2E % EOF zernfun
|
|