首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 /1h 0 l;  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! d=q&UCC  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 \xQ10\u  
function z = zernfun(n,m,r,theta,nflag) e``X6=rcG  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. rPk=9I  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N $m.e}`7SF!  
%   and angular frequency M, evaluated at positions (R,THETA) on the 5CSihw/5  
%   unit circle.  N is a vector of positive integers (including 0), and ?1r>t"e5  
%   M is a vector with the same number of elements as N.  Each element ( TQx3DGq  
%   k of M must be a positive integer, with possible values M(k) = -N(k) hXvg<Rf  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, $@[`/Uh   
%   and THETA is a vector of angles.  R and THETA must have the same tkN5 |95  
%   length.  The output Z is a matrix with one column for every (N,M) v=(L>gg  
%   pair, and one row for every (R,THETA) pair. 3c#CEuu  
% INm21MS$  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike LD'eq\vO  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ' 9K4A'2[  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral *?k~n9n5U  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Lyx \s;  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized :/Zy=F9:  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. S 1%/ee3  
% S{ v [65  
%   The Zernike functions are an orthogonal basis on the unit circle. i.0}d5Y  
%   They are used in disciplines such as astronomy, optics, and +) pO82  
%   optometry to describe functions on a circular domain. sC8C><y  
% I?) .D?o  
%   The following table lists the first 15 Zernike functions. Z#-:zD7_  
% l?+67cQLA  
%       n    m    Zernike function           Normalization MjO.s+I  
%       -------------------------------------------------- V b=Oz  
%       0    0    1                                 1 mN_KAln  
%       1    1    r * cos(theta)                    2 07zbx6:t  
%       1   -1    r * sin(theta)                    2 0>uMR{ #  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) N2!HkUy2  
%       2    0    (2*r^2 - 1)                    sqrt(3) n4albG4  
%       2    2    r^2 * sin(2*theta)             sqrt(6) E^I|%F  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) E~=`Ac,G2  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) [")3c)OH|  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @O;gKFx  
%       3    3    r^3 * sin(3*theta)             sqrt(8) '.n0[2>  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) bt=%DMTn  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =Q % F~  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 4M)  s  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :hre|$@{a  
%       4    4    r^4 * sin(4*theta)             sqrt(10) r!qr'Ht<  
%       -------------------------------------------------- I8|7~jRB  
% g~5$X{  
%   Example 1: J|DID+M  
% JEF2fro:Z  
%       % Display the Zernike function Z(n=5,m=1) 5jj<sj!S  
%       x = -1:0.01:1; 80X #V  
%       [X,Y] = meshgrid(x,x); !n<vN@V*3d  
%       [theta,r] = cart2pol(X,Y);  V~V_+  
%       idx = r<=1; 9{gY|2R_  
%       z = nan(size(X)); _z:7Dj#  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); d" T">Og)  
%       figure jU1([(?"  
%       pcolor(x,x,z), shading interp ?GdoB7(%  
%       axis square, colorbar Mlr\#BO"9  
%       title('Zernike function Z_5^1(r,\theta)') ] m$;ra]  
% (#Vkk]-p  
%   Example 2: x|#R$^4CY  
% nLn3kMl4  
%       % Display the first 10 Zernike functions |hsg= LX  
%       x = -1:0.01:1; HZp}<7NR(7  
%       [X,Y] = meshgrid(x,x); &|;XLRHP}  
%       [theta,r] = cart2pol(X,Y); aCu 8 D!  
%       idx = r<=1; K{eq'F5M  
%       z = nan(size(X)); Ga5O&`h  
%       n = [0  1  1  2  2  2  3  3  3  3]; IMaa#8,  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; D0'L  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; 0n5{Wr$  
%       y = zernfun(n,m,r(idx),theta(idx)); :'*;>P .(  
%       figure('Units','normalized') jf_xm=n  
%       for k = 1:10 uJQ#l\t  
%           z(idx) = y(:,k); ),9^hJ1+@  
%           subplot(4,7,Nplot(k)) 7Y`/w$  
%           pcolor(x,x,z), shading interp 2!Bjs?K<bv  
%           set(gca,'XTick',[],'YTick',[]) fi5x0El  
%           axis square D%L}vugxK  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) inO)Y]|f  
%       end UY@^KT]  
% 7 &y'\  
%   See also ZERNPOL, ZERNFUN2. ao2NwH##  
clE_a?  
%   Paul Fricker 11/13/2006 "bI'XaSv  
> /,7j:X  
z8HOig?  
% Check and prepare the inputs: zGtWyXP  
% ----------------------------- dso6ZRx  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .M3]\I u  
    error('zernfun:NMvectors','N and M must be vectors.') c&!EsMsU  
end [)K?e!c8  
q)Qd+:a7{  
if length(n)~=length(m) V`F]L^m=L  
    error('zernfun:NMlength','N and M must be the same length.') PL;PId<9w  
end Ce: 2Tw  
6Fp}U  
n = n(:); QWqEe|}6  
m = m(:); i98>=y~  
if any(mod(n-m,2)) T(Q(7  
    error('zernfun:NMmultiplesof2', ... mmE!!J`B  
          'All N and M must differ by multiples of 2 (including 0).') Q-scL>IkCb  
end Lye^G% {  
(XF"ckma  
if any(m>n) A .]o&S}  
    error('zernfun:MlessthanN', ... 1}O&q6\"J  
          'Each M must be less than or equal to its corresponding N.') in>Os@e#  
end r]GG9si  
rA<>k/a  
if any( r>1 | r<0 ) '@~\(SH  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5u\#@% \6  
end x4b.^5"`:  
Fjq~^_8  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Wq5Nc  
    error('zernfun:RTHvector','R and THETA must be vectors.') ccUI\!TD{/  
end x~!gGfP  
/z'fFl^6O  
r = r(:); IP#w  
theta = theta(:); {KH!PAh  
length_r = length(r); dfo_R  
if length_r~=length(theta) s&>U-7fx"  
    error('zernfun:RTHlength', ... jv8diQ.  
          'The number of R- and THETA-values must be equal.') dA[MjOd3  
end l1<]pdLTR  
\FE  
% Check normalization: # Uc0 W  
% -------------------- _9y  
if nargin==5 && ischar(nflag) 6p=OM=R  
    isnorm = strcmpi(nflag,'norm');  1rnbUE  
    if ~isnorm =g]Ln)jc  
        error('zernfun:normalization','Unrecognized normalization flag.') uA`EJ )d  
    end {*#}"/:8K  
else 4&)4hF  
    isnorm = false; UW!*=?h  
end S"}G/lBx.  
l_?r#Qc7  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1[? xU:;9  
% Compute the Zernike Polynomials z8MKGM  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bcVzl]9  
dfU z{  
% Determine the required powers of r: (x+C =1,  
% ----------------------------------- {pzu1*  
m_abs = abs(m); e!eUgD  
rpowers = []; APne!  
for j = 1:length(n) 1Tb'f^M$  
    rpowers = [rpowers m_abs(j):2:n(j)]; ap 5D6y+  
end A2C|YmHk  
rpowers = unique(rpowers); r~<I5MZY  
_^Ds[VAgA  
% Pre-compute the values of r raised to the required powers, Or({|S9d2  
% and compile them in a matrix: cH== OM7&-  
% ----------------------------- Q!%C:b  
if rpowers(1)==0 ITUwIpA E  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Y6&B%t<bo  
    rpowern = cat(2,rpowern{:}); e9F\U   
    rpowern = [ones(length_r,1) rpowern]; >Rnj6A|Q  
else tf:4}6P1  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RV%aFI )  
    rpowern = cat(2,rpowern{:}); Xa=M{x  
end NWN Pq"  
o%~PWA*Qp  
% Compute the values of the polynomials: S yf0dp3  
% -------------------------------------- H#Aar  
y = zeros(length_r,length(n)); -5&|"YYjr{  
for j = 1:length(n) u U|fCwQt  
    s = 0:(n(j)-m_abs(j))/2; ZysZS%  
    pows = n(j):-2:m_abs(j); s#nd:$p3  
    for k = length(s):-1:1 ]j^V5y"  
        p = (1-2*mod(s(k),2))* ... r+#!]wNPe  
                   prod(2:(n(j)-s(k)))/              ... 4R;6u[ a]u  
                   prod(2:s(k))/                     ... $<]G#&F   
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... |Z"5zL10  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); o<pb!]1  
        idx = (pows(k)==rpowers); RD$"ft]Vc  
        y(:,j) = y(:,j) + p*rpowern(:,idx); XBTtfl &  
    end CyWaXp65  
     >$%rsc}^  
    if isnorm Msk^H7  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .b3c n  
    end e>GX]tK  
end :(^, WOf  
% END: Compute the Zernike Polynomials [6$n  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GfG!CG^ %  
 {[i 37DN  
% Compute the Zernike functions: O<H5W|cM  
% ------------------------------ 4a]$4LQV  
idx_pos = m>0; L#\!0YW/@  
idx_neg = m<0; cTq}H_hC  
P ~sX S  
z = y; CP%?,\  
if any(idx_pos) 3ZAPcpB2  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); J7p'_\  
end e 1 yvvi  
if any(idx_neg) szDd!(&pv  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); R cz;|h8  
end &~6W!w  
$_u9Y!  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) BS6UXAf{|Z  
%ZERNFUN2 Single-index Zernike functions on the unit circle. a$~pAy5C  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated b/yXE)3 X  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive C5W} o:jE  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, ;QiSz=DyA  
%   and THETA is a vector of angles.  R and THETA must have the same RTEzcJ>  
%   length.  The output Z is a matrix with one column for every P-value, i8kyYMPP  
%   and one row for every (R,THETA) pair. C `>1x`n  
% \?|FB~.Ry  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike tlz+!>  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) z-Ndv;:  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ~0^d-,ZD5  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 v&8%t 7|  
%   for all p. 5 wT e?  
% Oh|KbM*vS  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ;;3oWsil}  
%   Zernike functions (order N<=7).  In some disciplines it is 7a0kat '\  
%   traditional to label the first 36 functions using a single mode xv+47.?N  
%   number P instead of separate numbers for the order N and azimuthal 8,l~e8&  
%   frequency M. zS6oz=  
% ]{/1F:bcQ  
%   Example: qkLp8/G>pO  
% `E4+#_ v  
%       % Display the first 16 Zernike functions T+0Z2H  
%       x = -1:0.01:1; 8d!t"oj68  
%       [X,Y] = meshgrid(x,x); {zri6P+s  
%       [theta,r] = cart2pol(X,Y); $U]KIHb  
%       idx = r<=1; }3Mnq?.-  
%       p = 0:15; VY@6!9G  
%       z = nan(size(X)); cGE,3dsF[  
%       y = zernfun2(p,r(idx),theta(idx)); {Y(#<UDM  
%       figure('Units','normalized') wS)2ymRg  
%       for k = 1:length(p) >[D(<b(U&  
%           z(idx) = y(:,k); whoQA}X>  
%           subplot(4,4,k) }%@q; "9`  
%           pcolor(x,x,z), shading interp gZ^'hW-{  
%           set(gca,'XTick',[],'YTick',[]) k'(eQ5R3L  
%           axis square (sfy14>\  
%           title(['Z_{' num2str(p(k)) '}']) S]O0zv^}  
%       end 'Pm.b}p<  
% !I8m(axW  
%   See also ZERNPOL, ZERNFUN. 5xsGSoa+  
Q, `:RF3  
%   Paul Fricker 11/13/2006 KH~o0 W  
X>$s>})Y  
G%RL8HU  
% Check and prepare the inputs: w`Ss MI  
% ----------------------------- /4!.G#DLQ  
if min(size(p))~=1 ^tFbg+.  
    error('zernfun2:Pvector','Input P must be vector.') ]m(C}}  
end [`]h23vRW  
4^jIV!V  
if any(p)>35 lQ]8PR t8  
    error('zernfun2:P36', ... I\,m6 =q  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... fGz++;b<S  
           '(P = 0 to 35).']) NY,ZTl_  
end ?##3E, /"9  
dYn<L/#  
% Get the order and frequency corresonding to the function number: q5UD!& W  
% ---------------------------------------------------------------- eBs4:R_i  
p = p(:); a*g7uaoP  
n = ceil((-3+sqrt(9+8*p))/2); ^s;xLGl]  
m = 2*p - n.*(n+2); e-`=?tct  
_>LI[yf{  
% Pass the inputs to the function ZERNFUN: {+SshT>J  
% ---------------------------------------- B9[eLh!  
switch nargin ayR;|S  
    case 3 ylo/]pVs  
        z = zernfun(n,m,r,theta); c2,;t)%@E  
    case 4 JR_s-&GaM  
        z = zernfun(n,m,r,theta,nflag); @_L:W1[  
    otherwise z5k9|.hgw  
        error('zernfun2:nargin','Incorrect number of inputs.') !VXs yH3r5  
end p[J 8 r{'  
Xe J|Z)qZ  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) "8%z,lHw  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. jlA?JB  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of \(.])I>)eh  
%   order N and frequency M, evaluated at R.  N is a vector of $UX^$gG  
%   positive integers (including 0), and M is a vector with the iL](w3EM  
%   same number of elements as N.  Each element k of M must be a 5e|2b] f$  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) bY>JLRQJ-  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is hHoc>S6^M  
%   a vector of numbers between 0 and 1.  The output Z is a matrix ]%4rL S  
%   with one column for every (N,M) pair, and one row for every B4>kx#LR  
%   element in R. rF*L@HI  
% jr=>L:  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- f]*_]J/  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 8!!iwmH{  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ,];4+&|8kW  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 3SU:Xd(\o  
%   for all [n,m]. ,;)1|-^nu  
% Y2B ",v"  
%   The radial Zernike polynomials are the radial portion of the >JWW2<  
%   Zernike functions, which are an orthogonal basis on the unit "92Z"I~1  
%   circle.  The series representation of the radial Zernike `H7V['  
%   polynomials is |fd}B5!c  
% ENEnHu^  
%          (n-m)/2 TfFuHzZZ  
%            __ HfN:oww  
%    m      \       s                                          n-2s w{HDCPuS  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r -$8M#n,  
%    n      s=0 Bv)4YU  
% } XJZw|n  
%   The following table shows the first 12 polynomials. F[65)"^  
% =q4 QBAW  
%       n    m    Zernike polynomial    Normalization 51Nh"JTy  
%       --------------------------------------------- L+b"d3!G&%  
%       0    0    1                        sqrt(2) ?d? cD  
%       1    1    r                           2 (ru9Ke%Dx  
%       2    0    2*r^2 - 1                sqrt(6) 2S{IZ]  
%       2    2    r^2                      sqrt(6) %mv9+WJN.  
%       3    1    3*r^3 - 2*r              sqrt(8) +"!=E erKi  
%       3    3    r^3                      sqrt(8) l Zq`,E_L  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) +TR#  
%       4    2    4*r^4 - 3*r^2            sqrt(10) rf%NfU  
%       4    4    r^4                      sqrt(10) u\]aUP e  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) @rh1W$  
%       5    3    5*r^5 - 4*r^3            sqrt(12) unUCn5hJ=  
%       5    5    r^5                      sqrt(12) #f 4"  
%       --------------------------------------------- N;.cZp2  
% g3i !>  
%   Example: -c1$>+  
% gkN|3^  
%       % Display three example Zernike radial polynomials x!<?/I)X  
%       r = 0:0.01:1; r$7D;>*O{  
%       n = [3 2 5]; ?D^l&`S  
%       m = [1 2 1]; g@ ZZcBx  
%       z = zernpol(n,m,r); nvyyV\w  
%       figure 1Xv- e8M  
%       plot(r,z) wkp|V{k  
%       grid on KLc<c1BZ  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') f17pwJ~=  
% tvC7LLNP<  
%   See also ZERNFUN, ZERNFUN2. <AzM~]"3  
|c]Y1WwDx  
% A note on the algorithm. t-vH\m  
% ------------------------ &f\ng{  
% The radial Zernike polynomials are computed using the series mxpncM=q  
% representation shown in the Help section above. For many special .-:R mYGR  
% functions, direct evaluation using the series representation can vk:m >?(  
% produce poor numerical results (floating point errors), because O*<,lq 0K  
% the summation often involves computing small differences between o,fBOPIN  
% large successive terms in the series. (In such cases, the functions "ct_EPr`  
% are often evaluated using alternative methods such as recurrence D\:~G}M  
% relations: see the Legendre functions, for example). For the Zernike D;V FM P  
% polynomials, however, this problem does not arise, because the [y>;  
% polynomials are evaluated over the finite domain r = (0,1), and *(~=L%s  
% because the coefficients for a given polynomial are generally all iCouGd}  
% of similar magnitude. R ks3L  
% iG[an*#X  
% ZERNPOL has been written using a vectorized implementation: multiple YdI|xu>0A^  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] k^pf)*p  
% values can be passed as inputs) for a vector of points R.  To achieve S> f8j?n  
% this vectorization most efficiently, the algorithm in ZERNPOL C#5z!z/:%  
% involves pre-determining all the powers p of R that are required to %h ?c  
% compute the outputs, and then compiling the {R^p} into a single  LWb5C{  
% matrix.  This avoids any redundant computation of the R^p, and <tEN1i  
% minimizes the sizes of certain intermediate variables. (i,TxjS'od  
% ]hBp elKJ  
%   Paul Fricker 11/13/2006 /&>6#3df-  
\pzqUTk  
]JeA29   
% Check and prepare the inputs: 'w+T vOB  
% ----------------------------- Q<y&*o3YF|  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) NhxTSyT"t  
    error('zernpol:NMvectors','N and M must be vectors.') %2<G3]6^U  
end 3B(6^iS  
o)P'H"Ki  
if length(n)~=length(m) i0($@6Lh  
    error('zernpol:NMlength','N and M must be the same length.') S-"&#OfWg<  
end pI>i1f=W  
#:v e3gWl  
n = n(:); 0R,?$qM\  
m = m(:); uvK1gJrA)  
length_n = length(n); !\a'GO[  
Cwxy ~.mI  
if any(mod(n-m,2)) Tn+6:<OFdO  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') :QnN7&j|(w  
end TR8<=  
@<ba+z>"~4  
if any(m<0) ?hh 4M  
    error('zernpol:Mpositive','All M must be positive.') -<gGNj.x-  
end v1yNVs \}  
Z-RgN  
if any(m>n) H|4O`I;~(  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') nf5Ld"|%9  
end .17WF\1HC.  
\v7M`! &  
if any( r>1 | r<0 ) ZM/*cA!"  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') SU.T0>w  
end s[ |sfqB1`  
T`f6`1x  
if ~any(size(r)==1) !M&L<0b:7e  
    error('zernpol:Rvector','R must be a vector.') 6,sZo!G  
end wRL=9/5(8  
O_#Ag K<A  
r = r(:); )8ejT6r  
length_r = length(r); sO~:e?F  
YFD'&N,sx  
if nargin==4 q/Dc*Qn m  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); k&4@$;Ap  
    if ~isnorm n$Z@7r  
        error('zernpol:normalization','Unrecognized normalization flag.') TY[1jW~{r  
    end MR/jM@8  
else %EYh5 W  
    isnorm = false; ~y%8uHL:  
end yjODa90!G  
&k+G^ !=s#  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {O,D9<  
% Compute the Zernike Polynomials C`c;I7  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zhbp"yju7  
UH1AT#?!W  
% Determine the required powers of r: TTaSg\K  
% -----------------------------------  H  
rpowers = []; &B\tcF  
for j = 1:length(n) EOu\7;kE9  
    rpowers = [rpowers m(j):2:n(j)]; je1f\N45  
end wkK61a h6  
rpowers = unique(rpowers); $ Scb8<  
rK W<kQT  
% Pre-compute the values of r raised to the required powers, ps1ndGp~#  
% and compile them in a matrix: +!IIt {u  
% ----------------------------- U`_(Lq%5W  
if rpowers(1)==0 mw9;LNi\D  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); `JyTS~v$  
    rpowern = cat(2,rpowern{:}); Tx%6whd/'  
    rpowern = [ones(length_r,1) rpowern]; *joy%F  
else @e#eAJhU  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W8j)2nKD  
    rpowern = cat(2,rpowern{:}); 6k"'3AKaR  
end /gZrnd?  
S 8mqz.  
% Compute the values of the polynomials: |[n-H;0  
% -------------------------------------- YRF%].A%2  
z = zeros(length_r,length_n); ^~Nz8PCY  
for j = 1:length_n A6Ttx{]  
    s = 0:(n(j)-m(j))/2; D4[1CQ@}4D  
    pows = n(j):-2:m(j); elCDPZTf  
    for k = length(s):-1:1 lj $\2 B  
        p = (1-2*mod(s(k),2))* ... uj|{TV>v9  
                   prod(2:(n(j)-s(k)))/          ... z5-vx`  
                   prod(2:s(k))/                 ... z"8%W?o>  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... %1fH-:c=C0  
                   prod(2:((n(j)+m(j))/2-s(k))); Mw2?U>h1  
        idx = (pows(k)==rpowers); +HNY!fv9  
        z(:,j) = z(:,j) + p*rpowern(:,idx); [8AGW7_  
    end +L1%mVq]y  
     RWtD81(oC'  
    if isnorm ]5W0zNb*  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); O1IR+"0  
    end k L2(M6m  
end 3eQ-P8LS  
/gh=+;{  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Wr H7tz  
f*KNt_|:  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Ag=>F5  
s<VNW  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计