首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 qk_ s"}sS  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! |{ 9"n<JW  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 f2{4Y)  
function z = zernfun(n,m,r,theta,nflag) :nwcO3~`  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~Zj?%4  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1]hMA\x  
%   and angular frequency M, evaluated at positions (R,THETA) on the 0A1l"$_|  
%   unit circle.  N is a vector of positive integers (including 0), and PKjA@+  
%   M is a vector with the same number of elements as N.  Each element 4&y_+  
%   k of M must be a positive integer, with possible values M(k) = -N(k) Qy6Avw/$  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, |_w*:NCV5  
%   and THETA is a vector of angles.  R and THETA must have the same pg>P]a{  
%   length.  The output Z is a matrix with one column for every (N,M) "\>3mVOb  
%   pair, and one row for every (R,THETA) pair. x&9 I2"  
% ;bAy 7  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike U3za}3  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^ 1J;SO|  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral + u)'  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :\bttPw5  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized $~:hv7%  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qA"?5j32  
% ikxSWO_Y=  
%   The Zernike functions are an orthogonal basis on the unit circle. k"sL.}$  
%   They are used in disciplines such as astronomy, optics, and Pu9.Uwx  
%   optometry to describe functions on a circular domain. Jx{,x-I  
% 2XI%4  
%   The following table lists the first 15 Zernike functions. /4T%&#6s  
% .7kVC  
%       n    m    Zernike function           Normalization r} ,|kb  
%       -------------------------------------------------- D:F!;n9  
%       0    0    1                                 1 3[e@mcO  
%       1    1    r * cos(theta)                    2 R 7{ rY  
%       1   -1    r * sin(theta)                    2 t 1&p> v  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) PkVXn  
%       2    0    (2*r^2 - 1)                    sqrt(3) XBr>K> (  
%       2    2    r^2 * sin(2*theta)             sqrt(6) lhjPS!A~  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) bX6*/N  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) N9*$'  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ZO;]Zt]  
%       3    3    r^3 * sin(3*theta)             sqrt(8) )Tb;N  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) )b-G2< kb  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sV*Q8b*  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) t6"4+:c!>  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #`W8-w  
%       4    4    r^4 * sin(4*theta)             sqrt(10) XSxya .1  
%       -------------------------------------------------- )8k6GO8|  
% G6J3F  
%   Example 1: _rR.Y3N  
% X<?;-HrS;  
%       % Display the Zernike function Z(n=5,m=1) 1U9iNki  
%       x = -1:0.01:1; P`oR-D  
%       [X,Y] = meshgrid(x,x); P;y/`_jo  
%       [theta,r] = cart2pol(X,Y); s e1ipn_A  
%       idx = r<=1; au7BqV!uL  
%       z = nan(size(X)); %!=YNm  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); x[?_F  
%       figure eU12*(  
%       pcolor(x,x,z), shading interp /J6CSk  
%       axis square, colorbar FE5R ^W#u-  
%       title('Zernike function Z_5^1(r,\theta)') b,@:eVQ7  
% asJYGqdF  
%   Example 2: <T}#>xHs3  
% m&%N4Q~X>  
%       % Display the first 10 Zernike functions 2cDC6rul  
%       x = -1:0.01:1; 49#-\=<gt  
%       [X,Y] = meshgrid(x,x); mrbIoN==`  
%       [theta,r] = cart2pol(X,Y); #zQkQvAT9  
%       idx = r<=1; 4-"wFp  
%       z = nan(size(X)); IX>|bA;  
%       n = [0  1  1  2  2  2  3  3  3  3]; :C&?(HJ&r  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; lfKknp#B/O  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; ZD<,h` lZ  
%       y = zernfun(n,m,r(idx),theta(idx)); K4rr.f6  
%       figure('Units','normalized') )CmuC@ Q"  
%       for k = 1:10 J^XH^`'  
%           z(idx) = y(:,k); vIREvj#U  
%           subplot(4,7,Nplot(k)) SB;Wa%  
%           pcolor(x,x,z), shading interp Kzm_AHA)  
%           set(gca,'XTick',[],'YTick',[]) ;e{2?}#8&  
%           axis square \?g%>D:O;  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %MIu;u FR  
%       end I)x:NF6JO  
% ^U =`Rx  
%   See also ZERNPOL, ZERNFUN2. \xdt|:8  
5>=tNbk"s  
%   Paul Fricker 11/13/2006 WLpn,8qsY  
i~.[iZf|  
V?"^Ff3m!  
% Check and prepare the inputs: 6M6QMg^  
% ----------------------------- ^Y&Cm.w  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0L1P'*LRU  
    error('zernfun:NMvectors','N and M must be vectors.') Cb13Qz  
end  Ntqc=z  
pFK |4u  
if length(n)~=length(m) j\vK`.z  
    error('zernfun:NMlength','N and M must be the same length.') 8x{vgx @M  
end J.&q[  
D;L :a`Y  
n = n(:); B -KOf  
m = m(:); =j{jylC  
if any(mod(n-m,2)) e\dT~)c  
    error('zernfun:NMmultiplesof2', ... \(C W?9)  
          'All N and M must differ by multiples of 2 (including 0).') ^"Y'zI L  
end !G,$:t1-=V  
R',w~1RV'  
if any(m>n) epL[PL}  
    error('zernfun:MlessthanN', ... c,qCZ-.Sg  
          'Each M must be less than or equal to its corresponding N.') g IKm  
end <d^7B9O?&w  
KH7]`CU  
if any( r>1 | r<0 ) |:?.-tq  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') RmQt%a7\{  
end JA}'d7yEa  
=4 D_-Q  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) cg.e(@(  
    error('zernfun:RTHvector','R and THETA must be vectors.') oL@ou{iQ  
end g#:XN  
v;Dcq  
r = r(:); 16y$;kf8  
theta = theta(:); 85fDuJ9$Z"  
length_r = length(r); #R8l"]fxr?  
if length_r~=length(theta) ^;3rdBprm  
    error('zernfun:RTHlength', ... Tc(R-Wi  
          'The number of R- and THETA-values must be equal.') OW}A48X[+  
end +m.8*^  
$iPN5@F  
% Check normalization: PPPwDsJ  
% -------------------- Vr1|%*0Tv  
if nargin==5 && ischar(nflag) hN53=X:  
    isnorm = strcmpi(nflag,'norm'); Sg$\ab$  
    if ~isnorm iq:[+  
        error('zernfun:normalization','Unrecognized normalization flag.') K)+l6Q  
    end %`1vIr(7  
else h /QP=Zd  
    isnorm = false; ws?s   
end ?v8k& q^q  
%m) h1/l  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,rI |+  
% Compute the Zernike Polynomials $0SZlq>En  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~k0)+D}  
uW~ ,H}E  
% Determine the required powers of r: (VAL.v*  
% ----------------------------------- J_|}Xd)~t6  
m_abs = abs(m); ls\E%d  
rpowers = []; t)Q @sKT6  
for j = 1:length(n) . b`P!  
    rpowers = [rpowers m_abs(j):2:n(j)]; b DS1'Ce  
end ]~Vu-@ /}  
rpowers = unique(rpowers); 'F?Znd2L  
Qf>Pb$c$U  
% Pre-compute the values of r raised to the required powers, )xx/di  
% and compile them in a matrix: &] F|U3  
% ----------------------------- W+ '}O<  
if rpowers(1)==0 #(+HSZm  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Qz(T[H5%W  
    rpowern = cat(2,rpowern{:}); \y`3LhY  
    rpowern = [ones(length_r,1) rpowern];  RhNaYO  
else "ue$DyN  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); nvK7*-  
    rpowern = cat(2,rpowern{:}); Pd "mb~  
end @1&;R  
j4xr1y3^  
% Compute the values of the polynomials: ;u};& sm  
% -------------------------------------- 6a?$=y  
y = zeros(length_r,length(n)); h_chZB'  
for j = 1:length(n) (g/X(3  
    s = 0:(n(j)-m_abs(j))/2; pb6^sA%l  
    pows = n(j):-2:m_abs(j); |id79qY7g  
    for k = length(s):-1:1 e_k _ ty`  
        p = (1-2*mod(s(k),2))* ... $:E}Nj]{&  
                   prod(2:(n(j)-s(k)))/              ... if[o?6U4t  
                   prod(2:s(k))/                     ... XVDd1#h  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... I,<54? vS  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); #!Cter2  
        idx = (pows(k)==rpowers); px }7If  
        y(:,j) = y(:,j) + p*rpowern(:,idx); T[XP\!z]B!  
    end #f3;}1(  
     oUvk2]H  
    if isnorm -V u/TT0  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); G(OT"+O,  
    end RD$tc~@UB  
end wvmg)4,  
% END: Compute the Zernike Polynomials PWk ?8dL-  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q_]   
RQpIBsj  
% Compute the Zernike functions: 5\w=(c9A  
% ------------------------------ !jnqA Z  
idx_pos = m>0; .5!sOOs$P  
idx_neg = m<0; =tc`:!$  
qbU1qF/  
z = y; #x5N{8  
if any(idx_pos) ,t%\0[{/B  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [CDXCV-z  
end wyrI8UY  
if any(idx_neg) bwSRJFqb  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 6L8tz 8  
end Sj0 ucnuHi  
-eR!qy:.]5  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) [ZKtbPHb  
%ZERNFUN2 Single-index Zernike functions on the unit circle. yE.495  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated \ W 'i0+  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive U0h )pdo  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, 8O8\q ;US  
%   and THETA is a vector of angles.  R and THETA must have the same f@! fW&  
%   length.  The output Z is a matrix with one column for every P-value, Q{AZ'XV  
%   and one row for every (R,THETA) pair. Mhb '^\px  
% :BL'>V   
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 8h&oSOkQk,  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 5u;Rr 1D  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) c<=`<!FS[  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 xb =8t!  
%   for all p. 0" U5oP[  
% JrCf,?L^  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 t7um [  
%   Zernike functions (order N<=7).  In some disciplines it is UAsF0&]  
%   traditional to label the first 36 functions using a single mode ~\IF9!  
%   number P instead of separate numbers for the order N and azimuthal +{,N X  
%   frequency M. ny12U;'s,  
% pqyWv;  
%   Example: z5XYpi_;[  
% 2BoFyL*  
%       % Display the first 16 Zernike functions :y+B;qw  
%       x = -1:0.01:1; MV"E?}0  
%       [X,Y] = meshgrid(x,x); M82.khm~jM  
%       [theta,r] = cart2pol(X,Y); `zdH1p^w  
%       idx = r<=1; 42rj6m\  
%       p = 0:15; %`xV'2H  
%       z = nan(size(X)); Qg'c?[~W@  
%       y = zernfun2(p,r(idx),theta(idx)); ZYE' C  
%       figure('Units','normalized') :/o C:z\h  
%       for k = 1:length(p) L;/9L[s,  
%           z(idx) = y(:,k); Nk96"P$P  
%           subplot(4,4,k) xS= _yO9-  
%           pcolor(x,x,z), shading interp O&`U5w  
%           set(gca,'XTick',[],'YTick',[]) 0LetsDN7I  
%           axis square b8rp8'M)  
%           title(['Z_{' num2str(p(k)) '}']) zP_]  
%       end h&)fu{   
% v<L=!-b^  
%   See also ZERNPOL, ZERNFUN. iuiAK  
3p:=xL  
%   Paul Fricker 11/13/2006 7~_{.f  
kUNj4xp)  
$Mdbt o~<  
% Check and prepare the inputs: FX H0PK  
% ----------------------------- iV5}U2Vh  
if min(size(p))~=1 :W~6F*A  
    error('zernfun2:Pvector','Input P must be vector.') h,^BC^VU9-  
end TqIAWbb&  
3\;v5D:  
if any(p)>35 0CT}DQ._^N  
    error('zernfun2:P36', ... 10mK}HT>4B  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ,mBZ`X@N  
           '(P = 0 to 35).']) {}V$`L8  
end BbFa=H.  
F"!agc2!  
% Get the order and frequency corresonding to the function number: 9/#0?(K8  
% ---------------------------------------------------------------- w#oGX  
p = p(:); %B@ !  
n = ceil((-3+sqrt(9+8*p))/2); $30oc Tt{  
m = 2*p - n.*(n+2); k!T|)\nc+  
?-pi,O~(p  
% Pass the inputs to the function ZERNFUN: IE2CRBfs  
% ---------------------------------------- ]fj-`==  
switch nargin =/[ltUKs:a  
    case 3 WP}ixcq#  
        z = zernfun(n,m,r,theta); 1Q]Rd  
    case 4 F9-[%l  
        z = zernfun(n,m,r,theta,nflag); g6WPPpqus  
    otherwise |pJC:woq  
        error('zernfun2:nargin','Incorrect number of inputs.') uKv&7p@|_)  
end te i`/  
kB o;h.[l  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) NetYg]8`  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. vYdR ht\(  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of JBz}|M D  
%   order N and frequency M, evaluated at R.  N is a vector of e&0K;yU  
%   positive integers (including 0), and M is a vector with the ld.7`)  
%   same number of elements as N.  Each element k of M must be a OOokhZd`  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) X1oGp+&  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is []zua14F6  
%   a vector of numbers between 0 and 1.  The output Z is a matrix yG\UW&P  
%   with one column for every (N,M) pair, and one row for every WfZF~$li`  
%   element in R. 9t?L\  
% Pe}PH I  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- b._m8z ~  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is \6o\+OQk  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ~h! 13!  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ;$7v%Ls=  
%   for all [n,m]. `N}d}O8   
% :=*}htP4C  
%   The radial Zernike polynomials are the radial portion of the " !-Kd'V  
%   Zernike functions, which are an orthogonal basis on the unit ?DPHo)w  
%   circle.  The series representation of the radial Zernike 4/'N|c.  
%   polynomials is /_)l|<k+V  
% "k:=Y7Dx  
%          (n-m)/2 9cG<hX9`F  
%            __ ^ q?1U?4  
%    m      \       s                                          n-2s T/l1qcf`wT  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r [k$efwJ  
%    n      s=0 */(I[p  
% /1d<P! H  
%   The following table shows the first 12 polynomials. s9O2k}]  
% ?,)"~c$hZ  
%       n    m    Zernike polynomial    Normalization AOb]qc  
%       --------------------------------------------- dz-y}J11  
%       0    0    1                        sqrt(2) )K;]y-Us[  
%       1    1    r                           2 6S1m<aH6  
%       2    0    2*r^2 - 1                sqrt(6) \S ."?!U  
%       2    2    r^2                      sqrt(6) xq[Yg15d%  
%       3    1    3*r^3 - 2*r              sqrt(8) Xgat-cy'DA  
%       3    3    r^3                      sqrt(8) Zgamd1DJ[l  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) W2]TRO  
%       4    2    4*r^4 - 3*r^2            sqrt(10) ^A9 M;q  
%       4    4    r^4                      sqrt(10) $ 4m*kQ  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Zb_apjg[4  
%       5    3    5*r^5 - 4*r^3            sqrt(12) ?mv:neh  
%       5    5    r^5                      sqrt(12) QR0(,e$Dl  
%       --------------------------------------------- XRtD< jlA"  
% 8 lT{1ro  
%   Example: G$bJ+  
% RLVAT M5  
%       % Display three example Zernike radial polynomials pHC /(6?  
%       r = 0:0.01:1; 0N;%2=2_E  
%       n = [3 2 5]; 4w93}t.z  
%       m = [1 2 1]; !wE}(0BTx  
%       z = zernpol(n,m,r); V '.a)6  
%       figure * F4UAQzYb  
%       plot(r,z) <RXwM6G2  
%       grid on &7>zURv  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 91Z'  
% .0p^W9  
%   See also ZERNFUN, ZERNFUN2. =&nW~<- v  
nZk +  
% A note on the algorithm. J G$Z.s  
% ------------------------ -ijC_`>  
% The radial Zernike polynomials are computed using the series W 7sn+g \  
% representation shown in the Help section above. For many special *ZrSiIPP  
% functions, direct evaluation using the series representation can 646JDX[o  
% produce poor numerical results (floating point errors), because 6.WceWBR  
% the summation often involves computing small differences between 'b&yrBFD  
% large successive terms in the series. (In such cases, the functions P8Qyhc  
% are often evaluated using alternative methods such as recurrence :-T*gqj|  
% relations: see the Legendre functions, for example). For the Zernike ]?+{aS-]?k  
% polynomials, however, this problem does not arise, because the B1!kn}KlL{  
% polynomials are evaluated over the finite domain r = (0,1), and u]*0;-tz  
% because the coefficients for a given polynomial are generally all UL$}{2N,_  
% of similar magnitude. oUZoj2G1  
% Vvp[P >  
% ZERNPOL has been written using a vectorized implementation: multiple 3FE(}G  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] hX:"QXx  
% values can be passed as inputs) for a vector of points R.  To achieve pCi#9=?N  
% this vectorization most efficiently, the algorithm in ZERNPOL ~`ny @WD9  
% involves pre-determining all the powers p of R that are required to p>w]rE:}  
% compute the outputs, and then compiling the {R^p} into a single +]Zva:$#`  
% matrix.  This avoids any redundant computation of the R^p, and ]=pR  
% minimizes the sizes of certain intermediate variables. sgUud_r)4  
% uVE.,)xz  
%   Paul Fricker 11/13/2006 yLE7>48  
"R>FqX6FB  
4GdX/6C.  
% Check and prepare the inputs: ')Y'c  
% ----------------------------- ,f3pqi9|  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "Jq8?FoT  
    error('zernpol:NMvectors','N and M must be vectors.') I#F!N6;  
end 'k0[rDFc#3  
&#`l;n:]+  
if length(n)~=length(m) "hxN!,DEZ  
    error('zernpol:NMlength','N and M must be the same length.') '7^M{y/dU  
end )Z 9E=%  
~}EMk3  
n = n(:); *a;@*  
m = m(:); >{gPN"S"a  
length_n = length(n); \MC-4Yz  
3<?   
if any(mod(n-m,2)) y$FW$Ka  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ULrr=5&8  
end ZYU=\  
c #-U%qZ  
if any(m<0) !U9|x\BqJ2  
    error('zernpol:Mpositive','All M must be positive.') )c n+1R  
end KqBk~-G  
3~S'LxV  
if any(m>n) y&}E~5O  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ~(!XY/0e  
end F'jWV5"*  
{"oxJ`z4  
if any( r>1 | r<0 ) 3.22"U\1:  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') QO;N9ZI  
end u H/w\v_I  
@1.QEyXG  
if ~any(size(r)==1) B~o\+n  
    error('zernpol:Rvector','R must be a vector.') j 8*ZF  
end -p3Re9  
}bY; q-  
r = r(:); JlMT<;7\  
length_r = length(r); ];.pK  
&j(+/;A  
if nargin==4 FZ!`B]]le,  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); JJ;[,  
    if ~isnorm ~\{^%~[48  
        error('zernpol:normalization','Unrecognized normalization flag.') | N0Z-|  
    end -~?J+o+Pr"  
else IDnC<MO>  
    isnorm = false; 6qcO?U  
end O3TQixE  
nKW*Y}VO  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H*#s }9=kZ  
% Compute the Zernike Polynomials NR;1z  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f|O{#AC  
mM`wITy  
% Determine the required powers of r: ]-ZEWt6lsc  
% ----------------------------------- Cmc3k,t  
rpowers = []; M\yT).>z  
for j = 1:length(n) (`y*V;o4  
    rpowers = [rpowers m(j):2:n(j)]; bh^LIU  
end vAyFmdJ^  
rpowers = unique(rpowers); f B9;_z  
jqPkc28  
% Pre-compute the values of r raised to the required powers, pdE3r$C  
% and compile them in a matrix: | WvUq  
% ----------------------------- m0v:\?S:  
if rpowers(1)==0 PRz/inru-  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^Z:~91Tv-_  
    rpowern = cat(2,rpowern{:}); G:zua`u[  
    rpowern = [ones(length_r,1) rpowern]; aN"DkUYZM  
else /_ `lz^  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }Ho Qwy|&  
    rpowern = cat(2,rpowern{:}); T49zcJf;  
end ]('D^Ro  
oWYmj=D~2z  
% Compute the values of the polynomials: 27;ci:5  
% -------------------------------------- YW{C} NA  
z = zeros(length_r,length_n); wE~V]bmtW  
for j = 1:length_n ,yd?gP-O  
    s = 0:(n(j)-m(j))/2; CiB%B`,N  
    pows = n(j):-2:m(j); qK)73eNSR  
    for k = length(s):-1:1 o865 (<p  
        p = (1-2*mod(s(k),2))* ... *4V=z#  
                   prod(2:(n(j)-s(k)))/          ... &L^+BQ`O?  
                   prod(2:s(k))/                 ... @|\}.M<e*)  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... :_O%/k1\@  
                   prod(2:((n(j)+m(j))/2-s(k))); 'Fmvu   
        idx = (pows(k)==rpowers); fMOU$0]$<  
        z(:,j) = z(:,j) + p*rpowern(:,idx); eut-U/3:#  
    end {?yr'*  
     mvq&Pj 1}L  
    if isnorm >Z1sb  n  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 5H ue7'LS  
    end @HOBRRm`  
end )kP5u`v  
Z,=7Tu bR#  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  43@{JK9G  
(Kv#m 3~  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 hK_LEwd;  
|fHV2Y`:g  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计