| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 \xQ10\u function z = zernfun(n,m,r,theta,nflag) e``X6=rcG %ZERNFUN Zernike functions of order N and frequency M on the unit circle. rPk=9I % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N $m.e}`7SF! % and angular frequency M, evaluated at positions (R,THETA) on the 5CSihw/5 % unit circle. N is a vector of positive integers (including 0), and ?1r>t"e5 % M is a vector with the same number of elements as N. Each element (TQx3DGq % k of M must be a positive integer, with possible values M(k) = -N(k) hXvg<Rf % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, $@[`/Uh % and THETA is a vector of angles. R and THETA must have the same tkN5|95 % length. The output Z is a matrix with one column for every (N,M) v=(L>gg % pair, and one row for every (R,THETA) pair. 3c#CEuu % INm21MS$ % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike LD'eq\vO % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), '
9K4A'2[ % with delta(m,0) the Kronecker delta, is chosen so that the integral *?k~n9n5U % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Lyx \ s; % and theta=0 to theta=2*pi) is unity. For the non-normalized :/Zy=F9: % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. S 1%/ee3 % S{v [65 % The Zernike functions are an orthogonal basis on the unit circle. i.0}d5Y % They are used in disciplines such as astronomy, optics, and +) pO82 % optometry to describe functions on a circular domain. sC8C><y
% I?).D?o % The following table lists the first 15 Zernike functions. Z#-:zD7_ % l?+67cQLA % n m Zernike function Normalization MjO.s+I % -------------------------------------------------- Vb=Oz % 0 0 1 1 mN_KAln % 1 1 r * cos(theta) 2 07zbx6:t % 1 -1 r * sin(theta) 2 0>uMR{ # % 2 -2 r^2 * cos(2*theta) sqrt(6) N2!HkUy2 % 2 0 (2*r^2 - 1) sqrt(3) n4albG4 % 2 2 r^2 * sin(2*theta) sqrt(6) E^I|%F % 3 -3 r^3 * cos(3*theta) sqrt(8) E~=`Ac,G2 % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) [")3c)OH| % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) @O;gKFx % 3 3 r^3 * sin(3*theta) sqrt(8) '.n0[2> % 4 -4 r^4 * cos(4*theta) sqrt(10) bt=%DMTn % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =Q % F~ % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 4M)
s % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :hre|$@{a % 4 4 r^4 * sin(4*theta) sqrt(10) r!qr'Ht< % -------------------------------------------------- I8|7~jRB % g~5$X{ % Example 1: J|DID+M % JEF2fro:Z % % Display the Zernike function Z(n=5,m=1)
5jj<sj!S % x = -1:0.01:1; 80X #V % [X,Y] = meshgrid(x,x); !n<vN@V*3d % [theta,r] = cart2pol(X,Y); V~V_+ % idx = r<=1; 9{gY|2R_ % z = nan(size(X)); _z:7Dj# % z(idx) = zernfun(5,1,r(idx),theta(idx)); d"
T">Og) % figure jU1 ([(?" % pcolor(x,x,z), shading interp ?GdoB7(% % axis square, colorbar Mlr\#BO"9 % title('Zernike function Z_5^1(r,\theta)') ] m$;ra] % (#Vkk]-p % Example 2: x|#R$^4CY % nLn3kMl4 % % Display the first 10 Zernike functions |hsg=LX % x = -1:0.01:1; HZp}<7NR(7 % [X,Y] = meshgrid(x,x); &|;XLRHP} % [theta,r] = cart2pol(X,Y); aCu 8
D! % idx = r<=1; K{eq'F5M % z = nan(size(X)); Ga5O&`h % n = [0 1 1 2 2 2 3 3 3 3]; IMaa#8, % m = [0 -1 1 -2 0 2 -3 -1 1 3]; D0 'L % Nplot = [4 10 12 16 18 20 22 24 26 28]; 0n5{Wr$ % y = zernfun(n,m,r(idx),theta(idx)); :'*;>P
.( % figure('Units','normalized') jf_xm=n % for k = 1:10 uJ Q#l\t % z(idx) = y(:,k); ),9^hJ1+@ % subplot(4,7,Nplot(k)) 7Y`/w$ % pcolor(x,x,z), shading interp 2!Bjs?K<bv % set(gca,'XTick',[],'YTick',[]) fi5x0El
% axis square D%L}vugxK % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) inO)Y]|f % end UY@^KT] % 7 &y'\ % See also ZERNPOL, ZERNFUN2. ao2NwH## clE_a? % Paul Fricker 11/13/2006 "bI'XaSv >/,7j:X z8HOig? % Check and prepare the inputs: zGtWyXP % ----------------------------- dso6ZRx if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .M3]\I u error('zernfun:NMvectors','N and M must be vectors.') c&!EsMsU end [)K?e!c8 q)Qd+:a7{ if length(n)~=length(m) V`F]L^m=L error('zernfun:NMlength','N and M must be the same length.') PL;PId<9w end Ce:2Tw 6Fp}U n = n(:); QWqEe|}6 m = m(:); i98>=y~ if any(mod(n-m,2)) T(Q(7 error('zernfun:NMmultiplesof2', ... mmE!!J`B 'All N and M must differ by multiples of 2 (including 0).') Q-scL>IkCb end Lye^G%{ (XF"ckma if any(m>n) A .]o&S} error('zernfun:MlessthanN', ... 1}O&q6\"J 'Each M must be less than or equal to its corresponding N.') in>Os@e# end r]GG9si rA<>k/a
if any( r>1 | r<0 ) '@~\(SH error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5u\#@% \6 end x4b.^5"`: Fjq~^_8 if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Wq5 Nc error('zernfun:RTHvector','R and THETA must be vectors.') ccUI\!TD{/ end x~!gGfP /z'fFl^6O r = r(:); IP#w theta = theta(:); {KH!PAh length_r = length(r); dfo_R if length_r~=length(theta) s&>U-7fx" error('zernfun:RTHlength', ... jv8diQ. 'The number of R- and THETA-values must be equal.') d A[MjOd3 end l1<]pdLTR \FE
% Check normalization: #Uc0W % -------------------- _9y if nargin==5 && ischar(nflag) 6p=OM=R isnorm = strcmpi(nflag,'norm'); 1rnbUE if ~isnorm =g]Ln)jc error('zernfun:normalization','Unrecognized normalization flag.') uA`EJ )d end {*#}"/:8K else 4&)4hF isnorm = false; UW!*=?h end S"}G/lBx. l_?r#Qc7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1[?
xU:;9 % Compute the Zernike Polynomials z8MKGM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bcVzl]9 dfU z{ % Determine the required powers of r: (x+C=1, % ----------------------------------- {pzu1* m_abs = abs(m); e!eUgD rpowers = []; APne! for j = 1:length(n) 1Tb'f^M$ rpowers = [rpowers m_abs(j):2:n(j)]; ap
5D6y+ end A2C|YmHk rpowers = unique(rpowers); r~<I5MZY _^Ds[VAgA % Pre-compute the values of r raised to the required powers, Or({|S9d2 % and compile them in a matrix: cH==OM7&- % ----------------------------- Q!%C:b if rpowers(1)==0 ITUwIpAE rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Y6&B%t<bo rpowern = cat(2,rpowern{:}); e9F\U
rpowern = [ones(length_r,1) rpowern]; >Rnj6A|Q else tf:4}6P1 rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RV%aFI ) rpowern = cat(2,rpowern{:}); Xa=M{x end NWNPq" o%~PWA*Qp % Compute the values of the polynomials: Syf0dp3 % -------------------------------------- H#Aar y = zeros(length_r,length(n)); -5&|"YYjr{ for j = 1:length(n) uU|fCwQt s = 0:(n(j)-m_abs(j))/2; ZysZS% pows = n(j):-2:m_abs(j); s#nd:$p3 for k = length(s):-1:1 ]j^V5y" p = (1-2*mod(s(k),2))* ... r+#! ]wNPe prod(2:(n(j)-s(k)))/ ... 4R;6u[a]u prod(2:s(k))/ ... $<]G#&F prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... |Z"5zL10 prod(2:((n(j)+m_abs(j))/2-s(k))); o<pb!]1 idx = (pows(k)==rpowers); RD$"ft]Vc y(:,j) = y(:,j) + p*rpowern(:,idx); XBTtfl
& end CyWaXp65 >$%rs c}^ if isnorm Msk^H7 y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .b3cn end e>GX]tK end :(^,WOf % END: Compute the Zernike Polynomials [6$n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GfG!CG^% {[i
37DN % Compute the Zernike functions: O<H5W|cM % ------------------------------ 4a]$4LQV idx_pos = m>0; L#\!0YW/@ idx_neg = m<0; cTq}H_hC P
~sX S z = y; CP%?,\ if any(idx_pos) 3ZAPcpB2 z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); J7p'_\ end e1
yvvi if any(idx_neg) szDd!(&pv z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); R cz;|h8 end &~6W!w $_u9Y! % EOF zernfun
|
|