首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 `7_=2C  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! 9ZFvN*Zf'  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6Q S[mWU  
function z = zernfun(n,m,r,theta,nflag) b[p<kMTir  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. tTrUVuZ  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cfI5KLG~#  
%   and angular frequency M, evaluated at positions (R,THETA) on the pgT XyAP{  
%   unit circle.  N is a vector of positive integers (including 0), and $T7hY$2Q l  
%   M is a vector with the same number of elements as N.  Each element ZK,}3b{  
%   k of M must be a positive integer, with possible values M(k) = -N(k) ~um+r],@@  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, wXw pKm  
%   and THETA is a vector of angles.  R and THETA must have the same EGMj5@>  
%   length.  The output Z is a matrix with one column for every (N,M) xHEkmL`)4  
%   pair, and one row for every (R,THETA) pair. $[9,1.?C  
% clfi)-^ {K  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike rx`G* k{X  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {6MLbL{  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral nsR^TD;  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @?ntMh6  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized JmN,:bI  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Q)N$h07R  
%  FkJa+ZA  
%   The Zernike functions are an orthogonal basis on the unit circle. [XFZ2'OO  
%   They are used in disciplines such as astronomy, optics, and 86d *  
%   optometry to describe functions on a circular domain. CORX .PQ  
% ?3 J  
%   The following table lists the first 15 Zernike functions. f:iK5g  
% -f?Rr:#  
%       n    m    Zernike function           Normalization %-"?  
%       -------------------------------------------------- ,Yhy7w  
%       0    0    1                                 1 x h[4d  
%       1    1    r * cos(theta)                    2 w`XwW#!}@$  
%       1   -1    r * sin(theta)                    2 K@xp!  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) EN@LB2  
%       2    0    (2*r^2 - 1)                    sqrt(3) ^9T6Ix{=  
%       2    2    r^2 * sin(2*theta)             sqrt(6) U!m-{7s$  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) 4f,D3e%T|  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) !fdni}f)  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) pNpj, H*4  
%       3    3    r^3 * sin(3*theta)             sqrt(8) B.fLgQK0  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) PHRc*G{  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =y>P>&sI  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Gjuc"JR7  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -k\7k2  
%       4    4    r^4 * sin(4*theta)             sqrt(10) ll;#4~iA  
%       -------------------------------------------------- 20gPx;  
% =!NYvwg6;o  
%   Example 1: =DTn9}u  
% #|*;~:fz  
%       % Display the Zernike function Z(n=5,m=1) u#=Yv |9  
%       x = -1:0.01:1; ~h-G  
%       [X,Y] = meshgrid(x,x); :6LOb f\01  
%       [theta,r] = cart2pol(X,Y); uF5d ]{Qt  
%       idx = r<=1; 2YK4 SL  
%       z = nan(size(X)); M%4o0k]E,s  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); Q(m} Sr4  
%       figure tF)K$!GR[  
%       pcolor(x,x,z), shading interp bTC2Ya  
%       axis square, colorbar "hz(A.THi  
%       title('Zernike function Z_5^1(r,\theta)') l/OG 79qq  
% }4xxge?r  
%   Example 2: 1DcYc-k#  
% +Cx~4zEq  
%       % Display the first 10 Zernike functions g=; rM8W  
%       x = -1:0.01:1; mm%w0dOb"  
%       [X,Y] = meshgrid(x,x); b0LjNO@<  
%       [theta,r] = cart2pol(X,Y); <Xw 6m$fr:  
%       idx = r<=1; en7i})v\".  
%       z = nan(size(X)); "Gcr1$xG8!  
%       n = [0  1  1  2  2  2  3  3  3  3]; D+rDgrv  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ]>E9v&X0  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; Fy-nV% P  
%       y = zernfun(n,m,r(idx),theta(idx)); d T/*O8  
%       figure('Units','normalized') '.~vN L+ O  
%       for k = 1:10 DMcvu*A  
%           z(idx) = y(:,k); ,IuO;UV#)  
%           subplot(4,7,Nplot(k)) +`f gn9p  
%           pcolor(x,x,z), shading interp QHr 3J  
%           set(gca,'XTick',[],'YTick',[]) [.<nt:  
%           axis square Hk2@X(  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) x=1G|<z%  
%       end /@FB;`'  
% O|,+@qtH  
%   See also ZERNPOL, ZERNFUN2. wd*T"V3  
'DsfKR^ s  
%   Paul Fricker 11/13/2006 s5|LD'o!  
/(n)I  
<t]c'  
% Check and prepare the inputs: 3~I<f ^K4  
% ----------------------------- @babgP,  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~'fa,XZ<  
    error('zernfun:NMvectors','N and M must be vectors.') k;zb q  
end 2)RW*Qu;+  
\+GXUnkj  
if length(n)~=length(m) DJ} xD&G  
    error('zernfun:NMlength','N and M must be the same length.') !nVX .m9  
end { KwLcSn  
nS?HH6H  
n = n(:); |BH, H  
m = m(:); ?0[%+AD hM  
if any(mod(n-m,2)) LDV{#5J  
    error('zernfun:NMmultiplesof2', ... F]yclXf('  
          'All N and M must differ by multiples of 2 (including 0).') 8SAz,m!W)  
end `H/HLCt  
Bo%M-Gmu  
if any(m>n) +\Q6Onqr  
    error('zernfun:MlessthanN', ... O-T/H-J`  
          'Each M must be less than or equal to its corresponding N.') m OmT]X  
end }r^MXv~(  
8"8{Nf-"  
if any( r>1 | r<0 ) 4Hzbb#  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') }sJ% InL  
end "r"]NyM  
3pDZ}{ZZU  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) aqzvT5*8%  
    error('zernfun:RTHvector','R and THETA must be vectors.') k})9(Sy~  
end DvOg|XUU0  
G#@<bg3  
r = r(:); T82=R@7  
theta = theta(:); dJ24J+9}]j  
length_r = length(r); _IlL'c5  
if length_r~=length(theta) {7/6~\'/@  
    error('zernfun:RTHlength', ... ) ]~HjA;  
          'The number of R- and THETA-values must be equal.') ;prp6(c  
end *"zE,Bp"  
APc@1="#J  
% Check normalization: !uO|T'u0a  
% -------------------- 3^ Z tIZ  
if nargin==5 && ischar(nflag) _cGiuxf #  
    isnorm = strcmpi(nflag,'norm'); :He:Bdk  
    if ~isnorm f4tia .  
        error('zernfun:normalization','Unrecognized normalization flag.') aO<d`DTyJ  
    end Y(A?ib~K  
else J7cqnj  
    isnorm = false; i;dr(c/ft  
end UT{N ly8u  
&H+<uYV  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [e^i".  
% Compute the Zernike Polynomials @ics  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P2s0H+<  
wK\SeX  
% Determine the required powers of r: dO8Z {wfs  
% ----------------------------------- "R30oA#m  
m_abs = abs(m); D 3HB`{  
rpowers = []; 0>?mF]M  
for j = 1:length(n) 92tb`'  
    rpowers = [rpowers m_abs(j):2:n(j)]; <s{/ka3  
end rU~"A  
rpowers = unique(rpowers); CNN?8/u!@  
oNh .Zgg  
% Pre-compute the values of r raised to the required powers, ePY K^D  
% and compile them in a matrix: ?41| e+p  
% ----------------------------- H{$yy)@F  
if rpowers(1)==0 j68Gz5;j  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 7SM/bJ-M#  
    rpowern = cat(2,rpowern{:}); ~g,QwaA[  
    rpowern = [ones(length_r,1) rpowern]; 1%:A9%O)t  
else y\)w#  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); JC+VG;kcs  
    rpowern = cat(2,rpowern{:}); 23fAc"@ B  
end D2mB4  
#nxx\,i>  
% Compute the values of the polynomials: gI%n(eY  
% -------------------------------------- c ~C W-%wN  
y = zeros(length_r,length(n)); .5z|g@ 6  
for j = 1:length(n) \ lKQ'_  
    s = 0:(n(j)-m_abs(j))/2; GkO6r'MVE  
    pows = n(j):-2:m_abs(j); wb?hfe  
    for k = length(s):-1:1 D|BN_ai9  
        p = (1-2*mod(s(k),2))* ... -|T^  
                   prod(2:(n(j)-s(k)))/              ... V cL  
                   prod(2:s(k))/                     ... ?=G H{ %E  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... g-s@m}[T  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); (Zn\S*_@/  
        idx = (pows(k)==rpowers); lu}[XN  
        y(:,j) = y(:,j) + p*rpowern(:,idx); I"!{HnSG`  
    end GhT7:_r~  
     kO#`m ]  
    if isnorm .`p_vS9  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @88 efF  
    end 5C&f-* Bh  
end u rOGOa$  
% END: Compute the Zernike Polynomials Y>%NuL|s  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ig,|3(  
-a[{cu{  
% Compute the Zernike functions: mc=*wr$  
% ------------------------------ _7<U[63  
idx_pos = m>0; P:TpB6.=q  
idx_neg = m<0; ]3,0 8JW=  
+g[B &A!d+  
z = y; w;(gi  
if any(idx_pos) P(;c`   
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); `lhLIQ'j  
end ( A)wcB  
if any(idx_neg) O /&%`&2  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); lN'/Z&62  
end jJvNN -^  
f0s &9H  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag)  R'/wOE2  
%ZERNFUN2 Single-index Zernike functions on the unit circle. U VKN#"_{  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated = 1VH5pVr}  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive * 2%e.d3"M  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, u2< h<}Y  
%   and THETA is a vector of angles.  R and THETA must have the same yh:,[<q  
%   length.  The output Z is a matrix with one column for every P-value, { 1%ZyY  
%   and one row for every (R,THETA) pair. uH[0kh  
% ^j %UZ  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike E2|iAT+=.  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 5m42Bqy"  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) -#6*T,f0P(  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 W6T&hB  
%   for all p. "~<~b2Y"5  
% gpWS_Dw9  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 H\mVK!](D  
%   Zernike functions (order N<=7).  In some disciplines it is D 8Rmxq!  
%   traditional to label the first 36 functions using a single mode LDeVNVM  
%   number P instead of separate numbers for the order N and azimuthal E+zn\v  
%   frequency M. .M2&ad :  
% L@r.R_*H?s  
%   Example: 17)M.(qmuP  
% lg >AWTW[  
%       % Display the first 16 Zernike functions M[u3]dN  
%       x = -1:0.01:1; ,~xU>L^  
%       [X,Y] = meshgrid(x,x); ]ECZU   
%       [theta,r] = cart2pol(X,Y); _KVB~loT  
%       idx = r<=1; [Z\1"m  
%       p = 0:15; sVd_O[  
%       z = nan(size(X)); I%919  
%       y = zernfun2(p,r(idx),theta(idx)); F |81i$R  
%       figure('Units','normalized') %E"/]!}3  
%       for k = 1:length(p) X.l"f'`l  
%           z(idx) = y(:,k); yQ{_\t1Wd  
%           subplot(4,4,k) J.2]km  
%           pcolor(x,x,z), shading interp K=TW}ZO  
%           set(gca,'XTick',[],'YTick',[]) Ko)T>8:  
%           axis square ddDJXk)!0  
%           title(['Z_{' num2str(p(k)) '}']) @^cgq3H'  
%       end ;}~Bv<#  
% OIty ]c  
%   See also ZERNPOL, ZERNFUN. ws>Iyw.u  
sFCs_u1tNN  
%   Paul Fricker 11/13/2006 I%>]!X  
FR^wDm$  
{mnSTL`  
% Check and prepare the inputs: 1r& ?J.z25  
% ----------------------------- "Vp: z V<S  
if min(size(p))~=1 }|"*"kxi!  
    error('zernfun2:Pvector','Input P must be vector.') rqe_zyc&  
end 5z w23!  
|uwteG5?$s  
if any(p)>35 n3g WM C  
    error('zernfun2:P36', ... OXX(OCG>  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... >m6,xxTR  
           '(P = 0 to 35).']) {C0^D*U:  
end A|_%'8  
; 9&.QR(  
% Get the order and frequency corresonding to the function number: {R!TUQ5  
% ---------------------------------------------------------------- 0*IY%=i  
p = p(:); V'f5-E0  
n = ceil((-3+sqrt(9+8*p))/2); B m@oB2x)  
m = 2*p - n.*(n+2); 'a/6]%QFd!  
zHc4e   
% Pass the inputs to the function ZERNFUN: b;`#Sea  
% ---------------------------------------- o p5^9`"  
switch nargin `(Q_ 65y  
    case 3 \]#;!6ge  
        z = zernfun(n,m,r,theta); C\ 2 >7  
    case 4 %3#I:>si  
        z = zernfun(n,m,r,theta,nflag); +fCyR  
    otherwise X`v79`g_  
        error('zernfun2:nargin','Incorrect number of inputs.') u:H 3.5)%  
end VmH_0IM^6  
CE7pg&dJ)i  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) aU]O$Pg{  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. awSS..g}L  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of $s(4?^GP  
%   order N and frequency M, evaluated at R.  N is a vector of ocA'goI-  
%   positive integers (including 0), and M is a vector with the yH"$t/cU"R  
%   same number of elements as N.  Each element k of M must be a `_g?y)  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) a(43]d&  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is )"c]FI[}  
%   a vector of numbers between 0 and 1.  The output Z is a matrix ic{.#R.BY  
%   with one column for every (N,M) pair, and one row for every ]^6y NtLK  
%   element in R. si!9Gz;  
% JU=\]E@8c  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 'oHOFH9:{b  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is bR8 HGH28  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 6[3Ioh  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Rr;LV<q+  
%   for all [n,m]. qfP"UAc{/  
% d,J<SG&L&  
%   The radial Zernike polynomials are the radial portion of the QOh w  
%   Zernike functions, which are an orthogonal basis on the unit zEPx  
%   circle.  The series representation of the radial Zernike gC_s\WU  
%   polynomials is i h$@:^\  
% : ` 6$/DK  
%          (n-m)/2 Eagmafu  
%            __ z Jo#3  
%    m      \       s                                          n-2s @F(3*5c_Y  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r .M53, 8X  
%    n      s=0 6aF'^6+a  
% 8T.5Mhx0jS  
%   The following table shows the first 12 polynomials. {7![3`%7  
% ^~r&}l4c,  
%       n    m    Zernike polynomial    Normalization F<oc Y0=9p  
%       --------------------------------------------- K@j^gF/0B  
%       0    0    1                        sqrt(2) mb~=Xyk&  
%       1    1    r                           2 zmL~]! ~&  
%       2    0    2*r^2 - 1                sqrt(6) ^;CR0.4  
%       2    2    r^2                      sqrt(6) Nvx)H(8F  
%       3    1    3*r^3 - 2*r              sqrt(8) |!xfIR>=F  
%       3    3    r^3                      sqrt(8) H6PXx  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) TH(Lzrbg  
%       4    2    4*r^4 - 3*r^2            sqrt(10) spSN6 .j  
%       4    4    r^4                      sqrt(10) }KaCf,O  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ]g8i>,G  
%       5    3    5*r^5 - 4*r^3            sqrt(12) rz[uuY7  
%       5    5    r^5                      sqrt(12) b!^M}s6  
%       --------------------------------------------- RLu$$Eb  
% 9OQ0Yc!3  
%   Example: UP~WP@0F  
% XEUa  
%       % Display three example Zernike radial polynomials mS w?2ba  
%       r = 0:0.01:1; RP|>&I  
%       n = [3 2 5]; &` 00/p  
%       m = [1 2 1]; {sna)v$;  
%       z = zernpol(n,m,r); X8,7_D$  
%       figure [N+ m5{tT  
%       plot(r,z) _86*.3fQG  
%       grid on 0x>/6 <<  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') b5n]Gp  
% 68J 9T^84  
%   See also ZERNFUN, ZERNFUN2. ,>QMyI hv  
L)R[)$2(g  
% A note on the algorithm. +C'TW^  
% ------------------------ 9Ew:.&d  
% The radial Zernike polynomials are computed using the series 22al  
% representation shown in the Help section above. For many special kY'<u  
% functions, direct evaluation using the series representation can 6HEqm>Yau  
% produce poor numerical results (floating point errors), because i!1ho T$  
% the summation often involves computing small differences between u^aFj%}]L  
% large successive terms in the series. (In such cases, the functions KTLbqSS\  
% are often evaluated using alternative methods such as recurrence ?2?S[\@`0U  
% relations: see the Legendre functions, for example). For the Zernike Z92iil;t  
% polynomials, however, this problem does not arise, because the L= :d!UF  
% polynomials are evaluated over the finite domain r = (0,1), and [w&#+h-q  
% because the coefficients for a given polynomial are generally all cD'HQ3+  
% of similar magnitude. I+Ncmg )>  
% Uw2,o|=O  
% ZERNPOL has been written using a vectorized implementation: multiple c|\ZRBdI  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] J0ZxhxX35  
% values can be passed as inputs) for a vector of points R.  To achieve N"Qg\PS_  
% this vectorization most efficiently, the algorithm in ZERNPOL gnQo1q{ 4  
% involves pre-determining all the powers p of R that are required to nOAJ9  
% compute the outputs, and then compiling the {R^p} into a single ` j&0VIU>>  
% matrix.  This avoids any redundant computation of the R^p, and M('s|>\l  
% minimizes the sizes of certain intermediate variables. Z>(r9 R3{  
% "EcX_>  
%   Paul Fricker 11/13/2006 *PSvHXNi  
sJ))<,e5I  
,67"C2Y  
% Check and prepare the inputs: biK)&6|`sa  
% ----------------------------- Pl rkgS0J  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) DU5:+" u3  
    error('zernpol:NMvectors','N and M must be vectors.') r/NSD$-n  
end ,:#,}w_HyO  
> 63)z I  
if length(n)~=length(m) ADv^eJJ|  
    error('zernpol:NMlength','N and M must be the same length.') ||-nmOy  
end S=0"f}Jo.  
..t,LU@|  
n = n(:); n S_Ta  
m = m(:); GXDC@+$14  
length_n = length(n); N$\ bg|v  
!dU9sB2  
if any(mod(n-m,2)) h>}ax\h  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).')  \#4m@  
end A}t%;V2  
r4O|()  
if any(m<0) $> "J"IX  
    error('zernpol:Mpositive','All M must be positive.') wP[xmO-%  
end J|V K P7  
21r= = H$  
if any(m>n) 4p.^'2m  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') y }\r#"Z`  
end 0cHfxy3  
1HMUHZT  
if any( r>1 | r<0 ) `/#f?Hk=  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') AY#wVy  
end 9<yAQ?7 L  
= 96G8hlT  
if ~any(size(r)==1) "\e:h| .G  
    error('zernpol:Rvector','R must be a vector.') 4-mVB wq  
end 4&Byl85q  
g>so R&*  
r = r(:); *HR +a#o  
length_r = length(r); O~V1Ywfq7^  
QV7,G9  
if nargin==4 JPEIT  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); R{HV]o|qk  
    if ~isnorm RctU'T  
        error('zernpol:normalization','Unrecognized normalization flag.') o]Gguw5W{  
    end xq}-m!nX  
else "!O1j r;  
    isnorm = false; oL]mjo=jN  
end >OV<_(S4  
k<H%vg>{~s  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aX;A==>  
% Compute the Zernike Polynomials ._?V%/  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W{  fZ[z  
F/>*If s  
% Determine the required powers of r: GF8 -_X  
% ----------------------------------- ;B~P>n}}_]  
rpowers = []; fAGctRGH  
for j = 1:length(n) 7h%4]  
    rpowers = [rpowers m(j):2:n(j)]; @Br {!#Wf  
end )0^ >#k  
rpowers = unique(rpowers); k;k}qq`d  
Zb(E:~h\  
% Pre-compute the values of r raised to the required powers,  FZ F @  
% and compile them in a matrix: (9 sIA*,}  
% ----------------------------- ~:4~2d|  
if rpowers(1)==0 )P?IqSEA%  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /@hJpz|+   
    rpowern = cat(2,rpowern{:}); qz!Ph5 (  
    rpowern = [ones(length_r,1) rpowern]; ]IZ>2!6r  
else qTT,U9]:  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); U3E&n1AA  
    rpowern = cat(2,rpowern{:}); !nd*W"_gQ/  
end 03k?:D+5  
"X04mQn15  
% Compute the values of the polynomials: WNs}sNSf  
% -------------------------------------- 5{K}?*3hJ  
z = zeros(length_r,length_n); <_Eg?ePW#  
for j = 1:length_n :P$#MC  
    s = 0:(n(j)-m(j))/2; Dw_D+7>(v  
    pows = n(j):-2:m(j); %T!J$a)qf  
    for k = length(s):-1:1 er2cQS7R  
        p = (1-2*mod(s(k),2))* ... 06 i;T~Y  
                   prod(2:(n(j)-s(k)))/          ... ~>Kq<]3~  
                   prod(2:s(k))/                 ... (u hd "  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... d;7 uFh|o  
                   prod(2:((n(j)+m(j))/2-s(k))); !lTda<;]  
        idx = (pows(k)==rpowers);  rkB'Hf  
        z(:,j) = z(:,j) + p*rpowern(:,idx); KL [ek  
    end C$d>_ r  
     }^-<k0A4?  
    if isnorm 2 rN ,D(  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); h5"Ov,K3[  
    end fY,|o3#  
end x[(?#  
Pm+tQ  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  lv&mp0V+  
}A=y=+4 j  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 I){\0vb@  
-t2T(ha  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计