首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 EK JPeeRY  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! F\H^=P  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 2o\GU  
function z = zernfun(n,m,r,theta,nflag) uQYBq)p|  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. `"#0\Wh  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Bp.z6x4  
%   and angular frequency M, evaluated at positions (R,THETA) on the < "8<<   
%   unit circle.  N is a vector of positive integers (including 0), and m$UrY(6d  
%   M is a vector with the same number of elements as N.  Each element #SR"Q`P  
%   k of M must be a positive integer, with possible values M(k) = -N(k) \i +=tGY  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, R[/]iK+!&  
%   and THETA is a vector of angles.  R and THETA must have the same k\~A\UIYo  
%   length.  The output Z is a matrix with one column for every (N,M) &M6cCT]&M  
%   pair, and one row for every (R,THETA) pair. :6 \?{xD  
% -H;%1y$A-  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -nvK*rn>}  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), qUMM}ls  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral oV 7A"8L^a  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )t/[z3rn  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized | gou#zi  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. P!Mz5QZ+  
%  B3Yj  
%   The Zernike functions are an orthogonal basis on the unit circle. CL U[')H0  
%   They are used in disciplines such as astronomy, optics, and !{L6 4qI  
%   optometry to describe functions on a circular domain. lYz$~/sd  
% NyJ=^=F#  
%   The following table lists the first 15 Zernike functions. >;ucwLi  
% j+p=ik  
%       n    m    Zernike function           Normalization XP$1CWI  
%       -------------------------------------------------- lk5}bnd5  
%       0    0    1                                 1 &;)6G1X1  
%       1    1    r * cos(theta)                    2 wF`9}9q  
%       1   -1    r * sin(theta)                    2 _DAAD,'<a  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) [P*w$Hn  
%       2    0    (2*r^2 - 1)                    sqrt(3) 6 s+ Z  
%       2    2    r^2 * sin(2*theta)             sqrt(6) L'>t:^QTh  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) `B^ HW8  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 54A ndyeA  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 8")1,   
%       3    3    r^3 * sin(3*theta)             sqrt(8) L%7?o:  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) h.\9a3B:r  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mST/u>'  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) igV4nL  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #hBDOXHPf  
%       4    4    r^4 * sin(4*theta)             sqrt(10) ^c9~~m16+  
%       -------------------------------------------------- \\qw"w9  
% sf|[oD  
%   Example 1: "~f=7  
% tcg sXB/t  
%       % Display the Zernike function Z(n=5,m=1) D [#1~M  
%       x = -1:0.01:1; =;1MpD  
%       [X,Y] = meshgrid(x,x); XZaei\rUn)  
%       [theta,r] = cart2pol(X,Y); JvHGu&Nr!  
%       idx = r<=1; 4Qr16,Us  
%       z = nan(size(X)); =9oN#4mWK  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); $=j}JX}z  
%       figure C?Sy90f  
%       pcolor(x,x,z), shading interp j}=$2|}8{  
%       axis square, colorbar N[~"X**x  
%       title('Zernike function Z_5^1(r,\theta)') h5bQ  
% |zV-a2K%J  
%   Example 2: K4vl#*qn  
% lW,rzJ1  
%       % Display the first 10 Zernike functions Y%UfwbX!g  
%       x = -1:0.01:1; eeuTf  
%       [X,Y] = meshgrid(x,x); H\f.a R=  
%       [theta,r] = cart2pol(X,Y); ]F@XGJN  
%       idx = r<=1; \advFKN  
%       z = nan(size(X)); Y9TaU]7]  
%       n = [0  1  1  2  2  2  3  3  3  3]; Z[baQO  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;[-dth  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; FuNc#n>  
%       y = zernfun(n,m,r(idx),theta(idx)); m~fA=#l l  
%       figure('Units','normalized') _u^ S[  
%       for k = 1:10 1{oq8LB  
%           z(idx) = y(:,k); Y5~_y?BX  
%           subplot(4,7,Nplot(k)) s|U=_,.  
%           pcolor(x,x,z), shading interp +2kJuoj:  
%           set(gca,'XTick',[],'YTick',[]) o;XzJ#P  
%           axis square 4VjP:>*p  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) b!Q|0X.?  
%       end IYq)p /  
% ZJ9J*5!C  
%   See also ZERNPOL, ZERNFUN2. ]q0mo1-EZ!  
V `V Z[  
%   Paul Fricker 11/13/2006 sXm/+I^  
6@-VLO))O  
Y"&&=M#  
% Check and prepare the inputs: KZ/U2.{O<  
% ----------------------------- 1&~u:RUXe  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nV-A0"z_&  
    error('zernfun:NMvectors','N and M must be vectors.') cn$E?&-  
end /wB<1b"  
{I|iUfy  
if length(n)~=length(m) LL+ROX^M  
    error('zernfun:NMlength','N and M must be the same length.') EKsL0;FV  
end H gMLh*  
(&4aebkZO  
n = n(:); +A 6xY  
m = m(:); ?Gc9^b B I  
if any(mod(n-m,2)) >&mlwxqv  
    error('zernfun:NMmultiplesof2', ... Gn+D%5)$I  
          'All N and M must differ by multiples of 2 (including 0).') Gxu&o%x [  
end MP\$_;&xB  
`s (A&=g\  
if any(m>n) Ycypd\q/  
    error('zernfun:MlessthanN', ... ngoo4}  
          'Each M must be less than or equal to its corresponding N.') ID" '`DKxe  
end  $j*j {}K  
zhbp"yju7  
if any( r>1 | r<0 ) wt4uzg8  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') P g.PD,&U  
end M7 &u_Cn?  
&B\tcF  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) i $H aE)qZ  
    error('zernfun:RTHvector','R and THETA must be vectors.') je1f\N45  
end JnCp'`  
$ Scb8<  
r = r(:); rK W<kQT  
theta = theta(:); ps1ndGp~#  
length_r = length(r); +!IIt {u  
if length_r~=length(theta) U`_(Lq%5W  
    error('zernfun:RTHlength', ... mw9;LNi\D  
          'The number of R- and THETA-values must be equal.') `JyTS~v$  
end Tx%6whd/'  
*joy%F  
% Check normalization: lwhAF, '$  
% -------------------- (3`Q`o;  
if nargin==5 && ischar(nflag) 8munw  
    isnorm = strcmpi(nflag,'norm'); $F-qqkR$  
    if ~isnorm YHN@?}T()  
        error('zernfun:normalization','Unrecognized normalization flag.') Q.H y"~  
    end w}VS mt$F  
else Kl<qp7o0  
    isnorm = false; B RF=TL5Z  
end Mp*")N,  
"/Fp_g6#:  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6Clxe Lk  
% Compute the Zernike Polynomials =s`\W7/;{-  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VyH'7_aU  
BX&bhWYGFX  
% Determine the required powers of r: EzOO6  
% ----------------------------------- xoI;s}*E  
m_abs = abs(m); U2z1HIs  
rpowers = []; v;" [1w}  
for j = 1:length(n) 7ET^,6  
    rpowers = [rpowers m_abs(j):2:n(j)]; Wf/Gt\?  
end &gxRw l  
rpowers = unique(rpowers); iLw O4i  
N%!8I  
% Pre-compute the values of r raised to the required powers, M7{w7}B0@  
% and compile them in a matrix: {LfVV5?  
% ----------------------------- )O~LXK=b  
if rpowers(1)==0 8#NtZ  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !K^.r_0H.  
    rpowern = cat(2,rpowern{:}); f3Ior.n(  
    rpowern = [ones(length_r,1) rpowern]; T{v(B["!$  
else MjCD;I:C.  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !a?$  
    rpowern = cat(2,rpowern{:}); 57IAH$n8o  
end 8B;wn<O  
"']I.  
% Compute the values of the polynomials: bI.LE/yk  
% -------------------------------------- _cdrz)T  
y = zeros(length_r,length(n)); `oP :F[B  
for j = 1:length(n) =4cK9ac  
    s = 0:(n(j)-m_abs(j))/2; ?{l}35Q.@  
    pows = n(j):-2:m_abs(j); WGFp<R  
    for k = length(s):-1:1 =?>f[J5  
        p = (1-2*mod(s(k),2))* ... x>vC;E${"  
                   prod(2:(n(j)-s(k)))/              ... t98t&YUpm  
                   prod(2:s(k))/                     ... ei)ljvvmHP  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... DdDO.@-Z  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); >2l1t}"\  
        idx = (pows(k)==rpowers); (#GOXz  
        y(:,j) = y(:,j) + p*rpowern(:,idx); wJM})O%SQ  
    end 3wK{?  
     <6g{vNA  
    if isnorm _4F(WCco  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); c}GmS@  
    end ||3%REliC  
end )8]O|Z-CU  
% END: Compute the Zernike Polynomials \U $'3M  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {/`iZzPg  
/NfuR$oMd  
% Compute the Zernike functions: h`n,:Y^++P  
% ------------------------------ 7/QQ&7+NkS  
idx_pos = m>0; =W'a6)WE  
idx_neg = m<0; N"SFVc_2  
$5kb3x<W  
z = y; y}5V3)P  
if any(idx_pos) 0dxEV]  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); @\0U`*]^)  
end a@:(L"Or  
if any(idx_neg) ^=:e9i3u  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7(cRm$)L  
end ApHs`0=(  
Z5 iP1/&D  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) wdg,dk9e$  
%ZERNFUN2 Single-index Zernike functions on the unit circle. QND{3Q  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated .l?sYe64S  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive " &2Kvsz  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, y%%D="  
%   and THETA is a vector of angles.  R and THETA must have the same 0Oy.&C T  
%   length.  The output Z is a matrix with one column for every P-value, }jHS  
%   and one row for every (R,THETA) pair. o %GVg  
% Er/h:=  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike GaV6h|6_  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ZlQ@k{Es~  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ~ 8L]!OQ9=  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 {Q9?Q?  
%   for all p. i) v ]  
% U-~cVk+LI  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 QOXG:?v\  
%   Zernike functions (order N<=7).  In some disciplines it is O@.C.5Ep  
%   traditional to label the first 36 functions using a single mode d%+oCoeb  
%   number P instead of separate numbers for the order N and azimuthal XY %er  
%   frequency M. =rSJ6'2("  
% \Ps}1)wT  
%   Example: 4WCWu}  
% \fC)]QZ  
%       % Display the first 16 Zernike functions ,:6gp3  
%       x = -1:0.01:1; #dy z  
%       [X,Y] = meshgrid(x,x); j9Qd 45  
%       [theta,r] = cart2pol(X,Y); >YG1sMV-J  
%       idx = r<=1; .\Gl)W  
%       p = 0:15; Ws;S=|9,7~  
%       z = nan(size(X)); 38ac~1HjE  
%       y = zernfun2(p,r(idx),theta(idx)); {A!1s;  
%       figure('Units','normalized') l~ 3H"  
%       for k = 1:length(p) ~,#zdm1r@  
%           z(idx) = y(:,k); 0 D^d-R,  
%           subplot(4,4,k) 0"l*8%g  
%           pcolor(x,x,z), shading interp \S #Mc  
%           set(gca,'XTick',[],'YTick',[]) 581Jp'cje  
%           axis square %L;z~C  
%           title(['Z_{' num2str(p(k)) '}']) iCd$gwA>F  
%       end &CP0T:h  
% ivTx6-]  
%   See also ZERNPOL, ZERNFUN. _:dt8+T#  
25EuVj`zL  
%   Paul Fricker 11/13/2006 pO]{Y?X:  
iczJXA+  
Iv,Ub_Ll9  
% Check and prepare the inputs: R=Qa54  
% ----------------------------- $z1W0  
if min(size(p))~=1 O*qSc^9q  
    error('zernfun2:Pvector','Input P must be vector.') m@(8-_  
end VtM:~|v  
jLc"1+  
if any(p)>35 0 0JH*I  
    error('zernfun2:P36', ... NT(gXEZ  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... !+bLh W`  
           '(P = 0 to 35).']) [\i0@  
end @:2<cn`  
Y9}5&#  
% Get the order and frequency corresonding to the function number: Evjvaa^  
% ---------------------------------------------------------------- Tt^PiaS!  
p = p(:); Z"ce1cB  
n = ceil((-3+sqrt(9+8*p))/2); [K5#4k  
m = 2*p - n.*(n+2); <V`1?9c7D1  
gteG*pi  
% Pass the inputs to the function ZERNFUN: +-%&,>R  
% ---------------------------------------- ;dC>$_P?  
switch nargin JXT%@w>I  
    case 3 RC[mpR ;2  
        z = zernfun(n,m,r,theta); fRcs@yZnS  
    case 4 $*k(h|XfwW  
        z = zernfun(n,m,r,theta,nflag); %R?B=W7 ;Q  
    otherwise l g0 'qH8  
        error('zernfun2:nargin','Incorrect number of inputs.') 2YW| /o4  
end "c+j2f'f  
#\P\(+0K  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) 9` a1xnL  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. OuZPgN  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ^X?D4a|;#g  
%   order N and frequency M, evaluated at R.  N is a vector of "r+v^  
%   positive integers (including 0), and M is a vector with the T'W@fif  
%   same number of elements as N.  Each element k of M must be a jV|j]m&t  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) tyI !y~-z  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is =/#+,  
%   a vector of numbers between 0 and 1.  The output Z is a matrix Wx8oTN  
%   with one column for every (N,M) pair, and one row for every 4uX|2nJ2!;  
%   element in R. <<SUIY@X  
% }EMds3<  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- `GpOS_;  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is RV=Z$  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to _o+z#Fnz  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 7]8nW!h;  
%   for all [n,m]. bb4 `s0  
% #F^0uUjq  
%   The radial Zernike polynomials are the radial portion of the &^7^7:Y=?  
%   Zernike functions, which are an orthogonal basis on the unit I$y6N"|  
%   circle.  The series representation of the radial Zernike }Sx+:N*  
%   polynomials is /0_^Z2  
% dSP~R  
%          (n-m)/2 hI#1Ybl  
%            __ <i$ud&D  
%    m      \       s                                          n-2s 2=%R>&]*  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r m>:zwz< ;  
%    n      s=0 $sxm MP  
% VpO+52&  
%   The following table shows the first 12 polynomials. ^o8o  
% AZ7m=Q97  
%       n    m    Zernike polynomial    Normalization uE=pq<  
%       --------------------------------------------- }o:sU^Pwa  
%       0    0    1                        sqrt(2) xX:N-  
%       1    1    r                           2 |y%M";MI  
%       2    0    2*r^2 - 1                sqrt(6) nYb{?{_ca8  
%       2    2    r^2                      sqrt(6) bd;?oYV~  
%       3    1    3*r^3 - 2*r              sqrt(8) 3;'RF#VL  
%       3    3    r^3                      sqrt(8) x-@}x@n&[  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) wfMtWXd;KB  
%       4    2    4*r^4 - 3*r^2            sqrt(10) Vb++K0CK  
%       4    4    r^4                      sqrt(10) F8pP(Wl  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) U3tA"X.K  
%       5    3    5*r^5 - 4*r^3            sqrt(12) A dL>?SG%  
%       5    5    r^5                      sqrt(12) [h0.k"&[  
%       --------------------------------------------- W }  
% >g+e`!;6  
%   Example: *p.70,5,  
% ]w5j?h"b  
%       % Display three example Zernike radial polynomials sKniqWi  
%       r = 0:0.01:1; &<Iz?AVr  
%       n = [3 2 5]; }1BpIqee  
%       m = [1 2 1]; nsjrzO79L8  
%       z = zernpol(n,m,r); YsA.,   
%       figure \1f&D!F]b  
%       plot(r,z) %SC%#_7  
%       grid on s;Sv@=\  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') f2]O5rX p  
% @UwDsx&2(t  
%   See also ZERNFUN, ZERNFUN2. SLjSNuOP  
7f_tH_(  
% A note on the algorithm. )2&y;{]  
% ------------------------ @#1T-*  
% The radial Zernike polynomials are computed using the series di|5|bn7  
% representation shown in the Help section above. For many special +2 x|j>  
% functions, direct evaluation using the series representation can V6a+VfH  
% produce poor numerical results (floating point errors), because &Ndq ^!e  
% the summation often involves computing small differences between D:.1Be`Tv  
% large successive terms in the series. (In such cases, the functions l}& &f8n  
% are often evaluated using alternative methods such as recurrence {Q/_I@m].  
% relations: see the Legendre functions, for example). For the Zernike .[:2M9Rx  
% polynomials, however, this problem does not arise, because the <c_'(   
% polynomials are evaluated over the finite domain r = (0,1), and 9*CJWS;  
% because the coefficients for a given polynomial are generally all \ ~uY);  
% of similar magnitude.  ?@iGECll  
% lEr_4!h$rZ  
% ZERNPOL has been written using a vectorized implementation: multiple 586lN22xM  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] 3v,Bg4[i  
% values can be passed as inputs) for a vector of points R.  To achieve vE$n0bL2  
% this vectorization most efficiently, the algorithm in ZERNPOL m-AW}1:\f  
% involves pre-determining all the powers p of R that are required to )o N#%%SB<  
% compute the outputs, and then compiling the {R^p} into a single ]MaD7q>+R  
% matrix.  This avoids any redundant computation of the R^p, and D&/~lhyNZ  
% minimizes the sizes of certain intermediate variables. <wj}y0(  
% Sc,a jT  
%   Paul Fricker 11/13/2006 qt,;Yxx#^  
%O02xr=  
jlb=]hp8%  
% Check and prepare the inputs: 4) z*Vux  
% ----------------------------- `\M}~  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5 K[MKfT  
    error('zernpol:NMvectors','N and M must be vectors.') jrLV\(p  
end  Jknit  
;pVnBi  
if length(n)~=length(m) 4fgYO]  
    error('zernpol:NMlength','N and M must be the same length.') vf/|b6'y  
end . yN.  
>A*BRX"4C  
n = n(:); rpM jDjW  
m = m(:); vfpK|=[7o  
length_n = length(n); h:~ 8WV|  
\\v1 \  
if any(mod(n-m,2)) =DLVWz/<  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') y25L`b  
end ~ "stI   
i+4!nf{K  
if any(m<0) BaXf=RsZ  
    error('zernpol:Mpositive','All M must be positive.') HWOOw&^<  
end OTV$8{  
i=aK ?^+  
if any(m>n) O0=}: HM  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') rlP?Uh  
end Uk<2XGj  
lm\~_ 4l1  
if any( r>1 | r<0 ) ?A2jj`N1x  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') 'FN+BvD  
end <)9dTOdd  
"fZWAGDBO\  
if ~any(size(r)==1) G{4lgkyy  
    error('zernpol:Rvector','R must be a vector.') -_+,HyJP  
end .xV^%e?H  
rls\3 R(jt  
r = r(:); ]mdO3P  
length_r = length(r); CCp&+LRvR  
\+VQoB/  
if nargin==4 ^Y?Y5`! Q  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Kp?j\67S  
    if ~isnorm 0.lOSAq  
        error('zernpol:normalization','Unrecognized normalization flag.') U?&&yynK  
    end Io\tZXB  
else <MzXTy3\  
    isnorm = false; i[ 40p!~  
end 6 TSC7jO  
P)rz%,VF+  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v/z~ j  
% Compute the Zernike Polynomials 6:3F,!J!  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  j*#k%;c  
{1m.d;(1  
% Determine the required powers of r: _>4Qh#6K  
% ----------------------------------- eiwPp9[08  
rpowers = []; H`EsFKw\%  
for j = 1:length(n) )Oix$B!-  
    rpowers = [rpowers m(j):2:n(j)]; 141XnAb)I  
end Y7WU4He L  
rpowers = unique(rpowers); vR?E'K3  
3U&r K)F  
% Pre-compute the values of r raised to the required powers, (ioJ G-2u  
% and compile them in a matrix: E%vT(Kz  
% ----------------------------- gQ=l\/ H  
if rpowers(1)==0 l$DQkbOj  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %W,V~kb  
    rpowern = cat(2,rpowern{:}); R/@n+tb e  
    rpowern = [ones(length_r,1) rpowern]; H:!pFj  
else |nT+ W| 0U  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >%i]p  
    rpowern = cat(2,rpowern{:}); .y^T 3?}I  
end h[}e5A]}  
K} TSwY  
% Compute the values of the polynomials: {<L|Z=&k`  
% -------------------------------------- Hwiftx  
z = zeros(length_r,length_n); thrv_^A  
for j = 1:length_n *D:uFo,xn  
    s = 0:(n(j)-m(j))/2; ]Yx&  
    pows = n(j):-2:m(j); <) VNEy'  
    for k = length(s):-1:1 $.T\dm-  
        p = (1-2*mod(s(k),2))* ... 4M*!'sG\  
                   prod(2:(n(j)-s(k)))/          ... MHF7hk ps}  
                   prod(2:s(k))/                 ... Pe)SugCs  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... <-O^ol,fX  
                   prod(2:((n(j)+m(j))/2-s(k))); S/)yi  
        idx = (pows(k)==rpowers); }x(Ewr  
        z(:,j) = z(:,j) + p*rpowern(:,idx); akV-|v_  
    end 4StoEgFS  
     VGeyZ\vU  
    if isnorm ;Wedj\Kkp  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); S9lT4  
    end Cm~z0c|T  
end vG#,J&aW  
%WAaoR&u  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ?$~5ti#\  
; ~#uH7k  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 OEhDRU%k  
v?s%qb=T  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计