首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 6O\a\z  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! n&\DJzW\#  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7v]9) W=y  
function z = zernfun(n,m,r,theta,nflag) %2,'x  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !cNw 8"SIU  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N B:rzM:BQ  
%   and angular frequency M, evaluated at positions (R,THETA) on the J>N^FR9  
%   unit circle.  N is a vector of positive integers (including 0), and w 21g&  
%   M is a vector with the same number of elements as N.  Each element dh K<5E  
%   k of M must be a positive integer, with possible values M(k) = -N(k) %Fp 1c K  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, /ei(Q'pc[  
%   and THETA is a vector of angles.  R and THETA must have the same T0v{qQ  
%   length.  The output Z is a matrix with one column for every (N,M) \$W\[s4I  
%   pair, and one row for every (R,THETA) pair. OKV/=]GS  
% /vNHb _-  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike xua E\*m  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), bvF-F$n%F  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral sg%Ptp  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, e+O502]  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized y134m  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4zhg#  
% ^?R8>97_?  
%   The Zernike functions are an orthogonal basis on the unit circle. ^u-;VoK  
%   They are used in disciplines such as astronomy, optics, and -=4{X R3  
%   optometry to describe functions on a circular domain. <_3OiU= w  
% 5ggsOqH  
%   The following table lists the first 15 Zernike functions. %_. fEFy07  
% ?.Lq`~T`  
%       n    m    Zernike function           Normalization  RxO !h8  
%       -------------------------------------------------- 7u<C&Z/  
%       0    0    1                                 1 s`I]>e  
%       1    1    r * cos(theta)                    2 |mF=X*  
%       1   -1    r * sin(theta)                    2 6H ^=\  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) d7P' c!@+  
%       2    0    (2*r^2 - 1)                    sqrt(3) VI k]`)#  
%       2    2    r^2 * sin(2*theta)             sqrt(6) /Y0oA3am  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) YckLz01jh  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) r^T+ I3  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) UH`cWVLpr  
%       3    3    r^3 * sin(3*theta)             sqrt(8) H:]'r5sw  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) <%"o-xZq7C  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) t~M0_TnXlP  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) o]TKL'gW  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) CXh >'K  
%       4    4    r^4 * sin(4*theta)             sqrt(10) Nin7AOO  
%       -------------------------------------------------- f,'^"Me$c  
% M,dp;  
%   Example 1: EI8KKo *  
% l5FKw;=K}:  
%       % Display the Zernike function Z(n=5,m=1) s(pNg?R  
%       x = -1:0.01:1; N?v}\P U  
%       [X,Y] = meshgrid(x,x); MuF{STE>->  
%       [theta,r] = cart2pol(X,Y); Xk`'m[  
%       idx = r<=1; tvcM< e20  
%       z = nan(size(X)); Mz: "p.  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); l#&\,T  
%       figure dmPAPCm%y  
%       pcolor(x,x,z), shading interp #n.XOet<\  
%       axis square, colorbar GQ6~Si2  
%       title('Zernike function Z_5^1(r,\theta)') $Gs|Z$(  
% iC4rzgq  
%   Example 2: Bmv5yc+;  
% NeR1}W  
%       % Display the first 10 Zernike functions 'Esz #@R  
%       x = -1:0.01:1; ( 9(NP_s  
%       [X,Y] = meshgrid(x,x); _rz7)%Y'#$  
%       [theta,r] = cart2pol(X,Y); {sF;R.P&r  
%       idx = r<=1; Np@RK1}  
%       z = nan(size(X)); qo7jrY5G  
%       n = [0  1  1  2  2  2  3  3  3  3]; e'2w-^7  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; <lP5}F87  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; l0lvca=;  
%       y = zernfun(n,m,r(idx),theta(idx)); hVW1l&s  
%       figure('Units','normalized') S z-TarTF  
%       for k = 1:10 l*b0uF  
%           z(idx) = y(:,k); ;N^4R$Q.  
%           subplot(4,7,Nplot(k)) -u~AY#*  
%           pcolor(x,x,z), shading interp .5!Q(  
%           set(gca,'XTick',[],'YTick',[]) juEH$7N !  
%           axis square 1AQ3<  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 'o|=_0-7W  
%       end 4[rX\?^e  
% <])kO`+G  
%   See also ZERNPOL, ZERNFUN2. wit  
x.>&|Ej  
%   Paul Fricker 11/13/2006 -IS$1  
^zKP5nzL  
z-m:l;  
% Check and prepare the inputs: eA-$TSWh  
% ----------------------------- 8Ud.}< Zi  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +HEL^  
    error('zernfun:NMvectors','N and M must be vectors.') mV.26D<c  
end s]Z++Lh<{  
VLC=>w\,  
if length(n)~=length(m) q3ebps9^  
    error('zernfun:NMlength','N and M must be the same length.') l}W"> yQ0  
end p~z\&&0U0  
vu3zZMl  
n = n(:); BHR(B]EI  
m = m(:); =xr2-K)e  
if any(mod(n-m,2)) |`O210B@  
    error('zernfun:NMmultiplesof2', ... eKe[]/}e9  
          'All N and M must differ by multiples of 2 (including 0).') gH/(4h  
end 0}- MWbG  
$.O(K4S  
if any(m>n) {CQI*\O  
    error('zernfun:MlessthanN', ... Q #p gl  
          'Each M must be less than or equal to its corresponding N.') n!L}4Nmp  
end bq z*90  
! _?#f|  
if any( r>1 | r<0 ) e/zz.cd){  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') (S8hr,%n  
end %Vhj<gN  
@gi / 1cq  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &X)^G#  
    error('zernfun:RTHvector','R and THETA must be vectors.') &G_XgQsg{  
end 7upN:7D-  
iz2;xa*  
r = r(:); L DdgI  
theta = theta(:); ;M5]XCP k  
length_r = length(r); 7o9[cq w  
if length_r~=length(theta) wj\kx\+  
    error('zernfun:RTHlength', ... \iAs  
          'The number of R- and THETA-values must be equal.') MZ_dI"J ,  
end 35Fs/Gf-n  
H'jo 3d~+  
% Check normalization: CPJ%<+4%b  
% -------------------- vgN%vw pL  
if nargin==5 && ischar(nflag) 4#ZZwa]y  
    isnorm = strcmpi(nflag,'norm'); 90">l^HX=  
    if ~isnorm s$xm  
        error('zernfun:normalization','Unrecognized normalization flag.') 4B@Ir)^(*  
    end Nx<fj=VJ  
else ,R=)^Gh{  
    isnorm = false; bE b+oRI  
end  dQI6.$?  
zRgl`zREr  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% du&9mOrr  
% Compute the Zernike Polynomials gqDSHFm:  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BCt>P?,UO  
14yzGhA  
% Determine the required powers of r: c> ":g~w  
% ----------------------------------- $`_xP1bUT  
m_abs = abs(m); ,Ofou8C6  
rpowers = []; p;)@R$*  
for j = 1:length(n) h 2C9p2.  
    rpowers = [rpowers m_abs(j):2:n(j)]; -Hg,:re2  
end URMxCL^"  
rpowers = unique(rpowers); [ip}f4K  
Y"E*#1/  
% Pre-compute the values of r raised to the required powers, 6eW9+5oL  
% and compile them in a matrix: Ns.{$'ll  
% ----------------------------- mf\@vI  
if rpowers(1)==0 59k-,lyU,  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <'vtnz  
    rpowern = cat(2,rpowern{:}); 0|FQIhVuY  
    rpowern = [ones(length_r,1) rpowern]; 6bUcrw/# p  
else +{cCKRm  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sLW e \o  
    rpowern = cat(2,rpowern{:}); DhT8Kh{  
end RT"JAJTi/  
Q=#Wk$1.  
% Compute the values of the polynomials: +kT o$_Wkz  
% -------------------------------------- aV G4D f  
y = zeros(length_r,length(n)); x_#'6H\1ga  
for j = 1:length(n) J pKCux  
    s = 0:(n(j)-m_abs(j))/2; zJG=9C?  
    pows = n(j):-2:m_abs(j); xi=Qxgx0I  
    for k = length(s):-1:1 >RXDuCVi  
        p = (1-2*mod(s(k),2))* ... XO}v8nWV  
                   prod(2:(n(j)-s(k)))/              ... &\<?7Qj3U|  
                   prod(2:s(k))/                     ... $rH}2  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =p&uQ6.i+  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); WR}<^a x  
        idx = (pows(k)==rpowers); /qweozW_+  
        y(:,j) = y(:,j) + p*rpowern(:,idx); [+b&)jN*2  
    end :6W * ;<o  
     k9iB-=X?4s  
    if isnorm t8t+wi!  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ^Dys#^  
    end 7z3YzQ=Kg  
end JmbWEX|  
% END: Compute the Zernike Polynomials Kj* $'('  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |.LE`  
K"VRHIhfg  
% Compute the Zernike functions: ;a`I8Fj  
% ------------------------------ Mgg m~|9)  
idx_pos = m>0; pxHJX2  
idx_neg = m<0; vp`s< ;CA  
h2vD*W  
z = y; `D0H u!;  
if any(idx_pos) K7]QgfpSZ  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }&LLo  
end Kl w9  
if any(idx_neg)  +D|E8sz8  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); N@\`DO  
end 1IWP~G  
$ cYKVhf  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) IeGVLC  
%ZERNFUN2 Single-index Zernike functions on the unit circle. B^"1V{M  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated zl!Y(o!@  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive kTm>`.kKJ=  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, a VIh|v  
%   and THETA is a vector of angles.  R and THETA must have the same Wh1'?#  
%   length.  The output Z is a matrix with one column for every P-value, 6_O3/   
%   and one row for every (R,THETA) pair.  Yk yB  
% 7/6%92T/B  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike _:VIlg U  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 0-Vx!(  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) y/!jC]!+c  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 dR >hb*k J  
%   for all p. |]j2T 8_=  
% nBGcf(BE.$  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 9M1UkS$`@  
%   Zernike functions (order N<=7).  In some disciplines it is .@3bz  
%   traditional to label the first 36 functions using a single mode Ep1p>s^  
%   number P instead of separate numbers for the order N and azimuthal 6}GcMhU<r  
%   frequency M. Q a3+9  
% o/mGd~  
%   Example: bSS=<G9  
% qp55U*  
%       % Display the first 16 Zernike functions poVtg}n  
%       x = -1:0.01:1; CL<m+dW%*  
%       [X,Y] = meshgrid(x,x); HHg[6aw  
%       [theta,r] = cart2pol(X,Y); Hjc *W Tu  
%       idx = r<=1; 03a<Cd/S  
%       p = 0:15; BHJS.o*j~  
%       z = nan(size(X)); */A ~lR|  
%       y = zernfun2(p,r(idx),theta(idx)); z;6,,  
%       figure('Units','normalized') d@>1m:p  
%       for k = 1:length(p) U$ 22r b  
%           z(idx) = y(:,k); )P #MUC  
%           subplot(4,4,k) v}BXH4&Y  
%           pcolor(x,x,z), shading interp FmC [u  
%           set(gca,'XTick',[],'YTick',[]) TtP2>eh-  
%           axis square =Bb/Y`Q  
%           title(['Z_{' num2str(p(k)) '}']) }g_\?z3gt  
%       end do=s=&T  
% ($[)Tcq*~  
%   See also ZERNPOL, ZERNFUN. |!"qz$8fB  
Ygfv?  
%   Paul Fricker 11/13/2006 @&GfCg5Cb  
MNd[Xzm  
wv&#lM(  
% Check and prepare the inputs: Eg 8rgiU  
% ----------------------------- OmAa$L,'w  
if min(size(p))~=1 S)vNWBO  
    error('zernfun2:Pvector','Input P must be vector.') ]j57Gk%z  
end = `oGH  
S F&EVRv  
if any(p)>35 -VkPy<)  
    error('zernfun2:P36', ... xoyH5ZK@  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... pDM95.6   
           '(P = 0 to 35).']) rxQ&N[r2  
end R>dd#`r"  
`u#N  
% Get the order and frequency corresonding to the function number: o 6A1;e  
% ---------------------------------------------------------------- R&9Q#n-  
p = p(:); xBg. QV  
n = ceil((-3+sqrt(9+8*p))/2); M*7:-Tb]C  
m = 2*p - n.*(n+2); @szr '&\%A  
>j_N6B!  
% Pass the inputs to the function ZERNFUN: %rq/&#jC  
% ---------------------------------------- q@Oe}  
switch nargin ayh= @7*  
    case 3 DBk]2W|i  
        z = zernfun(n,m,r,theta); J3,m{%EtNM  
    case 4 2^4OaHY88  
        z = zernfun(n,m,r,theta,nflag); eGj[%pk  
    otherwise /L*JHNu"_  
        error('zernfun2:nargin','Incorrect number of inputs.') H?tX^HO:q  
end <_~e/+_.  
j-9Zzgr  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) 9q_c`  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. "ot# g"  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of  95l)w  
%   order N and frequency M, evaluated at R.  N is a vector of yrQf PR  
%   positive integers (including 0), and M is a vector with the xvTz|Y  
%   same number of elements as N.  Each element k of M must be a p}K.-S`MQ  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) {{@*  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 8=,-r`oNy  
%   a vector of numbers between 0 and 1.  The output Z is a matrix .T\_4C  
%   with one column for every (N,M) pair, and one row for every 9s&Tv&%VN  
%   element in R. OmLe+,7'  
% 8ib%CYR  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- V2LvE.Kj  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 4rrR;V"}  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to qA5 Ug  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Zgt(zh_l  
%   for all [n,m]. Js/QL=,  
% { pk]p~  
%   The radial Zernike polynomials are the radial portion of the e"&QQ-q  
%   Zernike functions, which are an orthogonal basis on the unit 3o BR  
%   circle.  The series representation of the radial Zernike |(3"_  
%   polynomials is uS7kkzt-x  
% yoG*c%3V?  
%          (n-m)/2 x4-_K%  
%            __ qrufnu5cC  
%    m      \       s                                          n-2s t[o_!fmxZ  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ($'5xPb  
%    n      s=0 4Be\5Byr  
% FA!!S`{\  
%   The following table shows the first 12 polynomials. tR(nD UHV5  
% ~DP_1V?  
%       n    m    Zernike polynomial    Normalization  {[dY$  
%       --------------------------------------------- KvXF zx|A  
%       0    0    1                        sqrt(2) 3@\J#mR  
%       1    1    r                           2 }56WAP}Z 4  
%       2    0    2*r^2 - 1                sqrt(6) D|$Fw5!^k6  
%       2    2    r^2                      sqrt(6) wEC,Mbn  
%       3    1    3*r^3 - 2*r              sqrt(8) a!B"WNb+  
%       3    3    r^3                      sqrt(8) ziC%Q8  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) L :Ldk  
%       4    2    4*r^4 - 3*r^2            sqrt(10) :*Y2na)qQ  
%       4    4    r^4                      sqrt(10) Go(Td++HS  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) i>e?$H,/  
%       5    3    5*r^5 - 4*r^3            sqrt(12) `#"xgOSP>  
%       5    5    r^5                      sqrt(12) Y`rli  
%       --------------------------------------------- H{hzw&dZ<P  
% }CL7h;5N 3  
%   Example: Oi<yT"7  
% %rJ 'DPs  
%       % Display three example Zernike radial polynomials `IT]ZAem`/  
%       r = 0:0.01:1; 5GbC}y>  
%       n = [3 2 5]; 9_fbl:qk;\  
%       m = [1 2 1]; **JBZ\'  
%       z = zernpol(n,m,r);  "3/&<0k  
%       figure |#yH,f  
%       plot(r,z) <iB5&  
%       grid on wSi$.C2  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') nF$HWp&gt  
% 0+e  
%   See also ZERNFUN, ZERNFUN2. q _Z+H4  
fZrh_^yH  
% A note on the algorithm. ~*x 2IPi H  
% ------------------------ )]kxLf#  
% The radial Zernike polynomials are computed using the series in6*3C4  
% representation shown in the Help section above. For many special 9BAvE\o0  
% functions, direct evaluation using the series representation can 6V*,nocL_+  
% produce poor numerical results (floating point errors), because N(V_P[]"*,  
% the summation often involves computing small differences between T^vhhfCUr  
% large successive terms in the series. (In such cases, the functions >wb Uxl%{5  
% are often evaluated using alternative methods such as recurrence 3g3f87[  
% relations: see the Legendre functions, for example). For the Zernike 2T(7V[C%9  
% polynomials, however, this problem does not arise, because the cQ |Q-S  
% polynomials are evaluated over the finite domain r = (0,1), and ;cB3D3fR.  
% because the coefficients for a given polynomial are generally all Cz &3=),G  
% of similar magnitude. E^A S65%bL  
% [:uHe#L  
% ZERNPOL has been written using a vectorized implementation: multiple e;g7Ek3n  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] LosRjvQ:  
% values can be passed as inputs) for a vector of points R.  To achieve t<o7 S:a"  
% this vectorization most efficiently, the algorithm in ZERNPOL tQas_K5  
% involves pre-determining all the powers p of R that are required to  TD%&9$F  
% compute the outputs, and then compiling the {R^p} into a single )/)[}wN;j  
% matrix.  This avoids any redundant computation of the R^p, and [>t;P ,  
% minimizes the sizes of certain intermediate variables. @dx 8{oQ  
% R9!U _RH  
%   Paul Fricker 11/13/2006 .+kg1=s  
) J.xQ}g  
*V4%&&{  
% Check and prepare the inputs: D|ra ;d  
% ----------------------------- (;&}\OX6nm  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) rVP{ ^Jdo  
    error('zernpol:NMvectors','N and M must be vectors.') +(PUiiP'"v  
end DQ30\b"gU  
b3FKDm[  
if length(n)~=length(m) >]8(3&zd  
    error('zernpol:NMlength','N and M must be the same length.') +3J<vM}dy  
end >lKu[nq;  
2gh=0%|\gx  
n = n(:); xy b=7  
m = m(:); r}es_9*~Z  
length_n = length(n); ;!G#Y Oe  
+Gg|BTTL/  
if any(mod(n-m,2)) 7e\Jg/FU  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') :)i,K>y3i  
end L]8z6]j*  
7B=VH r  
if any(m<0) 5:jme$BI  
    error('zernpol:Mpositive','All M must be positive.') PpKjjA<  
end  %S%IW  
<b .p/uA  
if any(m>n) L9N }lH  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') i1XRB C9  
end : NA(nA 3  
-fXQ62:S  
if any( r>1 | r<0 ) x"g)pGsT  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') &bz% @p;  
end fge h;cD  
e4 ,SR(O>  
if ~any(size(r)==1) jU~ x^Y  
    error('zernpol:Rvector','R must be a vector.') [^s;Ggi9  
end +<.o,3  
w;yzgj:n&f  
r = r(:); tsL ; wT_  
length_r = length(r); oKsArZG  
^3BPOK[*gB  
if nargin==4 B{R[z%Y  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); rJkJ/9s  
    if ~isnorm z=) m6\  
        error('zernpol:normalization','Unrecognized normalization flag.') W#~7X  
    end >mX6;6FF  
else icIn>i<m  
    isnorm = false; |=*)a2  
end KILX?Pt[7  
`-.2Z 0  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ||>4XDV#  
% Compute the Zernike Polynomials w2UEU5%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Yj1|]i5b  
""jW'%wR  
% Determine the required powers of r: Qv5 fK  
% ----------------------------------- ` PQQU~^  
rpowers = []; S'8+jY  
for j = 1:length(n) mjWU0.  
    rpowers = [rpowers m(j):2:n(j)]; x<M::")5!V  
end d\nXK#)Q  
rpowers = unique(rpowers); 7)V"E-6h  
`DF49YP"~  
% Pre-compute the values of r raised to the required powers, %K4M`R|2]  
% and compile them in a matrix: j :B/ FL  
% ----------------------------- e)n ,Y  
if rpowers(1)==0 " Q?~LB  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xws{"m,NX~  
    rpowern = cat(2,rpowern{:}); #WSqh +  
    rpowern = [ones(length_r,1) rpowern]; OyVP_Yx,V  
else T2S_> #."l  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); p$9Aadi]  
    rpowern = cat(2,rpowern{:}); 6T'UWh0S  
end O&BvWik  
:>{!%-1Z  
% Compute the values of the polynomials: lbda/Zx  
% -------------------------------------- =Q40]>bpx  
z = zeros(length_r,length_n); G |KA!q  
for j = 1:length_n k\ .9iI'6  
    s = 0:(n(j)-m(j))/2; DOJydYds  
    pows = n(j):-2:m(j); ?&#LmeZ}K  
    for k = length(s):-1:1 F-wAQ:  
        p = (1-2*mod(s(k),2))* ... 88v8lt;R  
                   prod(2:(n(j)-s(k)))/          ... 9GH5  
                   prod(2:s(k))/                 ... a%B&F|u  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... |Q 3d7y  
                   prod(2:((n(j)+m(j))/2-s(k))); ?-<lIF Fh  
        idx = (pows(k)==rpowers); hg" i;I  
        z(:,j) = z(:,j) + p*rpowern(:,idx); L? DlR hu  
    end K<*6E@+i  
     }x`Cnn  
    if isnorm MGm*({%  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 0fXMY-$I  
    end ?h&XIM(  
end JkJ @bh Eu  
AE}cHBwZE  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  d^}p#7mB\  
" !EnQB=  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 $os]$5(  
@.W;3|~qc  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计