首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 64#~p)  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! [ k^6#TQcn  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .Ig`v  
function z = zernfun(n,m,r,theta,nflag) )U>q><  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~uqJ@#o{  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N NlU:e}zGR  
%   and angular frequency M, evaluated at positions (R,THETA) on the ym2\o_^(  
%   unit circle.  N is a vector of positive integers (including 0), and O1JGv8Nr  
%   M is a vector with the same number of elements as N.  Each element ;pU9ov4)  
%   k of M must be a positive integer, with possible values M(k) = -N(k) |m"2B]"@  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 5G_*T  
%   and THETA is a vector of angles.  R and THETA must have the same }{ pNasAU  
%   length.  The output Z is a matrix with one column for every (N,M) +@cf@}W6QC  
%   pair, and one row for every (R,THETA) pair.  []1VD#  
% W+H 27qsv  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike cwz %LKh  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), mz+>rc  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral TqKL(Qw E  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \hc}xy 0  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized . m7iXd{  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. k^C;"awh  
% }qmZ  
%   The Zernike functions are an orthogonal basis on the unit circle. [ \V]tpl!  
%   They are used in disciplines such as astronomy, optics, and jzI\Q{[m'  
%   optometry to describe functions on a circular domain. 3+{hO@ O  
% >H ic tH  
%   The following table lists the first 15 Zernike functions. 1#(,Bq4  
% YXg:cXE8e  
%       n    m    Zernike function           Normalization .<u<!fL2  
%       -------------------------------------------------- gpHI)1i'H  
%       0    0    1                                 1 6.EfM^[  
%       1    1    r * cos(theta)                    2 :?@d\c '  
%       1   -1    r * sin(theta)                    2 fhLdM  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) }f^K}*sK$5  
%       2    0    (2*r^2 - 1)                    sqrt(3) ;T"}dJel#  
%       2    2    r^2 * sin(2*theta)             sqrt(6) fF_1ZKx+#!  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) GaSk &'n$Y  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Z #w1,n88  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) lh7{2WQ  
%       3    3    r^3 * sin(3*theta)             sqrt(8) yf3%g\k  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) AcrbR&cvG  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +_Fsiu_b  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) k1$|vzMh  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (FH4\'t)  
%       4    4    r^4 * sin(4*theta)             sqrt(10) 9D(M>'Bh  
%       -------------------------------------------------- I?4J69'  
% zST# X}  
%   Example 1: MZn7gT0  
% qnrf%rS  
%       % Display the Zernike function Z(n=5,m=1) _<pG}fmR  
%       x = -1:0.01:1; }C2I9Cl  
%       [X,Y] = meshgrid(x,x); ]o6yU#zn~e  
%       [theta,r] = cart2pol(X,Y); u<!!%C~+=  
%       idx = r<=1; vFL3eu#  
%       z = nan(size(X)); E0ud<'3<  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); udp&U+L  
%       figure -R~;E[ {%  
%       pcolor(x,x,z), shading interp *ErTDy(   
%       axis square, colorbar @r+ErFI  
%       title('Zernike function Z_5^1(r,\theta)') 1 YMaUyL 1  
% 6M"J3\ x  
%   Example 2: q&jZmr  
% o7/_a/  
%       % Display the first 10 Zernike functions ;l4rg!r(S  
%       x = -1:0.01:1; q,aWF5m@  
%       [X,Y] = meshgrid(x,x); ^T(l3r  
%       [theta,r] = cart2pol(X,Y); rU<  H7U  
%       idx = r<=1; o$d; Y2K  
%       z = nan(size(X)); P%' bSx1  
%       n = [0  1  1  2  2  2  3  3  3  3]; YwoytoXK  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; f:Nfw+/q  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; L.U [eH  
%       y = zernfun(n,m,r(idx),theta(idx)); Y8m|f  
%       figure('Units','normalized') v}xz`]MW<,  
%       for k = 1:10 e<~uU9 lg1  
%           z(idx) = y(:,k); *N\U{)b\  
%           subplot(4,7,Nplot(k)) Y&Pi`E9=  
%           pcolor(x,x,z), shading interp {* >$aI  
%           set(gca,'XTick',[],'YTick',[]) Y<w2_+(  
%           axis square $o/ ?R]h  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) % eW>IN]5  
%       end 5{,/m"-  
% g@MTKqs  
%   See also ZERNPOL, ZERNFUN2. J^n(WnM*F  
Z7k {7  
%   Paul Fricker 11/13/2006 -HZvz[u  
C<qJnB:B 9  
,GVHwTZ0`  
% Check and prepare the inputs: ~`T(mh',  
% ----------------------------- o2a`4K  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Uk|Xs~@#E  
    error('zernfun:NMvectors','N and M must be vectors.') j,EE`g&  
end p*#SSR9<  
c{|soc[#  
if length(n)~=length(m) <^n9?[m*  
    error('zernfun:NMlength','N and M must be the same length.') r'{pTgm#  
end xx!o]D-}  
il5WLi;{  
n = n(:); S U2`H7C*  
m = m(:); lG fO  
if any(mod(n-m,2)) _V-@95fK  
    error('zernfun:NMmultiplesof2', ... [A*vl9=  
          'All N and M must differ by multiples of 2 (including 0).') sl |S9Ix  
end 1m}'Y@I  
WDE_"Mm  
if any(m>n) uW Q`  
    error('zernfun:MlessthanN', ... MI',E?#yB  
          'Each M must be less than or equal to its corresponding N.') ;S,g&%N  
end hLx*$Z>  
T_v  
if any( r>1 | r<0 ) xhg{!w  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') @_N -> l  
end 5XFhjVmEL  
C:EF(/>+-  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Lm,io\z  
    error('zernfun:RTHvector','R and THETA must be vectors.') +-qD!(&-6  
end 0S/&^  
X=${`n%LG  
r = r(:); LP=!u~?  
theta = theta(:); 97F$$d54T  
length_r = length(r); ~g1@-)zYxK  
if length_r~=length(theta) wT*`Od8w  
    error('zernfun:RTHlength', ... t m5>J)C  
          'The number of R- and THETA-values must be equal.') rUx%2O|qu  
end 3i35F.=X,  
47$JN}qI0  
% Check normalization: ^6J*yV%  
% -------------------- Pbm ;@ V  
if nargin==5 && ischar(nflag) YwB 5Zqr  
    isnorm = strcmpi(nflag,'norm'); .}Bb :*@  
    if ~isnorm `n5RDz/f0  
        error('zernfun:normalization','Unrecognized normalization flag.') dn%/SJC  
    end w$61+KHK  
else tet  
    isnorm = false; 6\~m{@  
end >6jy d{  
',juZ[]_ {  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pxDZ}4mOh  
% Compute the Zernike Polynomials r'xa' 6&  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [}P|OCW  
nqiy)ZN#R  
% Determine the required powers of r: &S3szhe  
% ----------------------------------- LoBKR c2t  
m_abs = abs(m); tC|5;'m.2  
rpowers = []; jWP(7}U  
for j = 1:length(n) %[NefA(  
    rpowers = [rpowers m_abs(j):2:n(j)]; V :d/;~  
end Kq-y1h]7H  
rpowers = unique(rpowers); 1<bSHn9  
bs_I{bCu?  
% Pre-compute the values of r raised to the required powers, }c&Zv#iO6  
% and compile them in a matrix: x6:$lZ(  
% ----------------------------- J8/>b{Y  
if rpowers(1)==0 nM R _ ?g  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]Ms~;MXlx5  
    rpowern = cat(2,rpowern{:}); dQ;rO$c o  
    rpowern = [ones(length_r,1) rpowern]; /SN.M6~  
else -#)xe W.d  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); joM98H@  
    rpowern = cat(2,rpowern{:}); Oe2Tmvl  
end 2Ybz`O!  
8)R )h/E>  
% Compute the values of the polynomials: d*q _DV  
% -------------------------------------- k`\DC\0RG  
y = zeros(length_r,length(n)); 9dKrE_zK:  
for j = 1:length(n) {H"gp?Z-  
    s = 0:(n(j)-m_abs(j))/2; +twBFhS7k  
    pows = n(j):-2:m_abs(j); (CuaBHR  
    for k = length(s):-1:1 iW)FjDTP  
        p = (1-2*mod(s(k),2))* ... WGp81DNS|  
                   prod(2:(n(j)-s(k)))/              ... ijyj}gpWha  
                   prod(2:s(k))/                     ... Y*J`Wf(w  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #c?\(qjWA  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); 27,WP-qie  
        idx = (pows(k)==rpowers); HnOp*FP  
        y(:,j) = y(:,j) + p*rpowern(:,idx); ?bN8h)>QQ8  
    end ,YH^jc  
     PPE:@!u<  
    if isnorm M=0I 3o}J  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {#Gr=iv~N  
    end Q@]#fW\Y  
end +T UtVG  
% END: Compute the Zernike Polynomials Q6}`%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )G*H l^Z;4  
!f7}5/YC7v  
% Compute the Zernike functions: `' 6]Z*  
% ------------------------------ W.0dGUi*  
idx_pos = m>0; TS=p8@w}  
idx_neg = m<0; }Qg9l|  
B.&q]CA v-  
z = y; "d.qmM  
if any(idx_pos) GHYgSS  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M[TgNWl/[  
end o*r\&!NIw  
if any(idx_neg) h-jea1m  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); fkk\Q>J9!=  
end D ZLSn Ax  
na8A}\!<  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) VN`2bp>5I  
%ZERNFUN2 Single-index Zernike functions on the unit circle. 7,Z%rqf\)  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated WERK JA  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive &XgB-}^:  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, H> _%ZXL  
%   and THETA is a vector of angles.  R and THETA must have the same ZH~m%sA  
%   length.  The output Z is a matrix with one column for every P-value, 5:56l>0  
%   and one row for every (R,THETA) pair. :K2N7?shA  
% *qKwu?]?>  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike >Qt#6X|  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) fn;7Nf7{  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) X3RpJ#m"'  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 n%Nf\z  
%   for all p. D97oS!*  
% j: ]/AReOL  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 R.> /%o  
%   Zernike functions (order N<=7).  In some disciplines it is wf8vKl#Kfw  
%   traditional to label the first 36 functions using a single mode wIi(p5*  
%   number P instead of separate numbers for the order N and azimuthal 7{<t]wQq  
%   frequency M. eMWY[f3  
%  bQ  
%   Example: c67O/ B(  
% _|H]X+|  
%       % Display the first 16 Zernike functions rmWG9&coW  
%       x = -1:0.01:1; (Rs<'1+>  
%       [X,Y] = meshgrid(x,x); Ct #hl8b:  
%       [theta,r] = cart2pol(X,Y); 7jEAhi!Cq(  
%       idx = r<=1; % J+'7'g  
%       p = 0:15; zif()i   
%       z = nan(size(X)); gEPCXf  
%       y = zernfun2(p,r(idx),theta(idx)); 5l{_E:.1  
%       figure('Units','normalized') ^@L  
%       for k = 1:length(p) qYbod+UX  
%           z(idx) = y(:,k); tEf-BV;\y  
%           subplot(4,4,k) p[g!LD  
%           pcolor(x,x,z), shading interp bjD0y cB[  
%           set(gca,'XTick',[],'YTick',[]) EeL~`$f  
%           axis square a=C?fh  
%           title(['Z_{' num2str(p(k)) '}']) w3,QT}WvY  
%       end 6=|Q>[K  
% _K/h/!\n  
%   See also ZERNPOL, ZERNFUN. i,b>&V/Y$  
|urohua  
%   Paul Fricker 11/13/2006 ~#) DJ  
~-'nEATE  
V{c n1Af  
% Check and prepare the inputs: Pf(z0o&  
% ----------------------------- bYow EzieF  
if min(size(p))~=1 U'Vz   
    error('zernfun2:Pvector','Input P must be vector.') #!Kg?BR2  
end <3ovCqa  
FDpNM\SR1l  
if any(p)>35 Fvi<5v  
    error('zernfun2:P36', ... 9> [ $;>  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Wp T.25  
           '(P = 0 to 35).']) o2F6K*u}  
end >&Bg F*mm  
s )_sLt8?  
% Get the order and frequency corresonding to the function number: u3c e\  
% ---------------------------------------------------------------- HLTz|P0JZ  
p = p(:); )mp0k%  
n = ceil((-3+sqrt(9+8*p))/2); /I".n]  
m = 2*p - n.*(n+2); GRlA 9Q  
hb^e2@i;Oq  
% Pass the inputs to the function ZERNFUN: =cqaA^HQL  
% ---------------------------------------- ]3Mm"7`  
switch nargin ,!bOzth2>K  
    case 3 eN,m8A`/S  
        z = zernfun(n,m,r,theta); C^l) n!fq  
    case 4 qH"0?<$9  
        z = zernfun(n,m,r,theta,nflag); pOw4H67  
    otherwise PP$Ig2Q  
        error('zernfun2:nargin','Incorrect number of inputs.') qdUlT*fw  
end AGOK%[[Ws  
\h _hd%'G  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) H$\?D+xlf  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. G{ F>=z"(l  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of uA\A4  
%   order N and frequency M, evaluated at R.  N is a vector of qY#*zx  
%   positive integers (including 0), and M is a vector with the nE::9Yh8z  
%   same number of elements as N.  Each element k of M must be a Gs*ea'T)  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) *GD 1[:  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 8v(Xr}q,r  
%   a vector of numbers between 0 and 1.  The output Z is a matrix xp><7{  
%   with one column for every (N,M) pair, and one row for every |%zhwDQ.  
%   element in R. & }k=V4L  
% aU#8W.~  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- <2|x]b 8  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 9DPf2`*$  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ilFM+x@  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 @A$%baH0  
%   for all [n,m]. q@Q|oB0W$)  
% 7e}p:Vfp  
%   The radial Zernike polynomials are the radial portion of the Z<ke!H  
%   Zernike functions, which are an orthogonal basis on the unit L~vNW6#W  
%   circle.  The series representation of the radial Zernike `EWeJ(4Z@  
%   polynomials is \k;raQR4t*  
% 1F[; )@  
%          (n-m)/2 a$9UUH-|  
%            __ f_;3|i  
%    m      \       s                                          n-2s ?&/9b)cS  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r HJ_xg6.x  
%    n      s=0 mHw1n=B  
% PB }$.8  
%   The following table shows the first 12 polynomials. .fQDj{  
% Za=<euc7  
%       n    m    Zernike polynomial    Normalization '7_'s1  
%       --------------------------------------------- X*FK6,Y|(  
%       0    0    1                        sqrt(2) >E)UmO{S  
%       1    1    r                           2 n,xK7icYNQ  
%       2    0    2*r^2 - 1                sqrt(6) \a|gzC1G  
%       2    2    r^2                      sqrt(6) Q^0K8>G^  
%       3    1    3*r^3 - 2*r              sqrt(8) {/B) YR  
%       3    3    r^3                      sqrt(8) S93NsrBbY  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) )[qY|yu  
%       4    2    4*r^4 - 3*r^2            sqrt(10) dcXtT3,kpX  
%       4    4    r^4                      sqrt(10) #2u-L~n  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) s'/.ea V_  
%       5    3    5*r^5 - 4*r^3            sqrt(12) CsuSg*#X+  
%       5    5    r^5                      sqrt(12) KZD&Ih(vC  
%       --------------------------------------------- M5P63=1+  
% &dOV0y_  
%   Example: X}p4yR7'  
% %\5y6  
%       % Display three example Zernike radial polynomials $g 1p!  
%       r = 0:0.01:1; ]=]'*Z%  
%       n = [3 2 5]; 0*tEuJ7  
%       m = [1 2 1]; nNQ\rO  
%       z = zernpol(n,m,r); UbMcXH8=F  
%       figure '*)!&4f  
%       plot(r,z) b<:s{f"t,  
%       grid on ;>Z#1~8  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') QjZ}*p  
% iB]kn(2C  
%   See also ZERNFUN, ZERNFUN2. b*p,s9k7  
`_<AZ{&&  
% A note on the algorithm. ;7 IVg[f  
% ------------------------ 6] <?+#uQ  
% The radial Zernike polynomials are computed using the series /Ee0S8!Z!1  
% representation shown in the Help section above. For many special (& ~`!]  
% functions, direct evaluation using the series representation can HkrNh>^=  
% produce poor numerical results (floating point errors), because poXkH@[O  
% the summation often involves computing small differences between sPd5f2'  
% large successive terms in the series. (In such cases, the functions E]ZM`bex&  
% are often evaluated using alternative methods such as recurrence _@"Y3Lqi  
% relations: see the Legendre functions, for example). For the Zernike W^y F5  
% polynomials, however, this problem does not arise, because the -3w? y  
% polynomials are evaluated over the finite domain r = (0,1), and Ex@#!fz{%  
% because the coefficients for a given polynomial are generally all VfZ/SByh7p  
% of similar magnitude. dC.uK^FuJ  
% {J99F  
% ZERNPOL has been written using a vectorized implementation: multiple <(^-o4Cl  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] 5d L-v&W  
% values can be passed as inputs) for a vector of points R.  To achieve v`v+M4upC  
% this vectorization most efficiently, the algorithm in ZERNPOL 4|XE f,  
% involves pre-determining all the powers p of R that are required to @aj"1 2  
% compute the outputs, and then compiling the {R^p} into a single _$fxoD9  
% matrix.  This avoids any redundant computation of the R^p, and m6 IZG l7%  
% minimizes the sizes of certain intermediate variables. XeZv%` ?  
% kdoE)C   
%   Paul Fricker 11/13/2006 }[75`pC~O  
;9prsvf  
jj.yB#T  
% Check and prepare the inputs: aC%0jJ<eo  
% ----------------------------- />$)o7U`+  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [&Qrk8EN  
    error('zernpol:NMvectors','N and M must be vectors.') |d,1mmv@K  
end .Qi`5C:U  
yLY2_p- X  
if length(n)~=length(m) 6 QxLHQA  
    error('zernpol:NMlength','N and M must be the same length.') 6 #QS 5  
end q=R=z$yr  
n P69W  
n = n(:); ;>CmVC'/  
m = m(:); /}M@MbGMM  
length_n = length(n); !CsoTW9C:  
!\!fd(BN  
if any(mod(n-m,2)) IWMqmCbv  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') E^|b3G6T  
end F<^,j7@  
V;)'FJ)]  
if any(m<0) 6X'RCJu%  
    error('zernpol:Mpositive','All M must be positive.') yJKezIL\z  
end #}B~V3UD  
{&2$1p/9'  
if any(m>n) 52:oe1-8  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') :jUd?(  
end g0iV#i  
Z 4t9q`}h  
if any( r>1 | r<0 ) jo"[$%0`  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') Fd ]! 7  
end ^:DlrI$  
fEgZ/p!g  
if ~any(size(r)==1) D6v0n6w  
    error('zernpol:Rvector','R must be a vector.') (xxJ^u>QC  
end o+q 5:vJt  
O81})r*Y  
r = r(:); Ozn7C?\*  
length_r = length(r); d;'@4NX5+  
ZPMX19  
if nargin==4 m_St"`6 .  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); "e(OO/EZS  
    if ~isnorm dnN"  
        error('zernpol:normalization','Unrecognized normalization flag.') E=7" };  
    end L5e aQu  
else N;ssO,  
    isnorm = false; > m5j.GP;  
end Gz6FwU8L  
Oys.8%+ P  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xat)9Yb}0  
% Compute the Zernike Polynomials yqB{QFXO  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }3vB_0[r  
;rk}\M$+  
% Determine the required powers of r: /e\} qq  
% ----------------------------------- ;9;.!4g/T  
rpowers = []; Imv kB~8N  
for j = 1:length(n) kQ4%J, 7e4  
    rpowers = [rpowers m(j):2:n(j)]; hbN*_[  
end ]C]tLJ!M  
rpowers = unique(rpowers); b;S~`PL  
:*4yR46  
% Pre-compute the values of r raised to the required powers, _|~2i1 Ms,  
% and compile them in a matrix: i8A5m@,G  
% ----------------------------- g#Yqw  
if rpowers(1)==0 GO`X KE  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9]hc{\  
    rpowern = cat(2,rpowern{:}); 3+!N[6Od9  
    rpowern = [ones(length_r,1) rpowern]; a eP4%h  
else y.mojx%?a  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); BHU(Hd  
    rpowern = cat(2,rpowern{:}); spFsrB  
end I ][8[UZ  
nA+[[(6  
% Compute the values of the polynomials: x)V.^-  
% -------------------------------------- } #%sI"9  
z = zeros(length_r,length_n); U:8^>_  
for j = 1:length_n J!S3pS5j  
    s = 0:(n(j)-m(j))/2; @*_#zU#g  
    pows = n(j):-2:m(j); Nz$O D_]  
    for k = length(s):-1:1 tF`>.=  
        p = (1-2*mod(s(k),2))* ... {feS-.Khv  
                   prod(2:(n(j)-s(k)))/          ... QmgwIz_  
                   prod(2:s(k))/                 ... )5]z[sE  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... HlV3rYh  
                   prod(2:((n(j)+m(j))/2-s(k))); G::6?+S  
        idx = (pows(k)==rpowers); .W?POJT  
        z(:,j) = z(:,j) + p*rpowern(:,idx); RV&2y=eb  
    end )\^%w9h  
     E8IWHh_  
    if isnorm :G}tvFcOAF  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); U7:~@eYy  
    end Sw(%j1uL  
end sU{+.k{  
M2V.FYV{j>  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  GZ4{<QG  
s5z@`M5'm  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 b,K1EEJ  
+SP5+"y@  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计