首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 S7i,oP7  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! yN-o?[o  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 fkKk/M> 1  
function z = zernfun(n,m,r,theta,nflag) ;t6)(d4z?  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. iO$Z?Dyg9  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N olA 1,8  
%   and angular frequency M, evaluated at positions (R,THETA) on the UdGa#rcNW  
%   unit circle.  N is a vector of positive integers (including 0), and 1u`{yl*+?  
%   M is a vector with the same number of elements as N.  Each element 'xK ,|U  
%   k of M must be a positive integer, with possible values M(k) = -N(k) ''p7!V?  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Gl am(V1  
%   and THETA is a vector of angles.  R and THETA must have the same ZMp5d4y5  
%   length.  The output Z is a matrix with one column for every (N,M) lftT55Tki  
%   pair, and one row for every (R,THETA) pair. O@9<7@h+Nl  
% 76IjM4&a  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike P5?M"j0/^  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), z4!Y9  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral ,a6Oi=+>/U  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, d ,"L8  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized Fu%D2%V$/  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )t?_3'W  
% 6gy;Xg  
%   The Zernike functions are an orthogonal basis on the unit circle. xZ=6  
%   They are used in disciplines such as astronomy, optics, and rjaG{ i  
%   optometry to describe functions on a circular domain. itU P%  
% !3*:6  
%   The following table lists the first 15 Zernike functions. qI= j>x  
% 7my7|s[  
%       n    m    Zernike function           Normalization PI-o)U$Ehv  
%       -------------------------------------------------- sKCfI]  
%       0    0    1                                 1 ]y kMh  
%       1    1    r * cos(theta)                    2 ABG>W>H-S  
%       1   -1    r * sin(theta)                    2 R? Ys%~5  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) (_ TKDx_  
%       2    0    (2*r^2 - 1)                    sqrt(3) o[Gp*o\  
%       2    2    r^2 * sin(2*theta)             sqrt(6) 5f}GV0=n  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) c{(4s6D  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8)  26[.te9  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) LX%UkfA9  
%       3    3    r^3 * sin(3*theta)             sqrt(8) TGuvyY  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) -~+Y0\%E  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vyhxS.[9  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 1RU+d.&D  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^Mc zumG[  
%       4    4    r^4 * sin(4*theta)             sqrt(10) +)<H,?/  
%       -------------------------------------------------- JI7.:k;  
% g[D `.  
%   Example 1: X/AA8QV o  
% Jc9BZ`~i  
%       % Display the Zernike function Z(n=5,m=1) e b*w$|y6"  
%       x = -1:0.01:1; \L]T|]}(  
%       [X,Y] = meshgrid(x,x); x6iT"\MO  
%       [theta,r] = cart2pol(X,Y); _ry7 [/)  
%       idx = r<=1; Su>UXuNdE#  
%       z = nan(size(X)); d{FD.eI 0  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); tj< 0q<is  
%       figure U/j+\Kc~  
%       pcolor(x,x,z), shading interp z@tIC^s  
%       axis square, colorbar F#>^S9Gml  
%       title('Zernike function Z_5^1(r,\theta)') mA" 82"   
% :G/.h[\R|  
%   Example 2: 'kE^oX_  
% ^(.utO  
%       % Display the first 10 Zernike functions *{%d{x}l  
%       x = -1:0.01:1;  1k39KO@  
%       [X,Y] = meshgrid(x,x); 8 aC]" C  
%       [theta,r] = cart2pol(X,Y); nep-?7x  
%       idx = r<=1; Fq`wx  
%       z = nan(size(X)); Y)KO*40c  
%       n = [0  1  1  2  2  2  3  3  3  3]; iTpK:p X  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; \+I+Lrj%  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; bqI| wGCA"  
%       y = zernfun(n,m,r(idx),theta(idx)); ~'3hK4  
%       figure('Units','normalized') 3`^NaQ  
%       for k = 1:10 .#wU+t>  
%           z(idx) = y(:,k); MoP,a9p  
%           subplot(4,7,Nplot(k)) n%%u0a %  
%           pcolor(x,x,z), shading interp vkg."G:=  
%           set(gca,'XTick',[],'YTick',[]) &-B&s.,kj  
%           axis square 6~y7A<[^  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) P;~P:qKd  
%       end z<Y >phc  
% P6([[mmG  
%   See also ZERNPOL, ZERNFUN2. +ug[TV   
AOVoOd+6  
%   Paul Fricker 11/13/2006 {WYmO1  
Z`97=:W  
oHj64fE9  
% Check and prepare the inputs: \[5mBuk  
% ----------------------------- ypA)G/;  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :1(UC}v  
    error('zernfun:NMvectors','N and M must be vectors.') DUOSL  
end u*C"d1v=  
HZ.Jc"+M  
if length(n)~=length(m) /c9%|<O%  
    error('zernfun:NMlength','N and M must be the same length.') "RG #e +  
end Pln*?o  
R$xkcg2(  
n = n(:); .jps6{  
m = m(:);  ~hxo_&  
if any(mod(n-m,2)) v*.#LJEm  
    error('zernfun:NMmultiplesof2', ... |Je+y;P7  
          'All N and M must differ by multiples of 2 (including 0).') 7IV:X _y  
end d;c<" +  
my(yN|  
if any(m>n) KJLK]lf}d  
    error('zernfun:MlessthanN', ... 4 fxD$%9  
          'Each M must be less than or equal to its corresponding N.') va_TC!{;  
end I-`qo7dQ_S  
-a(\(^NW  
if any( r>1 | r<0 ) &ivPY  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') fX 41o#  
end <0hJo=6a8  
 GP/G v  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) U~Ai'1?xz  
    error('zernfun:RTHvector','R and THETA must be vectors.') N;BS;W5I  
end 0XNj! ^&  
#:?MtVC  
r = r(:); H%\\-Z$#  
theta = theta(:); 8;r7ksE~  
length_r = length(r); =*u:@T=d5  
if length_r~=length(theta) l8_TeO  
    error('zernfun:RTHlength', ... d{LQr}_o$$  
          'The number of R- and THETA-values must be equal.') <(%cb.^c=N  
end W%k0_Y/5  
[@_zsz,`L  
% Check normalization: Hx]{'?   
% -------------------- c*"TmDY  
if nargin==5 && ischar(nflag) _Di}={1[.  
    isnorm = strcmpi(nflag,'norm'); vs )1Rm  
    if ~isnorm }813.U  
        error('zernfun:normalization','Unrecognized normalization flag.') `Y`QxU!d%  
    end uPtHCP6  
else sN `NZyG  
    isnorm = false; FS vtiNW<  
end W2a9P_  
1K;i/  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q;kN+NK64  
% Compute the Zernike Polynomials vG<JOxP  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [@qUQ,Ie  
5^\f[}  
% Determine the required powers of r: rl,6r u  
% ----------------------------------- -;?5<>zZ  
m_abs = abs(m); M zLx2?  
rpowers = []; t*? CD.S  
for j = 1:length(n) h4GR:`  
    rpowers = [rpowers m_abs(j):2:n(j)];  uT}Jw  
end S>]Jc$  
rpowers = unique(rpowers); E!4Qc+.   
E&/D%}Wl  
% Pre-compute the values of r raised to the required powers, 3d{v5. C#X  
% and compile them in a matrix: .+H8c.  
% ----------------------------- _`JY A  
if rpowers(1)==0 !S/hH%C  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <9S?wju4W'  
    rpowern = cat(2,rpowern{:}); &B^vHH  
    rpowern = [ones(length_r,1) rpowern];  +McKyEa  
else FRicHs n  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %^l77 :O  
    rpowern = cat(2,rpowern{:}); Cl;B%5yl  
end =#i#IF42?  
6NCa=9  
% Compute the values of the polynomials: EX[X|"r   
% -------------------------------------- AcN~Q/xU  
y = zeros(length_r,length(n)); Musz+<]  
for j = 1:length(n) d0b--v/  
    s = 0:(n(j)-m_abs(j))/2; yD`{9'L -  
    pows = n(j):-2:m_abs(j); VZ*Q|  
    for k = length(s):-1:1 6qK0G$>  
        p = (1-2*mod(s(k),2))* ... U4_ <  
                   prod(2:(n(j)-s(k)))/              ... !}()mrIlP  
                   prod(2:s(k))/                     ... qVFz-!6b  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Q^v8n1  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); XbJ=lH  
        idx = (pows(k)==rpowers); rbnu:+!  
        y(:,j) = y(:,j) + p*rpowern(:,idx); FeS6>/  
    end N1Y*IkW"  
     [Bp[=\  
    if isnorm %Hu Qc^  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); [&rW+/  
    end j>M 'nQ,;d  
end 2I:vie  
% END: Compute the Zernike Polynomials twx8TQ9  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "w`f>]YLA  
IPcAE!h6zN  
% Compute the Zernike functions: BNg\;2r  
% ------------------------------ xZS  
idx_pos = m>0; yov:JnWo  
idx_neg = m<0; gv; =Yhw.c  
>ofS'mp  
z = y;  !+IxPn  
if any(idx_pos) 3Fh<%<=  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {!B0&x  
end J=TbZL4y}4  
if any(idx_neg) L.15EXAB  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4aAr|!8|h!  
end =[`wyQe`_  
E8>npDFv.  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) Tp<=dH%$%"  
%ZERNFUN2 Single-index Zernike functions on the unit circle. "twV3R  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated @P"q`*  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive 2Z,;#t  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, AY0o0\6cw  
%   and THETA is a vector of angles.  R and THETA must have the same \XMl8G  
%   length.  The output Z is a matrix with one column for every P-value, YFLWkdqAY  
%   and one row for every (R,THETA) pair. U%_a@&<  
% +F 6KGK[  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike e\.|d<N?  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) s Xl7  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Q-}oe Q  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 t2+m7*76  
%   for all p. 4ej$)AdW3  
% UNYU2ze'  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 'y}A3 RqN  
%   Zernike functions (order N<=7).  In some disciplines it is TDY}oGmNn  
%   traditional to label the first 36 functions using a single mode e7/J:n$  
%   number P instead of separate numbers for the order N and azimuthal -.g5|B  
%   frequency M. ` M4; aN  
% x`%;Q@G  
%   Example: >6ch[W5k@  
% Bh2m,=``  
%       % Display the first 16 Zernike functions K( 6=)  
%       x = -1:0.01:1; HK&F'\'}  
%       [X,Y] = meshgrid(x,x); H7#RL1qM&  
%       [theta,r] = cart2pol(X,Y); % C6 H(  
%       idx = r<=1; xvp{F9~qT  
%       p = 0:15; V%y kHo  
%       z = nan(size(X));  IO>Cyo  
%       y = zernfun2(p,r(idx),theta(idx)); [rPW@|^5  
%       figure('Units','normalized') o,Ha-z]f  
%       for k = 1:length(p) 3QUe:8  
%           z(idx) = y(:,k); Ylt[Ks<2  
%           subplot(4,4,k) 3u{[(W}08  
%           pcolor(x,x,z), shading interp aQFYSl  
%           set(gca,'XTick',[],'YTick',[]) g"C$B Fc  
%           axis square 4)'5;|pI  
%           title(['Z_{' num2str(p(k)) '}']) ,=oq)Fm]  
%       end 3tIIBOwg[  
% ]X?+]9Fr  
%   See also ZERNPOL, ZERNFUN. 4G_dnf_  
yo (&~r  
%   Paul Fricker 11/13/2006 '` [nt25N  
mvUYp,JECl  
0U`Ic_.  
% Check and prepare the inputs:  & .(ZO]  
% ----------------------------- %Si3t2W/  
if min(size(p))~=1 tinN$o Xy  
    error('zernfun2:Pvector','Input P must be vector.') 4eaC18?  
end #llc5i;  
3\mFK$#sr  
if any(p)>35 msY"Y*4  
    error('zernfun2:P36', ... w0*6GCP  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... y-sQ"HPN  
           '(P = 0 to 35).']) "_#%W oo  
end TF=S \ Q  
t'9E~_!C  
% Get the order and frequency corresonding to the function number: *[yCcqN.  
% ---------------------------------------------------------------- 8<.KWr  
p = p(:); )2^OBfl7  
n = ceil((-3+sqrt(9+8*p))/2); 2s 6Vy  
m = 2*p - n.*(n+2); `/+7@~[RU  
UBC[5E$  
% Pass the inputs to the function ZERNFUN: h Qu9ux  
% ---------------------------------------- fG,qax`:c  
switch nargin B0 R[f  
    case 3 ;WGY)=-gv  
        z = zernfun(n,m,r,theta); Z6h.gaQ7 H  
    case 4 P"i qP|  
        z = zernfun(n,m,r,theta,nflag); *Z/B\nb  
    otherwise *VRFs=  
        error('zernfun2:nargin','Incorrect number of inputs.') F=P|vYL&&  
end #Wc)wL-Tg  
O]2h=M@q.  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) v<2+yZ M  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. Vq<|DM3z<  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 9Hc#[Ml  
%   order N and frequency M, evaluated at R.  N is a vector of 9L&AbmIr  
%   positive integers (including 0), and M is a vector with the K@>v|JD  
%   same number of elements as N.  Each element k of M must be a {H>iL  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) dR=SW0Oa{  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is %pg*oX1VK6  
%   a vector of numbers between 0 and 1.  The output Z is a matrix ?xG #4P<C=  
%   with one column for every (N,M) pair, and one row for every ?tSY=DK\n  
%   element in R. Y":hb;&  
% ]}5j X^j  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- KY"~Ta`  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is =_,OucKkYG  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to K1+,y1c  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ~;`i&s  
%   for all [n,m]. J J3vC  
% NKI&n]EO  
%   The radial Zernike polynomials are the radial portion of the 94lmsE  
%   Zernike functions, which are an orthogonal basis on the unit .#Sd|C]R7  
%   circle.  The series representation of the radial Zernike U 9 k}y  
%   polynomials is E=x\f "Z  
% C]):+F<7  
%          (n-m)/2 H[G EAQO  
%            __ 'Klz`)F  
%    m      \       s                                          n-2s n1;V2k{uV  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r x208^=F\\  
%    n      s=0 hB^"GYZ  
% 9B%"7MVn  
%   The following table shows the first 12 polynomials. jgO{DNe(=  
% ER|5_  
%       n    m    Zernike polynomial    Normalization |mM7P^I  
%       --------------------------------------------- k~hL8ZT[  
%       0    0    1                        sqrt(2) ,~kMkBkl~  
%       1    1    r                           2 %%3ugD5i!  
%       2    0    2*r^2 - 1                sqrt(6) f~U|flL^  
%       2    2    r^2                      sqrt(6) B}!n6j`  
%       3    1    3*r^3 - 2*r              sqrt(8) VtmUK$k}I  
%       3    3    r^3                      sqrt(8) My1E@<  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) '"KK|]vJ  
%       4    2    4*r^4 - 3*r^2            sqrt(10) AV&eg e  
%       4    4    r^4                      sqrt(10) 5_i&}c23Vn  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) aY?}4Bx  
%       5    3    5*r^5 - 4*r^3            sqrt(12) +X- k)9  
%       5    5    r^5                      sqrt(12) LS_QoS  
%       --------------------------------------------- ']rh0?  
% !C+25vup  
%   Example: EfUo<E  
% vLC&C-f  
%       % Display three example Zernike radial polynomials h FjW.~B  
%       r = 0:0.01:1; Y/hay[6  
%       n = [3 2 5]; Y}[r`}={  
%       m = [1 2 1]; m[7a~-3:J  
%       z = zernpol(n,m,r); '1{~y3  
%       figure dG|\geD  
%       plot(r,z) &=UzF  
%       grid on #&/*ll)  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') k+i=0 P0mf  
% %Wu8RG}  
%   See also ZERNFUN, ZERNFUN2. q)vD "{0.  
<zUmcZ  
% A note on the algorithm. S xgY q  
% ------------------------ .Q#Eb %%  
% The radial Zernike polynomials are computed using the series dEL>Uly  
% representation shown in the Help section above. For many special J|b1 K]  
% functions, direct evaluation using the series representation can  OkQSqL  
% produce poor numerical results (floating point errors), because q\/|nZO4  
% the summation often involves computing small differences between 61KJ( rSX3  
% large successive terms in the series. (In such cases, the functions YA|*$$  
% are often evaluated using alternative methods such as recurrence HWd,1  
% relations: see the Legendre functions, for example). For the Zernike b9vKux  
% polynomials, however, this problem does not arise, because the xv ja  
% polynomials are evaluated over the finite domain r = (0,1), and X >**M  
% because the coefficients for a given polynomial are generally all /U`"|3  
% of similar magnitude. m$ JQ[vgh  
% ,yT4(cMBk?  
% ZERNPOL has been written using a vectorized implementation: multiple TwkzX|  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] AsLAm#zq  
% values can be passed as inputs) for a vector of points R.  To achieve C$hsR&  
% this vectorization most efficiently, the algorithm in ZERNPOL '=ZE*nGC  
% involves pre-determining all the powers p of R that are required to -g>27EI5  
% compute the outputs, and then compiling the {R^p} into a single byMO&Lb*  
% matrix.  This avoids any redundant computation of the R^p, and Ug"B/UUFd  
% minimizes the sizes of certain intermediate variables. B%t^QbU#\  
% v ;9s  
%   Paul Fricker 11/13/2006 jv7zvp  
g5"g,SFGr  
'D-imLV<<  
% Check and prepare the inputs: {P]l{W@li  
% ----------------------------- 3Q#VD)  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7~65@&P>  
    error('zernpol:NMvectors','N and M must be vectors.') wVPq1? 9  
end MHbRG_zW  
=:2V4H(F  
if length(n)~=length(m) :{fsfZXXr  
    error('zernpol:NMlength','N and M must be the same length.') tQ/w\6{  
end Uarb [4OZ  
CeZ5Ti?F  
n = n(:); JE j+>  
m = m(:); l|&nGCW  
length_n = length(n); >Kr,(8rA  
%d>Ktf  
if any(mod(n-m,2)) *<UQ/)\  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 6>"0H/y,  
end @#V{@@3$  
Qj=l OhM  
if any(m<0) &3JbAJ|;X  
    error('zernpol:Mpositive','All M must be positive.') $nVTN.k  
end $a-~ozr`C  
b2 ),J  
if any(m>n) LJiMtqg  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') \\'!<Bn2d  
end p7k0pSt  
e88JT_zrO  
if any( r>1 | r<0 ) :?S2s Ne2  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') !~ZL  
end >S~#E,Tg  
Q~]R#S  
if ~any(size(r)==1) \nJr jH A  
    error('zernpol:Rvector','R must be a vector.') 3!d|K%J  
end eg}|%GG  
hA"N&v~  
r = r(:); % va/x]K  
length_r = length(r); X{ Nif G  
e8[ *=&  
if nargin==4 8IX6MfR}C  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); fb#Ob0H  
    if ~isnorm w@"|S_E  
        error('zernpol:normalization','Unrecognized normalization flag.') r^@*Cir  
    end P2oR C3~  
else x3vz4m[  
    isnorm = false; ou(9Qf zN  
end $zdJ\UX  
g<,|Q5bK  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BBp Hp  
% Compute the Zernike Polynomials +J^}"dG  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0h; -Yg  
zX5p'8-  
% Determine the required powers of r: 3wr~P  
% ----------------------------------- O}D]G%,m  
rpowers = []; VRxBi!d  
for j = 1:length(n) }vm17`Gfy  
    rpowers = [rpowers m(j):2:n(j)]; #ucOjdquq  
end PM_q"}-  
rpowers = unique(rpowers); G? [#<W@+  
O|OPdD  
% Pre-compute the values of r raised to the required powers, xi.;`Q^#  
% and compile them in a matrix: E`'+1  
% ----------------------------- :Ct} ||9/  
if rpowers(1)==0 Z1>pOJm  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); mG2}JWA  
    rpowern = cat(2,rpowern{:}); mp5]=6 ~:m  
    rpowern = [ones(length_r,1) rpowern]; KcSvf;sx  
else )`U T#5  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !,1~:*:  
    rpowern = cat(2,rpowern{:}); ."H5.'  
end 3FS:]|oC  
=g&0CFF<  
% Compute the values of the polynomials: Nl(Aa5:!  
% -------------------------------------- V^f'4*~'  
z = zeros(length_r,length_n); }b+=,Sc"  
for j = 1:length_n J"SAA0)@  
    s = 0:(n(j)-m(j))/2; bhg"<I  
    pows = n(j):-2:m(j); fygy#&}~  
    for k = length(s):-1:1 PS6G 7  
        p = (1-2*mod(s(k),2))* ... "#p)Z{v"!  
                   prod(2:(n(j)-s(k)))/          ... U2K>\/-~  
                   prod(2:s(k))/                 ... xxedezNko  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... "r|O /   
                   prod(2:((n(j)+m(j))/2-s(k))); W`;E-28Dg  
        idx = (pows(k)==rpowers); a#mdD:,cF  
        z(:,j) = z(:,j) + p*rpowern(:,idx); aoCyYnZD  
    end H{+U; 6b  
     "Pu P J|  
    if isnorm O,DA{> *m  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); qg'm<[  
    end zg^5cHP\  
end v[~ U*#i  
OtnYv  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  _Z2VS"yH  
LkJ3 :3O  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ^W'\8L  
UD"e:O_  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计