首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 hg\$>W~ 2  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! l&T;G 9z  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .Olq_wuH  
function z = zernfun(n,m,r,theta,nflag) v}[7)oj|  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. #M8"b]oh6  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N A u(Ngq  
%   and angular frequency M, evaluated at positions (R,THETA) on the WU}JArX9  
%   unit circle.  N is a vector of positive integers (including 0), and - d>)  
%   M is a vector with the same number of elements as N.  Each element n]_8!NU  
%   k of M must be a positive integer, with possible values M(k) = -N(k) lf Wxdi  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^#"!uCq]gM  
%   and THETA is a vector of angles.  R and THETA must have the same ~W`upx)j  
%   length.  The output Z is a matrix with one column for every (N,M) *4+;E y  
%   pair, and one row for every (R,THETA) pair. 2&5"m;<  
% =DF7l<&km  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )!M:=}."  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P_i2yhpK  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral vp-)$f&  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, uZW1 :cx  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized FtE%<QHt  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \.Q"fd?a_D  
% {)jQbAr(G  
%   The Zernike functions are an orthogonal basis on the unit circle. G~^Pkl3%T  
%   They are used in disciplines such as astronomy, optics, and 6)DYQ^4y  
%   optometry to describe functions on a circular domain. 3pq&TYQU  
% n;!t?jnf.  
%   The following table lists the first 15 Zernike functions. Ku&0bXP  
% AA yzT*^  
%       n    m    Zernike function           Normalization | F: ?  
%       -------------------------------------------------- @\[&_DZ  
%       0    0    1                                 1 VJJw"4DJ  
%       1    1    r * cos(theta)                    2 ywCE2N<-V?  
%       1   -1    r * sin(theta)                    2 n_?<q{GW  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) %'t~+_  
%       2    0    (2*r^2 - 1)                    sqrt(3) v#D9yttO{  
%       2    2    r^2 * sin(2*theta)             sqrt(6) 9j9A'Y9(  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) 3Jk;+<  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) PZH]9[H  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) GD.mB[f*  
%       3    3    r^3 * sin(3*theta)             sqrt(8) K+Ehj(eF  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) v)J6}H}e  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~vaV=})  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) q6/ o.j   
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lusINILc  
%       4    4    r^4 * sin(4*theta)             sqrt(10) H}JH339  
%       -------------------------------------------------- /koNcpJ  
% #p*OLQ3~  
%   Example 1: mVU(u_lh  
% mKWA-h+f  
%       % Display the Zernike function Z(n=5,m=1) vNi7=3  
%       x = -1:0.01:1; aI+:rk^  
%       [X,Y] = meshgrid(x,x); 6}{2W<  
%       [theta,r] = cart2pol(X,Y); PX(Gx%s|  
%       idx = r<=1; =s1"<hH}O)  
%       z = nan(size(X)); MT;<\T  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); ZYrd;9zB  
%       figure /3rt]h"  
%       pcolor(x,x,z), shading interp ':F{st>&H  
%       axis square, colorbar )"|g&=  
%       title('Zernike function Z_5^1(r,\theta)') a*74FVZo.;  
% $7M64K{  
%   Example 2: I=Ws /+  
% -4Y}Y5 9\  
%       % Display the first 10 Zernike functions ma?569Z8~0  
%       x = -1:0.01:1; OFCkQEG=y>  
%       [X,Y] = meshgrid(x,x); mNm 8I8  
%       [theta,r] = cart2pol(X,Y); <k}>eGn  
%       idx = r<=1; L{'qZ#N[  
%       z = nan(size(X)); XQ,I Ej|  
%       n = [0  1  1  2  2  2  3  3  3  3]; 5K{(V^88F  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; rWi9'6  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; "t`r_Aw  
%       y = zernfun(n,m,r(idx),theta(idx)); d*8 c,x  
%       figure('Units','normalized') esbxx##\  
%       for k = 1:10 #C4  
%           z(idx) = y(:,k); VLu_SXlo*  
%           subplot(4,7,Nplot(k)) M)Tv(7  
%           pcolor(x,x,z), shading interp D-A#{e _  
%           set(gca,'XTick',[],'YTick',[]) @+B .<@V  
%           axis square E^#|1Kpq  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 44RZk|U1J{  
%       end J'^BxN&  
% !W]># Pm  
%   See also ZERNPOL, ZERNFUN2. 3 +BPqhzf  
 QH9(l  
%   Paul Fricker 11/13/2006 Z(*n ZT,  
a%Cq?HZ7  
?GB($D=Y'&  
% Check and prepare the inputs: _(J- MCY\  
% ----------------------------- M+)%gnq`u  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +5? s Yp\  
    error('zernfun:NMvectors','N and M must be vectors.') [WX+/pm7>  
end NQ@ EZoJ  
\9@*Jgpd6*  
if length(n)~=length(m) 0%`\ 8  
    error('zernfun:NMlength','N and M must be the same length.') WO^sm Ck  
end ldanM>5  
(. 1<.PZp)  
n = n(:); J A4'e@  
m = m(:); hH )jX`Ta  
if any(mod(n-m,2)) f![x7D$  
    error('zernfun:NMmultiplesof2', ... 0MrtJNF]_O  
          'All N and M must differ by multiples of 2 (including 0).') ?VS {,"X  
end JR'Q Th:z  
_6^vxlF  
if any(m>n) dGP*bMCT  
    error('zernfun:MlessthanN', ... =u${2=  
          'Each M must be less than or equal to its corresponding N.') \qV5mD]"M  
end /$&~0pk  
T* -*U /  
if any( r>1 | r<0 ) 4xe:+sA.N  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') </:f-J%U/  
end /=,^fCCN  
9SC#N 5V  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @ g~kp  
    error('zernfun:RTHvector','R and THETA must be vectors.') G/2@ Mn-  
end [UR+G8X21m  
5#$E4k:YV  
r = r(:); ~9h6"0K!  
theta = theta(:); +=$]fjE?  
length_r = length(r); NTs< ;ED  
if length_r~=length(theta) n_.2B$JD  
    error('zernfun:RTHlength', ... OA4NXl'  
          'The number of R- and THETA-values must be equal.') {BY`Wu:w  
end @<W"$_ r-  
6"-LGK:  
% Check normalization: "&Q-'L!M'/  
% -------------------- K)l{3\9l|  
if nargin==5 && ischar(nflag) hY-;Wfg  
    isnorm = strcmpi(nflag,'norm'); QRgWzaI  
    if ~isnorm jWUN~#p!  
        error('zernfun:normalization','Unrecognized normalization flag.') 7{v0K"E{  
    end (gl CTF9v  
else o@EV>4e y  
    isnorm = false; kOFEH!9&  
end L.l"'=M  
J j yQ  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <*2.B~  
% Compute the Zernike Polynomials 4-ZiKM  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >(`|oD`,Y  
Y]&H U) u  
% Determine the required powers of r: Q(oWaG  
% ----------------------------------- 8kH'ai  
m_abs = abs(m); 84e)huAs  
rpowers = []; F{bET  
for j = 1:length(n) }Jjq]lW  
    rpowers = [rpowers m_abs(j):2:n(j)]; !COaPrg  
end @DU]XKv  
rpowers = unique(rpowers); 3ZC to[Y  
}1N)3~  
% Pre-compute the values of r raised to the required powers, h"#^0$f  
% and compile them in a matrix: }\*dD2qNL}  
% ----------------------------- H]}Iw5Z  
if rpowers(1)==0 ULjW589 zb  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W%Br%VQJ  
    rpowern = cat(2,rpowern{:}); qNC.|R  
    rpowern = [ones(length_r,1) rpowern]; 3L=vsvO4  
else |~8iNcIS  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); M\e%GJ0  
    rpowern = cat(2,rpowern{:}); [<`xAh_,  
end m#grtmyMrI  
WTY{sq\' o  
% Compute the values of the polynomials: Ocx=)WKdW  
% -------------------------------------- \hv*`ukF  
y = zeros(length_r,length(n)); 9.#\GI ;  
for j = 1:length(n) Lo7R^>  
    s = 0:(n(j)-m_abs(j))/2; `"A\8)6-  
    pows = n(j):-2:m_abs(j); @6h=O`X>  
    for k = length(s):-1:1 ~Jmn?9 3  
        p = (1-2*mod(s(k),2))* ... qJ5Y}/r  
                   prod(2:(n(j)-s(k)))/              ... vRRi"bo  
                   prod(2:s(k))/                     ... ]Ol@^$8}  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... n&FN?"I/]  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); <y-KW WE  
        idx = (pows(k)==rpowers); Kdik7jL/J  
        y(:,j) = y(:,j) + p*rpowern(:,idx); 3$(1LN  
    end amlE5GK;  
     M!!W>A@T[g  
    if isnorm b==<7[8  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); S-.!BQ@RMZ  
    end 5<,}^4wWZ  
end @xSS`&b  
% END: Compute the Zernike Polynomials C1)TEkc"C  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A;Xn#t ,(K  
VAsaJ`vcb  
% Compute the Zernike functions: 224I%x.,  
% ------------------------------ 2+sNt6B2  
idx_pos = m>0; vxk1RL*Xu  
idx_neg = m<0; ZfL\3Mn  
J3S@1"   
z = y; B07(15y]  
if any(idx_pos) "eZNci  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); BT`D|<  
end nd'zO#"m?  
if any(idx_neg) {p yo  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Ol{)U;, `  
end _Bb/~^  
nFX8:fZ$>  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) C;G~_if4PR  
%ZERNFUN2 Single-index Zernike functions on the unit circle. [fxAj]  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated qZ6P(5X  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive B~jl1g|  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, k8 ,.~HkU  
%   and THETA is a vector of angles.  R and THETA must have the same m~(]\  
%   length.  The output Z is a matrix with one column for every P-value, &N[~+"  
%   and one row for every (R,THETA) pair. ~ NK w}6  
% A^bg*t,  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike tm#T8iF  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) &r/a\t,8n  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ,Hch->?Og  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 4g$mz:vo  
%   for all p. azS"*#r6}  
% R1 hb-  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ZV,n-M =  
%   Zernike functions (order N<=7).  In some disciplines it is ncu &<j}U  
%   traditional to label the first 36 functions using a single mode vd9l1"S  
%   number P instead of separate numbers for the order N and azimuthal FC.y%P,  
%   frequency M. w2@ `0  
% tceQn ^|<  
%   Example: PfF7*}P  
% CsQ}eW8uEf  
%       % Display the first 16 Zernike functions qyP@[8eH  
%       x = -1:0.01:1; & WYIfx{  
%       [X,Y] = meshgrid(x,x); R1&(VK{  
%       [theta,r] = cart2pol(X,Y); 6wqq"6w  
%       idx = r<=1; O)Nj'Hcu  
%       p = 0:15; Tm.(gK  
%       z = nan(size(X)); *G.6\  
%       y = zernfun2(p,r(idx),theta(idx)); cCw?%qq,L  
%       figure('Units','normalized') |9?67-  
%       for k = 1:length(p) D?) "Z$  
%           z(idx) = y(:,k); =zK7`5  
%           subplot(4,4,k) D ( <_1  
%           pcolor(x,x,z), shading interp iRPt0?$  
%           set(gca,'XTick',[],'YTick',[]) L/"u,~[  
%           axis square n^UrHHOL  
%           title(['Z_{' num2str(p(k)) '}']) D""d-oI[  
%       end n-#?6`>a  
% Y6?d y\  
%   See also ZERNPOL, ZERNFUN. Hh(_sewo  
S5-}u)XnH  
%   Paul Fricker 11/13/2006 A%"mySW  
l$}h1&V7  
;k9s@e#a  
% Check and prepare the inputs: - 9UQs.Nv  
% ----------------------------- B=(m;A#G  
if min(size(p))~=1 ",B92[}Ar  
    error('zernfun2:Pvector','Input P must be vector.') BikmAa  
end "e&S*8QhM  
sG%Q?&-  
if any(p)>35 w5b D  
    error('zernfun2:P36', ... V/.Y]dN5  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... {[m %1O1  
           '(P = 0 to 35).']) %+:%%r=Q  
end WID4{>G2  
Gm}ecW  
% Get the order and frequency corresonding to the function number: j I_TN5  
% ---------------------------------------------------------------- 6w0/;8(_m  
p = p(:); |p4F^!9  
n = ceil((-3+sqrt(9+8*p))/2); ((SN We  
m = 2*p - n.*(n+2); isLIfE>  
1,p7Sl^h  
% Pass the inputs to the function ZERNFUN: DDwH9*  
% ---------------------------------------- 1ZJP.T`  
switch nargin y"<nx3  
    case 3 f[6;)ZA  
        z = zernfun(n,m,r,theta); /VgA}[%y  
    case 4 GO.mT/rB  
        z = zernfun(n,m,r,theta,nflag); %4Y/-xF}9,  
    otherwise q=M!YWz  
        error('zernfun2:nargin','Incorrect number of inputs.') (%rO'X  
end :D-My28'  
G +o)s  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) 1mz;4xb  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. qt=gz6!  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of fil'._  
%   order N and frequency M, evaluated at R.  N is a vector of wN-3@  
%   positive integers (including 0), and M is a vector with the Z!0D97^  
%   same number of elements as N.  Each element k of M must be a ?lKFcm  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) _Jn-#du  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is [8EzyB>fH  
%   a vector of numbers between 0 and 1.  The output Z is a matrix t7pe)i,)  
%   with one column for every (N,M) pair, and one row for every U iqHUrx  
%   element in R. `PXSQf  
% @" UoQ_h%  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- )@Fuw*  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 1@JAY!yoo_  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to CPWe (  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Cb~_{$A  
%   for all [n,m]. NRe{0U}nO  
% |QHDg(   
%   The radial Zernike polynomials are the radial portion of the R#eY@N}\  
%   Zernike functions, which are an orthogonal basis on the unit y#!8S{  
%   circle.  The series representation of the radial Zernike _&_#uV<WG0  
%   polynomials is R#.FfWTZ  
% ?xu5/r<  
%          (n-m)/2 d #9 \]Ul&  
%            __ \R#]}g0!  
%    m      \       s                                          n-2s ?B3   
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ZT:&j4A|0  
%    n      s=0 *~~ >?  
% I?}YS-2  
%   The following table shows the first 12 polynomials. JE9SPFQx9M  
% -$WU -7`  
%       n    m    Zernike polynomial    Normalization X-%XZD B6  
%       --------------------------------------------- RoCX*3d  
%       0    0    1                        sqrt(2) B~K@o.%  
%       1    1    r                           2 FJDx80J  
%       2    0    2*r^2 - 1                sqrt(6) &i179Qg!  
%       2    2    r^2                      sqrt(6) $Zf hQ5bat  
%       3    1    3*r^3 - 2*r              sqrt(8) 99j^<)  
%       3    3    r^3                      sqrt(8) .Az' THD}  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) V +j58Wuf  
%       4    2    4*r^4 - 3*r^2            sqrt(10) #/a>dK  
%       4    4    r^4                      sqrt(10) `./$hh  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) LxaR1E(Cc'  
%       5    3    5*r^5 - 4*r^3            sqrt(12) &~Qi+b0!  
%       5    5    r^5                      sqrt(12) W'WZ@!!  
%       --------------------------------------------- wN'Q\l+  
% 7<;87t]]  
%   Example: I/:M~ b  
% k`ulDQu  
%       % Display three example Zernike radial polynomials %2>ya>/M  
%       r = 0:0.01:1; &Jw]3U5J  
%       n = [3 2 5]; OIP JN8V  
%       m = [1 2 1]; ?hu}wl)  
%       z = zernpol(n,m,r); w ryjs!  
%       figure Y~@@{zP  
%       plot(r,z) 's#"~<L^e  
%       grid on fR[kjwX)<1  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') O]&DDzo  
% Kgh@.Ir  
%   See also ZERNFUN, ZERNFUN2. ,?s3%<\2   
,ND}T#yTR  
% A note on the algorithm. Tv2d?y  
% ------------------------ }Fy~DsQ  
% The radial Zernike polynomials are computed using the series + q@kRQY;n  
% representation shown in the Help section above. For many special LA?h+)  
% functions, direct evaluation using the series representation can (0Buo#I  
% produce poor numerical results (floating point errors), because rBR,lS$4  
% the summation often involves computing small differences between /sHWJ?`&/,  
% large successive terms in the series. (In such cases, the functions !U,W; R  
% are often evaluated using alternative methods such as recurrence t*X k'(v  
% relations: see the Legendre functions, for example). For the Zernike 7S+_eL^  
% polynomials, however, this problem does not arise, because the B+W 4r9#  
% polynomials are evaluated over the finite domain r = (0,1), and L9L!V"So1k  
% because the coefficients for a given polynomial are generally all }s i{  
% of similar magnitude. ^0" W/  
% ';<gc5EK  
% ZERNPOL has been written using a vectorized implementation: multiple ipy1tXc  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M]  n *Y+y  
% values can be passed as inputs) for a vector of points R.  To achieve |-kU]NJFR  
% this vectorization most efficiently, the algorithm in ZERNPOL OX|nYTp  
% involves pre-determining all the powers p of R that are required to aN n\URR  
% compute the outputs, and then compiling the {R^p} into a single N pu#.)G  
% matrix.  This avoids any redundant computation of the R^p, and 0V:7pSC{P  
% minimizes the sizes of certain intermediate variables. s'/b&Idf8  
% )q#1C]7m*  
%   Paul Fricker 11/13/2006 7ip$#pzo  
rO#WG}E<"  
HHd;<%q  
% Check and prepare the inputs: .8[Uk^q  
% ----------------------------- ;Ohabbj*  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ks{y=@ <,  
    error('zernpol:NMvectors','N and M must be vectors.') !=sM `(=~  
end )8ub1,C  
H\W/;Nn  
if length(n)~=length(m) LRe2wT>I  
    error('zernpol:NMlength','N and M must be the same length.') Q#+y}pOLP  
end 0|mF /  
>SS YYy  
n = n(:); ~cHpA;x9<^  
m = m(:); ZcT%H*Ib]9  
length_n = length(n); ?"23XKe  
<~wr;"S  
if any(mod(n-m,2)) /F/zMZGSA{  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') u7L!&/6On  
end T&@xgj|!)  
j A/xe  
if any(m<0) =}SH*xi6  
    error('zernpol:Mpositive','All M must be positive.') _T[7N|'O  
end "DWw]\xO](  
uU+R,P0  
if any(m>n) f9R~RRz  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') x}acxu 2H7  
end k(<:  
?ks3K-.4  
if any( r>1 | r<0 ) T ~=r*4  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') 0Fd<@w Q0  
end a?635*9K  
(f Gmjx  
if ~any(size(r)==1) d#Hl3]wT  
    error('zernpol:Rvector','R must be a vector.') ~3 ,>TV  
end s"tyCDc.c  
? zFeP6C  
r = r(:); &nJH23h ^  
length_r = length(r); Etv!:\\[  
uL.)+E  
if nargin==4 l+%2kR  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); LYYz =gvZl  
    if ~isnorm -> $]`h"  
        error('zernpol:normalization','Unrecognized normalization flag.') {xW HKsI>,  
    end ~Bw)rf,  
else 0[\^Y<ec  
    isnorm = false; D's Tv}P  
end 6bv~E.  
huPAWlxT  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A>C&`A=-  
% Compute the Zernike Polynomials 2hD(zUSy  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .m r& zq  
blUnAu o~  
% Determine the required powers of r: !z EW)  
% ----------------------------------- 5X4 #T&.  
rpowers = []; j@7%%   
for j = 1:length(n) QQ*` tmy  
    rpowers = [rpowers m(j):2:n(j)]; Z%rMX}  
end "L?h@8sa  
rpowers = unique(rpowers); /Qa'\X,f3  
g?TPRr~$9  
% Pre-compute the values of r raised to the required powers, {c(@u6l28  
% and compile them in a matrix: 8 ztVv   
% ----------------------------- v--Qbu  
if rpowers(1)==0 ,sa%u Fm  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Wqy\yS [  
    rpowern = cat(2,rpowern{:}); PG51+#  
    rpowern = [ones(length_r,1) rpowern]; }fS`jq;  
else `f|Gw5R  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _S$ SL%;\  
    rpowern = cat(2,rpowern{:}); LBcnBo</v  
end )U2cS\k'7n  
\/wbk`2  
% Compute the values of the polynomials: 6k4ZzQ}  
% -------------------------------------- @k|V4  
z = zeros(length_r,length_n); &d%0[Ui`  
for j = 1:length_n ,$H[DX  
    s = 0:(n(j)-m(j))/2; ryC7O'j_P  
    pows = n(j):-2:m(j);  Zk={3Y  
    for k = length(s):-1:1 t9U-c5bR  
        p = (1-2*mod(s(k),2))* ... \H^A@f  
                   prod(2:(n(j)-s(k)))/          ... 6I<^wS9j_  
                   prod(2:s(k))/                 ... XABB6J]  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... D  ,U#z  
                   prod(2:((n(j)+m(j))/2-s(k))); o0Z~9iF&  
        idx = (pows(k)==rpowers); .kl.awT  
        z(:,j) = z(:,j) + p*rpowern(:,idx); VB}4#-dG?  
    end $ ;J:kd;<  
     t.s;dlx[@  
    if isnorm l KdY!j"  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); _nn\O3TB  
    end ?z[k.l+6w  
end #M)S Ae2  
T4c]VWtD  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  < cUaIb;(4  
qy^sdqHl@  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 W*!u_]K>  
 F<Y>  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计