首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Wru  Fp  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦!  \#+2;L  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _l{ 5 'm  
function z = zernfun(n,m,r,theta,nflag) R$;&O. 5M  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. gM5p1?E  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =u3@ Dhw  
%   and angular frequency M, evaluated at positions (R,THETA) on the ]-5jgz"  
%   unit circle.  N is a vector of positive integers (including 0), and 5 *pN<S  
%   M is a vector with the same number of elements as N.  Each element 61rh\<bn  
%   k of M must be a positive integer, with possible values M(k) = -N(k) ;Y|~!%2~  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, |Q)w3\S$  
%   and THETA is a vector of angles.  R and THETA must have the same PSQ:'  
%   length.  The output Z is a matrix with one column for every (N,M) >wS:3$Q  
%   pair, and one row for every (R,THETA) pair. cJWfLD>2_!  
% S. F=$z.%  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .kKwdqO+zB  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Nj-rZ%&  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral b;{"lJ:+Z  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q}F%o0  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized $t H.np  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. C.B}Py+   
% BSu)O~s  
%   The Zernike functions are an orthogonal basis on the unit circle. 6u, 0y$3  
%   They are used in disciplines such as astronomy, optics, and 7@cvy? v{  
%   optometry to describe functions on a circular domain. M7<#=pX&  
% ?! _pP|  
%   The following table lists the first 15 Zernike functions. 7CL@i L Tq  
% HJ1\FO9\  
%       n    m    Zernike function           Normalization w$;*~Qc  
%       -------------------------------------------------- Y7V&zF{  
%       0    0    1                                 1 Y$$?8xr ~  
%       1    1    r * cos(theta)                    2 ?M-8Fp3 +  
%       1   -1    r * sin(theta)                    2 Q.2nUT`  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) O-lh\9{'R  
%       2    0    (2*r^2 - 1)                    sqrt(3) i[\u-TF  
%       2    2    r^2 * sin(2*theta)             sqrt(6) fQ.>G+0 I>  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) 7RFkHME  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) lvJ{=~u  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) f<sPh>n  
%       3    3    r^3 * sin(3*theta)             sqrt(8) MirBJL  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) f uN XY-;  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rHBjR_L.2  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 27 TZ+?  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Bpo68%dx89  
%       4    4    r^4 * sin(4*theta)             sqrt(10) TIh zMW\/K  
%       -------------------------------------------------- z slEUTj)  
% wBHDof xX  
%   Example 1: EM w(%}8w  
% A^@<+?  
%       % Display the Zernike function Z(n=5,m=1) jL%}y1m?  
%       x = -1:0.01:1; yj+b/9My   
%       [X,Y] = meshgrid(x,x); w:zC/5x`  
%       [theta,r] = cart2pol(X,Y); /P"\ +Qp  
%       idx = r<=1; dsZ ( D:)  
%       z = nan(size(X)); ?[B[ F  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); Dj. +5f'  
%       figure XK-x*|  
%       pcolor(x,x,z), shading interp 6%INNIyAWa  
%       axis square, colorbar UBHQzc+,  
%       title('Zernike function Z_5^1(r,\theta)') ;OJ0}\*iP8  
% KL"L65g&  
%   Example 2: ]]o[fqD-Zn  
% VX[!Vh  
%       % Display the first 10 Zernike functions 5g>kr< K  
%       x = -1:0.01:1; "I FGW4FnL  
%       [X,Y] = meshgrid(x,x); xi. KD  
%       [theta,r] = cart2pol(X,Y); {1DYXKe  
%       idx = r<=1; r K)  
%       z = nan(size(X)); aB!Am +g  
%       n = [0  1  1  2  2  2  3  3  3  3]; ~WXxVm*@  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; OT3;qT*fw  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; ZKPkx~,U[  
%       y = zernfun(n,m,r(idx),theta(idx)); 2I 7`  
%       figure('Units','normalized') NB +O;  
%       for k = 1:10 k+M-D~@5H  
%           z(idx) = y(:,k); ,6Q-k4_  
%           subplot(4,7,Nplot(k)) yP4.Z9  
%           pcolor(x,x,z), shading interp K61os&K  
%           set(gca,'XTick',[],'YTick',[]) K)\gbQ|  
%           axis square 8~#Q *  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #de^~  
%       end DJ0T5VE W3  
% }c5`~ LLK  
%   See also ZERNPOL, ZERNFUN2. 4yv31QG$  
oa !P]r  
%   Paul Fricker 11/13/2006 ,x.)L=Cx8  
mJR T+SZ  
JHH&@Cn  
% Check and prepare the inputs: 82!GM.b  
% ----------------------------- Vp{2Z9]}  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T["(YFCByg  
    error('zernfun:NMvectors','N and M must be vectors.') !r0P\  
end 695ppiKU  
/y|r iW  
if length(n)~=length(m) pPp nO  
    error('zernfun:NMlength','N and M must be the same length.') C~V$G}mM  
end YH9] T,  
z1s"C[W2T  
n = n(:); 5K~6`  
m = m(:); V/}8+Xq  
if any(mod(n-m,2)) %([H*sLX  
    error('zernfun:NMmultiplesof2', ... xR`2+t&t  
          'All N and M must differ by multiples of 2 (including 0).') f"^tOgGH  
end V7_??L%Ct`  
0%+k>(@ R  
if any(m>n) ,m]q+7E  
    error('zernfun:MlessthanN', ... hj,x~^cS  
          'Each M must be less than or equal to its corresponding N.') eCd?.e0@j  
end rtE,SN  
1tpD|  
if any( r>1 | r<0 ) dxWw%_Q  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') /Ql}jSKi  
end L{p-'V  
[F EQ@  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &_j4q  
    error('zernfun:RTHvector','R and THETA must be vectors.') Q4q#/z  
end Zh^w)}(W  
bp,CvQ'}a  
r = r(:); o7zfD94I  
theta = theta(:); GK&Dd"v  
length_r = length(r); fif<[Ax  
if length_r~=length(theta) Shz;)0To  
    error('zernfun:RTHlength', ... sKO ;p  
          'The number of R- and THETA-values must be equal.') g"Bv!9*H  
end Q,`kfxA`O  
_@2G]JD  
% Check normalization: y9)",G!  
% -------------------- O]lfs >>x  
if nargin==5 && ischar(nflag) {eUfwPAa3  
    isnorm = strcmpi(nflag,'norm'); +)S X  
    if ~isnorm ,RQ-w2j?  
        error('zernfun:normalization','Unrecognized normalization flag.') T`sM4 VWqU  
    end rI/KrBM  
else q =6 Y2Q  
    isnorm = false; vNGvEJ`qn  
end 5Y^ YKV{  
?f..N,s  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +E4 _^  
% Compute the Zernike Polynomials ez{&Y>n  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t/|^Nt@XT  
y e'5 A   
% Determine the required powers of r: <lR8MqjM_  
% ----------------------------------- ;rgsPVbVf  
m_abs = abs(m); YP l{5 =  
rpowers = []; mz1g8M`@[D  
for j = 1:length(n) o@. !Z8  
    rpowers = [rpowers m_abs(j):2:n(j)]; X;h~s:LM  
end '! (`?  
rpowers = unique(rpowers); 1~ Nz6  
"Q1hP9xV  
% Pre-compute the values of r raised to the required powers, Kl?1)u3^4  
% and compile them in a matrix: =xoTH3/,>  
% ----------------------------- )f Rh^6  
if rpowers(1)==0 {y'k wU  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &kvVMn ok  
    rpowern = cat(2,rpowern{:}); Sf9+TW  
    rpowern = [ones(length_r,1) rpowern]; zeX?]@]Y  
else )Pq.kn{Sp  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $G3P3y: [  
    rpowern = cat(2,rpowern{:}); bX,Z<BvbF  
end P; Ox|  
/l L*U  
% Compute the values of the polynomials: =#fqFL,  
% -------------------------------------- B_> Fd&  
y = zeros(length_r,length(n)); k:sh:G+=$d  
for j = 1:length(n) Y2Bu,/9^  
    s = 0:(n(j)-m_abs(j))/2; JS9q'd  
    pows = n(j):-2:m_abs(j); i+}M#Y-O  
    for k = length(s):-1:1 i&Ea@b  
        p = (1-2*mod(s(k),2))* ... v&Kw 3!X#E  
                   prod(2:(n(j)-s(k)))/              ... _ 0-YsD  
                   prod(2:s(k))/                     ... 3?:}lY<,  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~&kV  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); PyYe>a;.  
        idx = (pows(k)==rpowers); i|*:gH  
        y(:,j) = y(:,j) + p*rpowern(:,idx); 0 !Yi.'+  
    end "2mVW_k  
     y}A-o_u@cD  
    if isnorm \ C Yu;  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); rAWBuEU;!  
    end 5gGr|d|(  
end @ o]F~x  
% END: Compute the Zernike Polynomials l<5!R;?$  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XZhhr1-<a  
; ?!sU  
% Compute the Zernike functions: J#\/znT  
% ------------------------------ }U9e#>e x  
idx_pos = m>0; ,M9'S;&^  
idx_neg = m<0; &3rh{"^9  
@ B+];lr/-  
z = y; - 0zo>[c/p  
if any(idx_pos) .fgoEB,(  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); YV+e];s  
end g& {YHq^+  
if any(idx_neg) xe d$z  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); X:YxsZQ 5Y  
end bbz86]AhY  
pcE.  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) + EM '-  
%ZERNFUN2 Single-index Zernike functions on the unit circle. H]cCyuCdH  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated i+OyBDkJM!  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive kY|<1Ht  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, d< y B ~Y  
%   and THETA is a vector of angles.  R and THETA must have the same ,\VNs'j  
%   length.  The output Z is a matrix with one column for every P-value, cB|](gWS~  
%   and one row for every (R,THETA) pair. B|!Re4`0  
% Xs4`bbap  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Ox58L>:0m  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) uJi|@{V  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) b(wiJ&t  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 [K^RC;}nV^  
%   for all p. XWkYhTaY  
% G*ecM`Bl  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Ax&+UxQ0|  
%   Zernike functions (order N<=7).  In some disciplines it is w!61k \  
%   traditional to label the first 36 functions using a single mode \2uQ"kJC  
%   number P instead of separate numbers for the order N and azimuthal #U^@)g6  
%   frequency M. ;:v:pg8qc  
% ;%Qu;FtC  
%   Example: F*QGzbv)  
% WO|#`HM2  
%       % Display the first 16 Zernike functions )H)HR`  
%       x = -1:0.01:1; zT.qNtU%  
%       [X,Y] = meshgrid(x,x); nP] ~8ViS  
%       [theta,r] = cart2pol(X,Y); t'^/}=c-  
%       idx = r<=1; )8yNqnD  
%       p = 0:15; -e30!A  
%       z = nan(size(X)); L.>`;`dmY  
%       y = zernfun2(p,r(idx),theta(idx)); nT:ZSJWM  
%       figure('Units','normalized') [^#6.xH  
%       for k = 1:length(p) NT:p6(s^  
%           z(idx) = y(:,k); $Die~rPU  
%           subplot(4,4,k) 1I_(!F{Ho  
%           pcolor(x,x,z), shading interp EiSS_Lc  
%           set(gca,'XTick',[],'YTick',[]) OXI.>9  
%           axis square q45Hmz  
%           title(['Z_{' num2str(p(k)) '}']) Ig~lD>dnr'  
%       end 2-FL&DE  
% U5odSR$  
%   See also ZERNPOL, ZERNFUN. $`mxOcBmQ  
Ao(Xz$cQfW  
%   Paul Fricker 11/13/2006 2}K7(y!?u  
\It8+^d@  
(z\@T`6`  
% Check and prepare the inputs: tAefBFu  
% ----------------------------- I6~.sTl  
if min(size(p))~=1 XB zcbS+  
    error('zernfun2:Pvector','Input P must be vector.') :A>cf}  
end qy"#XbBeV  
fQM:NI? 9?  
if any(p)>35 Ab/gY$l  
    error('zernfun2:P36', ... |X0h-kX4  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ;mu^WIj  
           '(P = 0 to 35).']) V0XQG}  
end xh,};TS(K  
abp]qvCV  
% Get the order and frequency corresonding to the function number: @h$cHZ  
% ---------------------------------------------------------------- xx_]e4  
p = p(:); |\Nu+w   
n = ceil((-3+sqrt(9+8*p))/2); h${+{1](6  
m = 2*p - n.*(n+2); D:4Iex9$F"  
OW;]= k/(  
% Pass the inputs to the function ZERNFUN: oSq4g{xvMH  
% ---------------------------------------- 8HDYA$L  
switch nargin _SY4Q s`d  
    case 3 E0[ec6^qwY  
        z = zernfun(n,m,r,theta); m r&nB  
    case 4 },lHa!<^  
        z = zernfun(n,m,r,theta,nflag); LB1LQ 0M  
    otherwise jhl9  
        error('zernfun2:nargin','Incorrect number of inputs.') &'Pwz  
end *]:gEO  
kaq H.e(  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) 5)bf$?d   
%ZERNPOL Radial Zernike polynomials of order N and frequency M. *mwHuGbZed  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of V(u#8M  
%   order N and frequency M, evaluated at R.  N is a vector of LQ(z~M0B  
%   positive integers (including 0), and M is a vector with the Q8OA{EUtq  
%   same number of elements as N.  Each element k of M must be a e=e^;K4  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) l+`f\},  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is o."k7fLB  
%   a vector of numbers between 0 and 1.  The output Z is a matrix LX;w~fRr.  
%   with one column for every (N,M) pair, and one row for every ]zK'aod  
%   element in R. _$g6Mj]1z  
% mCah{~  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- )IQ5Qu  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ;r'y/ Y'?  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 4IfOvAN%  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 TkHyXOk"Ky  
%   for all [n,m]. :4JqT|nS  
% OI/m_xx@j  
%   The radial Zernike polynomials are the radial portion of the ~xfoZiIA}  
%   Zernike functions, which are an orthogonal basis on the unit RI.6.f1dy  
%   circle.  The series representation of the radial Zernike  =ie8{j2:  
%   polynomials is g2)jd[GM  
% z 3((L  
%          (n-m)/2 D#"BY; J  
%            __ P5;n(E(19  
%    m      \       s                                          n-2s k+qxx5{  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r GY% ^!r  
%    n      s=0 [ =/Yo1:v  
% bT93R8yp  
%   The following table shows the first 12 polynomials. F3 uR:)4<M  
% P}kBqMM  
%       n    m    Zernike polynomial    Normalization TEB<ia3+  
%       --------------------------------------------- )\K;Ncp[  
%       0    0    1                        sqrt(2) PH!^ww6  
%       1    1    r                           2 'DLgOUvh  
%       2    0    2*r^2 - 1                sqrt(6) fyHFfPEE  
%       2    2    r^2                      sqrt(6) <;eXbO>Q  
%       3    1    3*r^3 - 2*r              sqrt(8) 4 H 4W  
%       3    3    r^3                      sqrt(8) pX 4:WV  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) -O&u;kh4g  
%       4    2    4*r^4 - 3*r^2            sqrt(10) $4YyZ!_.@  
%       4    4    r^4                      sqrt(10) HgVPyo  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 8nV#\J9  
%       5    3    5*r^5 - 4*r^3            sqrt(12) WC0gJy  
%       5    5    r^5                      sqrt(12) A8|DB@ Bi  
%       --------------------------------------------- 7tZvz `\  
% _.}1 Y,Q  
%   Example: ko7*9`  
% F R57F(31  
%       % Display three example Zernike radial polynomials 'J[ n}r  
%       r = 0:0.01:1; y"bSn5B[  
%       n = [3 2 5];  s*XE  
%       m = [1 2 1]; gC/~@Z8W]  
%       z = zernpol(n,m,r); TK! D=M  
%       figure n7EG%q6m+  
%       plot(r,z) fC4#b?Q  
%       grid on JyiP3whW  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') U<|hIv-&  
% xbTvv>'U  
%   See also ZERNFUN, ZERNFUN2. E`A6GX  
(B/od#nU  
% A note on the algorithm. YZ0y_it)  
% ------------------------ EdC^L`::  
% The radial Zernike polynomials are computed using the series Sh@en\m=#S  
% representation shown in the Help section above. For many special BI|BfO%F$j  
% functions, direct evaluation using the series representation can Tr\6 AN?o  
% produce poor numerical results (floating point errors), because /7`fg0A  
% the summation often involves computing small differences between G d%X> ~  
% large successive terms in the series. (In such cases, the functions DTx!# [  
% are often evaluated using alternative methods such as recurrence ^i;y2c  
% relations: see the Legendre functions, for example). For the Zernike Q:v9C ^7  
% polynomials, however, this problem does not arise, because the 7RpAsLH=  
% polynomials are evaluated over the finite domain r = (0,1), and j]6c_r3  
% because the coefficients for a given polynomial are generally all _x'?igy  
% of similar magnitude. hRc.^"q9  
% Le?yzf  
% ZERNPOL has been written using a vectorized implementation: multiple n1E^8[~'  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] G+k~k/D6  
% values can be passed as inputs) for a vector of points R.  To achieve e5z U`R  
% this vectorization most efficiently, the algorithm in ZERNPOL <T^:`p/]4  
% involves pre-determining all the powers p of R that are required to )ZHo7X  
% compute the outputs, and then compiling the {R^p} into a single *LA2@9l  
% matrix.  This avoids any redundant computation of the R^p, and /c4@QbB  
% minimizes the sizes of certain intermediate variables. )@hG#KMK  
% rzk-_AFR  
%   Paul Fricker 11/13/2006 f7du1k3  
rn8#nQ>QZ%  
=QG0:z)K<v  
% Check and prepare the inputs: P;8D|u^\*  
% ----------------------------- HLruZyN4  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6 @X j  
    error('zernpol:NMvectors','N and M must be vectors.') %~{G*%:  
end OS{j5o  
"Vw;y+F}  
if length(n)~=length(m) 4Y x\U  
    error('zernpol:NMlength','N and M must be the same length.') ajJ+Jn\  
end _?m%i]~o  
\J?l7mG  
n = n(:); ^{l^Z +b.  
m = m(:); Xlp$ xp"  
length_n = length(n); D,( "3zx  
jWE?$r"  
if any(mod(n-m,2)) Ojwhcb^  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') +jv&V%IL  
end QKAt%"1&  
o)U4RY*  
if any(m<0) vi8)U]6  
    error('zernpol:Mpositive','All M must be positive.') ]N#%exBVo  
end 4r+s" |  
]hC6PKJU  
if any(m>n) id=:J7!QU  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') !J/fJW>m6  
end R>CIEL  
>`S $(f  
if any( r>1 | r<0 ) 4],*y`& g  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') .^o3  
end )_-EeH  
*$6dNx  
if ~any(size(r)==1) D>>?8a  
    error('zernpol:Rvector','R must be a vector.') GyP.;$NHa[  
end jSKhWxL;'  
LagHzCB  
r = r(:); J =j6rD  
length_r = length(r); 5p]Cwj<u  
m R|;}u;d  
if nargin==4 6.(L8.jv  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Q.zE}ZS  
    if ~isnorm f?[0I\V[$  
        error('zernpol:normalization','Unrecognized normalization flag.') 8gK  <xp  
    end 6_vhBYLf  
else ynQ+yW74Z  
    isnorm = false; :IB@@5r1  
end R{R'byre  
>dU.ic?19  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #eZm)KFQg  
% Compute the Zernike Polynomials L';b908r2  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UU;U,q  
J4VyP["m  
% Determine the required powers of r: L?:fyNA3[  
% ----------------------------------- .r4M]1Of  
rpowers = []; ]?"1FSu-8r  
for j = 1:length(n) =|Vm69  
    rpowers = [rpowers m(j):2:n(j)]; "u=U@1 ^  
end Xpp%j  
rpowers = unique(rpowers); E|`JmfLQu  
|Js?@  
% Pre-compute the values of r raised to the required powers, >mXq= 9L4  
% and compile them in a matrix:  >M-ZjT>  
% ----------------------------- PS\n0  
if rpowers(1)==0 G1z0q3< B  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \]$TBN dJ4  
    rpowern = cat(2,rpowern{:}); &E+2  
    rpowern = [ones(length_r,1) rpowern]; W%,h{  
else hxX-iQya  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @Y| %  
    rpowern = cat(2,rpowern{:}); Duh[(r_  
end {CH *?|t  
*v6 j7<H  
% Compute the values of the polynomials: *s[bq;$  
% -------------------------------------- Ph Ep3o&"  
z = zeros(length_r,length_n); c!20(( 2|I  
for j = 1:length_n xmp^`^v*  
    s = 0:(n(j)-m(j))/2; _1EWmHZ?  
    pows = n(j):-2:m(j); n+qa/<  
    for k = length(s):-1:1 A!n)Fpk  
        p = (1-2*mod(s(k),2))* ... azT@S=,  
                   prod(2:(n(j)-s(k)))/          ... U?W?VEOO!7  
                   prod(2:s(k))/                 ... Bq 9 Eu1  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... 2 ,bLEhu  
                   prod(2:((n(j)+m(j))/2-s(k))); ?VaAVxd29  
        idx = (pows(k)==rpowers); tLc 9-  
        z(:,j) = z(:,j) + p*rpowern(:,idx); AC& }8w[>u  
    end ,LpGE>s  
     ZlEH3-Zv  
    if isnorm #lo1GoL\  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ,{rm<M.)  
    end !y 7SCz g  
end JrhDqyk*  
Y-vLEIX=  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  52H'aHO1  
L2GUrf  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 LLlt9(^d  
-o`Eka!ELz  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计