首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 vC ISd   
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! [gxH,=Pb  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有  H= (Zx  
function z = zernfun(n,m,r,theta,nflag) k#pNk7;MZ  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6T ,'Oz  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =Z}=nS?4  
%   and angular frequency M, evaluated at positions (R,THETA) on the |;MW98 A  
%   unit circle.  N is a vector of positive integers (including 0), and f4r)g2Zb[  
%   M is a vector with the same number of elements as N.  Each element {BS`v5*  
%   k of M must be a positive integer, with possible values M(k) = -N(k) 8u4FagQ,  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, { '1e?  
%   and THETA is a vector of angles.  R and THETA must have the same =%oQIx  
%   length.  The output Z is a matrix with one column for every (N,M) 1QJB4|5R#  
%   pair, and one row for every (R,THETA) pair. 7bC)Co#:   
% ])iw|`@dJ  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike qhqqCVrsW  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), L|A.;Gq  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral M5<c HE  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \2NT7^H#  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized e]@R'oM?#`  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. N4[^!}4  
% LGPPyK Nx  
%   The Zernike functions are an orthogonal basis on the unit circle. ^.~m4t`U  
%   They are used in disciplines such as astronomy, optics, and T@x_}a:g  
%   optometry to describe functions on a circular domain. NG?-dkD  
% tB==v{t  
%   The following table lists the first 15 Zernike functions. 2<33BBlWA  
% ~#y(]Xec2  
%       n    m    Zernike function           Normalization c},wW@SF2W  
%       -------------------------------------------------- G+zIh}9  
%       0    0    1                                 1 +je{%,*  
%       1    1    r * cos(theta)                    2 JPGEE1!B{b  
%       1   -1    r * sin(theta)                    2 *#g[ jl4  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) MZK%IC>  
%       2    0    (2*r^2 - 1)                    sqrt(3) Fv T;8ik:3  
%       2    2    r^2 * sin(2*theta)             sqrt(6) (7J (.EG2e  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) >[a&,gS  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ^U[yk'!Y  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) $KMxq=  
%       3    3    r^3 * sin(3*theta)             sqrt(8) KG9FR*"  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) * J|]E(  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J'#R9NO<  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) mqk tM6  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jpRC6b?  
%       4    4    r^4 * sin(4*theta)             sqrt(10) PWbi`qF)r  
%       -------------------------------------------------- ~ w,hJ `  
% P[<EFj E  
%   Example 1: <`WtP+`  
% _ !H8j/b  
%       % Display the Zernike function Z(n=5,m=1) nHTb~t5Ke  
%       x = -1:0.01:1; U Rb  
%       [X,Y] = meshgrid(x,x); g&`[r6B  
%       [theta,r] = cart2pol(X,Y); bc(b1u?  
%       idx = r<=1; NQqq\h  
%       z = nan(size(X)); c!HmZ]/  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); i $W E1-  
%       figure MR-cOPn  
%       pcolor(x,x,z), shading interp "?SR+;Y:q  
%       axis square, colorbar jhkNi`E7  
%       title('Zernike function Z_5^1(r,\theta)') e =Teq~K  
% $1b x\  
%   Example 2: vQhi2J'  
% TB(!*t  
%       % Display the first 10 Zernike functions \bzT=^Z;2  
%       x = -1:0.01:1; `R{ ZED l'  
%       [X,Y] = meshgrid(x,x); 9i*Xd$ G  
%       [theta,r] = cart2pol(X,Y); 5x1_rjP$|  
%       idx = r<=1; #;~dA  
%       z = nan(size(X)); XX|wle1Kg  
%       n = [0  1  1  2  2  2  3  3  3  3]; XbMAcgS  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 2#g4R  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; d0CFMy6  
%       y = zernfun(n,m,r(idx),theta(idx)); bdz&"\$X  
%       figure('Units','normalized') CY i{WV(:  
%       for k = 1:10 ygS vYMC  
%           z(idx) = y(:,k); ug.'OR  
%           subplot(4,7,Nplot(k)) w\2yippI  
%           pcolor(x,x,z), shading interp Qb~&a1&s#  
%           set(gca,'XTick',[],'YTick',[]) 7<p? E7  
%           axis square 2<GN+W v[#  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) K}1eQS&$a  
%       end &nX,)"  
% RRBBz7:~  
%   See also ZERNPOL, ZERNFUN2. T_1p1Sg  
gP 6`q  
%   Paul Fricker 11/13/2006 ;)gNe:Q  
?~#{3b  
Zk#?.z}  
% Check and prepare the inputs: 1?5UVv_F  
% ----------------------------- *zn=l+c  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) D|rcSa.M  
    error('zernfun:NMvectors','N and M must be vectors.') \~ql_X;3  
end i1JWdHt  
)}i;OLw-  
if length(n)~=length(m) P<GHX~nB  
    error('zernfun:NMlength','N and M must be the same length.') J~URv)g  
end 6*r3T:u3  
9}DF*np`G  
n = n(:); KIfR4,=Q|  
m = m(:); y/}ENUGR  
if any(mod(n-m,2)) u{"@ 4  
    error('zernfun:NMmultiplesof2', ... #w:6<$  
          'All N and M must differ by multiples of 2 (including 0).') l5bd);L tq  
end YMEI J}  
#m<<]L(o8W  
if any(m>n) 6a\YD{D] _  
    error('zernfun:MlessthanN', ... ZFsJeF'"  
          'Each M must be less than or equal to its corresponding N.') "-;l{tL  
end KB^i=+xr  
|L"!^Y#=D  
if any( r>1 | r<0 ) K9+C3"*I  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;\gsd'i  
end o I6o$C  
={a_?l%  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "TgE@bC  
    error('zernfun:RTHvector','R and THETA must be vectors.') o) hQ]d  
end dfoFs&CSKh  
J}vxK H#=  
r = r(:); /P-Eg86V'  
theta = theta(:); t%f6P  
length_r = length(r); (~<9\ZJs  
if length_r~=length(theta) ugI9rxT]Kv  
    error('zernfun:RTHlength', ... 30Z RKrW"~  
          'The number of R- and THETA-values must be equal.') @^';[P!  
end fQB>0RR2  
@]0;aZ{3  
% Check normalization: '!6Py1i  
% -------------------- \dz@hJl:  
if nargin==5 && ischar(nflag) mtON dI  
    isnorm = strcmpi(nflag,'norm'); \|}dlG  
    if ~isnorm '~ {xn  
        error('zernfun:normalization','Unrecognized normalization flag.') ]O\Oj6C  
    end 3+E AMn  
else 5z>kz/uxW  
    isnorm = false; 9(/ ;Wutj"  
end 1E*No1  
a|x1aN 0  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :2KLziO2  
% Compute the Zernike Polynomials =+qtk(p  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u(s/4Lu  
ZE*m;  
% Determine the required powers of r: 6DFF:wrm&  
% ----------------------------------- M=hH:[6 &  
m_abs = abs(m); U Ux]  
rpowers = []; lo*)% fy  
for j = 1:length(n) rK%A=Q  
    rpowers = [rpowers m_abs(j):2:n(j)]; D{{ ME8  
end z3  lZ3  
rpowers = unique(rpowers); }!i#1uHUH:  
y@kRJ 8d  
% Pre-compute the values of r raised to the required powers, |nN{XjNfP5  
% and compile them in a matrix: bnz2\C9^  
% ----------------------------- G' ~Z'  
if rpowers(1)==0 D9;2w7v  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &_^t$To  
    rpowern = cat(2,rpowern{:}); V #0F2GV<,  
    rpowern = [ones(length_r,1) rpowern]; ,{HxX0  
else ) /kf  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W -Yv0n3  
    rpowern = cat(2,rpowern{:}); (hB&OP5Fne  
end 8X@p?43  
|=^p`CT  
% Compute the values of the polynomials: UvSvgDMl  
% -------------------------------------- fAu^eS%>7  
y = zeros(length_r,length(n)); Ny@CP}  
for j = 1:length(n) @hlT7C)xK  
    s = 0:(n(j)-m_abs(j))/2; JM-spi o  
    pows = n(j):-2:m_abs(j);  fWx %?J  
    for k = length(s):-1:1 @O/Jy2>3H  
        p = (1-2*mod(s(k),2))* ... ,&$+ {3  
                   prod(2:(n(j)-s(k)))/              ... i+$G=Z#3E  
                   prod(2:s(k))/                     ... }7>r,  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0^41dfdE  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); 2nW:|*:/p6  
        idx = (pows(k)==rpowers); lLO|,  
        y(:,j) = y(:,j) + p*rpowern(:,idx); gBzg'Z  
    end j~(s3pSCo  
     .5ap9li]  
    if isnorm P8N`t&r"7  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); o5 UM)g  
    end 0j^QY6  
end 8E:8iNbF  
% END: Compute the Zernike Polynomials 7~@9=e8G  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VQ5D?^'0/  
B? $9M9  
% Compute the Zernike functions: &_-,Nxsf  
% ------------------------------ ^ lrq`1k  
idx_pos = m>0; /;7\HZ$@/  
idx_neg = m<0; mRe BS  
M ABrf`<b  
z = y; *=Ko"v }  
if any(idx_pos) +FD"8 ^YC  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _g|zDi^  
end e>zCzKK  
if any(idx_neg) H ?Vo#/  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); F)ak5  
end C&\MDOjx  
+gZg7]!Z  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) )HHG3cvU  
%ZERNFUN2 Single-index Zernike functions on the unit circle. k3F* D  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated < Y5pAStg  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive $#3O:aW  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, [{]/9E /&  
%   and THETA is a vector of angles.  R and THETA must have the same OF[y$<jM  
%   length.  The output Z is a matrix with one column for every P-value, ,$i2vGd  
%   and one row for every (R,THETA) pair. S$ u`)BG):  
% sw<mmayN  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike f{ ;L"*L  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) KIY/nu   
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi)  !t.  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 =L,s6J8_'  
%   for all p. pKeK6K\8  
% [BPK0  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 }I3 ZNd   
%   Zernike functions (order N<=7).  In some disciplines it is n}KF) W=  
%   traditional to label the first 36 functions using a single mode eIZ7uSl  
%   number P instead of separate numbers for the order N and azimuthal uY{zZ4iw  
%   frequency M. IUB#Vdx  
% e70#"~gt[  
%   Example: Mnj\t3:  
% 6Z09)}tZb  
%       % Display the first 16 Zernike functions h(M_ K  
%       x = -1:0.01:1; RKIBFP8.  
%       [X,Y] = meshgrid(x,x); ORVFp]gG  
%       [theta,r] = cart2pol(X,Y); Z7\}x"hk  
%       idx = r<=1; Y[_{tS#u  
%       p = 0:15; <+7]EwVcn^  
%       z = nan(size(X)); S&yKi  
%       y = zernfun2(p,r(idx),theta(idx)); DC9\Sp?  
%       figure('Units','normalized') |p4D!M+$7  
%       for k = 1:length(p) vy:-a G  
%           z(idx) = y(:,k); ]2:w?+T  
%           subplot(4,4,k) ??\1eo2gB  
%           pcolor(x,x,z), shading interp ;Jh=7wx  
%           set(gca,'XTick',[],'YTick',[]) |hx"yy'ux  
%           axis square !p:kEIZ)y  
%           title(['Z_{' num2str(p(k)) '}']) p"%K(NL  
%       end sBN"eHg  
% +c7e[hz  
%   See also ZERNPOL, ZERNFUN. 49('pq?D  
_wp>AJ r  
%   Paul Fricker 11/13/2006 t@#+vs@  
Sw1z^`  
!?AgAsSmc  
% Check and prepare the inputs: _*K=Z,a;\  
% ----------------------------- r6JQRSakR  
if min(size(p))~=1 ,.<[iHC}9  
    error('zernfun2:Pvector','Input P must be vector.') %S`ygc}|  
end xbVvK+  
9Dat oi  
if any(p)>35 `_MRf[Z}  
    error('zernfun2:P36', ... 3^jkd)xw  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... teQ <v[W.  
           '(P = 0 to 35).']) 5L?_AUL  
end Z=[qaJ{]  
QL].)Vgf  
% Get the order and frequency corresonding to the function number: tv]^k]n{rf  
% ---------------------------------------------------------------- D+nKQ4  
p = p(:); 4](jV}Hg  
n = ceil((-3+sqrt(9+8*p))/2); QIK;kjr*A3  
m = 2*p - n.*(n+2); #F|q->2`o  
iBqxz:PHN(  
% Pass the inputs to the function ZERNFUN: MH0xD  
% ---------------------------------------- n_ 3g  
switch nargin S17iYjy#8T  
    case 3 xYLTz8g=  
        z = zernfun(n,m,r,theta); $D][_I  
    case 4 a< E\9DL  
        z = zernfun(n,m,r,theta,nflag); qUS y0SQ/l  
    otherwise yQ [n7du  
        error('zernfun2:nargin','Incorrect number of inputs.')  T)Uhp  
end _c z$w5`  
Hf$pwfGcY]  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) hifC.guK  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. 'NAC4to;;  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of "<N2TDF5  
%   order N and frequency M, evaluated at R.  N is a vector of Ya*<me>`  
%   positive integers (including 0), and M is a vector with the #5 %\~ f  
%   same number of elements as N.  Each element k of M must be a WV8vDv1jt  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) 2(i@\dZCb<  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is BO%aCK&  
%   a vector of numbers between 0 and 1.  The output Z is a matrix 6k=*O|r  
%   with one column for every (N,M) pair, and one row for every )azK&f@tR|  
%   element in R. gebDNl\Y2  
% _'}Mg7,V  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 9F "^MzZ  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is FoX,({*Ko~  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 7Eo;TNbb  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 1$S`>M%a  
%   for all [n,m]. /cX%XZg  
% ])9|j  
%   The radial Zernike polynomials are the radial portion of the /D>G4PP<  
%   Zernike functions, which are an orthogonal basis on the unit '89nyx&W  
%   circle.  The series representation of the radial Zernike K} ) w  
%   polynomials is 2[X\*"MQ2  
% EEp~\^ -  
%          (n-m)/2 Q3'L\_1L  
%            __ OnND(YiX  
%    m      \       s                                          n-2s jr2wK?LbB  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 6 =H]p1p~O  
%    n      s=0 V6!1(|  
% hQ80R B  
%   The following table shows the first 12 polynomials. >$:_M*5  
% v\G+t2{  
%       n    m    Zernike polynomial    Normalization 0..]c-V(G  
%       --------------------------------------------- ,382O$C  
%       0    0    1                        sqrt(2) lcR1FbJ2'  
%       1    1    r                           2 K}( @Ek  
%       2    0    2*r^2 - 1                sqrt(6) *%n(t+'q  
%       2    2    r^2                      sqrt(6) V'8Rz#Gc5  
%       3    1    3*r^3 - 2*r              sqrt(8) 3y}8|ML  
%       3    3    r^3                      sqrt(8) QIC? `hk1  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Zq"  
%       4    2    4*r^4 - 3*r^2            sqrt(10) K# kMz#B+i  
%       4    4    r^4                      sqrt(10) aXgngw q  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) *[+{KJ  
%       5    3    5*r^5 - 4*r^3            sqrt(12) h#}'9oA  
%       5    5    r^5                      sqrt(12) /2x@Z>  
%       --------------------------------------------- 1xDh[:6  
% #By~gcN  
%   Example: V)Ze> Pp  
% sI5S)^'IQ  
%       % Display three example Zernike radial polynomials 6FFM-9*|[  
%       r = 0:0.01:1; -J;;6aA  
%       n = [3 2 5]; ld[BiP`B2V  
%       m = [1 2 1]; 9P&{Xhs7  
%       z = zernpol(n,m,r); 6B!v;93U  
%       figure B4eV$~<  
%       plot(r,z) $Ned1@%[  
%       grid on Y-.aSc53  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') {.r #j|  
% 6 2LLfD  
%   See also ZERNFUN, ZERNFUN2. rCd*'Qg  
K6 c[W%Va  
% A note on the algorithm. i$6o>V6  
% ------------------------ ^[.Z~>3!\q  
% The radial Zernike polynomials are computed using the series u,JUMH]@  
% representation shown in the Help section above. For many special |F49<7XB[~  
% functions, direct evaluation using the series representation can Xu7lV  
% produce poor numerical results (floating point errors), because A-l[f\  
% the summation often involves computing small differences between xm0(U0 >  
% large successive terms in the series. (In such cases, the functions FVWHiwRU,  
% are often evaluated using alternative methods such as recurrence q"u,r6ED  
% relations: see the Legendre functions, for example). For the Zernike OWZ;X}x  
% polynomials, however, this problem does not arise, because the ot,=.%O  
% polynomials are evaluated over the finite domain r = (0,1), and %+oV-o\ #A  
% because the coefficients for a given polynomial are generally all KvumU>c#A  
% of similar magnitude. 4ah5}9{g  
% Kidbc Z  
% ZERNPOL has been written using a vectorized implementation: multiple ;v5Jps2^]  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] =kb/4eRg  
% values can be passed as inputs) for a vector of points R.  To achieve Ga\kvMtr  
% this vectorization most efficiently, the algorithm in ZERNPOL 6o]j@o8V  
% involves pre-determining all the powers p of R that are required to 'H(khS  
% compute the outputs, and then compiling the {R^p} into a single tja7y"(]  
% matrix.  This avoids any redundant computation of the R^p, and T/?C_i  
% minimizes the sizes of certain intermediate variables. 0RHjA& r3v  
% lz4M)pL^  
%   Paul Fricker 11/13/2006 X nB-1{a1  
 g^))  
SN;_.46k  
% Check and prepare the inputs: h]WW?.   
% ----------------------------- :'sMrf_EA  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |XJ|vQGU  
    error('zernpol:NMvectors','N and M must be vectors.') y'_2|5!Qs  
end .$xTX'  
*0z'!m12  
if length(n)~=length(m) .xe+cK  
    error('zernpol:NMlength','N and M must be the same length.') G|j8iV O  
end vk<4P;A(G  
KMXd  
n = n(:); S$qpClXS,  
m = m(:); ~b})=7n.  
length_n = length(n); 9'A^n~JHF  
@;Xa&*   
if any(mod(n-m,2)) rSKZc`<^  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') gp4@6HuUd  
end o)M<^b3KO  
l@g%A# _  
if any(m<0) CK8!7=>}^  
    error('zernpol:Mpositive','All M must be positive.') (/C 8\}Ox  
end Asli<L(?`  
0W,.1J2*  
if any(m>n) zd3^k<  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') |H;+9(  
end qcoTt~\  
Sz>Lbs  
if any( r>1 | r<0 ) Hu"TEhW(2  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') uE'Kk8  
end {YEGy  
gaR~K  
if ~any(size(r)==1) vOU9[n N[  
    error('zernpol:Rvector','R must be a vector.') b5W(}ka+  
end 7%5EBH &  
WNF#eM?[a  
r = r(:); {Z#=ppvs  
length_r = length(r); > mEB,  
3zzl|+# 6  
if nargin==4 Q: j)F|uhc  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); >~})O&t  
    if ~isnorm ;]T;mb>  
        error('zernpol:normalization','Unrecognized normalization flag.') Rg 5kFeS  
    end ITfz/d8  
else "X\6tl7a|  
    isnorm = false; #O!gjZ,  
end uEr['>  
B:(a?X-7  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [n&SA]a  
% Compute the Zernike Polynomials , nW)A/?}  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9S8V`aC  
| A# \5u  
% Determine the required powers of r: "8/BVW^bv  
% ----------------------------------- ,&s%^I+CC  
rpowers = []; Gq{);fq  
for j = 1:length(n) w 9C?wT  
    rpowers = [rpowers m(j):2:n(j)]; om8`^P/b  
end +Os9}uKf  
rpowers = unique(rpowers); 1'b}Y 8YO  
tfVlIY<  
% Pre-compute the values of r raised to the required powers, hZ-?-F?*@  
% and compile them in a matrix: ^a=V.  
% ----------------------------- 8Od7e`  
if rpowers(1)==0 VCa`|S?2  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d?N[bA  
    rpowern = cat(2,rpowern{:}); 9ZI^R/*Kc  
    rpowern = [ones(length_r,1) rpowern]; ?7TuE!!M  
else <STE~ZmO  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); nT=XWM  
    rpowern = cat(2,rpowern{:}); :*eJ*(M  
end K/z2.Npn  
\Yr&vX/[p  
% Compute the values of the polynomials: s,H }km  
% -------------------------------------- =" pNE#  
z = zeros(length_r,length_n);  BF /4  
for j = 1:length_n A5RM&y  
    s = 0:(n(j)-m(j))/2; 6yd?xeD  
    pows = n(j):-2:m(j); 1Sd<cOEd  
    for k = length(s):-1:1 ;Hn>Ew  
        p = (1-2*mod(s(k),2))* ... v;d3uunqv  
                   prod(2:(n(j)-s(k)))/          ... C#P7@JE  
                   prod(2:s(k))/                 ... [E9)Da_)i  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... 3z -="_p  
                   prod(2:((n(j)+m(j))/2-s(k))); ICzcV };$  
        idx = (pows(k)==rpowers); YqYobL*q/  
        z(:,j) = z(:,j) + p*rpowern(:,idx); G!7A]s>C  
    end -d^c!Iu|  
     |l:,EA_v|  
    if isnorm $'COsiK7  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); M2LW[z  
    end &90pKs  
end 5Vlm?mPU  
]~4*ak=)5\  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  nS]Ih0( K  
bH.f4-.u>)  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 N`+@_.iBX  
FH7l6b,^  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计