首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 bjyZk_\  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! ( B!uy`  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 i|c'Lbre`  
function z = zernfun(n,m,r,theta,nflag) 84$nT>c  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. vp1941P  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N (XVw"m/ye  
%   and angular frequency M, evaluated at positions (R,THETA) on the v0ujdp,B  
%   unit circle.  N is a vector of positive integers (including 0), and a@8v^G  
%   M is a vector with the same number of elements as N.  Each element % BVs47g  
%   k of M must be a positive integer, with possible values M(k) = -N(k) v/@^Q1 G/:  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^9m\=5d  
%   and THETA is a vector of angles.  R and THETA must have the same "Hya6k>j  
%   length.  The output Z is a matrix with one column for every (N,M) bw(a6qKK  
%   pair, and one row for every (R,THETA) pair. +00b)TF  
% :v0U|\j8/V  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,Z aRy$?  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), s:?SF.  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral Mo y <@+  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?U%QG5/>  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized B|Du@^$  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \@Ts+7%  
% _uWpJhCT  
%   The Zernike functions are an orthogonal basis on the unit circle. Wfu(*  
%   They are used in disciplines such as astronomy, optics, and =MSr/O2  
%   optometry to describe functions on a circular domain. ]5mnew  
% )}g(b=  
%   The following table lists the first 15 Zernike functions. )5rb&M}  
% tG:25T0  
%       n    m    Zernike function           Normalization c7<wZ  
%       -------------------------------------------------- jGJLSEe_  
%       0    0    1                                 1 C](f>)Dz /  
%       1    1    r * cos(theta)                    2 \?w2a$?6w  
%       1   -1    r * sin(theta)                    2 1!ii;s^e  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) VQ"hUX8  
%       2    0    (2*r^2 - 1)                    sqrt(3) Sw:7pByjI  
%       2    2    r^2 * sin(2*theta)             sqrt(6) R}'bP  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) wHzEMwY_  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) d.3E[AJa(  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) mkMq  
%       3    3    r^3 * sin(3*theta)             sqrt(8) A]<y:^2])C  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) <W|3\p6  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z"Zmo>cV4  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 6,o~\8ia  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -mAUo;O  
%       4    4    r^4 * sin(4*theta)             sqrt(10) pyH:#5  
%       -------------------------------------------------- ?*2CpM&l  
% 3Q"<<pi!~  
%   Example 1: IW>T}@ |  
% %.vQU @2A  
%       % Display the Zernike function Z(n=5,m=1) 0+iu(VbF  
%       x = -1:0.01:1; ={_C&57N1  
%       [X,Y] = meshgrid(x,x); qJ;jfh!  
%       [theta,r] = cart2pol(X,Y); vY4\59]P  
%       idx = r<=1; 7[w,:9& }  
%       z = nan(size(X)); ?b*s. ^  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); B,<da1(a  
%       figure <_h~w}  
%       pcolor(x,x,z), shading interp b+,' ;bW  
%       axis square, colorbar O|\J}rm'  
%       title('Zernike function Z_5^1(r,\theta)') "*($cQ$v  
% YT8vP~  
%   Example 2: FFV `P  
% ,eOB(?Ku  
%       % Display the first 10 Zernike functions hq%?=2'9?  
%       x = -1:0.01:1; $Oq^jUJ  
%       [X,Y] = meshgrid(x,x); kr+D,h01  
%       [theta,r] = cart2pol(X,Y); ,3?Q(=j  
%       idx = r<=1; T3~k>"W  
%       z = nan(size(X)); t|a2;aq_  
%       n = [0  1  1  2  2  2  3  3  3  3]; OPwtV9%  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ~KHVY)@P  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; XJ;D=~  
%       y = zernfun(n,m,r(idx),theta(idx)); Uhe=h&e2k@  
%       figure('Units','normalized') N8k00*p65  
%       for k = 1:10 `rgn<I"  
%           z(idx) = y(:,k); |s'Po^Sy  
%           subplot(4,7,Nplot(k)) {F3xJ[  
%           pcolor(x,x,z), shading interp H!?c\7adX  
%           set(gca,'XTick',[],'YTick',[]) 3wOZ4<B  
%           axis square Q7*SE%H  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) B{|8#jqY  
%       end C3*gn}[  
% 4~y(`\0?4  
%   See also ZERNPOL, ZERNFUN2. K17j$o^6KK  
p qfUW+>  
%   Paul Fricker 11/13/2006 2-7IJ\  
~kShq%  
^X0P'l &D2  
% Check and prepare the inputs: Q 7   
% ----------------------------- fhar&\;S  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) DAS/43\  
    error('zernfun:NMvectors','N and M must be vectors.') _I:~@  
end ^?U!pq -`  
pv*,gSS  
if length(n)~=length(m) @HQ`~C#Z'  
    error('zernfun:NMlength','N and M must be the same length.') !6BW@GeF]  
end q-.,nMUF  
u\ #"L  
n = n(:); |s"nM<ZNZ  
m = m(:); +,2:g}5  
if any(mod(n-m,2)) V@Rrn <l  
    error('zernfun:NMmultiplesof2', ... cVubb}ou  
          'All N and M must differ by multiples of 2 (including 0).') 3x5JFM  
end ?kWC}k{  
y&Mr=5:y  
if any(m>n) ZNf6;%oGG  
    error('zernfun:MlessthanN', ... .uuO>:  
          'Each M must be less than or equal to its corresponding N.') n1JRDw"e$$  
end d p2F  
.Si,dc\  
if any( r>1 | r<0 ) wp#'nO  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') eAXc:222  
end "l*Pd$sr  
Zw*v  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) KAC6Snu1  
    error('zernfun:RTHvector','R and THETA must be vectors.') sArhZ[H  
end ,RJtm%w  
MNC*Glj=  
r = r(:); R<[qGt|L  
theta = theta(:); WX=Jl<  
length_r = length(r); \Kl+ 5%L  
if length_r~=length(theta) cV 5CaaL  
    error('zernfun:RTHlength', ... E_k$W5  
          'The number of R- and THETA-values must be equal.') dls ss\c^M  
end ]vgB4~4#LP  
7[I}*3Q'  
% Check normalization: `&KwtvkdI  
% -------------------- t *1u[~=  
if nargin==5 && ischar(nflag) My<snmr2d  
    isnorm = strcmpi(nflag,'norm'); WKT4D}{1  
    if ~isnorm LNrX;{ Z  
        error('zernfun:normalization','Unrecognized normalization flag.') F{EnOr`,m=  
    end @\0Eu212  
else Q?3Gk%T0[  
    isnorm = false; |p><'Q% *  
end eln&]d;  
t"k*PA  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^~G8?]w  
% Compute the Zernike Polynomials }D7I3]2>   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #>%X_o-o23  
)Z(TCJ~~!  
% Determine the required powers of r: %K\?E98M  
% ----------------------------------- RnhL< Ywu  
m_abs = abs(m); 'f[T&o&L/  
rpowers = []; q0$ !y!~  
for j = 1:length(n) an|x$e7|?  
    rpowers = [rpowers m_abs(j):2:n(j)]; sA'6ty  
end )+}]+xRWGj  
rpowers = unique(rpowers); T(e!_VY|m  
_h X]%  
% Pre-compute the values of r raised to the required powers, FP;Ccl"s  
% and compile them in a matrix: P^w#S  
% ----------------------------- }&n<uUDH  
if rpowers(1)==0 D&}3$ 7>  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); cJ1#ge%4  
    rpowern = cat(2,rpowern{:}); :|Ad:fEs  
    rpowern = [ones(length_r,1) rpowern]; um4yF*3b9  
else 2'_:S@  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); bty/  
    rpowern = cat(2,rpowern{:}); 7 qj9&bEy  
end IG|X!l  
HuwU0:*  
% Compute the values of the polynomials: 7RUofcax  
% -------------------------------------- 'h^0HE\~p  
y = zeros(length_r,length(n)); l~6?kFy9h  
for j = 1:length(n)  /o[?D  
    s = 0:(n(j)-m_abs(j))/2; qW!]co  
    pows = n(j):-2:m_abs(j); |g #K]v  
    for k = length(s):-1:1 o(:[r@Z0z  
        p = (1-2*mod(s(k),2))* ... % !du,2  
                   prod(2:(n(j)-s(k)))/              ... F8;dKyT?q  
                   prod(2:s(k))/                     ... xER\ZpA :,  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... EmODBTu+  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); A8pIs  
        idx = (pows(k)==rpowers);  ))&;}2{  
        y(:,j) = y(:,j) + p*rpowern(:,idx); $)RNKMZC}A  
    end =dII- L=`  
     [k6nW:C  
    if isnorm =0G!f$7^i  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); hRty [  
    end .G+Pe'4a  
end [P 06lIO  
% END: Compute the Zernike Polynomials NGOqy+Ty{f  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !<SA6m#  
[1F* bI  
% Compute the Zernike functions: D3)zk@N  
% ------------------------------ sFQ^2PwbS  
idx_pos = m>0; Sh?4r i@:  
idx_neg = m<0; <L`"!~Q  
DwrO JIy  
z = y; emdoA:w+   
if any(idx_pos) P#fM:z@[  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); TZ2=O<Kj  
end -u? S=h}  
if any(idx_neg) e 46/{4F,  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 6IWxPt ~  
end OtGb<v<_H  
'JNElXqrv  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) s 1e:v+B]  
%ZERNFUN2 Single-index Zernike functions on the unit circle. CMn{LQcC  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated xj[(P$,P  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive YhY:~  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, >2< 8kBF_  
%   and THETA is a vector of angles.  R and THETA must have the same PJ2qfYsH=>  
%   length.  The output Z is a matrix with one column for every P-value, uPRQU+  
%   and one row for every (R,THETA) pair. 4"xPr[=iG  
% $6CwkM:  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 2AtLyN'.  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 2D:fJ~|-[  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) C&6IU8l\  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 i} N8(B(  
%   for all p. 1.gG^$Jd  
% 5vw{b?  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 <0S,Q+&  
%   Zernike functions (order N<=7).  In some disciplines it is MW PvR|Q  
%   traditional to label the first 36 functions using a single mode lhtZaU~V  
%   number P instead of separate numbers for the order N and azimuthal +e-G,%>9  
%   frequency M. S6fL>'uQ  
% 1&P<  
%   Example: >P/][MT  
% jaa"~5TO8  
%       % Display the first 16 Zernike functions Bf$_XG3  
%       x = -1:0.01:1; &[At`Nw71  
%       [X,Y] = meshgrid(x,x); KX}Rr7a  
%       [theta,r] = cart2pol(X,Y); P9S2?Q  
%       idx = r<=1; ^qC;Nh4F  
%       p = 0:15; gq"gUaz  
%       z = nan(size(X)); > ]8a3x  
%       y = zernfun2(p,r(idx),theta(idx)); #rY sj-2  
%       figure('Units','normalized') ]>+PnP35G  
%       for k = 1:length(p) JXw^/Y$  
%           z(idx) = y(:,k); gl]E_%tH  
%           subplot(4,4,k) aDehqP6vf  
%           pcolor(x,x,z), shading interp yB3;  
%           set(gca,'XTick',[],'YTick',[]) NHl|x4Zpw  
%           axis square ^1wA:?uN}  
%           title(['Z_{' num2str(p(k)) '}']) !wWJ^Oz=  
%       end ]XTu+T.aT  
% z Nl ,  
%   See also ZERNPOL, ZERNFUN. Nx-uQ^e*1  
;r6jx"i  
%   Paul Fricker 11/13/2006 rvyr xw%[  
[|lB5gi4t!  
4<x'ocKlD  
% Check and prepare the inputs: .-JCwnP  
% ----------------------------- >/#KI~}'N  
if min(size(p))~=1 l9Q(xuhv  
    error('zernfun2:Pvector','Input P must be vector.') NBF MN%  
end @rHK( 25+d  
^::EikpF%  
if any(p)>35 Vf`7V$sr  
    error('zernfun2:P36', ... 2QNNp:`6  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... F|& {Rt  
           '(P = 0 to 35).']) *#TYqCc+g  
end w ~ dk#=  
1&/FG(*/  
% Get the order and frequency corresonding to the function number: |TE}`?y[g  
% ---------------------------------------------------------------- 4:7V./" 9  
p = p(:); kEO7PK/  
n = ceil((-3+sqrt(9+8*p))/2); gaf$uT2  
m = 2*p - n.*(n+2); k@ K7yK  
fRfn2jA)d  
% Pass the inputs to the function ZERNFUN: gt\MS;jMa  
% ---------------------------------------- oxj3[</'k  
switch nargin o0ZM[0@j  
    case 3 k/03ZxC-  
        z = zernfun(n,m,r,theta); xP=/N!,#  
    case 4 Z--@.IYoJ  
        z = zernfun(n,m,r,theta,nflag); fGv#s X  
    otherwise |8bq>01~  
        error('zernfun2:nargin','Incorrect number of inputs.') Lw'9  
end !;Jmg  
j&UMjI9[  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) KI]wm  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. dDDGM:]  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of !m(4F(!"h  
%   order N and frequency M, evaluated at R.  N is a vector of o&hIHfZri  
%   positive integers (including 0), and M is a vector with the >2 3-  
%   same number of elements as N.  Each element k of M must be a ?k[p<Uo  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) }YOL"<,:o  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is + <c^=&7Lq  
%   a vector of numbers between 0 and 1.  The output Z is a matrix E1&b#TE 6O  
%   with one column for every (N,M) pair, and one row for every ]MtFf6&  
%   element in R. 6r"u$i` o  
% I5AO?BzJ  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ~dHM4lGY  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is =TP( UJ  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to (]*H[)F/  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ]l~V&#i_c  
%   for all [n,m].  ySbqnw'  
% jxgj,h"}9`  
%   The radial Zernike polynomials are the radial portion of the $3X-r jQtW  
%   Zernike functions, which are an orthogonal basis on the unit L5IbExjV  
%   circle.  The series representation of the radial Zernike \uG`|D n  
%   polynomials is qpJ{2Q  
% pbHsR^  
%          (n-m)/2 ]v G{kAnH  
%            __ L?Yoh<  
%    m      \       s                                          n-2s X~ Rl 6/,  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r sP'0Sl~NU  
%    n      s=0 QIB>rQCceo  
% JIO$=+p  
%   The following table shows the first 12 polynomials. 1x~U*vbhQ  
% RQW6N??C  
%       n    m    Zernike polynomial    Normalization kHc<*L_ V  
%       --------------------------------------------- /q\_&@  
%       0    0    1                        sqrt(2) ExHAY|UA  
%       1    1    r                           2 _kFYBd  
%       2    0    2*r^2 - 1                sqrt(6) KyP)Qzp  
%       2    2    r^2                      sqrt(6) 9H]_4?aX  
%       3    1    3*r^3 - 2*r              sqrt(8) l]2r)!Q7  
%       3    3    r^3                      sqrt(8) rAdacnZV  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) p3^jGj@  
%       4    2    4*r^4 - 3*r^2            sqrt(10) Uf*EJ1Ei  
%       4    4    r^4                      sqrt(10) T:asm1BC[  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 4\ /*jA  
%       5    3    5*r^5 - 4*r^3            sqrt(12) c:M$m3Cs?  
%       5    5    r^5                      sqrt(12) t>UkE9=3\  
%       --------------------------------------------- r!N]$lB  
% P`1EPF  
%   Example: k /EDc533d  
% \'?#i @O  
%       % Display three example Zernike radial polynomials bzmr"/#D3  
%       r = 0:0.01:1; oCi ~P}r  
%       n = [3 2 5]; gd@p|PsS^  
%       m = [1 2 1]; ;SKh   
%       z = zernpol(n,m,r); GgFi9Ffj  
%       figure !$XHQLqF2  
%       plot(r,z) 0>6DSQq~t(  
%       grid on f%qt)Ick  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 6\d X  
% H ;@!?I  
%   See also ZERNFUN, ZERNFUN2. {#Q\z>  
~bA,GfSn0  
% A note on the algorithm. 0WxCSL$#I  
% ------------------------ z xZtz  
% The radial Zernike polynomials are computed using the series r;cV&T/?  
% representation shown in the Help section above. For many special `kBnSio~  
% functions, direct evaluation using the series representation can `m%dX'0 E  
% produce poor numerical results (floating point errors), because _EYB 8e  
% the summation often involves computing small differences between vrl[BPI  
% large successive terms in the series. (In such cases, the functions ,WTTJN  
% are often evaluated using alternative methods such as recurrence KAA3iA@>+  
% relations: see the Legendre functions, for example). For the Zernike ;\)=f6N  
% polynomials, however, this problem does not arise, because the uf)Oy7FQ  
% polynomials are evaluated over the finite domain r = (0,1), and <ZPZk'53<f  
% because the coefficients for a given polynomial are generally all J0<p4%Cf  
% of similar magnitude. \x\.  
% :pKG\A  
% ZERNPOL has been written using a vectorized implementation: multiple nf%4sIQ*x  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] 1IA5.@G:  
% values can be passed as inputs) for a vector of points R.  To achieve Zy]s`aa  
% this vectorization most efficiently, the algorithm in ZERNPOL \%_ZV9cKF  
% involves pre-determining all the powers p of R that are required to jD< pIHau  
% compute the outputs, and then compiling the {R^p} into a single ~5#)N{GbY  
% matrix.  This avoids any redundant computation of the R^p, and 9fVj 8G  
% minimizes the sizes of certain intermediate variables. =q CF%~  
% Q^h5">P  
%   Paul Fricker 11/13/2006 #+sF`qR,  
)@ PnTpL*  
mA{#]Yvf1  
% Check and prepare the inputs: iK}v`xq  
% ----------------------------- 3B18dv,V  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2*[Un(  
    error('zernpol:NMvectors','N and M must be vectors.') Z$2L~j"=!  
end L~0& Q  
:k"rhI  
if length(n)~=length(m) ua& @GXvZ  
    error('zernpol:NMlength','N and M must be the same length.') j=3-Qk`"/|  
end O2#S: ~h  
,nE&Me&#J  
n = n(:); C6k4g75U2  
m = m(:); L{PH0Jf  
length_n = length(n); ,Aa|Bd]b  
{rGYRn,  
if any(mod(n-m,2)) ph^4GBR   
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ,t~sV@ap  
end STT2o=   
S%+R#A1  
if any(m<0) M/w{&&  
    error('zernpol:Mpositive','All M must be positive.') u6_jnZGB  
end %Dyh:h   
5EhE`k4  
if any(m>n) ]gP8?s|  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 3X'WR]  
end v>I<|  
9.8,q  
if any( r>1 | r<0 ) ZlM_ m >,o  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') 4I ,o&TK  
end =HPu {K$  
v72,h  
if ~any(size(r)==1) ,8`O7V{W  
    error('zernpol:Rvector','R must be a vector.') s`Vf+ l0  
end @.o@-3k  
3/tJDb5  
r = r(:); twv lQ|  
length_r = length(r); SQIdJG^:  
E4m:1=Nd~]  
if nargin==4 BGpk&.J  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); > ZDC . ~  
    if ~isnorm Kw*~W i  
        error('zernpol:normalization','Unrecognized normalization flag.') Vj7Hgc-,  
    end 0Q3YN(  
else C 38XQLC  
    isnorm = false; lVT&+r~r  
end .nPL2zO  
u9@b <  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {kG;."S+K  
% Compute the Zernike Polynomials  V.fp/jhj  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {9{J^@@  
GWh|FEqUbf  
% Determine the required powers of r: [iXi\Ex  
% ----------------------------------- %(NN *o9"q  
rpowers = []; ~bFdJj 1*  
for j = 1:length(n) i0i`k^bA  
    rpowers = [rpowers m(j):2:n(j)]; O 'Am RJ  
end p  .aE  
rpowers = unique(rpowers); M%;"c?g  
>gGil|I  
% Pre-compute the values of r raised to the required powers, |P~q/Wff  
% and compile them in a matrix: kpWzMd &RK  
% -----------------------------  I9Om#m  
if rpowers(1)==0 u m{e&5jk  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .SBc5KX  
    rpowern = cat(2,rpowern{:}); @dl<-  
    rpowern = [ones(length_r,1) rpowern]; vhNohCt  
else r?]%d!   
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); z^9E;  
    rpowern = cat(2,rpowern{:}); %U:C|  
end u:eW0Ows"  
[nC4/V+-  
% Compute the values of the polynomials: ,-!2 5G  
% -------------------------------------- 8LeK wb  
z = zeros(length_r,length_n); P_mi)@  
for j = 1:length_n iU,/!IQ  
    s = 0:(n(j)-m(j))/2; YjL t&D:IZ  
    pows = n(j):-2:m(j); `+Xe'ey  
    for k = length(s):-1:1 LAos0bc)w\  
        p = (1-2*mod(s(k),2))* ... cPm~` Zd  
                   prod(2:(n(j)-s(k)))/          ... `TkbF9N+  
                   prod(2:s(k))/                 ... AO^]>/7ed  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... #9INX`s-  
                   prod(2:((n(j)+m(j))/2-s(k))); BZ}`4W'  
        idx = (pows(k)==rpowers); .2/,XwIr  
        z(:,j) = z(:,j) + p*rpowern(:,idx); ?|)rv  
    end 6g8M7<og9R  
     +{'lZa  
    if isnorm 3 ^pYC K%  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); S>(z\`1qm  
    end 5W|u5AIw  
end q'by;g*m  
%5`r-F  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  I|GV :D  
5hlJbWJa  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 }]uB? +c  
@ARAX\F  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计