首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 L6',s4  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! (apAUIE  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 8_ju.h[  
function z = zernfun(n,m,r,theta,nflag) (3 _2h4O  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. HeR-;L  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _tYt<oB~%  
%   and angular frequency M, evaluated at positions (R,THETA) on the AU)Qk$c  
%   unit circle.  N is a vector of positive integers (including 0), and Vg2s~ce{  
%   M is a vector with the same number of elements as N.  Each element &&tQ,5H5  
%   k of M must be a positive integer, with possible values M(k) = -N(k) m-;u]X=a  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, KUB"@wUr  
%   and THETA is a vector of angles.  R and THETA must have the same lKe aI  
%   length.  The output Z is a matrix with one column for every (N,M) >yT:eG  
%   pair, and one row for every (R,THETA) pair. *S ;v406  
% dmf~w_(7  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike N>@AsI  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %1e`R*I  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral /(vT49(]  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, zQ7SiRt7*  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized @aBZ|8  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d<#Xqc  
% G;, 2cu K  
%   The Zernike functions are an orthogonal basis on the unit circle. 0;V2>!  
%   They are used in disciplines such as astronomy, optics, and 4(o0I~hpB?  
%   optometry to describe functions on a circular domain. ~Fisno  
% Tqm9><!r  
%   The following table lists the first 15 Zernike functions. O@Xl_QNxc!  
% `qX'9e3VP+  
%       n    m    Zernike function           Normalization ^2Op?J  
%       -------------------------------------------------- LkJ3 :3O  
%       0    0    1                                 1 *}yW8i}36  
%       1    1    r * cos(theta)                    2 I_N"mnn@Nr  
%       1   -1    r * sin(theta)                    2 QK//bV)  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) $(C71M|CT  
%       2    0    (2*r^2 - 1)                    sqrt(3) "i9$w\lm  
%       2    2    r^2 * sin(2*theta)             sqrt(6) jtl7t59R  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) 8a"aJYj  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) (}bP`[@rX!  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ,TP^i 0  
%       3    3    r^3 * sin(3*theta)             sqrt(8) AvhmN5O =  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) U4 M!RdG  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Qx$Yj  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ~ / "aD  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3\6jzD  
%       4    4    r^4 * sin(4*theta)             sqrt(10) !AP|ozkL  
%       -------------------------------------------------- [|uAfp5R  
% } fSbH  
%   Example 1: !) LMn  
% `N2zeFG  
%       % Display the Zernike function Z(n=5,m=1) .rax`@\8  
%       x = -1:0.01:1; 0I079fqk<  
%       [X,Y] = meshgrid(x,x); sL[,J[AN;  
%       [theta,r] = cart2pol(X,Y); <A+Yo3|7  
%       idx = r<=1; -s4qm)\  
%       z = nan(size(X)); }1epn#O_4  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); =7#)8p[  
%       figure C{+~x@  
%       pcolor(x,x,z), shading interp |PTL!>ym2  
%       axis square, colorbar TQYud'u/  
%       title('Zernike function Z_5^1(r,\theta)') 8h-6;x^^  
% Hd6Qy {,*-  
%   Example 2: A*E$_N  
% C %y AMQ  
%       % Display the first 10 Zernike functions P2f~sx9  
%       x = -1:0.01:1; hA)3Ah*  
%       [X,Y] = meshgrid(x,x); N2=gSEY  
%       [theta,r] = cart2pol(X,Y); eDIjcZ  
%       idx = r<=1; \)`\F$CF  
%       z = nan(size(X)); CP/`ON  
%       n = [0  1  1  2  2  2  3  3  3  3]; }fL8<HM\'c  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; F5{~2~Cw(  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; N!r@M."  
%       y = zernfun(n,m,r(idx),theta(idx)); Vh4z+JOC  
%       figure('Units','normalized') u6cWLV t  
%       for k = 1:10 0;r+E*`DA  
%           z(idx) = y(:,k); Up)b;wR  
%           subplot(4,7,Nplot(k)) 0 UjT<t^F  
%           pcolor(x,x,z), shading interp prhFA3 rW.  
%           set(gca,'XTick',[],'YTick',[]) A]ciox$AjW  
%           axis square ]D%D:>9|/  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Y KeOH  
%       end 19&!#z  
% z`m-Ca>6  
%   See also ZERNPOL, ZERNFUN2. B1J+`R3OX  
K|E}Ni  
%   Paul Fricker 11/13/2006 d),@&MSN  
`N ;!=7y7Y  
NTls64AS.  
% Check and prepare the inputs: .K;*uq:0  
% ----------------------------- P[aB}<1f0  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (Q\QZu@  
    error('zernfun:NMvectors','N and M must be vectors.') 23&;28)8  
end *+lnAxRa?  
] QtGgWtC  
if length(n)~=length(m) ${0Xq k  
    error('zernfun:NMlength','N and M must be the same length.') pA"pt~6  
end B5P++aQ  
~\Fde^1  
n = n(:); |]Pigi7y-  
m = m(:); U/wY;7{)#  
if any(mod(n-m,2)) !5Z?D8dcx  
    error('zernfun:NMmultiplesof2', ... p"JITH :G  
          'All N and M must differ by multiples of 2 (including 0).') |4x&f!%m  
end 3zMmpeq  
qS+'#Sn  
if any(m>n)  FxD\F  
    error('zernfun:MlessthanN', ... ?^5W.`Y2i  
          'Each M must be less than or equal to its corresponding N.') Y -7x**I  
end h9&<-k  
%[&cy'  
if any( r>1 | r<0 ) nS]/=xP{  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') X*}S(9cg\i  
end  Js'COO  
<@ (HQuL#  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5H""_uw  
    error('zernfun:RTHvector','R and THETA must be vectors.') Jel%1'Dc^  
end (;V]3CtU*  
6@; w%Ea  
r = r(:); x !]ZVl]  
theta = theta(:); jKM-(s!(  
length_r = length(r); %pe7[/  
if length_r~=length(theta) G2 xYa$&][  
    error('zernfun:RTHlength', ... E':y3T@."  
          'The number of R- and THETA-values must be equal.') h:Npi `y  
end =HYMX "s  
Op\l  
% Check normalization: =r:D]?8oC  
% -------------------- 6pxj9@X+  
if nargin==5 && ischar(nflag) UIIunA9  
    isnorm = strcmpi(nflag,'norm'); *.n9D  
    if ~isnorm (:vY:-\ bO  
        error('zernfun:normalization','Unrecognized normalization flag.') 6n45]?  
    end Z!^iPB0~D  
else  }m\  
    isnorm = false; OfbM]:}<3  
end 4}LGE>  
].7)^  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5 S7\m5  
% Compute the Zernike Polynomials \/S?.P#L~  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a~:'OW:Q  
=DcKHL(m  
% Determine the required powers of r: 4$1sBY/  
% ----------------------------------- D{PO!WzW  
m_abs = abs(m); 9Z6O{ >  
rpowers = []; htkn#s~=  
for j = 1:length(n) `cMa Fc-y/  
    rpowers = [rpowers m_abs(j):2:n(j)]; /8 Ca8Ju  
end 3:dQN;=  
rpowers = unique(rpowers); - "h {B  
"a>%tsl$K  
% Pre-compute the values of r raised to the required powers, Cf@WjgR  
% and compile them in a matrix: oT_k"]~Q~2  
% ----------------------------- e nDjP  
if rpowers(1)==0 57%:0loW  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +c+#InsY  
    rpowern = cat(2,rpowern{:}); p`T7Y\\#!  
    rpowern = [ones(length_r,1) rpowern]; h9 [ov)  
else ,d&~#W]  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `?2S4lN/  
    rpowern = cat(2,rpowern{:}); G'#a&6  
end bUU_NqUf*3  
N=)N   
% Compute the values of the polynomials: oju4.1  
% -------------------------------------- pn {Nk1Pl  
y = zeros(length_r,length(n)); ;~tKNytD`B  
for j = 1:length(n) 7o'kdY Jzo  
    s = 0:(n(j)-m_abs(j))/2; 87r#;ND  
    pows = n(j):-2:m_abs(j); `:R8~>p  
    for k = length(s):-1:1 u2@:[:Ao  
        p = (1-2*mod(s(k),2))* ... Ycn*aR2  
                   prod(2:(n(j)-s(k)))/              ... QEm6#y  
                   prod(2:s(k))/                     ... ]M-j_("&  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _LCK|H%v'  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); `>g: :  
        idx = (pows(k)==rpowers); 8! pfy"  
        y(:,j) = y(:,j) + p*rpowern(:,idx); G# .z((Rj  
    end xCiY jl$  
     f*aYS  
    if isnorm tg7%@SI5^-  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); yI)~- E.  
    end BJB'o  
end [?.k8;k  
% END: Compute the Zernike Polynomials 65)/|j+  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ip|~j} }  
&3:-(:<U  
% Compute the Zernike functions: QZYD;&iY&  
% ------------------------------ "!+q0l1]@  
idx_pos = m>0; /!P,o}l7  
idx_neg = m<0; 9]xOu Cb  
N0vr>e`  
z = y; ?qO_t;:0>  
if any(idx_pos) D0.7an6  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8I$>e (  
end &?#V*-;^  
if any(idx_neg) ?WKFDL'_0j  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5,Mc` IIK1  
end  wC}anq>>  
eYOwdTrq  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) -2{NI.-Xd  
%ZERNFUN2 Single-index Zernike functions on the unit circle. :uSo 2d  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ;wa- \Z  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive p$`71w)'[  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1,  zN: VT&  
%   and THETA is a vector of angles.  R and THETA must have the same h-].?X,]Q  
%   length.  The output Z is a matrix with one column for every P-value, F;kY5+a7~e  
%   and one row for every (R,THETA) pair. 8LB,8 *L^  
% *GH` u*C_  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike |k\4\a Lj  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) |a*VoMZ  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) #.'0DWT \-  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 -Wd2FD^x  
%   for all p. .D!0$W mOZ  
% nQy.?*X  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 nm`[\3R  
%   Zernike functions (order N<=7).  In some disciplines it is ?\"GT]5D  
%   traditional to label the first 36 functions using a single mode "v@Y[QI  
%   number P instead of separate numbers for the order N and azimuthal Ub2t7MU  
%   frequency M. m(i84~  
% 1hp`.!3]H  
%   Example: 2!Yq9,`  
% @tGju\E"o  
%       % Display the first 16 Zernike functions WYSqnmi  
%       x = -1:0.01:1; ;|}N\[fk%]  
%       [X,Y] = meshgrid(x,x); sEkfmB2J/  
%       [theta,r] = cart2pol(X,Y); NvW`x   
%       idx = r<=1; _2xNio&  
%       p = 0:15; ,R#pQ 4  
%       z = nan(size(X)); B52n'.  
%       y = zernfun2(p,r(idx),theta(idx)); }Go?j# !  
%       figure('Units','normalized') #I8)|p?P  
%       for k = 1:length(p) LM\H%=*L  
%           z(idx) = y(:,k); X'Q?Mh  
%           subplot(4,4,k) I! eu|_cF  
%           pcolor(x,x,z), shading interp c!*yxzs\  
%           set(gca,'XTick',[],'YTick',[]) .ZQD`SRrI  
%           axis square p!B& &)&db  
%           title(['Z_{' num2str(p(k)) '}']) q!iTDg*$  
%       end h;cl+c|B  
% Q]$gw,H"6  
%   See also ZERNPOL, ZERNFUN. w"ZngrwBl  
m#1 >y}  
%   Paul Fricker 11/13/2006 |>|f?^  
QOiPDu=8z  
u_H=Xm)9  
% Check and prepare the inputs: i<@"+~n~GK  
% ----------------------------- 0Xo>f"2<f  
if min(size(p))~=1 G\&9.@`k  
    error('zernfun2:Pvector','Input P must be vector.') kb3>q($  
end epN> ;e z  
E+z),"QA  
if any(p)>35 S!WG|75B  
    error('zernfun2:P36', ... v z6No%8X  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... J;HYGu:  
           '(P = 0 to 35).']) ]bxBo  
end & pHSX  
)|3BS`  
% Get the order and frequency corresonding to the function number: I;1W6uD=  
% ---------------------------------------------------------------- !]f80z  
p = p(:); zVt1Ta:j  
n = ceil((-3+sqrt(9+8*p))/2); &3gC&b^i  
m = 2*p - n.*(n+2); )qSjI_qt5  
'3<T~t  
% Pass the inputs to the function ZERNFUN: dCA| )  
% ---------------------------------------- ^^,cnDlm  
switch nargin W(5XcP(  
    case 3 `PY=B$?{4  
        z = zernfun(n,m,r,theta); \k4tYL5  
    case 4 =hRo#]{(K  
        z = zernfun(n,m,r,theta,nflag); S)LvYOOB@  
    otherwise 5 w-Pq&q  
        error('zernfun2:nargin','Incorrect number of inputs.') A1Ru&fd!  
end *^y,Gg/  
B]2m(0Y>>v  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) b:WA}x V  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. r 4 $<,~  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of IA%|OVAfF  
%   order N and frequency M, evaluated at R.  N is a vector of NF "|*S  
%   positive integers (including 0), and M is a vector with the Qm_IU!b  
%   same number of elements as N.  Each element k of M must be a X9 N4  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) ^>Vl@cW0uz  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ^[x6p}$  
%   a vector of numbers between 0 and 1.  The output Z is a matrix *@I/TX'\rY  
%   with one column for every (N,M) pair, and one row for every ]l7rM"  
%   element in R. 5GK> ~2c(  
% vh"wXu  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- @.&KRAZ  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ?B+]Ex(\B,  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to < ]"Uy p  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 o9rZ&Q<  
%   for all [n,m]. GIb,y,PDB  
% ?;]Xc~  
%   The radial Zernike polynomials are the radial portion of the R$h B9BK  
%   Zernike functions, which are an orthogonal basis on the unit Tw,|ZA4XH  
%   circle.  The series representation of the radial Zernike uc{s\_  
%   polynomials is E- jJ!>&K  
% T mK[^  
%          (n-m)/2 Wr3z%1  
%            __ d>gQgQ;g  
%    m      \       s                                          n-2s s6F0&L;N&  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ~9y/MR  
%    n      s=0 kyi"U A82  
% z"nMR_TTu  
%   The following table shows the first 12 polynomials. c(b2f-0!4  
% QE|x[?7e,!  
%       n    m    Zernike polynomial    Normalization B&QEt[=s  
%       --------------------------------------------- 82)%`$yZw[  
%       0    0    1                        sqrt(2) e:l7 w3?O  
%       1    1    r                           2 q eDXG  
%       2    0    2*r^2 - 1                sqrt(6) @;G%7&ps  
%       2    2    r^2                      sqrt(6) XXw>h4hl  
%       3    1    3*r^3 - 2*r              sqrt(8) j.!5&^;u4  
%       3    3    r^3                      sqrt(8) \kZ@2.pN  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) j #~ S"t  
%       4    2    4*r^4 - 3*r^2            sqrt(10) 2KlVj]!7  
%       4    4    r^4                      sqrt(10) +B[XTn,Cru  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) KVevvy)W  
%       5    3    5*r^5 - 4*r^3            sqrt(12) Quwq_.DU  
%       5    5    r^5                      sqrt(12) /PVx  
%       --------------------------------------------- c|@OD3w2lM  
% Dz,|sHCmk  
%   Example: Sd F+b+P]  
% :-_"[:t 5Z  
%       % Display three example Zernike radial polynomials 7z_ZD0PxPc  
%       r = 0:0.01:1; wV\7  
%       n = [3 2 5]; !LQzf(s;  
%       m = [1 2 1]; )(OGo`4Qz  
%       z = zernpol(n,m,r); L&KL]n  
%       figure ]UkqPtG;  
%       plot(r,z) O=vD6@QI  
%       grid on D9  Mst6  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') bk0<i*ju7(  
% |{ =Jp<} s  
%   See also ZERNFUN, ZERNFUN2. mBEMwJ}O`  
vmv6y*qU  
% A note on the algorithm. j115:f  
% ------------------------ qm<-(Qc(W  
% The radial Zernike polynomials are computed using the series e7y,zcbv  
% representation shown in the Help section above. For many special n {\d  
% functions, direct evaluation using the series representation can FJq g,  
% produce poor numerical results (floating point errors), because Jz4;7/  
% the summation often involves computing small differences between 'pyIMB?x  
% large successive terms in the series. (In such cases, the functions ,k1ns?i9KH  
% are often evaluated using alternative methods such as recurrence ~# \{'<  
% relations: see the Legendre functions, for example). For the Zernike gL~3z'$  
% polynomials, however, this problem does not arise, because the P1z:L  
% polynomials are evaluated over the finite domain r = (0,1), and IA Ws}xIly  
% because the coefficients for a given polynomial are generally all 9@?|rj e9  
% of similar magnitude. Pc`)D:/}R  
% 2I3H?Lrx!m  
% ZERNPOL has been written using a vectorized implementation: multiple }+}Cl T  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] .AQTUd(_  
% values can be passed as inputs) for a vector of points R.  To achieve mG1!~}[  
% this vectorization most efficiently, the algorithm in ZERNPOL ?^J%S,  
% involves pre-determining all the powers p of R that are required to :fDzMD  
% compute the outputs, and then compiling the {R^p} into a single fu{v(^  
% matrix.  This avoids any redundant computation of the R^p, and jd2 p~W  
% minimizes the sizes of certain intermediate variables. ([|^3tM  
% k.})3~F-  
%   Paul Fricker 11/13/2006 h+7U'+|%A  
\Unawv~  
XZQ-Ig18  
% Check and prepare the inputs: _>)@6srC  
% ----------------------------- R%~~'/2V  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ++UxzUd  
    error('zernpol:NMvectors','N and M must be vectors.') y<~(}xsHh  
end >0u*E *Y  
gV$0J?Pr.  
if length(n)~=length(m) Lctp=X4  
    error('zernpol:NMlength','N and M must be the same length.') tKeozV[V  
end lfG',hlI;  
EiP N44(  
n = n(:); &xvNR=K[`  
m = m(:); _j4 K  
length_n = length(n); tk)}4b^\%j  
P8H2v_)X&  
if any(mod(n-m,2)) *NM*   
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ?r*}1WsH  
end 4uh~@Lv  
eL'fJcjw<  
if any(m<0) {u0sbb(  
    error('zernpol:Mpositive','All M must be positive.') APJFy@l}  
end cmYzS6f,7  
m&#D~  
if any(m>n) i+Mg[x$.  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') D+N@l"U{  
end Bs|#7mA[  
9xK#( M  
if any( r>1 | r<0 ) 1D2RhM%  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') R&:Qy7"  
end 7<L!" 2VB  
C!nbl+75  
if ~any(size(r)==1) zG c ]*R  
    error('zernpol:Rvector','R must be a vector.') !HtW~8|:  
end @HE?G  
1bDAi2 H  
r = r(:); 5Q:49S47  
length_r = length(r); #Uep|A  
+QOK]NJN  
if nargin==4 EY.m,@{  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); @7;}6,)  
    if ~isnorm naA8RD5/  
        error('zernpol:normalization','Unrecognized normalization flag.') ~ 588md :  
    end pV!WZ Ufg  
else LF)wn -C}  
    isnorm = false; {lUaN0O:  
end ;>fM?ae5  
0-uVmlk=/  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '|*e4n  
% Compute the Zernike Polynomials V}~',o<m  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K|Xe)  
x8C *  
% Determine the required powers of r: *.VNyay  
% ----------------------------------- !w0=&/Y{R  
rpowers = []; 'c]Pm,Ls  
for j = 1:length(n) ($8!r|g5#  
    rpowers = [rpowers m(j):2:n(j)]; ccx0aC3@I  
end 16nU`TN  
rpowers = unique(rpowers); ;!7M<T$&  
~BE=z:  
% Pre-compute the values of r raised to the required powers, ,Ij/ ^EC}  
% and compile them in a matrix: gR_Exs'K  
% ----------------------------- ELg$tc  
if rpowers(1)==0 f]C^{Uk#  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); M"msLz  
    rpowern = cat(2,rpowern{:}); 1=z\,~ b  
    rpowern = [ones(length_r,1) rpowern]; ux 17q>G  
else bweAmSs  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >svx 8CT  
    rpowern = cat(2,rpowern{:}); Z^%HDB9^  
end 8o).q}>&  
6\VZ 6oS  
% Compute the values of the polynomials: ,% .)mf  
% -------------------------------------- o3NB3@uj<  
z = zeros(length_r,length_n); )(c%QWz  
for j = 1:length_n Jp_ :.4  
    s = 0:(n(j)-m(j))/2; ?iamo.0zN  
    pows = n(j):-2:m(j); \JCpwNT{P  
    for k = length(s):-1:1 ZsYY)<n  
        p = (1-2*mod(s(k),2))* ... Q )8I(*  
                   prod(2:(n(j)-s(k)))/          ... 1CJAFi>%D  
                   prod(2:s(k))/                 ... sheCwhV  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... /1bQ RI^\  
                   prod(2:((n(j)+m(j))/2-s(k))); 7&w[h4Lw  
        idx = (pows(k)==rpowers); #/_ VY.  
        z(:,j) = z(:,j) + p*rpowern(:,idx); 3a}c'$F>_'  
    end ^i8(/iwdJE  
     WY5HmNX3E  
    if isnorm QBfo=9[=e  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); [l7n "gJ~  
    end ^V]IPGV  
end X+N8r^&  
^7t1'A8e<  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ,/!^ZS*  
rFp>A`TJ  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 I8YCXh  
.>LJ(Sx9b  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计