| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 H=(Zx function z = zernfun(n,m,r,theta,nflag) k#pNk7;MZ %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6T ,'Oz % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =Z}=n S?4 % and angular frequency M, evaluated at positions (R,THETA) on the |;MW98 A % unit circle. N is a vector of positive integers (including 0), and f4r)g2Zb[ % M is a vector with the same number of elements as N. Each element {BS`v5* % k of M must be a positive integer, with possible values M(k) = -N(k) 8u4Fag Q, % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, {'1e? % and THETA is a vector of angles. R and THETA must have the same =%oQIx % length. The output Z is a matrix with one column for every (N,M) 1QJB4|5R# % pair, and one row for every (R,THETA) pair. 7bC)Co#: % ])iw|`@dJ % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike qhqqCVrsW % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), L|A.;Gq % with delta(m,0) the Kronecker delta, is chosen so that the integral M5<cHE % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \2NT7^H# % and theta=0 to theta=2*pi) is unity. For the non-normalized e]@R'oM?#` % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. N4[^!}4 % LGPPyKNx % The Zernike functions are an orthogonal basis on the unit circle. ^.~m4t`U % They are used in disciplines such as astronomy, optics, and T@x_}a:g % optometry to describe functions on a circular domain. NG?- dkD % tB==v{t % The following table lists the first 15 Zernike functions. 2<33BBlWA % ~#y( ]Xec2 % n m Zernike function Normalization c},wW@SF2W % -------------------------------------------------- G+zIh}9 % 0 0 1 1 +je{%,* % 1 1 r * cos(theta) 2 JPGEE1!B{b % 1 -1 r * sin(theta) 2 *#g[
jl4 % 2 -2 r^2 * cos(2*theta) sqrt(6) MZK%IC> % 2 0 (2*r^2 - 1) sqrt(3) FvT;8ik:3 % 2 2 r^2 * sin(2*theta) sqrt(6) (7J (.EG2e % 3 -3 r^3 * cos(3*theta) sqrt(8) >[a&,gS % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ^U[yk'!Y % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) $KMxq= % 3 3 r^3 * sin(3*theta) sqrt(8) KG9FR*" % 4 -4 r^4 * cos(4*theta) sqrt(10) *J|]E( % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J'#R9NO< % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) mqk tM6 % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jpRC6b? % 4 4 r^4 * sin(4*theta) sqrt(10) PWbi`qF)r % -------------------------------------------------- ~ w,hJ ` % P[<EFjE % Example 1: <`WtP+` % _ !H8j/b % % Display the Zernike function Z(n=5,m=1) nHTb~t5Ke % x = -1:0.01:1; URb % [X,Y] = meshgrid(x,x); g&`[r6B % [theta,r] = cart2pol(X,Y); bc(b1u? % idx = r<=1; NQ qq\h % z = nan(size(X)); c!HmZ]/ % z(idx) = zernfun(5,1,r(idx),theta(idx)); i$W
E1- % figure MR-cO Pn % pcolor(x,x,z), shading interp "?SR+;Y:q % axis square, colorbar jhkNi`E7 % title('Zernike function Z_5^1(r,\theta)') e=Teq~K % $1bx\
% Example 2: vQhi2J' % TB(!*t % % Display the first 10 Zernike functions \bzT=^Z;2 % x = -1:0.01:1; `R{ ZED
l' % [X,Y] = meshgrid(x,x); 9i*Xd$ G % [theta,r] = cart2pol(X,Y); 5x1_rjP$| % idx = r<=1; #;~dA % z = nan(size(X)); XX|wle1Kg % n = [0 1 1 2 2 2 3 3 3 3]; XbMAcgS % m = [0 -1 1 -2 0 2 -3 -1 1 3]; 2#g4R % Nplot = [4 10 12 16 18 20 22 24 26 28]; d 0CFMy6 % y = zernfun(n,m,r(idx),theta(idx)); bdz&"\$X % figure('Units','normalized') CY
i{WV(: % for k = 1:10 ygSvYMC % z(idx) = y(:,k); ug.'OR % subplot(4,7,Nplot(k)) w\2yippI % pcolor(x,x,z), shading interp Qb~&a1&s# % set(gca,'XTick',[],'YTick',[]) 7<p?E7 % axis square 2<GN+Wv[# % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) K}1eQS&$a % end &nX,)" % RRBBz7:~ % See also ZERNPOL, ZERNFUN2. T_1p1Sg gP 6`q % Paul Fricker 11/13/2006 ;)gNe:Q ?~#{3b Zk#?.z} % Check and prepare the inputs: 1?5UVv_F % ----------------------------- *zn=l+c if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) D|rcSa.M error('zernfun:NMvectors','N and M must be vectors.') \~ql_X;3 end i1JWdHt )}i;OLw- if length(n)~=length(m) P<GHX~nB error('zernfun:NMlength','N and M must be the same length.') J~URv)g end 6*r3T:u3 9}DF*np`G n = n(:); KIfR4,=Q|
m = m(:); y/}ENUGR if any(mod(n-m,2)) u{"@
4 error('zernfun:NMmultiplesof2', ... #w:6<$ 'All N and M must differ by multiples of 2 (including 0).') l5bd);Ltq end YMEI
J} #m<<]L(o8W if any(m>n) 6a\YD{D] _ error('zernfun:MlessthanN', ... ZFsJeF'" 'Each M must be less than or equal to its corresponding N.') "-;l{tL end KB^i=+xr |L"!^Y#=D if any( r>1 | r<0 ) K9+C3"*I error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;\gsd'i end oI6o$C ={a_?l% if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "TgE@bC error('zernfun:RTHvector','R and THETA must be vectors.') o)hQ]d end dfoFs&CSKh J}vxK
H#= r = r(:); /P-Eg86V' theta = theta(:); t% f6P length_r = length(r); (~<9\ZJs if length_r~=length(theta) ugI9rxT]Kv error('zernfun:RTHlength', ... 30Z RKrW"~ 'The number of R- and THETA-values must be equal.') @^';[P! end fQB>0RR2 @]0;aZ{3 % Check normalization: '!6Py1i % -------------------- \dz@hJl: if nargin==5 && ischar(nflag) mtON
dI isnorm = strcmpi(nflag,'norm'); \|}dlG if ~isnorm '~ {x n error('zernfun:normalization','Unrecognized normalization flag.') ]O\Oj6C end 3+EAMn else 5z>kz/uxW isnorm = false; 9(/ ;Wutj" end 1E*No1 a|x1aN0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :2KLziO2 % Compute the Zernike Polynomials =+qtk(p %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u(s/4Lu
Z E*m; % Determine the required powers of r: 6DFF:wrm& % ----------------------------------- M=hH:[6 & m_abs = abs(m); U Ux] rpowers = []; lo*)%fy for j = 1:length(n) rK%A=Q rpowers = [rpowers m_abs(j):2:n(j)]; D{{ME8 end z3 lZ3 rpowers = unique(rpowers); }!i#1uHUH: y@kRJ 8d % Pre-compute the values of r raised to the required powers, |nN{XjNfP5 % and compile them in a matrix: bnz2\C9^ % ----------------------------- G' ~Z' if rpowers(1)==0 D9;2w7v rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &_^t$To rpowern = cat(2,rpowern{:}); V #0F2GV<, rpowern = [ones(length_r,1) rpowern]; ,{HxX0 else ) /kf rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W -Yv0n3 rpowern = cat(2,rpowern{:}); (hB&OP5Fne end 8X@p?43 |=^p`CT % Compute the values of the polynomials: UvSvgDMl % -------------------------------------- fAu^eS%>7 y = zeros(length_r,length(n)); Ny@CP} for j = 1:length(n) @hlT7C)xK s = 0:(n(j)-m_abs(j))/2; JM-spi o pows = n(j):-2:m_abs(j); fWx
%?J for k = length(s):-1:1 @O/Jy2>3H p = (1-2*mod(s(k),2))* ... ,&$+{3 prod(2:(n(j)-s(k)))/ ... i+$G=Z#3E prod(2:s(k))/ ... }7>r, prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0^41dfdE prod(2:((n(j)+m_abs(j))/2-s(k))); 2nW:|*:/p6 idx = (pows(k)==rpowers); lLO|, y(:,j) = y(:,j) + p*rpowern(:,idx); gBzg'Z end j~(s3pSCo .5ap9li] if isnorm P8N`t&r"7 y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); o5 UM)g end 0j^QY6 end 8E:8iNbF % END: Compute the Zernike Polynomials 7~@9=e8G %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VQ5D?^'0/ B?
$9M9 % Compute the Zernike functions: &_-,Nxsf % ------------------------------ ^ lrq`1k idx_pos = m>0; /;7\HZ$@/ idx_neg = m<0; mRe BS M ABrf`<b z = y; *=Ko"v
} if any(idx_pos) +FD"8 ^YC z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _g|zDi^ end e>zCzKK if any(idx_neg) H ?Vo#/ z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); F)ak5 end C&\MDOjx +gZg7]!Z % EOF zernfun
|
|