| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ;d4y{ function z = zernfun(n,m,r,theta,nflag) VUp. j %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7{-@}j` % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N
=^Th[B % and angular frequency M, evaluated at positions (R,THETA) on the CJp-Y}fGEA % unit circle. N is a vector of positive integers (including 0), and )!A 2> % M is a vector with the same number of elements as N. Each element D i+4Eb
% k of M must be a positive integer, with possible values M(k) = -N(k) hcyn
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, v; Es^
YI % and THETA is a vector of angles. R and THETA must have the same AP0|z % length. The output Z is a matrix with one column for every (N,M) Xtkw Z3 % pair, and one row for every (R,THETA) pair. u#FXW_-TK % &3I$8v|!? % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ilv _D~|
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 'j }g % with delta(m,0) the Kronecker delta, is chosen so that the integral G]-%AO{K % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, MI\]IQU % and theta=0 to theta=2*pi) is unity. For the non-normalized :W~f;k % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9\AS@SH{^T % X'@'/[? % The Zernike functions are an orthogonal basis on the unit circle. Oxv+1Ub<Dv % They are used in disciplines such as astronomy, optics, and =5ug\S % optometry to describe functions on a circular domain. .Vmtx % ;,rnk- % The following table lists the first 15 Zernike functions. &Pq\cNYzW % =:gjz4}_8 % n m Zernike function Normalization ?I[h~vr6. % -------------------------------------------------- _dr*`yXi % 0 0 1 1 !lhFKb;
% 1 1 r * cos(theta) 2 ra]:$XJ5=a % 1 -1 r * sin(theta) 2 ,Aj }]h\L % 2 -2 r^2 * cos(2*theta) sqrt(6) \!<"7=(J{4 % 2 0 (2*r^2 - 1) sqrt(3) aM$=|%9/ % 2 2 r^2 * sin(2*theta) sqrt(6) &hI>L % 3 -3 r^3 * cos(3*theta) sqrt(8) f*<ps
o % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) B'p5M.6d#: % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ^wJEfac % 3 3 r^3 * sin(3*theta) sqrt(8) -2 xE#r % 4 -4 r^4 * cos(4*theta) sqrt(10) &2{]hRM % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hd0Xx}3& % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 3D[=b%2\ % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <Y>3 % 4 4 r^4 * sin(4*theta) sqrt(10) ]G*$W+G] % -------------------------------------------------- skR,-:"8 % ]_u`EvEx6 % Example 1: %K zbO0 % _R74/| % % Display the Zernike function Z(n=5,m=1) s@~/x5jwCs % x = -1:0.01:1; <Oa9oM},d % [X,Y] = meshgrid(x,x); t#5:\U5r. % [theta,r] = cart2pol(X,Y); G3dhM#! % idx = r<=1; 6vobta^w % z = nan(size(X)); Dx3 %KS % z(idx) = zernfun(5,1,r(idx),theta(idx)); &$#99\/ % figure W2 <3C % pcolor(x,x,z), shading interp JYV\oV{ % axis square, colorbar v9rVpYc" % title('Zernike function Z_5^1(r,\theta)') 3ji:O T % x:
~d@ % Example 2: H&bh<KPMh % o/1JO_41 % % Display the first 10 Zernike functions h0Jl_f#Y % x = -1:0.01:1; a#y{pT2 b % [X,Y] = meshgrid(x,x); 0`n
5x0R % [theta,r] = cart2pol(X,Y); nY0sb8lZJ % idx = r<=1; E>}q2 % z = nan(size(X)); "PzP;Br % n = [0 1 1 2 2 2 3 3 3 3]; iBoEZEHjw % m = [0 -1 1 -2 0 2 -3 -1 1 3]; %[Zz0|A % Nplot = [4 10 12 16 18 20 22 24 26 28]; oZ:{@= % y = zernfun(n,m,r(idx),theta(idx)); e$|VG*
d % figure('Units','normalized') ,I`_F, % for k = 1:10 .zSD`v@[ % z(idx) = y(:,k); |I^y0Q:K % subplot(4,7,Nplot(k)) a$m_D!b~_ % pcolor(x,x,z), shading interp _-%d9@x % set(gca,'XTick',[],'YTick',[]) _z8;lt % axis square ~`R1sSr" % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7'OPjtM % end Rd%0\ B % /DO'IHC.o % See also ZERNPOL, ZERNFUN2. 4ht\&2&: x=,8[W#XT % Paul Fricker 11/13/2006 >a=d; \r;F2C0*i l>7r2; % Check and prepare the inputs: l^r' $;<m % ----------------------------- GwQn;gkF if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) GMm'of# error('zernfun:NMvectors','N and M must be vectors.') "HC)/)Mv@ end gs`> C( *]x_,:R6Ow if length(n)~=length(m)
YqU/\f+ error('zernfun:NMlength','N and M must be the same length.') D9-Lg% end Km*<Kfcz cNj*E
=~; n = n(:); &N\[V-GP2G m = m(:); bk3Unreh if any(mod(n-m,2)) e<5Y94YE error('zernfun:NMmultiplesof2', ... o.^y1mH' 'All N and M must differ by multiples of 2 (including 0).') yr{B5z, end 0M8.U |+NuYz? if any(m>n) -0 0}if7 error('zernfun:MlessthanN', ... te'*<HM 'Each M must be less than or equal to its corresponding N.') X/+OF'po end ;fGx;D *IZf^-=Q if any( r>1 | r<0 ) (X}@^]lpa error('zernfun:Rlessthan1','All R must be between 0 and 1.') J&6:d end wFL3&* 8Rxc&`_X if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) )#`H."Z error('zernfun:RTHvector','R and THETA must be vectors.') Hr
}k5' end n
)K6i7]xk jvs[ / r = r(:); f0oek{ theta = theta(:); 7>-yaL{ length_r = length(r); >n!ni( if length_r~=length(theta) .Z%G@X* error('zernfun:RTHlength', ... %^.P~s6 'The number of R- and THETA-values must be equal.') HomN/wKh end >V!LitdJ &1Fply7(Ay % Check normalization: _N'75 % -------------------- arh@`'Q if nargin==5 && ischar(nflag) qY# d+F,t isnorm = strcmpi(nflag,'norm'); 7ZFJexN] if ~isnorm n`L,]dco error('zernfun:normalization','Unrecognized normalization flag.') i2`0|8mw' end +R[4\ hC0Y else
W9R`A isnorm = false; 0"4@;e_)> end QnKC#
qY(:8yC36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r4eUZ .8R % Compute the Zernike Polynomials }<[Db}?9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,{{SI 6/2v % Determine the required powers of r: xl]
;*& % ----------------------------------- <NB41/ m_abs = abs(m); Oif,|: rpowers = []; I/p]DT for j = 1:length(n) 59!)j>f rpowers = [rpowers m_abs(j):2:n(j)]; h&'=F)5 end vJCf~' rpowers = unique(rpowers); o3h -=t =!
mJG % Pre-compute the values of r raised to the required powers, S,vu]?-8 % and compile them in a matrix: |}S1o0v{(a % ----------------------------- 8wIK: if rpowers(1)==0 1d v=xe. rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h<3p8eB rpowern = cat(2,rpowern{:}); $qm~c[x% rpowern = [ones(length_r,1) rpowern]; }uQ${]&D else 3g'+0tEl rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >q(6,Mmb rpowern = cat(2,rpowern{:}); U e*$&VlT end jA`a/vWu Hed$ytMaGz % Compute the values of the polynomials: Lq04T0 % -------------------------------------- Q}P-$X+/ n y = zeros(length_r,length(n)); /V^sJ($V$~ for j = 1:length(n) e@jfIF0=} s = 0:(n(j)-m_abs(j))/2; <abKiXA" pows = n(j):-2:m_abs(j); !N~*EI$ for k = length(s):-1:1 =`p&h}h-L p = (1-2*mod(s(k),2))* ... dAxp ,):&J prod(2:(n(j)-s(k)))/ ... wk ikD prod(2:s(k))/ ... IZ~.{UQ prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... mk= #\> prod(2:((n(j)+m_abs(j))/2-s(k))); GS%b=kc idx = (pows(k)==rpowers); 3{3/: 7 y(:,j) = y(:,j) + p*rpowern(:,idx); fIyPFqf7w) end y8?t-Pp]1 yGEb7I$h if isnorm `-O=>U5nH y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4v qNule end -P#nT 2 end 4<}A]BQVkJ % END: Compute the Zernike Polynomials ~ hm`uP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?}sOG?{ 8p=>?wG % Compute the Zernike functions: oVkr3KZ % ------------------------------ rJ(OAKnY idx_pos = m>0; d8:C3R idx_neg = m<0; 3qo e^e (,LL[&;: z = y; #:{6b*} if any(idx_pos) O5;-Om z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]kS7n@8 end w3bIb$12 if any(idx_neg) ou6j*eSN z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); c]v
+ end }W}G X(?P {!=2<-Aq % EOF zernfun
|
|