niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 f2{4Y) function z = zernfun(n,m,r,theta,nflag) :nwcO3~` %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~Zj?%4 % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1]hMA\x % and angular frequency M, evaluated at positions (R,THETA) on the 0A1l"$_| % unit circle. N is a vector of positive integers (including 0), and PKjA@+ % M is a vector with the same number of elements as N. Each element 4&y_+ % k of M must be a positive integer, with possible values M(k) = -N(k) Qy6Avw/$ % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, |_w*:NCV5 % and THETA is a vector of angles. R and THETA must have the same pg>P]a{ % length. The output Z is a matrix with one column for every (N,M) "\>3mVOb % pair, and one row for every (R,THETA) pair. x &9I2" % ;bAy7 % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike U3za}3 % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^
1J;SO| % with delta(m,0) the Kronecker delta, is chosen so that the integral +u)' % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :\bttPw5 % and theta=0 to theta=2*pi) is unity. For the non-normalized $~:hv7% % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qA"?5 j32 % ikxSWO_Y= % The Zernike functions are an orthogonal basis on the unit circle. k"sL.}$ % They are used in disciplines such as astronomy, optics, and Pu9.Uwx % optometry to describe functions on a circular domain. Jx{,x-I % 2XI%4 % The following table lists the first 15 Zernike functions. /4T%s % .7kVC % n m Zernike function Normalization r},|kb % -------------------------------------------------- D:F!;n9 % 0 0 1 1 3[e@mcO % 1 1 r * cos(theta) 2 R 7{r Y % 1 -1 r * sin(theta) 2 t 1&p>
v % 2 -2 r^2 * cos(2*theta) sqrt(6) PkVXn
% 2 0 (2*r^2 - 1) sqrt(3) XBr>K>( % 2 2 r^2 * sin(2*theta) sqrt(6) lhjPS!A~ % 3 -3 r^3 * cos(3*theta) sqrt(8) bX6*/N % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) N9*$' % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ZO;]Zt] % 3 3 r^3 * sin(3*theta) sqrt(8) )Tb;N % 4 -4 r^4 * cos(4*theta) sqrt(10) )b-G2< kb % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sV*Q8b* % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) t6"4+:c!> % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #`W8-w % 4 4 r^4 * sin(4*theta) sqrt(10) XSxya.1 % -------------------------------------------------- )8k6GO8| % G6J3F % Example 1: _rR.Y3N % X<?;-HrS; % % Display the Zernike function Z(n=5,m=1) 1U9iNki % x = -1:0.01:1; P `oR-D % [X,Y] = meshgrid(x,x); P;y/`_jo % [theta,r] = cart2pol(X,Y); s e1ipn_A % idx = r<=1; au7BqV!uL % z = nan(size(X)); %!=YNm % z(idx) = zernfun(5,1,r(idx),theta(idx)); x[?_F % figure eU12*( % pcolor(x,x,z), shading interp /J6CSk % axis square, colorbar FE5R
^W#u- % title('Zernike function Z_5^1(r,\theta)') b,@:eVQ7 % asJYGqdF % Example 2: <T}#>xHs3 % m&%N4Q~X> % % Display the first 10 Zernike functions 2cDC6rul % x = -1:0.01:1; 49#-\=<gt % [X,Y] = meshgrid(x,x); mrbIoN==` % [theta,r] = cart2pol(X,Y); #zQkQvAT9 % idx = r<=1; 4-"wFp % z = nan(size(X)); IX>|bA; % n = [0 1 1 2 2 2 3 3 3 3]; :C&?(HJ&r % m = [0 -1 1 -2 0 2 -3 -1 1 3]; lfKknp#B/O % Nplot = [4 10 12 16 18 20 22 24 26 28]; ZD<,h`
lZ % y = zernfun(n,m,r(idx),theta(idx)); K4rr.f6 % figure('Units','normalized') )CmuC@ Q" % for k = 1:10 J^XH^`' % z(idx) = y(:,k); vIRE vj#U % subplot(4,7,Nplot(k)) SB;Wa% % pcolor(x,x,z), shading interp Kzm_AHA) % set(gca,'XTick',[],'YTick',[]) ;e{2?}#8& % axis square \?g%>D:O; % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %MIu;u FR % end I)x:NF6JO % ^U =`Rx % See also ZERNPOL, ZERNFUN2. \xdt|:8 5>=tNbk"s % Paul Fricker 11/13/2006 WLpn,8qsY i~.[iZf| V?"^Ff3m! % Check and prepare the inputs: 6M6QMg^ % ----------------------------- ^Y&Cm.w if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0L1P'*LRU error('zernfun:NMvectors','N and M must be vectors.') Cb13 Qz end
Ntqc=z pFK
|4u if length(n)~=length(m) j\vK`.z error('zernfun:NMlength','N and M must be the same length.') 8x{vgx @M end J.&q[ D;L :a`Y n = n(:); B -KOf m = m(:); =j{jylC if any(mod(n-m,2)) e\dT~)c error('zernfun:NMmultiplesof2', ... \(CW?9) 'All N and M must differ by multiples of 2 (including 0).') ^"Y'zIL end !G,$:t1-=V R',w~1RV' if any(m>n) epL[PL} error('zernfun:MlessthanN', ... c,qCZ-.Sg 'Each M must be less than or equal to its corresponding N.') g IKm end <d^7B9O?&w KH7]`CU if any( r>1 | r<0 ) |:?.-tq error('zernfun:Rlessthan1','All R must be between 0 and 1.') RmQt%a7\{ end JA}'d7yEa =4D_-Q if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) cg.e(@( error('zernfun:RTHvector','R and THETA must be vectors.') oL@ou{iQ end g#:XN v;Dcq r = r(:); 16y$;kf8 theta = theta(:); 85fDuJ9$Z" length_r = length(r); #R8l"]fxr? if length_r~=length(theta) ^;3rdBprm error('zernfun:RTHlength', ... Tc(R-Wi 'The number of R- and THETA-values must be equal.') OW}A48X[+ end +m.8*^ $iPN5@F % Check normalization: PPPwDsJ % -------------------- Vr1|%*0Tv if nargin==5 && ischar(nflag) hN53= X: isnorm = strcmpi(nflag,'norm'); Sg$\ab $ if ~isnorm iq:[+ error('zernfun:normalization','Unrecognized normalization flag.') K)+l 6Q end %`1vIr(7 else h /QP=Zd isnorm = false; ws?s end ?v8k& q^q %m) h1/l %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,rI
|+ % Compute the Zernike Polynomials $0SZlq>En %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~k0)+D} uW~,H}E % Determine the required powers of r: (VAL.v* % ----------------------------------- J_|}Xd)~t6 m_abs = abs(m); ls\E%d rpowers = []; t)Q@sKT6 for j = 1:length(n) .b`P! rpowers = [rpowers m_abs(j):2:n(j)]; bDS1'Ce end ]~Vu-@
/} rpowers = unique(rpowers); 'F?Znd2L Qf>Pb$c$U % Pre-compute the values of r raised to the required powers, )x x/di % and compile them in a matrix: &]F|U3 % ----------------------------- W+
'}O< if rpowers(1)==0 #(+HSZm rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Qz(T[H5%W rpowern = cat(2,rpowern{:}); \y`3Lh Y rpowern = [ones(length_r,1) rpowern]; RhNaYO else "ue$DyN rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); nvK7*- rpowern = cat(2,rpowern{:}); Pd "mb~ end @1&;R j4xr1y3^ % Compute the values of the polynomials: ;u};&sm % -------------------------------------- 6a?$=y y = zeros(length_r,length(n)); h_chZB' for j = 1:length(n) (g/X(3 s = 0:(n(j)-m_abs(j))/2; pb6^sA%l pows = n(j):-2:m_abs(j); |id79qY7g for k = length(s):-1:1 e_k
_ty` p = (1-2*mod(s(k),2))* ... $:E}Nj]{& prod(2:(n(j)-s(k)))/ ... if[o?6U4t prod(2:s(k))/ ... XVDd1#h prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... I,<54?vS prod(2:((n(j)+m_abs(j))/2-s(k))); #!Cter2 idx = (pows(k)==rpowers); px}7If y(:,j) = y(:,j) + p*rpowern(:,idx); T[XP\!z]B! end #f3 ;}1( oUvk2]H if isnorm -V
u/TT0 y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); G(OT"+O, end RD$tc~@UB end wvmg)4, % END: Compute the Zernike Polynomials PWk?8dL- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q _] RQpIBsj % Compute the Zernike functions: 5\ w=(c9A % ------------------------------
!jnqA Z idx_pos = m>0; .5!sOOs$P idx_neg = m<0; =tc`:!$ qbU1qF/ z = y; #x5 N{8 if any(idx_pos) ,t%\0[{/B z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [CDX CV-z end wyrI8UY if any(idx_neg) bwSRJFqb z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 6L8tz8 end Sj0 ucnuHi -eR!qy:.]5 % EOF zernfun
|
|