| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 }L|B@fW function z = zernfun(n,m,r,theta,nflag) @?]>4+Oa0 %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Y$,~"$su| % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N {Z <`@\K3 % and angular frequency M, evaluated at positions (R,THETA) on the X)RgXl{ % unit circle. N is a vector of positive integers (including 0), and Io
IhQ % M is a vector with the same number of elements as N. Each element +UziO#D % k of M must be a positive integer, with possible values M(k) = -N(k) +$>aT(q % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, alzdYiGf % and THETA is a vector of angles. R and THETA must have the same 7uw-1F5x7 % length. The output Z is a matrix with one column for every (N,M) |/xA5_-N % pair, and one row for every (R,THETA) pair. $i<+O,@- % b5%<},ySq % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike sx7zRw
>X % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), vc3r [mT % with delta(m,0) the Kronecker delta, is chosen so that the integral L;?h)8 % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Ex]Ku % and theta=0 to theta=2*pi) is unity. For the non-normalized ~$^>Vo % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?ZC!E0] % <{ v
%2 % The Zernike functions are an orthogonal basis on the unit circle. I~~":~& % They are used in disciplines such as astronomy, optics, and WB'1_a % optometry to describe functions on a circular domain. JURu>-i % rrgOp5aV" % The following table lists the first 15 Zernike functions. $A,YQH+ % [h
B$%i]\< % n m Zernike function Normalization /L(}VJg- % -------------------------------------------------- ()Wu_Q % 0 0 1 1 $Q'LDmot % 1 1 r * cos(theta) 2 "B +F6 % 1 -1 r * sin(theta) 2 o>+ mw| { % 2 -2 r^2 * cos(2*theta) sqrt(6) ct,;V/Dx % 2 0 (2*r^2 - 1) sqrt(3) Oop6o$k % 2 2 r^2 * sin(2*theta) sqrt(6) .C+(E@ey A % 3 -3 r^3 * cos(3*theta) sqrt(8) NB^Al/V@ % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ,1CmB@ % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) N5K2Hv<" % 3 3 r^3 * sin(3*theta) sqrt(8) <?DI!~ % 4 -4 r^4 * cos(4*theta) sqrt(10) t(6i4c> % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QH7 GEj] % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) @aFk|.6 % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 47{5{/B- % 4 4 r^4 * sin(4*theta) sqrt(10)
}#&[[}@th % -------------------------------------------------- rqBoUS4 % EAWBgOO8iC % Example 1: sEfT#$ a^8 % !or_CJ8% % % Display the Zernike function Z(n=5,m=1) %c]N- % x = -1:0.01:1; ~W4SFp % [X,Y] = meshgrid(x,x); 6v%ePFul % [theta,r] = cart2pol(X,Y); Us#/#-hJ % idx = r<=1; Jwj=a1I 53 % z = nan(size(X)); mv,a>Cvs[ % z(idx) = zernfun(5,1,r(idx),theta(idx));
(igB'S5wf % figure y.8nzlkE{ % pcolor(x,x,z), shading interp aYc<C$:NC" % axis square, colorbar hHDLrr % title('Zernike function Z_5^1(r,\theta)') a!u5}[{ % ,|zzq@fk % Example 2: hG<[F@d % LH_U#P`E % % Display the first 10 Zernike functions c8Q2H % x = -1:0.01:1; km^ZF<. @ % [X,Y] = meshgrid(x,x); -U_,RMw~ % [theta,r] = cart2pol(X,Y); G*%U0OTi % idx = r<=1; IW@phKz % z = nan(size(X)); <:nyRy} % n = [0 1 1 2 2 2 3 3 3 3]; `YZl2c<w* % m = [0 -1 1 -2 0 2 -3 -1 1 3]; !.pcldx % Nplot = [4 10 12 16 18 20 22 24 26 28]; b *0u xvLu % y = zernfun(n,m,r(idx),theta(idx)); v,~fG>Y} % figure('Units','normalized') "s zJ[
_B % for k = 1:10 ",Mrdxn7 % z(idx) = y(:,k); G^VOA4 % subplot(4,7,Nplot(k)) EX, {1^h % pcolor(x,x,z), shading interp {0/2Hw n % set(gca,'XTick',[],'YTick',[]) ;0?OBUDO % axis square Nq9M$Nt] % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ZpBP#Y* % end fTK84v"7_ % z`Nss
o= % See also ZERNPOL, ZERNFUN2. 3q@JhB c(5XT[Tw % Paul Fricker 11/13/2006 1#+|RL4o :1bDkoK [C;Neslo % Check and prepare the inputs: l1L8a I,8 % ----------------------------- AkO);4A;Jd if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) H*f2fyC1\ error('zernfun:NMvectors','N and M must be vectors.') 9CN'29c end v7#|% =_@) KWeX$ if length(n)~=length(m) cuy9QBB
: error('zernfun:NMlength','N and M must be the same length.') tW-[.Y -M, end Tj<B;f!u tgl 4pAc n = n(:); >O~V#1 H m = m(:); CS-jDok if any(mod(n-m,2)) _]D
6m2R error('zernfun:NMmultiplesof2', ... >mEfd=p 'All N and M must differ by multiples of 2 (including 0).') MI:%Eq end i-@V <1*\ ~CX if any(m>n) P-8QXDdr error('zernfun:MlessthanN', ... 1_c%p#?K 'Each M must be less than or equal to its corresponding N.') KPjAk end /<k5"C%z Y"s8j=1m if any( r>1 | r<0 ) 31e
O2|7 error('zernfun:Rlessthan1','All R must be between 0 and 1.') )z4eRs F| end [>3dhj[; 5e7\tBab if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) S}]B |Q error('zernfun:RTHvector','R and THETA must be vectors.') ?q2Yk/P end +$2`"%nBG Zv-1*hhHf r = r(:); mDD96y theta = theta(:); o>Dd1
j length_r = length(r); Y(?SE< 4R if length_r~=length(theta) xpwy%uo error('zernfun:RTHlength', ... e:.?T\ 'The number of R- and THETA-values must be equal.') .ns=jp end SK 5]7C2 MpJ<. |h % Check normalization: IX<9_q % -------------------- DvOvtd if nargin==5 && ischar(nflag) w8J8III\~ isnorm = strcmpi(nflag,'norm'); A 2A_F|f if ~isnorm 'Yc^9;C( error('zernfun:normalization','Unrecognized normalization flag.') p
Tz]8[^ end
! R3P@,j else n'JS- isnorm = false; @'?gan#( end BB(v,W 3=} P l, %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dZb;`DjTH % Compute the Zernike Polynomials UTN[!0[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k9:|CEP h/8p2Mrqi % Determine the required powers of r: 9e
vQQN6D| % ----------------------------------- C-h?#/#?y m_abs = abs(m); nXI8 `7D rpowers = []; +/]*ChrS for j = 1:length(n) A:yql`&s rpowers = [rpowers m_abs(j):2:n(j)]; $\~cWpv end ;#0$iE rpowers = unique(rpowers); SB .=x S'NLj( % Pre-compute the values of r raised to the required powers, S{f,EBE % and compile them in a matrix: k#8`996P % ----------------------------- 4*5 e0:O if rpowers(1)==0 {9x>@p/ rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r
)_*MPY rpowern = cat(2,rpowern{:}); qK9A
/Mc rpowern = [ones(length_r,1) rpowern]; hdSP#Y'- else de.f?y rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); t imY0fx# rpowern = cat(2,rpowern{:}); `ah|BV end 6PS[OB{3 oayu*a. % Compute the values of the polynomials: ki/Cpfq40* % -------------------------------------- 8c_X`0jy y = zeros(length_r,length(n)); 3G2iRr.o for j = 1:length(n) ^Qn:#O9 s = 0:(n(j)-m_abs(j))/2; #M+_Lk3 pows = n(j):-2:m_abs(j); t*A[v for k = length(s):-1:1 IA[:-2_ p = (1-2*mod(s(k),2))* ... n~}[/ly prod(2:(n(j)-s(k)))/ ... 9&`";dg prod(2:s(k))/ ... g;nLR<] prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cs9h\]ZA prod(2:((n(j)+m_abs(j))/2-s(k))); .cw)Y#;IG idx = (pows(k)==rpowers); 1,Mm+_)B y(:,j) = y(:,j) + p*rpowern(:,idx); 2k^rZ^^" end )|k#cT{=M ~w|h;*Bj if isnorm -"i$^Q` y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); v-q-CI?B# end 3/yt end YhfQpe % END: Compute the Zernike Polynomials 4#]g852 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @F$}/ llWY7u" % Compute the Zernike functions: /93z3o7D> % ------------------------------ -38"S;M8 idx_pos = m>0; tY!l}:E[ idx_neg = m<0; H)"]I3 ZX1/6|_ z = y; .s!0S-RkC if any(idx_pos) Ak kF6d+ z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); X"r.*fb;N end WWZ<[[ > if any(idx_neg) F'|e:h z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -1v9 end Nq8 3 6HL XBkaum4j % EOF zernfun
|
|