| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 i|c'Lbre` function z = zernfun(n,m,r,theta,nflag) 84$nT>c %ZERNFUN Zernike functions of order N and frequency M on the unit circle. vp1941P % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N (XVw"m/ye % and angular frequency M, evaluated at positions (R,THETA) on the v0ujdp,B % unit circle. N is a vector of positive integers (including 0), and a@8v^G % M is a vector with the same number of elements as N. Each element % BVs47g % k of M must be a positive integer, with possible values M(k) = -N(k) v/@^Q1G/: % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ^9m\=5d % and THETA is a vector of angles. R and THETA must have the same "Hya6k>j % length. The output Z is a matrix with one column for every (N,M) bw(a6qKK % pair, and one row for every (R,THETA) pair. +00b)TF % :v0U|\j8/V % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,ZaRy$? % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), s:?SF. % with delta(m,0) the Kronecker delta, is chosen so that the integral Moy <@+ % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?U%QG5/> % and theta=0 to theta=2*pi) is unity. For the non-normalized B|Du@^$ % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \@Ts+7% % _uWpJhCT % The Zernike functions are an orthogonal basis on the unit circle. Wfu(* % They are used in disciplines such as astronomy, optics, and =MSr/ O2 % optometry to describe functions on a circular domain. ]5mn ew % )}g(b= % The following table lists the first 15 Zernike functions. )5rb&M} % tG:25 T0 % n m Zernike function Normalization c7<wZ % -------------------------------------------------- jGJLSEe_ % 0 0 1 1 C](f>)Dz
/ % 1 1 r * cos(theta) 2 \?w2a$?6w % 1 -1 r * sin(theta) 2 1!ii;s^e % 2 -2 r^2 * cos(2*theta) sqrt(6) VQ"hUX8 % 2 0 (2*r^2 - 1) sqrt(3) Sw:7pByjI % 2 2 r^2 * sin(2*theta) sqrt(6) R}'bP % 3 -3 r^3 * cos(3*theta) sqrt(8) wHzEMwY_ % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) d.3E[AJa( % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) mkMq % 3 3 r^3 * sin(3*theta) sqrt(8) A]<y:^2])C % 4 -4 r^4 * cos(4*theta) sqrt(10) <W|3\p6 % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z"Zmo>cV4 % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 6,o~\8ia % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -mAUo;O % 4 4 r^4 * sin(4*theta) sqrt(10) pyH:#5 % -------------------------------------------------- ?*2CpM&l
% 3Q"<<pi!~ % Example 1: IW>T}@
| % %.vQU @2A % % Display the Zernike function Z(n=5,m=1) 0+iu(VbF % x = -1:0.01:1; ={_C&57N1 % [X,Y] = meshgrid(x,x); qJ;jfh! % [theta,r] = cart2pol(X,Y); vY4\59]P % idx = r<=1; 7[w,:9& } % z = nan(size(X)); ?b*s.
^ % z(idx) = zernfun(5,1,r(idx),theta(idx)); B,<da1(a % figure <_h~w} % pcolor(x,x,z), shading interp b+,';bW % axis square, colorbar O|\J}rm' % title('Zernike function Z_5^1(r,\theta)') "*($cQ$v % YT8vP~ % Example 2: FFV `P % ,eOB(?Ku % % Display the first 10 Zernike functions hq%?=2'9? % x = -1:0.01:1; $Oq^jUJ % [X,Y] = meshgrid(x,x); kr+D,h01 % [theta,r] = cart2pol(X,Y); ,3?Q(=j % idx = r<=1; T3~k>"W % z = nan(size(X)); t|a2;aq_ % n = [0 1 1 2 2 2 3 3 3 3]; OPwtV9% % m = [0 -1 1 -2 0 2 -3 -1 1 3]; ~KHVY)@P % Nplot = [4 10 12 16 18 20 22 24 26 28]; XJ;D=~ % y = zernfun(n,m,r(idx),theta(idx)); Uhe=h&e2k@ % figure('Units','normalized') N8k00*p65 % for k = 1:10 `rgn<I" % z(idx) = y(:,k); |s'Po^Sy % subplot(4,7,Nplot(k)) {F3xJ[ % pcolor(x,x,z), shading interp H!?c\7adX % set(gca,'XTick',[],'YTick',[]) 3wOZ4<B
% axis square Q7*SE%H % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) B{|8#jqY % end C3*gn}[ % 4~y(`\0?4 % See also ZERNPOL, ZERNFUN2. K17j$o^6KK p qfUW+> % Paul Fricker 11/13/2006 2-7IJ\ ~kShq% ^X0P'l&D2 % Check and prepare the inputs: Q
7 % ----------------------------- fhar&\;S if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) DAS/43\ error('zernfun:NMvectors','N and M must be vectors.') _I:~@ end ^?U!pq-` pv*,gSS if length(n)~=length(m) @HQ`~C#Z' error('zernfun:NMlength','N and M must be the same length.') !6BW@GeF] end q-.,nMUF u\ #"L n = n(:); |s"nM<ZNZ m = m(:); +,2:g}5 if any(mod(n-m,2)) V@Rrn <l error('zernfun:NMmultiplesof2', ... cVubb}ou 'All N and M must differ by multiples of 2 (including 0).') 3x5JFM end ?kWC}k{ y&Mr=5:y if any(m>n) ZNf6;%oGG error('zernfun:MlessthanN', ... .uuO>: 'Each M must be less than or equal to its corresponding N.') n1JRDw"e$$ end d
p2 F .Si,dc\ if any( r>1 | r<0 ) wp#'nO error('zernfun:Rlessthan1','All R must be between 0 and 1.') eAXc:222 end "l*Pd$sr Zw*v if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) KAC6Snu1 error('zernfun:RTHvector','R and THETA must be vectors.') sArhZ[H end ,RJtm%w MNC*Glj= r = r(:); R<[qGt|L theta = theta(:); WX=Jl< length_r = length(r); \Kl+ 5%L if length_r~=length(theta) cV 5CaaL error('zernfun:RTHlength', ... E_k$W5 'The number of R- and THETA-values must be equal.') dls
ss\c^M end ]vgB4~4#LP 7[I}*3Q' % Check normalization: `&KwtvkdI % -------------------- t *1u[~= if nargin==5 && ischar(nflag) My<snmr2d isnorm = strcmpi(nflag,'norm'); WKT4D}{1 if ~isnorm LNrX;{ Z error('zernfun:normalization','Unrecognized normalization flag.') F{EnOr`,m= end @\0Eu212 else Q?3Gk%T0[ isnorm = false; |p><'Q%* end eln&]d; t"k*PA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^~G8?]w % Compute the Zernike Polynomials }D7I3]2> %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #>%X_o-o23 )Z(TCJ~~! % Determine the required powers of r: %K\?E98M % ----------------------------------- RnhL<
Ywu m_abs = abs(m); 'f[T&o&L/ rpowers = []; q0$
!y!~ for j = 1:length(n) an|x$e7|? rpowers = [rpowers m_abs(j):2:n(j)]; sA'6ty end )+}]+xRWGj rpowers = unique(rpowers); T(e!_VY|m _h X]% % Pre-compute the values of r raised to the required powers, FP;Ccl"s % and compile them in a matrix: P^w#S % ----------------------------- }&n<uUD H if rpowers(1)==0 D&}3$ 7> rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); cJ1#ge%4 rpowern = cat(2,rpowern{:}); :|Ad:fEs rpowern = [ones(length_r,1) rpowern]; um4yF*3b9 else 2'_:S@ rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); bty/ rpowern = cat(2,rpowern{:}); 7qj9&bEy end IG|X!l HuwU0:* % Compute the values of the polynomials: 7RUofcax % -------------------------------------- 'h^0HE\~p y = zeros(length_r,length(n)); l~6?kFy9h for j = 1:length(n)
/o[?D s = 0:(n(j)-m_abs(j))/2; qW!]co pows = n(j):-2:m_abs(j); |g
#K]v for k = length(s):-1:1 o(:[r@Z0z p = (1-2*mod(s(k),2))* ... %!du,2 prod(2:(n(j)-s(k)))/ ... F8;dKyT?q prod(2:s(k))/ ... xER\ZpA:, prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... EmODBTu+ prod(2:((n(j)+m_abs(j))/2-s(k))); A8pIs idx = (pows(k)==rpowers); ))&;}2{ y(:,j) = y(:,j) + p*rpowern(:,idx); $)RNKMZC}A end =dII- L=` [k6nW:C if isnorm =0G!f$7^i y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); hRty [ end .G+Pe'4a end [P 06lIO % END: Compute the Zernike Polynomials NGOqy+Ty{f %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !<SA6m# [1F*bI % Compute the Zernike functions: D3)zk@N % ------------------------------ sFQ^2PwbS idx_pos = m>0; Sh?4ri@: idx_neg = m<0; < | |