首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 " I_T  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! ,ew<T{PL  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4&`66\p;  
function z = zernfun(n,m,r,theta,nflag) {P = {)  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. <v5toyA  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [Q^kO;  
%   and angular frequency M, evaluated at positions (R,THETA) on the ]JhtO{  
%   unit circle.  N is a vector of positive integers (including 0), and U*6-Y%7  
%   M is a vector with the same number of elements as N.  Each element );,#H`'  
%   k of M must be a positive integer, with possible values M(k) = -N(k) 4)XN1r:  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, jh g!K.A  
%   and THETA is a vector of angles.  R and THETA must have the same LO` (V  
%   length.  The output Z is a matrix with one column for every (N,M) ;$|+H"g|  
%   pair, and one row for every (R,THETA) pair. ytAhhwN~  
% ~zRW*pd  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike qqkZbsN  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), d628@~ Ekn  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral R[_7ab]A  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, oh:t ex<  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized 9V"^F.>  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4|XE f,  
% @aj"1 2  
%   The Zernike functions are an orthogonal basis on the unit circle. 2;kab^iv'  
%   They are used in disciplines such as astronomy, optics, and m6 IZG l7%  
%   optometry to describe functions on a circular domain. XeZv%` ?  
% F htf4  
%   The following table lists the first 15 Zernike functions. 7Y!^88,f.  
% <-lz_  
%       n    m    Zernike function           Normalization <BO|.(ys  
%       -------------------------------------------------- 'z!I#Y!Y  
%       0    0    1                                 1 u6%56 %^f  
%       1    1    r * cos(theta)                    2 *nH?o* #  
%       1   -1    r * sin(theta)                    2 _~_Hup  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) 8fDnDA.e  
%       2    0    (2*r^2 - 1)                    sqrt(3) S++}kR);  
%       2    2    r^2 * sin(2*theta)             sqrt(6) R'9TD=qEK  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) #z5'5|3  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) NtA}I)'SWU  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) i\`[0dfY  
%       3    3    r^3 * sin(3*theta)             sqrt(8) J@R+t6$3O  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) @&2T0UB  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Kh5:+n_X  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Rf8|-G-}#  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) DU[UGJg  
%       4    4    r^4 * sin(4*theta)             sqrt(10) - 6  
%       -------------------------------------------------- 4}NFa; M1  
% o >W}1_  
%   Example 1: x^C,xP[#Y;  
% ]jy6C'Mp  
%       % Display the Zernike function Z(n=5,m=1) #s]]\  
%       x = -1:0.01:1; k_y@vW3  
%       [X,Y] = meshgrid(x,x); =e ;\I/  
%       [theta,r] = cart2pol(X,Y); \!631FcQ   
%       idx = r<=1; TuX#;!p6  
%       z = nan(size(X)); 6*]Kow?  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); zlXkD~GV  
%       figure t[^}/ S  
%       pcolor(x,x,z), shading interp 9@:&E  
%       axis square, colorbar  _@d.wfM  
%       title('Zernike function Z_5^1(r,\theta)') LoTq2/  
% !>2s5^JI9  
%   Example 2: ZegsV|  
% A70_hhP  
%       % Display the first 10 Zernike functions KK7Y"~ 9&-  
%       x = -1:0.01:1; }uZh oA  
%       [X,Y] = meshgrid(x,x); ~(yh0V  
%       [theta,r] = cart2pol(X,Y); F1/f:<}  
%       idx = r<=1; qdcCX:Z<  
%       z = nan(size(X)); /] R]7  
%       n = [0  1  1  2  2  2  3  3  3  3]; Pp26UWW  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; `@`Q"J  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; 1{u;-pg  
%       y = zernfun(n,m,r(idx),theta(idx)); r_R|.fl<[  
%       figure('Units','normalized') Q[g%((DL  
%       for k = 1:10 M g;;o  
%           z(idx) = y(:,k); 8LiRZ"  
%           subplot(4,7,Nplot(k)) q4U?}=PD  
%           pcolor(x,x,z), shading interp i{ %~&!  
%           set(gca,'XTick',[],'YTick',[]) \DfvNeF  
%           axis square q A G0t{K  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) i:W oT4  
%       end  {kmaMP  
% ;E##bdSCA  
%   See also ZERNPOL, ZERNFUN2. w8@ Ok_fj  
KiCZEA  
%   Paul Fricker 11/13/2006 eo,m ^&  
O9g{XhMv>f  
[KCh,'&  
% Check and prepare the inputs: 6,oi(RAf  
% ----------------------------- iRPd=)  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f2yc]I<lr~  
    error('zernfun:NMvectors','N and M must be vectors.') nY(jN D  
end *A8CJ  
"\> <UJ  
if length(n)~=length(m) La3f{;|u5M  
    error('zernfun:NMlength','N and M must be the same length.') /V3*[  
end auS$B %  
i8A5m@,G  
n = n(:); g#Yqw  
m = m(:); `uGX/yQ#=  
if any(mod(n-m,2)) xb1)ZJH  
    error('zernfun:NMmultiplesof2', ... d eTUfbd'  
          'All N and M must differ by multiples of 2 (including 0).') 3+!N[6Od9  
end /T_tI R>  
v< ;, x  
if any(m>n) />+JK5  
    error('zernfun:MlessthanN', ... J }JT%S W  
          'Each M must be less than or equal to its corresponding N.') M0_K%Z(zaR  
end >5]Xl*{H)  
x}F.<`  
if any( r>1 | r<0 ) 7E|0'PPR  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;'cv?3Y  
end @tp/0E?  
[[TB.'k  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) E<~/AReo  
    error('zernfun:RTHvector','R and THETA must be vectors.') @dcW0WQ\  
end !y*V;J  
)(?s=<H  
r = r(:); LscAsq<H<  
theta = theta(:); O|av(F9  
length_r = length(r); +Mg^u-(A  
if length_r~=length(theta) WhK?>u  
    error('zernfun:RTHlength', ... 93YD\R+q  
          'The number of R- and THETA-values must be equal.') ,[~Ydth  
end Fbk<qQH  
)Cx8?\/c=x  
% Check normalization: i 0L7`TB  
% -------------------- 8f29Hj+  
if nargin==5 && ischar(nflag) z.[L1AGa|s  
    isnorm = strcmpi(nflag,'norm'); E8IWHh_  
    if ~isnorm fpoH7Jd V  
        error('zernfun:normalization','Unrecognized normalization flag.') 4N#0w]_,>Y  
    end {4:En;  
else j*+r`CX  
    isnorm = false; )P|Ql-rE4  
end M2V.FYV{j>  
xaS kn  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vqL{~tR  
% Compute the Zernike Polynomials n1$##=wK]  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e {c.4'q  
w*bVBuX s  
% Determine the required powers of r: So!1l7b  
% ----------------------------------- E$Ge# M@dM  
m_abs = abs(m); s?_b[B d  
rpowers = []; ~=#jO0dE|  
for j = 1:length(n) gqe z-  
    rpowers = [rpowers m_abs(j):2:n(j)]; ]qpcA6%a|  
end yy #Xs:/  
rpowers = unique(rpowers); vtvr{Uqo@  
JgK?j&!hs:  
% Pre-compute the values of r raised to the required powers, !!` zz  
% and compile them in a matrix: Ha 3XH_  
% ----------------------------- Z{ p;J^:  
if rpowers(1)==0 gR?3)m  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); cHR}`U$  
    rpowern = cat(2,rpowern{:}); OU{PVF={   
    rpowern = [ones(length_r,1) rpowern]; 6+LX oR'  
else kfmIhHlYQ  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ufo- AeQo  
    rpowern = cat(2,rpowern{:}); 7 s[ ATu  
end Sb{S^w\m0  
t+?\4+!<  
% Compute the values of the polynomials: WUqAPN  
% -------------------------------------- G\P*zz Sq  
y = zeros(length_r,length(n)); xds"n5  
for j = 1:length(n) =%RDT9T.  
    s = 0:(n(j)-m_abs(j))/2; ViVYyA  
    pows = n(j):-2:m_abs(j); _abVX#5<  
    for k = length(s):-1:1 3a#!^ G!~  
        p = (1-2*mod(s(k),2))* ... ^_<pc|1  
                   prod(2:(n(j)-s(k)))/              ... _Juhl^LM;  
                   prod(2:s(k))/                     ... ? th+~dE  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... tB1Qr**  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); xw?G?(WO  
        idx = (pows(k)==rpowers); ]=_BK!O  
        y(:,j) = y(:,j) + p*rpowern(:,idx); bF flA  
    end Mz"kaO  
     sH&8"5BT%  
    if isnorm Z:n33xh=<  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); h@Hmo^!9J  
    end "#m*`n  
end 3@}_ F<"*  
% END: Compute the Zernike Polynomials Riw>cVi~  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L\"=H4r  
1 9)78kV{  
% Compute the Zernike functions: C8{CKrVE  
% ------------------------------ 7,O^c +  
idx_pos = m>0; !BQ!] u  
idx_neg = m<0; T]i~GkD\  
cu""vtK   
z = y; (d!vm\-PH  
if any(idx_pos) j#~4JGZt  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); wTTQIo 60  
end q?t>!1c  
if any(idx_neg) %M^bZ?  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?9PNCd3$d  
end I5D\Z  
rhUZ9Fdv  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) ?Ts Z_  
%ZERNFUN2 Single-index Zernike functions on the unit circle. eM~i (]PY  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated %? iE3j!q  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive :Z+(H+lyZ  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, dk3\~m%Pv  
%   and THETA is a vector of angles.  R and THETA must have the same SE/@li  
%   length.  The output Z is a matrix with one column for every P-value, /_56H?w\  
%   and one row for every (R,THETA) pair. T&0tW"r?  
% @{$SjR8Q $  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike JE?XZp@V  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) %ZZ}TUI W  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Ep'C FNbtW  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ) .]Z}g&  
%   for all p. 'i@Y #F%D  
% g1}RA@9  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 MQ,2v. vZ.  
%   Zernike functions (order N<=7).  In some disciplines it is =Of#Ps)  
%   traditional to label the first 36 functions using a single mode I/@Xr  
%   number P instead of separate numbers for the order N and azimuthal D1Fc7! TV  
%   frequency M. p~e6ah?1  
% RSkpf94`  
%   Example: -'I)2/%g  
% 8>epKFEg  
%       % Display the first 16 Zernike functions }y0UyOa{C  
%       x = -1:0.01:1; xW^<.@Agm  
%       [X,Y] = meshgrid(x,x); iI _Fbw8  
%       [theta,r] = cart2pol(X,Y); 2Nj0 Hqjq  
%       idx = r<=1; &2Y>yFB ,  
%       p = 0:15; W:tE ?Hu  
%       z = nan(size(X)); N .SszZh  
%       y = zernfun2(p,r(idx),theta(idx)); CBF>157B  
%       figure('Units','normalized') !WIL|\jbh  
%       for k = 1:length(p) }ShZ4 xMz  
%           z(idx) = y(:,k); _x>u "w  
%           subplot(4,4,k) ;PbyR}s  
%           pcolor(x,x,z), shading interp 7%F9.h  
%           set(gca,'XTick',[],'YTick',[]) 4e5Ka{# <  
%           axis square 6DExsB~@  
%           title(['Z_{' num2str(p(k)) '}']) [qb#>P2G3  
%       end EGa}ml/G  
% T[7- 3[w<)  
%   See also ZERNPOL, ZERNFUN. 7sFjO/a*  
Yt{Y)=_t  
%   Paul Fricker 11/13/2006 t;? q#!uc  
PVvG  
5^5h%~)}  
% Check and prepare the inputs: &KD m5p  
% ----------------------------- _ Fer-nQ2R  
if min(size(p))~=1 ?=fJu\;  
    error('zernfun2:Pvector','Input P must be vector.') PmTA3aH  
end q_I''L  
9x:c"S*  
if any(p)>35 p2cKtk+  
    error('zernfun2:P36', ... !!P)r1=g  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... %f^TZ,q$  
           '(P = 0 to 35).']) jgC/  
end N2~Nc"L  
AMkjoy3+]  
% Get the order and frequency corresonding to the function number: #kxg|G[Ol  
% ---------------------------------------------------------------- 2R)Y}*VX  
p = p(:);  _@HMk"A  
n = ceil((-3+sqrt(9+8*p))/2); 5jbd!t@L  
m = 2*p - n.*(n+2); he!e~5<@y  
V862(y  
% Pass the inputs to the function ZERNFUN: 2'/ ip@  
% ---------------------------------------- uODpIxN  
switch nargin ,qC_[PUT  
    case 3 0t<TZa]V  
        z = zernfun(n,m,r,theta); |}#Rn`*2y  
    case 4 gTs5xDvJ  
        z = zernfun(n,m,r,theta,nflag); d F),  
    otherwise "Z,'NL>&  
        error('zernfun2:nargin','Incorrect number of inputs.') 8_:jPd! 3  
end F+}MW/ra@  
4s3n|6v  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) F9Mv$ g79  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. xeZ,}YP)  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of IV!&jL  
%   order N and frequency M, evaluated at R.  N is a vector of VFRUiz/C  
%   positive integers (including 0), and M is a vector with the gx #TRp}-  
%   same number of elements as N.  Each element k of M must be a l0]zZcpt  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) (?$}Vp  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is rrmr#a  
%   a vector of numbers between 0 and 1.  The output Z is a matrix K /. ;N.9  
%   with one column for every (N,M) pair, and one row for every nI dvff  
%   element in R. o-49o5:1  
% 5a_1x|Fhi  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- & [4Gv61  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Xul<,U~w6  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to !m:SRNPg  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 bW[Y:}Hk~  
%   for all [n,m]. `@-H ;  
% PT|t6V"wd  
%   The radial Zernike polynomials are the radial portion of the Gi?"  
%   Zernike functions, which are an orthogonal basis on the unit > u~ l_?  
%   circle.  The series representation of the radial Zernike Y}ITA=L7  
%   polynomials is @G^ l`%  
% B`9'COw  
%          (n-m)/2 Bv@NE2  
%            __ iVwI}%k  
%    m      \       s                                          n-2s I6zKvP8pb  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 1iig0l6\m  
%    n      s=0 FG'F]f c%  
% A6pPx1-&  
%   The following table shows the first 12 polynomials. 6-j><'  
% w}X<]u  
%       n    m    Zernike polynomial    Normalization c|IH|y  
%       --------------------------------------------- w%KU@$  
%       0    0    1                        sqrt(2) 4ZSc'9e9  
%       1    1    r                           2 6XKiVP;h%  
%       2    0    2*r^2 - 1                sqrt(6) g >u{H:  
%       2    2    r^2                      sqrt(6) `[X5mEe  
%       3    1    3*r^3 - 2*r              sqrt(8) {OH "d  
%       3    3    r^3                      sqrt(8) T}M!A|   
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) v[A)r]"j"M  
%       4    2    4*r^4 - 3*r^2            sqrt(10) Hj2E-RwG  
%       4    4    r^4                      sqrt(10) r[ni{ &  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) }f?$QSF  
%       5    3    5*r^5 - 4*r^3            sqrt(12) zU}Ru&T9  
%       5    5    r^5                      sqrt(12) au1uFu-  
%       --------------------------------------------- \u9l4  
% 33:{IV;k  
%   Example: o]u,<bM$  
% GHaD32  
%       % Display three example Zernike radial polynomials l`>|XUf6  
%       r = 0:0.01:1; 3"!h+dXw  
%       n = [3 2 5]; p48m k  
%       m = [1 2 1]; }%x2Z{VF  
%       z = zernpol(n,m,r); .hPk}B/KV  
%       figure +" |?P  
%       plot(r,z) N`,ppj  
%       grid on ae_Y?g+3  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') bvzNur_  
% <$metN~9j  
%   See also ZERNFUN, ZERNFUN2. | KY6IGcqV  
(_1(<Jw  
% A note on the algorithm. HQGn[7JW  
% ------------------------ |zd+ \o  
% The radial Zernike polynomials are computed using the series = hL;Q@inb  
% representation shown in the Help section above. For many special m~c6b{F3Z-  
% functions, direct evaluation using the series representation can v'=$K[_  
% produce poor numerical results (floating point errors), because v,, .2UR4  
% the summation often involves computing small differences between '1P~"P3  
% large successive terms in the series. (In such cases, the functions ]L)l5@5^  
% are often evaluated using alternative methods such as recurrence .6C9N{?Tqf  
% relations: see the Legendre functions, for example). For the Zernike B6UTooj  
% polynomials, however, this problem does not arise, because the \Hb"bv  
% polynomials are evaluated over the finite domain r = (0,1), and  r`-=<@[  
% because the coefficients for a given polynomial are generally all Wz{,N07Q#{  
% of similar magnitude. [L(qrAQ2|z  
% $y{rM%6JU  
% ZERNPOL has been written using a vectorized implementation: multiple ~xPU#m<  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] -A1@a= q  
% values can be passed as inputs) for a vector of points R.  To achieve ^-nL!>FYY  
% this vectorization most efficiently, the algorithm in ZERNPOL `s8*n(\h  
% involves pre-determining all the powers p of R that are required to C}jFR] x)  
% compute the outputs, and then compiling the {R^p} into a single AcHr X=O  
% matrix.  This avoids any redundant computation of the R^p, and (sDZ&R  
% minimizes the sizes of certain intermediate variables. 1#tFO  
% 88uoA6Y8h  
%   Paul Fricker 11/13/2006 12]rfd   
pgUp1goAU  
:Eb=jWA  
% Check and prepare the inputs: Nhf@Y}Cu  
% ----------------------------- BFnp[93N  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) E|_J  
    error('zernpol:NMvectors','N and M must be vectors.') unvS`>)Np  
end v]h^0WU  
"50 c<sZSB  
if length(n)~=length(m) 2p %j@O  
    error('zernpol:NMlength','N and M must be the same length.') DMdVE P"m  
end R,8 W7 3  
@b&_xT  
n = n(:); )Szn,  
m = m(:); >q&X#E<w  
length_n = length(n); #W9{3JGUY  
Se}&2 R  
if any(mod(n-m,2)) x1`4hB  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') R :*1Y\o(  
end B=}s7$^  
:8t;_f  
if any(m<0) A1Es>NK[qW  
    error('zernpol:Mpositive','All M must be positive.') 7TtDI=f  
end %`bn=~T^  
NG5k9pJ  
if any(m>n) ]bP1gV(b-  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') #;0F-pt  
end .^xQtnq  
U! $/'Xi9  
if any( r>1 | r<0 ) PR3i}y>  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') mrQT:B\8  
end r XT6u  
M 4E|^p=5  
if ~any(size(r)==1) RF}R~m9]  
    error('zernpol:Rvector','R must be a vector.') LGh#  
end ;$vVYC  
3!op'X!  
r = r(:); %RX!Pi}5+g  
length_r = length(r); OUhlQq\  
GYrUB59  
if nargin==4 Q k2*=BVh  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); .6c Bx  
    if ~isnorm B{K_?ae!  
        error('zernpol:normalization','Unrecognized normalization flag.') KBDNK_7A  
    end t>vr3)W  
else KK?R|1VK9  
    isnorm = false; /b]+RXvxj  
end  p ~pl|  
p4uN+D `.U  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kl|m @Nxp  
% Compute the Zernike Polynomials rRX F@  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [:/mjO K  
5Mp$u756  
% Determine the required powers of r: -I:L6ft8  
% ----------------------------------- \I7&F82e  
rpowers = []; G;e)K\[J  
for j = 1:length(n) z(#CO<C.t  
    rpowers = [rpowers m(j):2:n(j)]; q}]z8 L  
end 734H{,~  
rpowers = unique(rpowers); s( :N>K5*  
S]ed96V v  
% Pre-compute the values of r raised to the required powers, .7HEI;4  
% and compile them in a matrix: *|,ye5"  
% ----------------------------- K_Kz8qV.?  
if rpowers(1)==0 To;r#h  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); b?-KC\}v  
    rpowern = cat(2,rpowern{:}); #[]B: n6  
    rpowern = [ones(length_r,1) rpowern]; 0?''v>%  
else #iT3 aou  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6u,w  
    rpowern = cat(2,rpowern{:}); L2%npps  
end ;y;UgwAM  
n{!=gR.v.  
% Compute the values of the polynomials: 8"ulAx74>  
% -------------------------------------- g6H`uO  
z = zeros(length_r,length_n); r@CbhD  
for j = 1:length_n au+ a7~0~  
    s = 0:(n(j)-m(j))/2; .X"\ Mg  
    pows = n(j):-2:m(j); ;m"R.Q9*  
    for k = length(s):-1:1 `pXPF}T  
        p = (1-2*mod(s(k),2))* ... ~Efi|A/  
                   prod(2:(n(j)-s(k)))/          ... EdCcnl?R6  
                   prod(2:s(k))/                 ... ([NS%  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... yG<Q t+D  
                   prod(2:((n(j)+m(j))/2-s(k))); k^%F4d3z@C  
        idx = (pows(k)==rpowers); >L^ 2Z*  
        z(:,j) = z(:,j) + p*rpowern(:,idx); 17lc5#^L  
    end "4CO^ B  
     r#c+{yY  
    if isnorm m,SWG[~  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); {'o\#4 Wk  
    end <$8e;:#:  
end w"!zLB&9[  
K>Tv M&  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  n*i1QC  
QP4`r#,  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 qGKQrb,K  
uM9RlI5  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计