首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 r.ZF_^y}+  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! $37 g]ZD  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 G)v #+4  
function z = zernfun(n,m,r,theta,nflag) X4l@woh%  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. xj5;: g#!  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?;/^Ya1;Z  
%   and angular frequency M, evaluated at positions (R,THETA) on the ivDGZI9  
%   unit circle.  N is a vector of positive integers (including 0), and w }Uhd ,  
%   M is a vector with the same number of elements as N.  Each element Mj[f~  
%   k of M must be a positive integer, with possible values M(k) = -N(k) )q7UxzE+  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, `Qr%+OD  
%   and THETA is a vector of angles.  R and THETA must have the same MUfG?r\t  
%   length.  The output Z is a matrix with one column for every (N,M) mKo C.J  
%   pair, and one row for every (R,THETA) pair. !aO` AC=5u  
% ;4N;D  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;qHOOT  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7qTE('zt  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral hW!)w  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ZaNQpH.  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3bnS W5  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -'~ LjA(  
% ,|&9M^  
%   The Zernike functions are an orthogonal basis on the unit circle. x#Sqn#  
%   They are used in disciplines such as astronomy, optics, and ]Oq[gBL"A  
%   optometry to describe functions on a circular domain. ]?*I9  
% S[WG$  
%   The following table lists the first 15 Zernike functions. C8z{XSo  
% 23 ~ Sjr  
%       n    m    Zernike function           Normalization @E:,lA  
%       -------------------------------------------------- xhcK~5C  
%       0    0    1                                 1 4Y[1aQ(%  
%       1    1    r * cos(theta)                    2 _h}kp\sps  
%       1   -1    r * sin(theta)                    2 e=O,B8)_  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) " Hd|7F'u=  
%       2    0    (2*r^2 - 1)                    sqrt(3) +\v?d&.f0  
%       2    2    r^2 * sin(2*theta)             sqrt(6) zOQ>d|p?X  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) "etPT@gF  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 9k{PBAP  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) w*R$o  
%       3    3    r^3 * sin(3*theta)             sqrt(8) itC-4^  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) l ok=  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6? w0  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Yk=PS[f  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M![J2=  
%       4    4    r^4 * sin(4*theta)             sqrt(10) CHz+814  
%       -------------------------------------------------- IIbYfPiO  
% 812$`5l  
%   Example 1: /~3r;M  
% 6i}iAP|0  
%       % Display the Zernike function Z(n=5,m=1) 7Hs%Cc"  
%       x = -1:0.01:1; S\;V4@<Kn  
%       [X,Y] = meshgrid(x,x); Qjb:WC7he  
%       [theta,r] = cart2pol(X,Y); >p"c>V& 8  
%       idx = r<=1; Dd\jHF>u  
%       z = nan(size(X)); )rC6*eR  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); '*3h!lW1.  
%       figure ?"g!  
%       pcolor(x,x,z), shading interp  P Y  
%       axis square, colorbar OLE[UXD-E  
%       title('Zernike function Z_5^1(r,\theta)') D|{jR~J)xK  
% >Z5gSs0  
%   Example 2: DP|D\+YyYA  
% V;v8=1t!  
%       % Display the first 10 Zernike functions Ig f&l`\  
%       x = -1:0.01:1; mGK|ihYu  
%       [X,Y] = meshgrid(x,x); o7$'cn  
%       [theta,r] = cart2pol(X,Y); 3U0`,c\ao*  
%       idx = r<=1; (=om,g}  
%       z = nan(size(X)); h 5^Z2:#  
%       n = [0  1  1  2  2  2  3  3  3  3]; P(f0R8BE  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; V{!J-nO  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; 5;YMqUkw  
%       y = zernfun(n,m,r(idx),theta(idx)); Rx}$0c0  
%       figure('Units','normalized') R21b!Pd\  
%       for k = 1:10 |E JD3 &  
%           z(idx) = y(:,k); 85LAY aw  
%           subplot(4,7,Nplot(k)) ]jo1{IcI  
%           pcolor(x,x,z), shading interp IhVO@KJI  
%           set(gca,'XTick',[],'YTick',[]) 7Mg=b%IYs  
%           axis square sG92XJ  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?M\{&mlF  
%       end ~ Q.7VDz  
% 'ZDp5pCC;  
%   See also ZERNPOL, ZERNFUN2. ,)vDeU  
& tg&5_  
%   Paul Fricker 11/13/2006 kH G"XTL  
u=`L )  
!:q/Ye3.  
% Check and prepare the inputs: X\bOz[\  
% ----------------------------- ~?K~L~f5  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) xLK<W"%0  
    error('zernfun:NMvectors','N and M must be vectors.') ww], y@da  
end CEX " D`  
hhCrUn"  
if length(n)~=length(m) VHIOwzC  
    error('zernfun:NMlength','N and M must be the same length.') B><d9d  
end qVH1}9_  
v>Q #B  
n = n(:); 1;Ou7T9w  
m = m(:); E2R&[Q"%  
if any(mod(n-m,2)) RBs-_o+%  
    error('zernfun:NMmultiplesof2', ... Y^$X*U/q%U  
          'All N and M must differ by multiples of 2 (including 0).') {>hC~L?6  
end ;DFSzbF`  
j+$rj  
if any(m>n) r]:(Vk]|F  
    error('zernfun:MlessthanN', ... *Q ?tl\E  
          'Each M must be less than or equal to its corresponding N.') |)(VsVG&  
end /_I]H  
1g8_Xe4  
if any( r>1 | r<0 ) }fb#G<3  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') a7r%X -  
end TO]@ Zu1  
$u]jy0X<Y;  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _Kl_61k  
    error('zernfun:RTHvector','R and THETA must be vectors.') c;Pe/d  
end 6-$jkto  
2$+bJJM  
r = r(:); ,,%i;  
theta = theta(:); {.C!i{|  
length_r = length(r); % 5M/s'O?i  
if length_r~=length(theta) J:CXW%\ <q  
    error('zernfun:RTHlength', ... ,(qRc(Ho  
          'The number of R- and THETA-values must be equal.') s4A43i'g!h  
end YIoQL}pX  
mF*2#]%dx  
% Check normalization: 7puFz4+f  
% -------------------- m$}R%  
if nargin==5 && ischar(nflag)  P5a4ze  
    isnorm = strcmpi(nflag,'norm'); Ql/cN%^j$  
    if ~isnorm ]zE;Tw.S  
        error('zernfun:normalization','Unrecognized normalization flag.') de.&`lPRf  
    end WA)yfo0A  
else ]O+Ma}dxz:  
    isnorm = false; ^1iSn)&  
end ,J,/."Y  
T!+5[  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x+ Ttl4  
% Compute the Zernike Polynomials Q sZx) bO  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *scVJ  
KHe=O1 %QO  
% Determine the required powers of r: >7lx=T x  
% ----------------------------------- [I '0,y  
m_abs = abs(m); *6sl   
rpowers = []; (G zb  
for j = 1:length(n) 27 ]':A4_  
    rpowers = [rpowers m_abs(j):2:n(j)]; [ey:e6,T9  
end N60rgSzI  
rpowers = unique(rpowers); ^U `[(kz=  
")O%86_Q:  
% Pre-compute the values of r raised to the required powers, G`SUxhCk  
% and compile them in a matrix: i6dHrx]:,  
% ----------------------------- GPkmf%FJ  
if rpowers(1)==0 HW3 }uP\c  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3h;{!|-3  
    rpowern = cat(2,rpowern{:}); -G}[AkmS  
    rpowern = [ones(length_r,1) rpowern]; e- :yb^  
else u$DHVRrF<  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); R)_%i<nq\  
    rpowern = cat(2,rpowern{:}); /Y9>8XSc  
end EN$2,qf  
K&vF0*gN3  
% Compute the values of the polynomials: ah+~y,Gl  
% -------------------------------------- f,h J~  
y = zeros(length_r,length(n)); x'+T/zw  
for j = 1:length(n) ',Y.v"']4  
    s = 0:(n(j)-m_abs(j))/2; Dd'm U  
    pows = n(j):-2:m_abs(j); I8wXuIN_  
    for k = length(s):-1:1 iq8Grd L"  
        p = (1-2*mod(s(k),2))* ... $@z5kwx:P  
                   prod(2:(n(j)-s(k)))/              ... Eo{"9j\  
                   prod(2:s(k))/                     ... i!J8 d"  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... rf $QxJ  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); 5:pM 4J  
        idx = (pows(k)==rpowers); AJh w  
        y(:,j) = y(:,j) + p*rpowern(:,idx); +MR.>"  
    end VPO N-{=`  
     !TAlB kj  
    if isnorm zz+$=(T:M  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @G8lr  
    end _wTOmz%|R  
end 5Sm}n H  
% END: Compute the Zernike Polynomials &ib5* 4!  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -8; 7Sp1  
 'C`U"I  
% Compute the Zernike functions: H\h3 TdL  
% ------------------------------ d;zai]]  
idx_pos = m>0; E)TN,@%  
idx_neg = m<0; u?4:H=;>  
TT2d81I3m  
z = y; J3e96t~u  
if any(idx_pos) GC>e26\:  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {9?JjA  
end g l^<Q  
if any(idx_neg) k`So -e-  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~<O7$~  
end a6D &/8  
/I1h2 E  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) y+X2Pl  
%ZERNFUN2 Single-index Zernike functions on the unit circle. v'U{/ ,x  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated O #F   
%   at positions (R,THETA) on the unit circle.  P is a vector of positive ZjgsR|i  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, |uX,5Q#6  
%   and THETA is a vector of angles.  R and THETA must have the same .LZwuJ^;  
%   length.  The output Z is a matrix with one column for every P-value, a2dnbfSWa[  
%   and one row for every (R,THETA) pair. I/a/)No  
% isQ[ Gc!8  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike x.f]1S7h[  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) W~zbm]  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) {1IfU  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ,24p%KJ*X  
%   for all p. kddZZA3`  
% !zkZQ2{Wn  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 01}C^iD  
%   Zernike functions (order N<=7).  In some disciplines it is xfpa]Z  
%   traditional to label the first 36 functions using a single mode @CTgT-0!  
%   number P instead of separate numbers for the order N and azimuthal G`n_YH084  
%   frequency M. .}q&5v  
% W yB3ls~  
%   Example: R$ q; !  
% C"!gZ8*\!9  
%       % Display the first 16 Zernike functions N):tOD@B  
%       x = -1:0.01:1; N.\- 8?>  
%       [X,Y] = meshgrid(x,x); {_`^R>"\&w  
%       [theta,r] = cart2pol(X,Y); 5 MN8D COF  
%       idx = r<=1; -db_E#  
%       p = 0:15; *QwY]j%^  
%       z = nan(size(X)); V#XppYU  
%       y = zernfun2(p,r(idx),theta(idx)); K%a%a6k`  
%       figure('Units','normalized') F$ #U5}Q  
%       for k = 1:length(p) ~rDZ?~%  
%           z(idx) = y(:,k); 6kNrYom  
%           subplot(4,4,k) S<VSn}vn  
%           pcolor(x,x,z), shading interp |.F$G<  
%           set(gca,'XTick',[],'YTick',[]) =h0,?]z  
%           axis square n;@bLJ$W  
%           title(['Z_{' num2str(p(k)) '}']) 0 vtt"f)Y[  
%       end v*r7Zz6l  
% =T(6#"  
%   See also ZERNPOL, ZERNFUN. E7.2T^o;M  
Y&S24aql  
%   Paul Fricker 11/13/2006 l8I /0`_  
fQi4\m  
V!lZ\)  
% Check and prepare the inputs: ]^lw*724'>  
% ----------------------------- }|g\ 8jq  
if min(size(p))~=1 OW3sS+y  
    error('zernfun2:Pvector','Input P must be vector.') KVn []@#  
end #73F} tZ^  
|G?htZF  
if any(p)>35 *v9 2  
    error('zernfun2:P36', ... iPd[l {85Z  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... umiBj)r  
           '(P = 0 to 35).']) aMtsmL?=  
end N'^&\@)xiU  
q1Q L@Ax  
% Get the order and frequency corresonding to the function number: +89*)pk   
% ---------------------------------------------------------------- AS =?@2 q  
p = p(:); t .7?  
n = ceil((-3+sqrt(9+8*p))/2); NWMFtT  
m = 2*p - n.*(n+2); <eQj`HL  
Nv(9N-9r  
% Pass the inputs to the function ZERNFUN: P*FMwrJj>r  
% ---------------------------------------- )iYxt:(,  
switch nargin v2B0q4*BS?  
    case 3 t m7^yn:  
        z = zernfun(n,m,r,theta); {]:7bV#JP  
    case 4 -_1>C\h"  
        z = zernfun(n,m,r,theta,nflag); Tk5W'p|6f  
    otherwise a-=8xs'  
        error('zernfun2:nargin','Incorrect number of inputs.') .(^ ,z&  
end G LIi6  
4lKq{X5<  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) _*1`@  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. 1Cgso`  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ? }kG`q  
%   order N and frequency M, evaluated at R.  N is a vector of {bJ`~b9e  
%   positive integers (including 0), and M is a vector with the v7iuL6jl  
%   same number of elements as N.  Each element k of M must be a X]wRwG  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) ;c4 gv,q@  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Y8-86 *zC  
%   a vector of numbers between 0 and 1.  The output Z is a matrix ;\14b?TUH  
%   with one column for every (N,M) pair, and one row for every ^eo|P~w g  
%   element in R. ^,/RO5  
% EfCx`3~EX  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- vgfcCcZ_iZ  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is VJickXA  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to va}Pj#=  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 d$ x"/A]<  
%   for all [n,m]. q|!-0B @  
% j4|N- :  
%   The radial Zernike polynomials are the radial portion of the ykV 5  
%   Zernike functions, which are an orthogonal basis on the unit |mGFts}0o'  
%   circle.  The series representation of the radial Zernike __|+w<]  
%   polynomials is 2O.i\cH  
% NbgK@eV}+{  
%          (n-m)/2 q*_/to  
%            __ U%q7Ai7  
%    m      \       s                                          n-2s mID"^NOi#  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ]yK7PH-{L  
%    n      s=0 '>cKH$nVC}  
% _B/ dWA,P  
%   The following table shows the first 12 polynomials. <<+\X:,  
% 3%E }JU?MM  
%       n    m    Zernike polynomial    Normalization BJM.iXU)[  
%       --------------------------------------------- eYN5;bx)W  
%       0    0    1                        sqrt(2) g# Sl %Y  
%       1    1    r                           2 VF?<{F  
%       2    0    2*r^2 - 1                sqrt(6) "alyfyBu'M  
%       2    2    r^2                      sqrt(6) c:<005\Bg  
%       3    1    3*r^3 - 2*r              sqrt(8) Y2n!>[[.  
%       3    3    r^3                      sqrt(8) 5ni~Q 9b  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Sjv dirr  
%       4    2    4*r^4 - 3*r^2            sqrt(10) [|(N_[E|6  
%       4    4    r^4                      sqrt(10) S- pV_Ff  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 8Kg n"M3  
%       5    3    5*r^5 - 4*r^3            sqrt(12) ADDSCY=,  
%       5    5    r^5                      sqrt(12) ]x RM&=)<  
%       --------------------------------------------- pA9+Cr!0Q  
% gy#/D& N[  
%   Example: @D{KdyW  
% YH vLGc%  
%       % Display three example Zernike radial polynomials 5*lT.  
%       r = 0:0.01:1; wy0tgy(' |  
%       n = [3 2 5]; kCR_tn 4  
%       m = [1 2 1]; 0ZZZoP o  
%       z = zernpol(n,m,r); ^@3sT,M,S  
%       figure Nl^;A> <u  
%       plot(r,z) 9$cWU_q{  
%       grid on WY?[,_4U  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') NdMb)l)m  
% '*5i)^  
%   See also ZERNFUN, ZERNFUN2. [x+FcXb  
';3{T:I  
% A note on the algorithm. B* ?]H*K  
% ------------------------ F5P[dp-`1  
% The radial Zernike polynomials are computed using the series W-mQjJ`,B  
% representation shown in the Help section above. For many special Fv~20G (O  
% functions, direct evaluation using the series representation can @;*Ksy@1O  
% produce poor numerical results (floating point errors), because lR )67a  
% the summation often involves computing small differences between qh9Z50E9  
% large successive terms in the series. (In such cases, the functions T ]t'39  
% are often evaluated using alternative methods such as recurrence |TS>h wkI  
% relations: see the Legendre functions, for example). For the Zernike S2HcG 1J  
% polynomials, however, this problem does not arise, because the R3x3]]D  
% polynomials are evaluated over the finite domain r = (0,1), and XGYbnZ~   
% because the coefficients for a given polynomial are generally all 1S{D6#bE  
% of similar magnitude. 5gYRwuf  
% 'u*D A|HC  
% ZERNPOL has been written using a vectorized implementation: multiple yv t.  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] U{2BVqM  
% values can be passed as inputs) for a vector of points R.  To achieve ULs\+U  
% this vectorization most efficiently, the algorithm in ZERNPOL /rWd=~[MO  
% involves pre-determining all the powers p of R that are required to ojaws+(& y  
% compute the outputs, and then compiling the {R^p} into a single Q6PHpaj  
% matrix.  This avoids any redundant computation of the R^p, and i3tg6o4C  
% minimizes the sizes of certain intermediate variables. EK {Eo9l  
% ur)9x^y  
%   Paul Fricker 11/13/2006 t| g4m[kr  
4 {y)TZ  
wH>a~C:  
% Check and prepare the inputs: SIBtmm1W  
% ----------------------------- )eUh=eW  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ((H^2KJn  
    error('zernpol:NMvectors','N and M must be vectors.') zZL6z4g  
end 'GNK"XA^  
arIf'CG6  
if length(n)~=length(m) MqW7cjg  
    error('zernpol:NMlength','N and M must be the same length.') :flx6,7D  
end {m4b(t`xw  
5eLtCsHz  
n = n(:); h;p>o75O  
m = m(:); ,]|#[8  
length_n = length(n); `7c~m ypx  
fz|cnU  
if any(mod(n-m,2)) '*K:  lx  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') CyJEY-  
end Oxm>c[R  
uZNTHD  
if any(m<0) (/=f6^}  
    error('zernpol:Mpositive','All M must be positive.') h{%nC>m;  
end =$u! 59_dE  
um jt]Gu[  
if any(m>n) 2GP=&K/A  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') f86XkECZ;`  
end j]{_s"O  
F0GxH?  
if any( r>1 | r<0 ) p*< 0"0  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') H=<S 9M  
end :0Bq^G"ge  
yQ U{ zY  
if ~any(size(r)==1) C^O VB-  
    error('zernpol:Rvector','R must be a vector.') sZjQ3*<-r  
end +[M6X} TQ  
o*-)Tq8GHE  
r = r(:); I4'5P}1yp  
length_r = length(r); @3) (BpFe  
&q3"g*q  
if nargin==4 O9G[j=U  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ynq}76 H0k  
    if ~isnorm b,5~b&<h  
        error('zernpol:normalization','Unrecognized normalization flag.') (uXL^oja  
    end v_BcTzQ0S  
else 7r7YNn/?  
    isnorm = false; b+%f+zz*h  
end y=fx%~<> 8  
)P%ZA)l%_o  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w{I vmdto  
% Compute the Zernike Polynomials 2a-w% (K  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \9cbI3rGz  
H['N  
% Determine the required powers of r: ,$@bE  
% ----------------------------------- )mg:_K  
rpowers = []; sQ=]NF)\  
for j = 1:length(n) sGi"rg#  
    rpowers = [rpowers m(j):2:n(j)]; P60~ V"/P  
end ./- 5R|fN  
rpowers = unique(rpowers); hcgMZT!<5  
O@tU.5*$5  
% Pre-compute the values of r raised to the required powers, ,-$LmECg  
% and compile them in a matrix: |WQBDB`W  
% ----------------------------- }{,^@xdyW  
if rpowers(1)==0 DH[p\Wy'  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); SbND Y{5RO  
    rpowern = cat(2,rpowern{:}); cbNTj$'b2u  
    rpowern = [ones(length_r,1) rpowern]; -c_74c50  
else srPWE^&  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); p2Z?T}fa}&  
    rpowern = cat(2,rpowern{:}); /@wg>&L]  
end X@'u y<tI-  
Qk0R a_  
% Compute the values of the polynomials: rxVanDb=W  
% -------------------------------------- c-x,fS"&W  
z = zeros(length_r,length_n); bbtGXfI+SB  
for j = 1:length_n g$":D  
    s = 0:(n(j)-m(j))/2; J}*,HT*  
    pows = n(j):-2:m(j); H7?Vybg~  
    for k = length(s):-1:1 m.JBOq=  
        p = (1-2*mod(s(k),2))* ... =qoWCmg"&  
                   prod(2:(n(j)-s(k)))/          ... T%x}Y#U'`  
                   prod(2:s(k))/                 ... zE336  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... 6|K5!2  
                   prod(2:((n(j)+m(j))/2-s(k))); 5/q}`T9i%7  
        idx = (pows(k)==rpowers); i#&z2h-b  
        z(:,j) = z(:,j) + p*rpowern(:,idx);  H_B4  
    end ~De"?  
     ) mI05  
    if isnorm _A M*@|p,  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); r  [9x  
    end .4_o>D  
end 2;[D;Y}  
@y e4q.m  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  FK6[>(QO  
D>|H 2  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 U T>s 5C  
X#d~zk[r2  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2026 光行天下 蜀ICP备06003254号-1 网站统计