首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 NjTVinz  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! S+i .@N.^  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 8e'0AI_>  
function z = zernfun(n,m,r,theta,nflag) !lSxBr[dQ  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]~,V(K  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ez2 gy"  
%   and angular frequency M, evaluated at positions (R,THETA) on the u@`)u#  
%   unit circle.  N is a vector of positive integers (including 0), and <JA`e+Bi  
%   M is a vector with the same number of elements as N.  Each element @G vDl=.  
%   k of M must be a positive integer, with possible values M(k) = -N(k) 9`8\<a'rU  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 728}K^7:  
%   and THETA is a vector of angles.  R and THETA must have the same  s*gyk  
%   length.  The output Z is a matrix with one column for every (N,M) #\+ TKK  
%   pair, and one row for every (R,THETA) pair. fwy-M:  
% kT(}>=]g  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike K>kMKd1  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), x M1>kbo|  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral HQ%-e5Q  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $*| :A  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized Nxu 10  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. L3Leb%,!  
% (K$K;f$"r  
%   The Zernike functions are an orthogonal basis on the unit circle. B| IQ/g?  
%   They are used in disciplines such as astronomy, optics, and 2Yx6.e<  
%   optometry to describe functions on a circular domain. 9Z0(e!b4S  
% (}Ql#q K  
%   The following table lists the first 15 Zernike functions. fhu- YYJt  
% p{j }%) 6n  
%       n    m    Zernike function           Normalization JM{S49Lx  
%       -------------------------------------------------- '3>kDH+  
%       0    0    1                                 1 /EUv=89{!  
%       1    1    r * cos(theta)                    2 #e.2m5T  
%       1   -1    r * sin(theta)                    2 H_'i.t 'SS  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) {~ yj]+Im  
%       2    0    (2*r^2 - 1)                    sqrt(3) Kp *nOZ  
%       2    2    r^2 * sin(2*theta)             sqrt(6) z_#B 4  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) EXDtVa Ot  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) fGiN`j} j  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 9l+`O0.@  
%       3    3    r^3 * sin(3*theta)             sqrt(8) \ ?[#>L4  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) 4BG6C'`%  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @18"o"c7j  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ?)#dP8n  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L!E/ )#{  
%       4    4    r^4 * sin(4*theta)             sqrt(10) zCD?5*7  
%       -------------------------------------------------- {& G7 Xa  
% ;T2)nSAqt  
%   Example 1: v]g/ 5qI&  
% buo_H@@p{s  
%       % Display the Zernike function Z(n=5,m=1) b=a&!r5M  
%       x = -1:0.01:1; b .k J&c  
%       [X,Y] = meshgrid(x,x); - Z"w  
%       [theta,r] = cart2pol(X,Y); &0Zn21q  
%       idx = r<=1; ~V?O%1)k?\  
%       z = nan(size(X)); E|D~:M%~  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); Nt#zr]Fz  
%       figure PY: l  
%       pcolor(x,x,z), shading interp t=iSMe  
%       axis square, colorbar )t{oyBT  
%       title('Zernike function Z_5^1(r,\theta)') e*uaxh+7  
% SsDz>PP  
%   Example 2: R2Fh WiL  
% wJJ4F$"b  
%       % Display the first 10 Zernike functions %4U;Rdq&Ud  
%       x = -1:0.01:1; yk Sn=0  
%       [X,Y] = meshgrid(x,x); ]]$s"F<  
%       [theta,r] = cart2pol(X,Y); i TY4X:x  
%       idx = r<=1; U9IP`)z_5t  
%       z = nan(size(X)); [JFmhLP9  
%       n = [0  1  1  2  2  2  3  3  3  3]; o|8 5<~`  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; < pI2}  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; KotJ,s]B  
%       y = zernfun(n,m,r(idx),theta(idx)); S#qd#Zk|Y  
%       figure('Units','normalized') goi.'8M|/b  
%       for k = 1:10 ,#&lNQ'I  
%           z(idx) = y(:,k); ,v:m  
%           subplot(4,7,Nplot(k)) .MuS"R{y  
%           pcolor(x,x,z), shading interp <3z]d?u  
%           set(gca,'XTick',[],'YTick',[]) C$\|eC j  
%           axis square !8vHN=)z  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) XF(I$Mxl6  
%       end km'3[}8o&  
% tfj6#{M5  
%   See also ZERNPOL, ZERNFUN2. +Y,>ftN  
A1@tp/L=o  
%   Paul Fricker 11/13/2006 9 )u*IGj  
=?T\zLN=  
 vrdlI^  
% Check and prepare the inputs: *. l,_68  
% ----------------------------- K8doYN  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LF <fp&C)h  
    error('zernfun:NMvectors','N and M must be vectors.') z71.5n!C  
end xf<D5 olZ  
$"C]y$}  
if length(n)~=length(m) p>=YPi/d  
    error('zernfun:NMlength','N and M must be the same length.') /HgdTyR)  
end {bL6%._C  
j]}A"8=1  
n = n(:); _)Q) tOW  
m = m(:); cBM A.'uIL  
if any(mod(n-m,2)) fM?HZKo  
    error('zernfun:NMmultiplesof2', ... U .hV1  
          'All N and M must differ by multiples of 2 (including 0).') +ZtqR  
end |r1\  
R_\{a*lV0  
if any(m>n) ZO{uG(u  
    error('zernfun:MlessthanN', ... .MMFN }1O  
          'Each M must be less than or equal to its corresponding N.') n;Tpf<*U  
end |Y"q. n77  
CL|t!+wU/  
if any( r>1 | r<0 ) _ 0%sYkUc  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') z$oA6qB)  
end IBb3A  
EcrM`E#kaZ  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,x!P|\w.G{  
    error('zernfun:RTHvector','R and THETA must be vectors.') (Mhj-0xf$  
end .2/(G{}U  
z+FhWze  
r = r(:); Q^/66"Z:Z  
theta = theta(:); jFpXTy[>  
length_r = length(r); 0e9W>J9  
if length_r~=length(theta) m `~/]QQ  
    error('zernfun:RTHlength', ... ~PP*k QZlJ  
          'The number of R- and THETA-values must be equal.') g<{/mxv/  
end vE7L> 7  
P!:Y<p{=>  
% Check normalization: GM|gm-t<@  
% -------------------- "2(lgxhj  
if nargin==5 && ischar(nflag) RS!~5nk5  
    isnorm = strcmpi(nflag,'norm'); G*uy@s:  
    if ~isnorm lb5Y$ZC  
        error('zernfun:normalization','Unrecognized normalization flag.') D`0II=  
    end E.Xf b"]  
else N_Cu%HP  
    isnorm = false; .cN\x@3-j  
end x:b 0G  
ViQxO UE  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H>_ FCV8  
% Compute the Zernike Polynomials #qT97NQ  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dbSIC[q  
1BwCJ7?8  
% Determine the required powers of r: +b1(sk=4z  
% ----------------------------------- ~{iBm"4  
m_abs = abs(m); hL~@Ah5&t  
rpowers = []; HiCNs;t  
for j = 1:length(n) GJai!$v  
    rpowers = [rpowers m_abs(j):2:n(j)]; Xg?hh 0s  
end dN\Byl(6  
rpowers = unique(rpowers); _JOrGVmD  
o1YX^-<[F  
% Pre-compute the values of r raised to the required powers, 5 :6^533]  
% and compile them in a matrix: R<{bb'  
% ----------------------------- 9V`/zq?  
if rpowers(1)==0 bPEf2Z G4  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )+RTA y[k  
    rpowern = cat(2,rpowern{:}); csz/[*  
    rpowern = [ones(length_r,1) rpowern]; //]g78]=O  
else zm) ]cq  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &Z/aM?  
    rpowern = cat(2,rpowern{:}); gN1b?_g  
end L0ig%  
DvHcT] l>5  
% Compute the values of the polynomials: F7gipCc1We  
% -------------------------------------- =i  }  
y = zeros(length_r,length(n)); =($RT  
for j = 1:length(n) &1YqPk  
    s = 0:(n(j)-m_abs(j))/2; )n}Wb+2I  
    pows = n(j):-2:m_abs(j); f@l$52f3D  
    for k = length(s):-1:1 m5Q,RwJ!xK  
        p = (1-2*mod(s(k),2))* ... <8yzBp4gZ  
                   prod(2:(n(j)-s(k)))/              ... WM5 s  
                   prod(2:s(k))/                     ... QCQku\GLV  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _"SE^_&c  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); }GJIM|7^  
        idx = (pows(k)==rpowers); @G[P|^B  
        y(:,j) = y(:,j) + p*rpowern(:,idx); i<&*f}='  
    end  }tv%  
     1OK,r`   
    if isnorm 0{#,'sc;  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); BM!\U 6  
    end z OD5a=[1  
end 8-5MGh0L  
% END: Compute the Zernike Polynomials y`wTw/5N  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )kR~|Yn<-  
{%5k1,/(  
% Compute the Zernike functions: ,IoPK!5xy  
% ------------------------------ eBX#^  
idx_pos = m>0; BlUl5mP}>  
idx_neg = m<0; ac"Pn? q  
Og[NRd+  
z = y; { 2G9>'  
if any(idx_pos) ['ol]ZJ  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B?9K!c  
end x*& OvI/o  
if any(idx_neg) ^IGutZov  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); t=syo->  
end 6I GUp  
WV}<6r$e  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) <jE6ye(R  
%ZERNFUN2 Single-index Zernike functions on the unit circle. u}Vc2a,WV  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ^N}zePy0  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive B2t.;uz(,  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, ga&l.:lo  
%   and THETA is a vector of angles.  R and THETA must have the same :=vB|Ch:~  
%   length.  The output Z is a matrix with one column for every P-value, JF!?i6V  
%   and one row for every (R,THETA) pair. *5Upb,* *  
% Ry>c]\a]  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike \U;4 \  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ?#?[6t  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Dz/I"bZLC  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 HPl!r0 h  
%   for all p. =S/$h}Vi  
% nD6mLNi%a  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 WGjT06a\  
%   Zernike functions (order N<=7).  In some disciplines it is H|_^T.n?E  
%   traditional to label the first 36 functions using a single mode b:3n)-V{u  
%   number P instead of separate numbers for the order N and azimuthal hgMh]4wN*  
%   frequency M. _h>S7-X  
% hFl$u8KV  
%   Example: tn\Y:  
% S6-)N(3|  
%       % Display the first 16 Zernike functions vRa|lGeW  
%       x = -1:0.01:1; _"n1"%Ns  
%       [X,Y] = meshgrid(x,x); aiVd^(  
%       [theta,r] = cart2pol(X,Y); 7NC"}JB&  
%       idx = r<=1; u4TU"r("A  
%       p = 0:15; 9 2_F8y*D  
%       z = nan(size(X)); (+7gS_c  
%       y = zernfun2(p,r(idx),theta(idx)); @w&VI6  
%       figure('Units','normalized') /.<%y 8v  
%       for k = 1:length(p) xcdy/J&  
%           z(idx) = y(:,k); =g4^tIYq  
%           subplot(4,4,k) RG/M-  
%           pcolor(x,x,z), shading interp #g[jwl'  
%           set(gca,'XTick',[],'YTick',[]) ,9<}V;(  
%           axis square qS<a5`EA  
%           title(['Z_{' num2str(p(k)) '}']) |_L\^T|6  
%       end fkE4 [X7f  
% ~qQSt%  
%   See also ZERNPOL, ZERNFUN. z-fP #.  
)\!_`ob  
%   Paul Fricker 11/13/2006 dr0<K[S_  
Nq'Cuwsp  
h(]aP<49L  
% Check and prepare the inputs: 4cJ7W_ >i6  
% ----------------------------- H59}d oKH  
if min(size(p))~=1 -1).'aJ^  
    error('zernfun2:Pvector','Input P must be vector.') ZN>oz@j Y  
end JU+Uzp   
H.|v ^e  
if any(p)>35 *sK")Q4N  
    error('zernfun2:P36', ... E!<w t  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ,l`4)@{G  
           '(P = 0 to 35).']) 1A\Jh3;Q  
end T0BFit6  
am,UUJ+h>  
% Get the order and frequency corresonding to the function number: =au7'i|6  
% ---------------------------------------------------------------- rT$J0"*=  
p = p(:); 5BKga1Q  
n = ceil((-3+sqrt(9+8*p))/2); OZ 4uk.)  
m = 2*p - n.*(n+2); SK f9 yS#  
DM"nxTVre  
% Pass the inputs to the function ZERNFUN: |9>?{ B\a  
% ---------------------------------------- Xv ;} !z  
switch nargin Ny|2Fcs  
    case 3 l`c&nf6  
        z = zernfun(n,m,r,theta); t.wB\Kmt\  
    case 4 vi?{H*H4c  
        z = zernfun(n,m,r,theta,nflag); ! bbVa/  
    otherwise UjLZ!-}  
        error('zernfun2:nargin','Incorrect number of inputs.') +Hx$ABH  
end q]Y [W1  
I3Gz,y+  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) vg@kPuOiO  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. o.Ld.I)  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of DyeV uB  
%   order N and frequency M, evaluated at R.  N is a vector of <P&~k\BuF{  
%   positive integers (including 0), and M is a vector with the s))L^|6  
%   same number of elements as N.  Each element k of M must be a 5Y<O  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) Fw ,'a  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is YC!Tgb~H  
%   a vector of numbers between 0 and 1.  The output Z is a matrix q{D_p[q  
%   with one column for every (N,M) pair, and one row for every 3^p<Wx  
%   element in R. L"|4 v  
% DY2r6bcn`  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- .b'o}DLa  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Vs@[="  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to cRYnQ{$'  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 p.{9OrH(4  
%   for all [n,m]. ?VC[%sjwn  
% vY|{CBGbd  
%   The radial Zernike polynomials are the radial portion of the Vgy}0pCl  
%   Zernike functions, which are an orthogonal basis on the unit s;oDwT1  
%   circle.  The series representation of the radial Zernike ,_HSvs7-  
%   polynomials is JkT , i_  
% e}|UVoeH  
%          (n-m)/2 {#>>dILPr  
%            __ >KF1]/y<  
%    m      \       s                                          n-2s EOqvu=$6  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r $`7cs}#  
%    n      s=0 .hI3Uv8[  
% [UO?L2$&  
%   The following table shows the first 12 polynomials. 5I#L|+  
% RmXC ^VQ  
%       n    m    Zernike polynomial    Normalization 5?-cP?|.9  
%       --------------------------------------------- /8V#6d_  
%       0    0    1                        sqrt(2) k-5Enbkr  
%       1    1    r                           2 ;r(hZ%pD  
%       2    0    2*r^2 - 1                sqrt(6) SQ*dC  
%       2    2    r^2                      sqrt(6) }T<[JXh=J  
%       3    1    3*r^3 - 2*r              sqrt(8) C.SG m  
%       3    3    r^3                      sqrt(8) *#ccz  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) i3C5"\y  
%       4    2    4*r^4 - 3*r^2            sqrt(10) ;dXQB>Za  
%       4    4    r^4                      sqrt(10) 5AmY rXZ  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) H.\gLIr  
%       5    3    5*r^5 - 4*r^3            sqrt(12) |e+8Xz1>  
%       5    5    r^5                      sqrt(12) R@lmX%Z1  
%       --------------------------------------------- (Uo:WyVj|F  
% G$X+g{  
%   Example: S *3N6*-l"  
% .xXe *dm%  
%       % Display three example Zernike radial polynomials =,Y i" E  
%       r = 0:0.01:1; IyTL|W6  
%       n = [3 2 5]; PnB%vS  
%       m = [1 2 1]; #BA=?7  
%       z = zernpol(n,m,r); SM>V o+  
%       figure Yh`P+L  
%       plot(r,z) U`gQ7  
%       grid on JffjGf-o  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ,TrrqCw>  
% T;6 VI|\  
%   See also ZERNFUN, ZERNFUN2. eKd F-;  
Y02 cX@K6  
% A note on the algorithm. " P A:  
% ------------------------ X+l &MD  
% The radial Zernike polynomials are computed using the series U68o"iE  
% representation shown in the Help section above. For many special U\N|hw#f!!  
% functions, direct evaluation using the series representation can F,2)Udim  
% produce poor numerical results (floating point errors), because xO8-vmf2  
% the summation often involves computing small differences between N?!]^jI,  
% large successive terms in the series. (In such cases, the functions wwnl_9a  
% are often evaluated using alternative methods such as recurrence R"Q=U}?$  
% relations: see the Legendre functions, for example). For the Zernike SrMg=a  
% polynomials, however, this problem does not arise, because the sSVgDQ~q  
% polynomials are evaluated over the finite domain r = (0,1), and 9 yH/5'  
% because the coefficients for a given polynomial are generally all 0(A(Vb5J.T  
% of similar magnitude. fIOI  
% P,xI3U< q  
% ZERNPOL has been written using a vectorized implementation: multiple rUC@Bf  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] FJ}RT*7_C  
% values can be passed as inputs) for a vector of points R.  To achieve sFNBrL  
% this vectorization most efficiently, the algorithm in ZERNPOL @ eQIwz  
% involves pre-determining all the powers p of R that are required to i7h!,vaK  
% compute the outputs, and then compiling the {R^p} into a single EsA)o 5  
% matrix.  This avoids any redundant computation of the R^p, and $~M#msK9  
% minimizes the sizes of certain intermediate variables. _yje"  
% Ktrqrl^IJ  
%   Paul Fricker 11/13/2006 s&vREx(  
(rfU=E  
'gYUyl  
% Check and prepare the inputs: /A3tY"Vn  
% ----------------------------- Fl,(KST z  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) n[Jpy[4g  
    error('zernpol:NMvectors','N and M must be vectors.') ZJev_mj  
end CBC0X}_`  
STMc@MeZU_  
if length(n)~=length(m) c`]_Q1'30w  
    error('zernpol:NMlength','N and M must be the same length.') m'h`%0Tc  
end T;(k  
Wi3:;`>G<p  
n = n(:); 'F[m,[T%x  
m = m(:); 0)/L+P5  
length_n = length(n); 0 rbMT`Hy  
\$o5$/oU(  
if any(mod(n-m,2)) 7TCY$RcF,I  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 9Xw(|22  
end o#V}l^uU=  
3D3/\E#'o  
if any(m<0) ;0lHi4 c0  
    error('zernpol:Mpositive','All M must be positive.') d_CY=DHF%`  
end [[(29|`]  
_hgu:  
if any(m>n) 5[Sa7Mk  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') u~Zx9>f  
end Hk'D@(h S  
-LAYj:4  
if any( r>1 | r<0 ) )H&rr(  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') qx3@]9  
end Y<lJj"G  
Zo}O,;(F5  
if ~any(size(r)==1) V gLnpPOQ  
    error('zernpol:Rvector','R must be a vector.') C*A!`Q?1Y  
end =<ngtN  
w'NL\>  
r = r(:); H$2<N@'4z  
length_r = length(r); 37Z@a!#  
V=%j ]`Os  
if nargin==4 6?an._ C  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); #*QnO\.  
    if ~isnorm NRU&GCVwu  
        error('zernpol:normalization','Unrecognized normalization flag.') [=dK%7v  
    end G:'hT=8  
else 1n+C'P"  
    isnorm = false; ~gz_4gzb  
end K0hmRR=  
iTf]Pd'  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I<p- o/TP  
% Compute the Zernike Polynomials 5U[m]W=B  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F@</Ev  
8G&'ED_&  
% Determine the required powers of r:  u>R2:i  
% ----------------------------------- ] B ZSW  
rpowers = []; JDi\?m d.  
for j = 1:length(n) 6M({T2e  
    rpowers = [rpowers m(j):2:n(j)]; 0s>ozAJ  
end D?yiK=:08`  
rpowers = unique(rpowers); UVND1XV^f  
Uy  $1X  
% Pre-compute the values of r raised to the required powers, -:mT8'.F-  
% and compile them in a matrix: HV_5 +  
% ----------------------------- 8t4o}3>  
if rpowers(1)==0 /l o;:)AiP  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /_yJ;l/K  
    rpowern = cat(2,rpowern{:}); @3T)J,f  
    rpowern = [ones(length_r,1) rpowern]; QtM9G@%  
else !% 'dyj  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W!@*3U]2R  
    rpowern = cat(2,rpowern{:}); <kJ,E[4`  
end 9 b?Nlk8d  
HB+{vuN*L  
% Compute the values of the polynomials: Y 6B7qp  
% -------------------------------------- A.`) 0dV  
z = zeros(length_r,length_n); a!iG;:K   
for j = 1:length_n fa~4+jx>S  
    s = 0:(n(j)-m(j))/2; }:6$5/?  
    pows = n(j):-2:m(j); IEbk_-h[  
    for k = length(s):-1:1 puE!7 :X7  
        p = (1-2*mod(s(k),2))* ... hq.XO=0"k  
                   prod(2:(n(j)-s(k)))/          ... M`1pze_A  
                   prod(2:s(k))/                 ... Ft} h&aYP  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... gK8E|f-z  
                   prod(2:((n(j)+m(j))/2-s(k))); xA?(n!{P  
        idx = (pows(k)==rpowers); s48 { R4  
        z(:,j) = z(:,j) + p*rpowern(:,idx); 9d5|rk8VS  
    end 'fIBJ3s[o  
     6 07"Z\  
    if isnorm El9D1],  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); wtm=  
    end o \r6 iO  
end ]Ak/:pu  
1m c'=S{  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Pl9Ky(Q`V  
$VgazUH% =  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 76'vsg  
SniKC qmC]  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计