| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Zl2doXC function z = zernfun(n,m,r,theta,nflag) 7H[.o~\ %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3ZYrNul" % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ljh,%#95= % and angular frequency M, evaluated at positions (R,THETA) on the -]Oi/i, { % unit circle. N is a vector of positive integers (including 0), and .Ag)/Xm(? % M is a vector with the same number of elements as N. Each element Yd~Tzh % k of M must be a positive integer, with possible values M(k) = -N(k) $)(Zt^ % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Pv8AWQQJ % and THETA is a vector of angles. R and THETA must have the same _ 1\H{x % length. The output Z is a matrix with one column for every (N,M) .noY[P8i % pair, and one row for every (R,THETA) pair. vRO`hGH % +$GP(Uu, % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike DJ NM=v % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), M""X_~&I" % with delta(m,0) the Kronecker delta, is chosen so that the integral 072`i46 % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mw=keY9] % and theta=0 to theta=2*pi) is unity. For the non-normalized 7I6&*I % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !z?:Y#P3 % [#2z=Xg % The Zernike functions are an orthogonal basis on the unit circle. G9>
0w)r % They are used in disciplines such as astronomy, optics, and S3/Z]?o % optometry to describe functions on a circular domain. }/.b@`Dh; % IAbH_+7O % The following table lists the first 15 Zernike functions. gO!:WD % #!M;4~Sfx % n m Zernike function Normalization ezk:XDi4 % -------------------------------------------------- Cx`?}A\% % 0 0 1 1 Gh{vExH@5( % 1 1 r * cos(theta) 2 ZCkwK % 1 -1 r * sin(theta) 2 /57)y_ \ % 2 -2 r^2 * cos(2*theta) sqrt(6) ]P(_
d'} % 2 0 (2*r^2 - 1) sqrt(3) mv9@Az9 % 2 2 r^2 * sin(2*theta) sqrt(6) 7ZpU -': % 3 -3 r^3 * cos(3*theta) sqrt(8) ljj}XJQ % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) uTUkRqtD! % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ?s{Pp % 3 3 r^3 * sin(3*theta) sqrt(8) 80O[pf*? % 4 -4 r^4 * cos(4*theta) sqrt(10) km!jxs % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '[Ch8Yf\ % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ;z^C\=om % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KZTT2KsYl % 4 4 r^4 * sin(4*theta) sqrt(10) >PiEu->P, % -------------------------------------------------- ;(9q, ) % ucC'SS % Example 1: cH\.-5NQ % =wX(a % % Display the Zernike function Z(n=5,m=1) 5?4jD]Z % x = -1:0.01:1; *.NVc % [X,Y] = meshgrid(x,x); 1'[_J % [theta,r] = cart2pol(X,Y); /=ro$@ % idx = r<=1; 9mH/xP:y % z = nan(size(X)); n8>(m, % z(idx) = zernfun(5,1,r(idx),theta(idx)); q%GlS=o" % figure 5J8U] :Y) % pcolor(x,x,z), shading interp @phb5 % axis square, colorbar cYp]zn+6 % title('Zernike function Z_5^1(r,\theta)') D[ (A`!) % ibskce{H % Example 2: 'IroQ M % E
h>qUa % % Display the first 10 Zernike functions ~!a~ -:# % x = -1:0.01:1; Zo|# ,AdE> % [X,Y] = meshgrid(x,x); 8!{F6DG % [theta,r] = cart2pol(X,Y); MHkTN % idx = r<=1; E"$AOM?(*i % z = nan(size(X)); E%6}p++ % n = [0 1 1 2 2 2 3 3 3 3]; \>*B % m = [0 -1 1 -2 0 2 -3 -1 1 3]; n[pW^&7x % Nplot = [4 10 12 16 18 20 22 24 26 28]; 9.qjEe % y = zernfun(n,m,r(idx),theta(idx)); YYUWBnf30G % figure('Units','normalized') E)w^odwMU % for k = 1:10 H$i4OQ2 % z(idx) = y(:,k); 8 P=z"y % subplot(4,7,Nplot(k)) ]%VR Nm % pcolor(x,x,z), shading interp VCZ.{MD % set(gca,'XTick',[],'YTick',[]) D|p`~( % axis square c>%+y+b{ % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R3SAt-IE % end |+Fko8- % }&OgI | |