首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 "%K[kA6  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! KNqs=:i  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 i3o;G"IcD  
function z = zernfun(n,m,r,theta,nflag) OsNJ;B  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !s(s^  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Un\ T} c  
%   and angular frequency M, evaluated at positions (R,THETA) on the [PL]!\NJ  
%   unit circle.  N is a vector of positive integers (including 0), and T#-U\C~o  
%   M is a vector with the same number of elements as N.  Each element /%i:(Ny  
%   k of M must be a positive integer, with possible values M(k) = -N(k) yPVK>em5  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, qp55U*  
%   and THETA is a vector of angles.  R and THETA must have the same poVtg}n  
%   length.  The output Z is a matrix with one column for every (N,M) CL<m+dW%*  
%   pair, and one row for every (R,THETA) pair. *&~wl(+O=  
% oE'Flc.  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Qk`LBvg1  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \* SEj&9  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral KN"<f:u  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u]s}@(+.  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized 6:qh%ZR  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0'~Iv\s  
% g0A,VX:2  
%   The Zernike functions are an orthogonal basis on the unit circle. _4~q&? }V  
%   They are used in disciplines such as astronomy, optics, and fkJElO-F  
%   optometry to describe functions on a circular domain. 4?.L+wL  
% i[m-&   
%   The following table lists the first 15 Zernike functions. >IE`, fe  
% C^nTLw;K  
%       n    m    Zernike function           Normalization s!WI:E7  
%       -------------------------------------------------- esK0H<]  
%       0    0    1                                 1 9O\N K:2  
%       1    1    r * cos(theta)                    2 ]%Z7wF</  
%       1   -1    r * sin(theta)                    2 f%Vdao[  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) |ZJ<N\\h-  
%       2    0    (2*r^2 - 1)                    sqrt(3) v7G&`4~  
%       2    2    r^2 * sin(2*theta)             sqrt(6) tzdh3\6F  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) 41NVF_R6J  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) .yb=I6D;<3  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) X!!3>`|  
%       3    3    r^3 * sin(3*theta)             sqrt(8) I hPX/P  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) L5A?9zum/!  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N_| '`]D  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) .fD%*-  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?`U=Ps  
%       4    4    r^4 * sin(4*theta)             sqrt(10) zb& 3{,  
%       -------------------------------------------------- I#9q^,,F  
% !7jVKI80  
%   Example 1: QV9 z81[  
% _Sn45h@"  
%       % Display the Zernike function Z(n=5,m=1) ^Bu55q  
%       x = -1:0.01:1; Ff{dOV.i  
%       [X,Y] = meshgrid(x,x); Tb<}GcwJ  
%       [theta,r] = cart2pol(X,Y); QBL|n+  
%       idx = r<=1; B):hm  
%       z = nan(size(X)); c@/K}  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); POt 8G  
%       figure ]Ofs, U^  
%       pcolor(x,x,z), shading interp vmIt!x  
%       axis square, colorbar =uD^#AX  
%       title('Zernike function Z_5^1(r,\theta)') mk]8}+^.  
% .+$ox-EK8  
%   Example 2: =9L1Z \f  
% sG8G}f  
%       % Display the first 10 Zernike functions JpC_au7CX  
%       x = -1:0.01:1; t(:w):zE  
%       [X,Y] = meshgrid(x,x); ^s_7-p])(  
%       [theta,r] = cart2pol(X,Y); x f<wM]&  
%       idx = r<=1; -SN6&-#c_  
%       z = nan(size(X)); +S ],){  
%       n = [0  1  1  2  2  2  3  3  3  3]; =U,mzY (  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; v]X*(e  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; ]1&} L^a  
%       y = zernfun(n,m,r(idx),theta(idx)); O8)N`#1>+  
%       figure('Units','normalized') G*%:"qleT$  
%       for k = 1:10 (qdvvu#E  
%           z(idx) = y(:,k); a<CACWsN.T  
%           subplot(4,7,Nplot(k)) B<oBo&uA  
%           pcolor(x,x,z), shading interp vXT>Dc2\!  
%           set(gca,'XTick',[],'YTick',[]) *^[j6  
%           axis square 2./;i>H[u  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) U *:E|'>  
%       end ndS8p]P&o(  
% Usq.'y/ o  
%   See also ZERNPOL, ZERNFUN2. )>I-j$%=2  
r>cN,C  
%   Paul Fricker 11/13/2006 njckPpyb@  
{.o@XP,.  
9A ?)n<3d  
% Check and prepare the inputs: \h5!u1{L  
% ----------------------------- <d~si^*\ch  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2(H-q(  
    error('zernfun:NMvectors','N and M must be vectors.') LsO}a;t5  
end '^%kTNn  
aM YtWj  
if length(n)~=length(m) ;"|QW?>$D  
    error('zernfun:NMlength','N and M must be the same length.') frT<9$QUL  
end )W*A[c 2  
R'Uf#.  
n = n(:); aKz:hG  
m = m(:); I`;SA~5  
if any(mod(n-m,2)) k8z1AP  
    error('zernfun:NMmultiplesof2', ... Bu"5NB  
          'All N and M must differ by multiples of 2 (including 0).') _BZ6Ws$C2  
end (!%9#  
uF+0nv+  
if any(m>n) Dvm[W),(k  
    error('zernfun:MlessthanN', ... 8p_6RvG  
          'Each M must be less than or equal to its corresponding N.') Ui.S)\B  
end (9Q@I8}Iy  
lRR A2Kql  
if any( r>1 | r<0 ) c3.;o  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') nXw98;  
end 8]Q#P  
i!EAs`$o`  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) tE,& G-jU  
    error('zernfun:RTHvector','R and THETA must be vectors.') 8kT`5`}lB  
end ^@^K <SVc  
+`tk LvM  
r = r(:); m UUNR,  
theta = theta(:); ><I{R|bC  
length_r = length(r); Raf(m,o(  
if length_r~=length(theta) %~L"TK`?  
    error('zernfun:RTHlength', ... >:HmIW0PLe  
          'The number of R- and THETA-values must be equal.') K/K|[=bl  
end Ll .P>LH  
?AK`M #M  
% Check normalization: jl5&T{z  
% -------------------- 9}5o> iR  
if nargin==5 && ischar(nflag) " =6kH,  
    isnorm = strcmpi(nflag,'norm'); @qEUp7W.?  
    if ~isnorm .wB'"z8L  
        error('zernfun:normalization','Unrecognized normalization flag.') c(aykIVOo  
    end /36gf  
else ;8a9S0eS  
    isnorm = false; <~P!yLr  
end pQ>|d H+.  
E+lr{~  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W/g_XQ   
% Compute the Zernike Polynomials 4:5M,p  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -iKoQkHt  
5XV|*O;  
% Determine the required powers of r: `aTw!QBfG  
% ----------------------------------- +lb&_eD  
m_abs = abs(m); Ec@cW6g(%  
rpowers = []; .N( X. C  
for j = 1:length(n) F?[1 m2  
    rpowers = [rpowers m_abs(j):2:n(j)]; L9-Jwy2(>  
end [S1 b\f#  
rpowers = unique(rpowers); 05g %5vHF  
Jy\0y[f*  
% Pre-compute the values of r raised to the required powers, YxrMr9>l1  
% and compile them in a matrix: `mA;1S  
% ----------------------------- c g)> A  
if rpowers(1)==0 zc$}4o  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); L^*f$Balz  
    rpowern = cat(2,rpowern{:}); h8X[*Wme  
    rpowern = [ones(length_r,1) rpowern]; 1\~I "$}  
else &,yF{9$G  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -DK6(<:0  
    rpowern = cat(2,rpowern{:}); }0tHzw=#%e  
end 8&M<?oe  
_QEw=*.<  
% Compute the values of the polynomials: mPHto-=fB  
% -------------------------------------- ?|98Y"w  
y = zeros(length_r,length(n)); $v #  
for j = 1:length(n) ~_Fx2T:X  
    s = 0:(n(j)-m_abs(j))/2; |'z24 :8  
    pows = n(j):-2:m_abs(j); NU3TXO  
    for k = length(s):-1:1 4\5i}MIS0  
        p = (1-2*mod(s(k),2))* ... zjh:jrv~  
                   prod(2:(n(j)-s(k)))/              ... Arm'0)B>  
                   prod(2:s(k))/                     ... 0|.jIix;  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... q ajZ~oB{  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); c BZ,"kp-  
        idx = (pows(k)==rpowers); BGxwPJd  
        y(:,j) = y(:,j) + p*rpowern(:,idx); AO>b\,0Me  
    end g$^-WmX\m  
     }X?#"JFX?  
    if isnorm y*ZA{  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Hy1$Kvub  
    end KE ?NQMU  
end 57EX#:a  
% END: Compute the Zernike Polynomials 9TQVgkW  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WG3!M/4r H  
fLqjBG]<  
% Compute the Zernike functions: !^&VZh  
% ------------------------------ _dRB=bl"O  
idx_pos = m>0; 1O< 6=oH  
idx_neg = m<0; #Tei0B7  
*asv^aFpS  
z = y; mvK^')  
if any(idx_pos) \ a,}1FS  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); c8YbBdk'  
end h x&"fe  
if any(idx_neg) 8QK8q: |  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); >h)kbsSU0z  
end gT0yI ;g]  
eG1V:%3  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) VC/-5'_6  
%ZERNFUN2 Single-index Zernike functions on the unit circle. %jy$4qAf%  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated @;`'s  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive {'tfU  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, \Q(a`6U  
%   and THETA is a vector of angles.  R and THETA must have the same _%=CW' B  
%   length.  The output Z is a matrix with one column for every P-value, $] "M`h  
%   and one row for every (R,THETA) pair. bf0,3~G,P  
% /0H}-i  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike R|$AcNp  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) #55:qc>m  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) y ;Cs#eo  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 mf$YsvPq*+  
%   for all p. oG1zPspL  
% & H%/.4la  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 I51]+gEN  
%   Zernike functions (order N<=7).  In some disciplines it is #i@f%Bq-  
%   traditional to label the first 36 functions using a single mode 'z5jnI  
%   number P instead of separate numbers for the order N and azimuthal Lm~<BBp.  
%   frequency M. 4h@,hY1#  
% )g dLb}  
%   Example: A6]X aF  
% qWheoyAB  
%       % Display the first 16 Zernike functions DOJydYds  
%       x = -1:0.01:1; Bh2l3J4X  
%       [X,Y] = meshgrid(x,x); V^ n6~O  
%       [theta,r] = cart2pol(X,Y); ah:["< z<  
%       idx = r<=1; kEnGr6e  
%       p = 0:15; Pd~=:4  
%       z = nan(size(X)); Kh\ 7%>K#  
%       y = zernfun2(p,r(idx),theta(idx)); 4F|79U #  
%       figure('Units','normalized') 4T(d9y  
%       for k = 1:length(p) $ ubU"  
%           z(idx) = y(:,k); kZz'&xdv'.  
%           subplot(4,4,k) B4RrUA32  
%           pcolor(x,x,z), shading interp ]}! @'+=  
%           set(gca,'XTick',[],'YTick',[]) (Of6Ij?  
%           axis square H%@f ^  
%           title(['Z_{' num2str(p(k)) '}']) P-Y_$Nv0g  
%       end ]6^<VC`5D  
% ?I6rW JcQ6  
%   See also ZERNPOL, ZERNFUN. BA: x*(%~  
H_ $?b  
%   Paul Fricker 11/13/2006 S4_/%~?  
aNEah  
cZxY,UvYa  
% Check and prepare the inputs: lf7bx}P*  
% ----------------------------- '_G\_h}5  
if min(size(p))~=1 X6G{.Vh"  
    error('zernfun2:Pvector','Input P must be vector.') 6XWNJb  
end '-%1ILK$3r  
"iK= 8  
if any(p)>35 HXa[0VOx  
    error('zernfun2:P36', ... ]@Zv94Z(  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... :E.a.-  
           '(P = 0 to 35).']) *yRsFC{,  
end nU>P%|loXx  
Dm}eX:'{  
% Get the order and frequency corresonding to the function number: a ~v$ bNu  
% ---------------------------------------------------------------- 0qJ (RB  
p = p(:); 6h>#;M  
n = ceil((-3+sqrt(9+8*p))/2); ^f! M"@  
m = 2*p - n.*(n+2); ;n Bf  
Pz2 b  
% Pass the inputs to the function ZERNFUN: }(t`s  
% ---------------------------------------- =tP9n;D  
switch nargin T ?[28|  
    case 3 | ky40[C  
        z = zernfun(n,m,r,theta); cb9-~*1  
    case 4 GM%OO)dO}  
        z = zernfun(n,m,r,theta,nflag); /9R0}4i7  
    otherwise fIoc)T  
        error('zernfun2:nargin','Incorrect number of inputs.') }#ZRi}f2VJ  
end juOStTq<  
@-)?uYw:r  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) :'DyZy2Fd  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. Czjb.c:a.Y  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of TRm#H $  
%   order N and frequency M, evaluated at R.  N is a vector of @JbxGi  
%   positive integers (including 0), and M is a vector with the [ey# ,&T  
%   same number of elements as N.  Each element k of M must be a wSjDa.?'  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) e3 v^j$  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is #%;Uh  
%   a vector of numbers between 0 and 1.  The output Z is a matrix eyMn! a  
%   with one column for every (N,M) pair, and one row for every AZ3T#f![L@  
%   element in R. Uqel UL}  
% o`S``?`^)^  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- > ubq{'  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is l}uZxKuYx  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to x fb .Z(  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 TGF$zvd  
%   for all [n,m]. [MpWvLP"x  
% Fe0M2%e;|  
%   The radial Zernike polynomials are the radial portion of the F$a s#.7FF  
%   Zernike functions, which are an orthogonal basis on the unit yI: ;+K  
%   circle.  The series representation of the radial Zernike zIrOMh  
%   polynomials is A'jvm@DvQI  
% 12Oa_6<\0;  
%          (n-m)/2 jB?SX  
%            __ fmuh 9Z  
%    m      \       s                                          n-2s A]|w1nq  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Gm B&TD m  
%    n      s=0 qk<jvha  
% O^MI073Q>t  
%   The following table shows the first 12 polynomials. So&gDR;b  
% vu+g65"  
%       n    m    Zernike polynomial    Normalization #'Y lO -C  
%       --------------------------------------------- |HmY`w6*z  
%       0    0    1                        sqrt(2) Q7aPW\-  
%       1    1    r                           2 1#=9DD$4  
%       2    0    2*r^2 - 1                sqrt(6) b{<?E };%  
%       2    2    r^2                      sqrt(6) N#ggT9>X  
%       3    1    3*r^3 - 2*r              sqrt(8) qLCNANWnd  
%       3    3    r^3                      sqrt(8) KkCGL*]K  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) VCWW(Y1Fd  
%       4    2    4*r^4 - 3*r^2            sqrt(10) a.V5fl0?I@  
%       4    4    r^4                      sqrt(10) ,\6Vb*G|E>  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 'f6H#V*C  
%       5    3    5*r^5 - 4*r^3            sqrt(12) WLl8oE< X  
%       5    5    r^5                      sqrt(12) L?h?LZnq  
%       --------------------------------------------- &4:R(]|  
% E2dM0r<]  
%   Example: $P{`-Y }a  
% |SOLC  
%       % Display three example Zernike radial polynomials VM%g QOo<  
%       r = 0:0.01:1; INA3^p'w  
%       n = [3 2 5]; BH0m[9nU;  
%       m = [1 2 1]; $Lp [i <O]  
%       z = zernpol(n,m,r); 4Fft[S(  
%       figure X)KCk2Ax  
%       plot(r,z) `6~0W5  
%       grid on .P 1WY  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') OyO]; Yk  
% yJI~{VmU7  
%   See also ZERNFUN, ZERNFUN2. y > =Y  
3&y-xZu]  
% A note on the algorithm. (xb2H~WrN  
% ------------------------ "9_$7.q<y  
% The radial Zernike polynomials are computed using the series 7 FE36Ub9  
% representation shown in the Help section above. For many special H7Q$k4\l  
% functions, direct evaluation using the series representation can PuJ3#H T  
% produce poor numerical results (floating point errors), because Z[nHo'  
% the summation often involves computing small differences between $U_(e:m}f  
% large successive terms in the series. (In such cases, the functions LFax$CZc  
% are often evaluated using alternative methods such as recurrence AIg4u(j  
% relations: see the Legendre functions, for example). For the Zernike dx@dnWRT,  
% polynomials, however, this problem does not arise, because the {5Bj*m5  
% polynomials are evaluated over the finite domain r = (0,1), and }<^mUG  
% because the coefficients for a given polynomial are generally all Eiu/p&ct  
% of similar magnitude. KA?}o^-F  
%  JQQ[jl;  
% ZERNPOL has been written using a vectorized implementation: multiple %>&ex0j]  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] *:n7B\.  
% values can be passed as inputs) for a vector of points R.  To achieve c-k3<|H`  
% this vectorization most efficiently, the algorithm in ZERNPOL y^C5_w(^jZ  
% involves pre-determining all the powers p of R that are required to ]AYP\\Xi  
% compute the outputs, and then compiling the {R^p} into a single 1'o[9-  
% matrix.  This avoids any redundant computation of the R^p, and ;M.Q=#;E  
% minimizes the sizes of certain intermediate variables. t1w]L  
% o-@01_j  
%   Paul Fricker 11/13/2006 IB;yL/T  
46g0 e  
<YW)8J  
% Check and prepare the inputs: |#_p0yPy  
% ----------------------------- I,hw0e  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) M#gxi N  
    error('zernpol:NMvectors','N and M must be vectors.') DO(};R%=  
end <G}Lc  
KM;H '~PZi  
if length(n)~=length(m) `0qjaC  
    error('zernpol:NMlength','N and M must be the same length.') @mCe{r*`  
end 3Z" ;a  
SZW_V6\t>  
n = n(:); vqN/crJ@  
m = m(:); x#`p.sfVo  
length_n = length(n); +E</A:|}S  
;}SGJ7  
if any(mod(n-m,2)) &za }TH m  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') )7& -DI1  
end |N`0G.#  
;8^k=8  
if any(m<0) =_`q;Tu=  
    error('zernpol:Mpositive','All M must be positive.') KyNu8s k  
end g)#?$OhP"  
rC!O}(4t%$  
if any(m>n) K? o p3}f?  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') U,W MP<5&  
end HF*0  
NfClR HpVc  
if any( r>1 | r<0 ) tM]Gu?6  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') 4MPy}yT*  
end *>a=ku:?  
"<=4]Z  
if ~any(size(r)==1) "Ol:ni1  
    error('zernpol:Rvector','R must be a vector.') )8C`EPe  
end >UCg3uFj  
7dY_b  
r = r(:); i(|u g_^  
length_r = length(r); y7>3hfn~w  
rci,&>L"  
if nargin==4 Rj";?.R*e  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ];k!*lR)  
    if ~isnorm %nkP" Z#  
        error('zernpol:normalization','Unrecognized normalization flag.') (e'8>Pv  
    end LG:k}z/T  
else B<I(t"s  
    isnorm = false; D;P=\i>9-  
end #HgN wM  
q%x i>H.:{  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sesdhuy.@  
% Compute the Zernike Polynomials 8e-nzc,]  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d3q%[[@  
gbzBweWF  
% Determine the required powers of r: lC#wh2B6  
% ----------------------------------- EK4%4<"  
rpowers = []; Q$ew.h  
for j = 1:length(n) y!1X3X,V  
    rpowers = [rpowers m(j):2:n(j)]; H/{@eaV  
end :O413#8  
rpowers = unique(rpowers); T */I4"  
{A==av  
% Pre-compute the values of r raised to the required powers, /}6I3n  
% and compile them in a matrix: ;\w3IAa|V  
% ----------------------------- \H .Cmm^I  
if rpowers(1)==0 `"65 _?B i  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); T!]rdN!  
    rpowern = cat(2,rpowern{:}); UWO3sZpU  
    rpowern = [ones(length_r,1) rpowern]; %JBLp xnq  
else BX$<5S@  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); z6U'"T"a  
    rpowern = cat(2,rpowern{:}); _]5UuIMl  
end 7R6B}B?/  
L6CI9C;-b  
% Compute the values of the polynomials: ;-`NT` #2  
% -------------------------------------- kKlNhP(  
z = zeros(length_r,length_n); Rf0so   
for j = 1:length_n 0s-K oz  
    s = 0:(n(j)-m(j))/2; t|'%0 W  
    pows = n(j):-2:m(j); XB!qPh .  
    for k = length(s):-1:1 _OG9wi(Fpx  
        p = (1-2*mod(s(k),2))* ... :oy2mi;  
                   prod(2:(n(j)-s(k)))/          ... JE}VRMNr  
                   prod(2:s(k))/                 ... 5[)5K?%  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... [KR%8[e  
                   prod(2:((n(j)+m(j))/2-s(k))); bXJ(QXHd%  
        idx = (pows(k)==rpowers); O^!ds  
        z(:,j) = z(:,j) + p*rpowern(:,idx);  jfK&CA  
    end Tl yyJ{~  
     q>(?Z#sB  
    if isnorm *DIY;)K  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); *0" ojfVn  
    end atpHv**D<i  
end )w4U]inJ$"  
33<{1Y[Q6E  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  JtY$AP$  
~q+AAWL  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ;39a`  
yw:%)b{  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2024 光行天下 蜀ICP备06003254号-1 网站统计