| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 XBm ^7' function z = zernfun(n,m,r,theta,nflag) ;umbld0 %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `k-|G2 % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gR${S|Z#u4 % and angular frequency M, evaluated at positions (R,THETA) on the [tkP2%1 % unit circle. N is a vector of positive integers (including 0), and ->'xjD % M is a vector with the same number of elements as N. Each element +wcif- % k of M must be a positive integer, with possible values M(k) = -N(k) wPvYnhr|G- % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, J~}i}|YC> % and THETA is a vector of angles. R and THETA must have the same Uy<n7*H % length. The output Z is a matrix with one column for every (N,M) [6CWgQ%Ue % pair, and one row for every (R,THETA) pair. /0r6/ _5-. % >/'/^h % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike bd&Nf2 % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ok{
F=z % with delta(m,0) the Kronecker delta, is chosen so that the integral W)Mc$`nX % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, jZ0/@zOf % and theta=0 to theta=2*pi) is unity. For the non-normalized z}-8pDD' % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. EMf"rGXu( % Hv</Xam % The Zernike functions are an orthogonal basis on the unit circle. sOm&7A? % They are used in disciplines such as astronomy, optics, and {-51rAyi % optometry to describe functions on a circular domain. K1t>5zm % `!C5"i8+i2 % The following table lists the first 15 Zernike functions. \9 k3;zw % Hlz$@[$ % n m Zernike function Normalization $1n\jN % -------------------------------------------------- 9'A^n~JHF % 0 0 1 1 @;Xa&* % 1 1 r * cos(theta) 2 rSKZc`<^ % 1 -1 r * sin(theta) 2 8@]vvZ2/gj % 2 -2 r^2 * cos(2*theta) sqrt(6) YXIAVSnr % 2 0 (2*r^2 - 1) sqrt(3) -*;JUSGh % 2 2 r^2 * sin(2*theta) sqrt(6) [s F/sa3 % 3 -3 r^3 * cos(3*theta) sqrt(8) 5>>JQ2'W % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) c3J12+~; % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) q{pa _ % 3 3 r^3 * sin(3*theta) sqrt(8) i!+0''i{# % 4 -4 r^4 * cos(4*theta) sqrt(10) +0M0g_sk % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U,V+qnS % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Sz>Lbs % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hu"TEhW(2 % 4 4 r^4 * sin(4*theta) sqrt(10) hlGrnL % -------------------------------------------------- {YEGy % gaR~K % Example 1: vOU9[n
N[ % b5W(}ka+ % % Display the Zernike function Z(n=5,m=1) 7%5EBH & % x = -1:0.01:1; WNF#eM?[a % [X,Y] = meshgrid(x,x); 0xc|Wn> % [theta,r] = cart2pol(X,Y); v8>bR|n5 % idx = r<=1; 2I{kLN1TY % z = nan(size(X)); '1b4nj|<m % z(idx) = zernfun(5,1,r(idx),theta(idx)); &e99P{\D % figure uYXkD#{ % pcolor(x,x,z), shading interp {tUxRX % axis square, colorbar z7R2viR[ % title('Zernike function Z_5^1(r,\theta)') qb+Gjgp % Y,{pG]B$w % Example 2: 7,FhKTV1/ % 0HDL;XY6 % % Display the first 10 Zernike functions ilwI qj % x = -1:0.01:1; &[kFl\ % [X,Y] = meshgrid(x,x); F87c?Vh)K % [theta,r] = cart2pol(X,Y); PBgU/zVn % idx = r<=1; I[bWd{i: % z = nan(size(X)); ;8yEhar % n = [0 1 1 2 2 2 3 3 3 3]; yo
:63CPP % m = [0 -1 1 -2 0 2 -3 -1 1 3]; wS+j^
;" % Nplot = [4 10 12 16 18 20 22 24 26 28]; Gq{ );fq % y = zernfun(n,m,r(idx),theta(idx)); w9C?wT % figure('Units','normalized') L4v26*P % for k = 1:10 JwdvY] % z(idx) = y(:,k); 6)_h'v<|M % subplot(4,7,Nplot(k)) S%3&Y3S % pcolor(x,x,z), shading interp O T .bXr~ % set(gca,'XTick',[],'YTick',[]) ~$m:j]; % axis square z~#d@c\ % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) x2tcr+o % end kn}bb*eZ % C&;m56 % See also ZERNPOL, ZERNFUN2. K?*p|&Fi?8 N$M:&m3^ % Paul Fricker 11/13/2006 9}'92 c6tH'oV [H{2<! % Check and prepare the inputs: SDko# % ----------------------------- $~NB
.SY if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LKYcE;n error('zernfun:NMvectors','N and M must be vectors.') WMnxN34 end CRu {Ie5B {}"a_L&[; if length(n)~=length(m) afd.v$63 error('zernfun:NMlength','N and M must be the same length.') EXti end eHUb4,%P vCn\_Nu;W& n = n(:); a"phwCc"% m = m(:); WP
!u3\91 if any(mod(n-m,2)) #Ht;5p>5 error('zernfun:NMmultiplesof2', ... Yduj3Ht:w 'All N and M must differ by multiples of 2 (including 0).') R/l/GNm end &<t`EI];)4 i&0Zli if any(m>n) |N:kf&]b error('zernfun:MlessthanN', ... C;oO=R3r 'Each M must be less than or equal to its corresponding N.') #2;8/"v end {0L)B{| .J\i ! if any( r>1 | r<0 ) ]*<!|;q error('zernfun:Rlessthan1','All R must be between 0 and 1.') 90gKGyxF end .cB>ab& rN`-ak if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) eOJ_L]y- error('zernfun:RTHvector','R and THETA must be vectors.') fK+[r1^ end ]P)2Q!X (>`S{L
C>s r = r(:); [uFv_G{H theta = theta(:); + {WZpP},v length_r = length(r); n_4BNOZ~ if length_r~=length(theta) NGkWr error('zernfun:RTHlength', ... -+kTw06_C 'The number of R- and THETA-values must be equal.') 6k;>:[p end L 7l"*w( i7\MVI8 % Check normalization: f!J?n] % -------------------- Xuj=V?5 if nargin==5 && ischar(nflag) 0r]-Ltvl?} isnorm = strcmpi(nflag,'norm'); ##'uekSJ if ~isnorm jV(b?r)eT{ error('zernfun:normalization','Unrecognized normalization flag.') bDnT><eH end pXK-,7- else '-_tF3x isnorm = false; ;Ngu(es6 end ~>rnq7j a<P?4tbF %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NUX$)c % Compute the Zernike Polynomials
e%^PVi %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4_ kg/ Gg6<4T1 % Determine the required powers of r: oPrK{flm % ----------------------------------- jk1mP6'P| m_abs = abs(m); "`
kSI&2 rpowers = []; GW0e=Y=LR for j = 1:length(n) K.42 VM)F rpowers = [rpowers m_abs(j):2:n(j)]; Z%QU5. end WTwura, rpowers = unique(rpowers); d%#5roR4< 7|X.E % Pre-compute the values of r raised to the required powers, 6d;RtCENo % and compile them in a matrix: 'y|p)r" % ----------------------------- \!zM4ppr if rpowers(1)==0 h3MZLPe rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2]+f<Z[/ rpowern = cat(2,rpowern{:}); 4AYW'j C rpowern = [ones(length_r,1) rpowern]; #Wely~ else `$ZBIe/u rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); X"S")BQ
q rpowern = cat(2,rpowern{:}); i:x<Vi end 2xt$w% 6dKJt % Compute the values of the polynomials: DVw 04ay% % -------------------------------------- yXCJ? y = zeros(length_r,length(n)); 2(25IYMS8 for j = 1:length(n) g.COKA s = 0:(n(j)-m_abs(j))/2; BZk0B? pows = n(j):-2:m_abs(j); &cT@MV5 for k = length(s):-1:1 :F
pt>g p = (1-2*mod(s(k),2))* ... j:[#eC prod(2:(n(j)-s(k)))/ ... E6clVa prod(2:s(k))/ ... 2I0Zr;\f prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Dj'+,{7,u prod(2:((n(j)+m_abs(j))/2-s(k))); r^;1Sm idx = (pows(k)==rpowers); } /aqh ;W y(:,j) = y(:,j) + p*rpowern(:,idx); (gF{S*` end @^,9O92l sEcg;LFp if isnorm y#-~L-J_R y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); lnt}l end 7-4S'rq+ end r%xf=}; % END: Compute the Zernike Polynomials Imz1"+E~ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Tr"Bz! B\6%.R % Compute the Zernike functions: 1_5]3+r_U- % ------------------------------ z{A~d idx_pos = m>0; UI74RP idx_neg = m<0; b$=c(@] RpU.v
` z = y; l vfplA if any(idx_pos) b^WF
R z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); qw}.
QwPT end 7>xfQ if any(idx_neg) |^ J5YwCf z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +lw*/\7 end "1ov< S=g E'"LT % EOF zernfun
|
|