| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 R9(^CWs function z = zernfun(n,m,r,theta,nflag) |4vk@0L %ZERNFUN Zernike functions of order N and frequency M on the unit circle. /hQ!dU.+ % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <vs.Ucxx % and angular frequency M, evaluated at positions (R,THETA) on the )1/O_N6C % unit circle. N is a vector of positive integers (including 0), and fJuJ#MX{: % M is a vector with the same number of elements as N. Each element }R^{<{KVJ % k of M must be a positive integer, with possible values M(k) = -N(k) k:sh:G+=$d % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Y2Bu,/9^ % and THETA is a vector of angles. R and THETA must have the same \GWC5R7Q0j % length. The output Z is a matrix with one column for every (N,M) ',f[y:v; % pair, and one row for every (R,THETA) pair. Sc&_6}K % I,D=ixK % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !SnpesTn % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ax
^9J)C % with delta(m,0) the Kronecker delta, is chosen so that the integral K\G|q}E/1 % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, m`Z4#_s2 % and theta=0 to theta=2*pi) is unity. For the non-normalized g:HIiGN0Ic % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]P.S5s' % y03l_E, % The Zernike functions are an orthogonal basis on the unit circle. Ne%X:h % They are used in disciplines such as astronomy, optics, and ~0L>l J % optometry to describe functions on a circular domain. #]rw@c % VuGSP]$q % The following table lists the first 15 Zernike functions. Uu
,Re % fw<'ygd % n m Zernike function Normalization BtspnVBez % -------------------------------------------------- xfb%bkr % 0 0 1 1 J{H475GqiT % 1 1 r * cos(theta) 2 piU4%EO % 1 -1 r * sin(theta) 2 ?S"xR0 * % 2 -2 r^2 * cos(2*theta) sqrt(6) V%))%?3x_ % 2 0 (2*r^2 - 1) sqrt(3) ctf'/IZ5 % 2 2 r^2 * sin(2*theta) sqrt(6) ]BA8[2=m % 3 -3 r^3 * cos(3*theta) sqrt(8) 1*Z}M% % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) CXa$QSu > % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) /)~McP3 % 3 3 r^3 * sin(3*theta) sqrt(8) \>+gZc]an % 4 -4 r^4 * cos(4*theta) sqrt(10) =3FXU{"Qi4 % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2l9_$evK~ % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) p?Y1^/
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TWy1)30x % 4 4 r^4 * sin(4*theta) sqrt(10) YPN|qn( % -------------------------------------------------- S5j#&i % aD.A +e s % Example 1: BzDS % >6Q-e$GS@ % % Display the Zernike function Z(n=5,m=1) A/9 w r % x = -1:0.01:1; dG1qrh9_- % [X,Y] = meshgrid(x,x); nv|&|6?`oK % [theta,r] = cart2pol(X,Y); N7|ctO % idx = r<=1; W_?S^>?l/ % z = nan(size(X)); \eN }V % z(idx) = zernfun(5,1,r(idx),theta(idx)); Ox58L>:0m % figure uJi|@{V % pcolor(x,x,z), shading interp U@H SU%H % axis square, colorbar [K^RC;}nV^ % title('Zernike function Z_5^1(r,\theta)') ZW2U9 % wuPx6hCl % Example 2: VP[ J#TPU % {&xKSWNc % % Display the first 10 Zernike functions X4jtti % x = -1:0.01:1; s+aeP % [X,Y] = meshgrid(x,x); ALhu\x>AY % [theta,r] = cart2pol(X,Y); q?`bu:yS % idx = r<=1; B7cXbUAQs % z = nan(size(X)); *\emRI> % n = [0 1 1 2 2 2 3 3 3 3]; ^X^4R1V) % m = [0 -1 1 -2 0 2 -3 -1 1 3]; ?>2k>~xlQ % Nplot = [4 10 12 16 18 20 22 24 26 28]; W}Z'zU?[ % y = zernfun(n,m,r(idx),theta(idx));
k5((@[ % figure('Units','normalized') b?y3m +V` % for k = 1:10 )8yNqnD % z(idx) = y(:,k); `U)~fu/\2M % subplot(4,7,Nplot(k)) <}G7#xg % pcolor(x,x,z), shading interp G"wy? % set(gca,'XTick',[],'YTick',[]) ;asB@Q % axis square <`BUk< uf# % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) moh7:g % end DvU(rr\p % d&F8nBIM5 % See also ZERNPOL, ZERNFUN2. c'[l%4U8[ *U8Pjb1 % Paul Fricker 11/13/2006 Q1g@FsW&U 4\3Z$%2^LZ Ve<l7U; % Check and prepare the inputs: t=5K#SX} % ----------------------------- woQYP, if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) sT| 8a error('zernfun:NMvectors','N and M must be vectors.') 4;x{@Ln end SO9j/ "d9"Md0k if length(n)~=length(m) Eb[*nWF= error('zernfun:NMlength','N and M must be the same length.') K%O%#Kk end z.--"cF 4Z,MqG> n = n(:); .hXxh)F m = m(:); k68\ _ NUL if any(mod(n-m,2))
}/Pz1,/ error('zernfun:NMmultiplesof2', ... "1t%J7c_ 'All N and M must differ by multiples of 2 (including 0).') wUv
Zc end ng"R[/)In O)n"a\LD if any(m>n) ,dP-sD;< error('zernfun:MlessthanN', ... P-.>vi^+ 'Each M must be less than or equal to its corresponding N.') ycTX\.KV end 1Jjay# !K'j[cA^ if any( r>1 | r<0 ) S{&,I2aO error('zernfun:Rlessthan1','All R must be between 0 and 1.') To.CY^M end B|zJrz0q3 akoK4!z if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1YL6:5n error('zernfun:RTHvector','R and THETA must be vectors.') !RN(/ &%y end fYBmW') {1Z8cV r = r(:); ~dg7c{o5 theta = theta(:); Cz` !j length_r = length(r); j#hFx+S if length_r~=length(theta) Yi1lvB?m error('zernfun:RTHlength', ... e0Zwhz, 'The number of R- and THETA-values must be equal.') Iy% fg',% end mII7p LbQ -{n2^vvF % Check normalization: qbrY5;U % -------------------- $dIu${lu if nargin==5 && ischar(nflag) j51Wod<[ isnorm = strcmpi(nflag,'norm'); %5Q5xw]w3 if ~isnorm LQ(z~M0B error('zernfun:normalization','Unrecognized normalization flag.') Q8OA{EUtq end e=e^;K4 else /%fBkA#n isnorm = false; o."k7fLB end Z<jio ]zK'aod %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y>W$n9d&G2 % Compute the Zernike Polynomials IYAvO%~ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qz[qjGdHg >U. % Determine the required powers of r: 2^RWGCEv % ----------------------------------- >ka*-8? m_abs = abs(m); 4IfOvAN% rpowers = []; `<_A#@ for j = 1:length(n) vMG >Xb rpowers = [rpowers m_abs(j):2:n(j)]; ts|dk% end DD5S
R rpowers = unique(rpowers); 3*INDD= "u^%~ 2 % Pre-compute the values of r raised to the required powers, nwSujD % and compile them in a matrix: KT'Ebb] % ----------------------------- |W $epOLg if rpowers(1)==0 {P/ sxh:e rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _:"PBN9 rpowern = cat(2,rpowern{:}); !A_<(M< rpowern = [ones(length_r,1) rpowern]; k_d) else "wwAbU< rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4PdJ rpowern = cat(2,rpowern{:}); $r> $
u end DpA"5RV }MU}-6 % Compute the values of the polynomials: 8d4:8} % -------------------------------------- a*
2*aH7 y = zeros(length_r,length(n)); <=O/_Iu( for j = 1:length(n) i*ibx;s- s = 0:(n(j)-m_abs(j))/2; [k<"@[8) pows = n(j):-2:m_abs(j); o}^/Km+t for k = length(s):-1:1 pX 4:WV p = (1-2*mod(s(k),2))* ... -O&u;kh4g prod(2:(n(j)-s(k)))/ ... +`jI z'+ prod(2:s(k))/ ... VT@,RlB0 prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `3wzOMgJ prod(2:((n(j)+m_abs(j))/2-s(k))); 3jeB\ idx = (pows(k)==rpowers); &>%R)?SZh y(:,j) = y(:,j) + p*rpowern(:,idx); q!fdiv` end _.}1 Y,Q ko7*9` if isnorm yLFZo"r y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 'J[n}r end ,q_'l?Pn end XEX."y % END: Compute the Zernike Polynomials p*LG Y+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }8lvi
vR4 5Yxs_t4 % Compute the Zernike functions: owR`Z`^h) % ------------------------------ D6Q6yNE idx_pos = m>0; `qXCY^BH2 idx_neg = m<0; KzgW+6*G B me_# z = y; 9sQ#v-+Yx if any(idx_pos) mKTa. z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !PySYY end \jR('5DcB if any(idx_neg) k'6Poz+< z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); = n>aJ(=Pd end 9e aqq }piDg(D % EOF zernfun
|
|