| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .Ig`v function z = zernfun(n,m,r,theta,nflag) )U>q>< %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~uq J@#o{ % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N NlU:e}zGR % and angular frequency M, evaluated at positions (R,THETA) on the ym2\o_^( % unit circle. N is a vector of positive integers (including 0), and O1JGv8Nr % M is a vector with the same number of elements as N. Each element ;pU9ov4) % k of M must be a positive integer, with possible values M(k) = -N(k) |m"2B]"@ % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 5G_*T % and THETA is a vector of angles. R and THETA must have the same }{ pNasAU % length. The output Z is a matrix with one column for every (N,M) +@cf@}W6QC % pair, and one row for every (R,THETA) pair. []1VD# % W+H27qsv % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike cwz
% LKh % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), mz+>rc % with delta(m,0) the Kronecker delta, is chosen so that the integral TqKL(Qw
E % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \hc}xy
0 % and theta=0 to theta=2*pi) is unity. For the non-normalized .m7iXd{ % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. k^C;"awh % }qmZ % The Zernike functions are an orthogonal basis on the unit circle. [\V]tpl! % They are used in disciplines such as astronomy, optics, and jzI\Q{[m' % optometry to describe functions on a circular domain. 3+{hO@O % >Hic
tH % The following table lists the first 15 Zernike functions. 1#(,Bq4 % YXg:cXE8e % n m Zernike function Normalization .<u<!fL2 % -------------------------------------------------- gpHI)1i'H % 0 0 1 1 6.EfM^[ % 1 1 r * cos(theta) 2
:?@d\c' % 1 -1 r * sin(theta) 2
fhL dM % 2 -2 r^2 * cos(2*theta) sqrt(6) }f^K}*sK$5 % 2 0 (2*r^2 - 1) sqrt(3) ;T"}dJel# % 2 2 r^2 * sin(2*theta) sqrt(6) fF_1ZKx+#! % 3 -3 r^3 * cos(3*theta) sqrt(8) GaSk&'n$Y % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Z#w1,n88 % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) lh7{2WQ % 3 3 r^3 * sin(3*theta) sqrt(8) yf3%g\k % 4 -4 r^4 * cos(4*theta) sqrt(10) AcrbR&cvG % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +_Fsiu_b % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) k1$|vzMh % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (FH4\ 't) % 4 4 r^4 * sin(4*theta) sqrt(10) 9D(M>'Bh % -------------------------------------------------- I?4J69' % zST#X} % Example 1: MZn7gT0 % qnrf%rS % % Display the Zernike function Z(n=5,m=1) _<pG}fmR % x = -1:0.01:1; }C2I9Cl % [X,Y] = meshgrid(x,x); ]o6yU#zn~e % [theta,r] = cart2pol(X,Y); u<!!%C~+= % idx = r<=1; vFL3eu# % z = nan(size(X)); E0ud<'3< % z(idx) = zernfun(5,1,r(idx),theta(idx)); udp& | |