首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 c(Zar&z,E  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! D(xgadr  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4q o4g+  
function z = zernfun(n,m,r,theta,nflag) rks+\e}^Z  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. u38FY@U$  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N $~c?qU  
%   and angular frequency M, evaluated at positions (R,THETA) on the :"? boA#L  
%   unit circle.  N is a vector of positive integers (including 0), and R)?b\VK2$  
%   M is a vector with the same number of elements as N.  Each element \ &1)k/  
%   k of M must be a positive integer, with possible values M(k) = -N(k) P lJl#-BO  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, [C d"@!yA  
%   and THETA is a vector of angles.  R and THETA must have the same *u.6,jw  
%   length.  The output Z is a matrix with one column for every (N,M) +;SQ }[  
%   pair, and one row for every (R,THETA) pair. 2zR*`9$  
% Srj%6rgsB  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike p%e! &:!  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), iJ_`ZM.w  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral :/fG %e  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8;9GM^L  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized i$[wgvJIV  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. R_ J=x  
% ,t5X'sY L  
%   The Zernike functions are an orthogonal basis on the unit circle. c 2j?<F1  
%   They are used in disciplines such as astronomy, optics, and )BNm~sP  
%   optometry to describe functions on a circular domain. 3n9$qr= '  
% .CFaBwj  
%   The following table lists the first 15 Zernike functions. WL-+;h@VQ  
% en>d  T  
%       n    m    Zernike function           Normalization |8}f  
%       -------------------------------------------------- Frn#?n)S9  
%       0    0    1                                 1 /G`&k{SiK  
%       1    1    r * cos(theta)                    2 ut%t`Y( ]  
%       1   -1    r * sin(theta)                    2 i.2O~30ST  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) h-hU=I8  
%       2    0    (2*r^2 - 1)                    sqrt(3) ~(Gv/x  
%       2    2    r^2 * sin(2*theta)             sqrt(6) cAC2Xq  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) awuUaE  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) J'^s5hxn+0  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) dj4 g  
%       3    3    r^3 * sin(3*theta)             sqrt(8) Y9~;6fg  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) >|SB]'C|  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ERQ a,h/  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) d$)'?Sf]h  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !3Fj`Oh  
%       4    4    r^4 * sin(4*theta)             sqrt(10) d}tn/Eu?B  
%       -------------------------------------------------- ZV}BDwOFI  
% VHVU*6_w  
%   Example 1: ie^:PcU  
% B5Rmz&  
%       % Display the Zernike function Z(n=5,m=1) AC3K*)`E  
%       x = -1:0.01:1; R[ S*ON  
%       [X,Y] = meshgrid(x,x); >bxT_qEm  
%       [theta,r] = cart2pol(X,Y);  w_G/[R3  
%       idx = r<=1; xtf]U:c  
%       z = nan(size(X)); b,5H|$nLu  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); 0TU~Q  
%       figure {y<[1Pms  
%       pcolor(x,x,z), shading interp f2[z)j7  
%       axis square, colorbar |GE3.g  
%       title('Zernike function Z_5^1(r,\theta)') PYr#vOH  
% =O1CxsKt6  
%   Example 2: mU:C{<Z  
% vrn I Eur  
%       % Display the first 10 Zernike functions !.iu_xJ  
%       x = -1:0.01:1; R6dw#;6{I  
%       [X,Y] = meshgrid(x,x); &q1(v3cOO  
%       [theta,r] = cart2pol(X,Y); 1iaNb[:QX  
%       idx = r<=1;  1JgnuBX"  
%       z = nan(size(X)); UV)[a%/SB&  
%       n = [0  1  1  2  2  2  3  3  3  3]; Q@%VJPLv.  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; lT$Vv= M  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; l0Jpf9Aue  
%       y = zernfun(n,m,r(idx),theta(idx)); <Sm -Z,|  
%       figure('Units','normalized') _Pa(5-S'KR  
%       for k = 1:10 FB@c +*1  
%           z(idx) = y(:,k); +^<CJNDL9  
%           subplot(4,7,Nplot(k)) zm2&\8J  
%           pcolor(x,x,z), shading interp .{HU1/!  
%           set(gca,'XTick',[],'YTick',[]) ~CldqXeI  
%           axis square ~b5aT;ObR  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) fMwJwMT8  
%       end O(,Ezy x  
% 4PTHUyX  
%   See also ZERNPOL, ZERNFUN2. ,!kqEIp%  
^C>i(j&  
%   Paul Fricker 11/13/2006 aMuc]Wy#  
65N;PH59D  
QpS0iUG  
% Check and prepare the inputs: !40{1U&@a`  
% ----------------------------- 8U\;N  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -`]B4Nt6  
    error('zernfun:NMvectors','N and M must be vectors.') j9%u&  
end Ts0.Ck  
$J[h(>-X  
if length(n)~=length(m) 4 u X<sJ*  
    error('zernfun:NMlength','N and M must be the same length.') ?)Z~H,Q(z  
end )8ctNpQt  
//Ioh (N  
n = n(:); #93;V'b]  
m = m(:); P\iw[m7O  
if any(mod(n-m,2)) Ha$|9li`  
    error('zernfun:NMmultiplesof2', ... ;W?e@ Lgxk  
          'All N and M must differ by multiples of 2 (including 0).') en!cu_]t  
end KmZUDU%R  
[[JwHM8H&  
if any(m>n) 8_U*_I7(  
    error('zernfun:MlessthanN', ... y2\, L  
          'Each M must be less than or equal to its corresponding N.') {4CkF \  
end P`[6IS#\S  
P_hwa1~d  
if any( r>1 | r<0 ) "6 dC  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') KmEm  
end hc>hNC:a  
dQ`ch~HVUW  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Kx*;!3-V$  
    error('zernfun:RTHvector','R and THETA must be vectors.') | g> K$m^  
end |6`yE]3 -(  
:2 ?dl:l  
r = r(:); `"I^nD^t>Y  
theta = theta(:); 7 -gt V#  
length_r = length(r); 3 _:yHwkD  
if length_r~=length(theta) ff-9NvW4v  
    error('zernfun:RTHlength', ... nE Qw6q~je  
          'The number of R- and THETA-values must be equal.') p:k>!8.Qho  
end h:" <x$F  
}UHuFff,  
% Check normalization: -nN}8&l  
% -------------------- Nk86Y2h  
if nargin==5 && ischar(nflag) q<r{ps  
    isnorm = strcmpi(nflag,'norm'); 1`5d~>fV  
    if ~isnorm KSqWq:W+  
        error('zernfun:normalization','Unrecognized normalization flag.') n:`> QY  
    end `DC)U1  
else e}(ws~.  
    isnorm = false; `t {aN|3V[  
end vov"60K  
)]n:y M  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'RTz*CSZ  
% Compute the Zernike Polynomials 6Ei>VcN4a  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n_)d4d zl  
4punJg~1  
% Determine the required powers of r: B:&/*HU  
% ----------------------------------- 4ZQX YwfC|  
m_abs = abs(m); d.% Vm&3  
rpowers = []; \.9-:\'(  
for j = 1:length(n) QlSZr[^v  
    rpowers = [rpowers m_abs(j):2:n(j)];  PZf^r  
end lk%rE  
rpowers = unique(rpowers); u(\b1h n  
'?v.O}  
% Pre-compute the values of r raised to the required powers, $wdIOfaH  
% and compile them in a matrix: kJlRdt2  
% ----------------------------- ,l#V eC  
if rpowers(1)==0 C*/d%eHD  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [|<|a3']|  
    rpowern = cat(2,rpowern{:}); xQm!  
    rpowern = [ones(length_r,1) rpowern]; j Bl I^  
else 31  QT  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Cc]t*;nU_  
    rpowern = cat(2,rpowern{:}); (YGJw?]  
end ]{0 2!  
J5mMx)t@  
% Compute the values of the polynomials: x!tCK47Yq  
% -------------------------------------- <lB^>Hfu  
y = zeros(length_r,length(n)); Xi6XV3G  
for j = 1:length(n) &xj?MgdNL  
    s = 0:(n(j)-m_abs(j))/2; Zvk O#j  
    pows = n(j):-2:m_abs(j); ]p `#KVW  
    for k = length(s):-1:1 4@4$kro  
        p = (1-2*mod(s(k),2))* ... Qg%B<3 <  
                   prod(2:(n(j)-s(k)))/              ... bEMD2ABm  
                   prod(2:s(k))/                     ... Ih{(d O;  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... bfQ+}|;  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); -nV]%vJ$R}  
        idx = (pows(k)==rpowers); \.POb5]p0  
        y(:,j) = y(:,j) + p*rpowern(:,idx); a^@6hC>sr  
    end "/(J*)%{  
     2VrF~+  
    if isnorm "/S-+Ufn  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); /Pxt f~$  
    end `$AX!,<!G  
end HKP<=<8/O  
% END: Compute the Zernike Polynomials }~:`9PV)Z%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MIsjTKE  
Z7V 1e<E  
% Compute the Zernike functions: l <Tkg9  
% ------------------------------ Y#=0C*FS  
idx_pos = m>0; .Qyq*6T3&  
idx_neg = m<0; .Lr;{B  
p[!&D}&6h  
z = y; ?rKewdGY  
if any(idx_pos) &_x:+{06  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); q3z<v:=1y  
end Q=)$  
if any(idx_neg) ~5N0=)  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @dvlSqm)  
end {dH87 nt  
[1F.   
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) Tv_KdOv8  
%ZERNFUN2 Single-index Zernike functions on the unit circle. 1aP3oXLL  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated D{x'k2=  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive w<!F& kQB  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, Q( U+o-  
%   and THETA is a vector of angles.  R and THETA must have the same )[C]1N=tK  
%   length.  The output Z is a matrix with one column for every P-value, 1Mn=m w  
%   and one row for every (R,THETA) pair. jdiH9]&U  
% 9. 6"C<eYt  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 3+%a  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) &G\Vn,1v  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ;.Zgt8/.  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 U>H"N1  
%   for all p. n`8BE9h^  
% (u-K^xC  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 v6uR[18  
%   Zernike functions (order N<=7).  In some disciplines it is ~2PD%+e7]  
%   traditional to label the first 36 functions using a single mode 3q:U0&F  
%   number P instead of separate numbers for the order N and azimuthal >x9@ if  
%   frequency M. aZn]8jC%  
% 97l<9^$  
%   Example: 4 3V {q  
% OyH>N/  
%       % Display the first 16 Zernike functions "m,)3zND3  
%       x = -1:0.01:1; />Kd w  
%       [X,Y] = meshgrid(x,x); o-a\T  
%       [theta,r] = cart2pol(X,Y); s;e%*4  
%       idx = r<=1; # 2;6!_  
%       p = 0:15; v7gs $'Q  
%       z = nan(size(X)); iY?J3nxD-:  
%       y = zernfun2(p,r(idx),theta(idx)); O$z XDxn  
%       figure('Units','normalized') x7J8z\b"O  
%       for k = 1:length(p) _^w&k{T  
%           z(idx) = y(:,k); bca4'`3\|  
%           subplot(4,4,k) N!!=9'fGF  
%           pcolor(x,x,z), shading interp 7IkNS  
%           set(gca,'XTick',[],'YTick',[]) ~+|Vzm|S}  
%           axis square 'tvX.aX2  
%           title(['Z_{' num2str(p(k)) '}']) 0"}qND  
%       end #0$fZ  
% *ThP->&:(  
%   See also ZERNPOL, ZERNFUN. " b3-'/ &  
y/i{6P2`,D  
%   Paul Fricker 11/13/2006 StLFq6BO  
=Ot|d #_  
K Q^CiX  
% Check and prepare the inputs: =d`w~iC  
% ----------------------------- \.ukZqB3 0  
if min(size(p))~=1 .ni<'  
    error('zernfun2:Pvector','Input P must be vector.') T,@s.v  
end gZq _BY_U  
tE'^O< K  
if any(p)>35 R*0]*\C z  
    error('zernfun2:P36', ... jRiXN %  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... p{|!LcSU$2  
           '(P = 0 to 35).']) C(CwsdlP  
end &?g!)O  
?}g^/g !  
% Get the order and frequency corresonding to the function number: QNbV=*F?  
% ---------------------------------------------------------------- !E7JDk''@  
p = p(:); A |u-VXQ  
n = ceil((-3+sqrt(9+8*p))/2); )iX2r{  
m = 2*p - n.*(n+2); gcF:/@:Rm  
r)S:-wP  
% Pass the inputs to the function ZERNFUN: tNoPpIu  
% ---------------------------------------- "w&IO}j;=  
switch nargin n)|{tb^  
    case 3 %(&$CmS@  
        z = zernfun(n,m,r,theta); &cGa~#-u  
    case 4 x" lcE@(  
        z = zernfun(n,m,r,theta,nflag); 8+i=u" <  
    otherwise tn{YIp   
        error('zernfun2:nargin','Incorrect number of inputs.') gFpub_  
end .Ht;xq  
Ie4\d2tQ;  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) <$(y6+lY  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. s Poh\n  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of \&_pI2X  
%   order N and frequency M, evaluated at R.  N is a vector of kx?f,^ -  
%   positive integers (including 0), and M is a vector with the Um^4[rl:#g  
%   same number of elements as N.  Each element k of M must be a 5G2G<[p5oQ  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) :6MV@{;PJ  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is qxB|*P `  
%   a vector of numbers between 0 and 1.  The output Z is a matrix U ,NGV0  
%   with one column for every (N,M) pair, and one row for every ''dS {nQs  
%   element in R. +=:_a$98  
% \sz*M B  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- .Hnhd/ c  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 8eVy*h2:=  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 5^D094J|^  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 "1$X5?%  
%   for all [n,m]. h0R.c|g[  
% \o*w#e[M  
%   The radial Zernike polynomials are the radial portion of the QJ&]4*>a  
%   Zernike functions, which are an orthogonal basis on the unit |LW5dtQ  
%   circle.  The series representation of the radial Zernike jW]"Um-]  
%   polynomials is AJ+\Qs(0  
% tD*k   
%          (n-m)/2 ~&?57Sw*m  
%            __ E{0e5.{  
%    m      \       s                                          n-2s 5dGfO:Dy_  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r $PG(>1e  
%    n      s=0 _\=x A6!  
% r+8)<Xt+p  
%   The following table shows the first 12 polynomials. |a#=o}R_  
% !Q WNHL  
%       n    m    Zernike polynomial    Normalization jzJQ/ZFS  
%       --------------------------------------------- Iprt ZqiL  
%       0    0    1                        sqrt(2) SwsJ<Dq^z  
%       1    1    r                           2 ~s-bA#0S  
%       2    0    2*r^2 - 1                sqrt(6) ht*N[Pi4;  
%       2    2    r^2                      sqrt(6) g$ HL::  
%       3    1    3*r^3 - 2*r              sqrt(8) eL>wKu:r  
%       3    3    r^3                      sqrt(8) tm/=Oc1p  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 8 :WN@  
%       4    2    4*r^4 - 3*r^2            sqrt(10) )RN3Oz@H  
%       4    4    r^4                      sqrt(10) (/At+MF3E  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) udT0`6l;  
%       5    3    5*r^5 - 4*r^3            sqrt(12) MJh.)kd$  
%       5    5    r^5                      sqrt(12) O1UArD  
%       --------------------------------------------- #K0/ >W  
% 118lb]  
%   Example: +m]-)  
% o{>4PZ}=g  
%       % Display three example Zernike radial polynomials #1%ahPhR+  
%       r = 0:0.01:1; }W@refS  
%       n = [3 2 5]; 8nn g^  
%       m = [1 2 1]; :2H]DDg(  
%       z = zernpol(n,m,r); e`co:HO`#  
%       figure tmOy"mq67  
%       plot(r,z) -.r"|\1X  
%       grid on $@@ii+W}\  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') - . o,bg  
% u(FOSmNkN  
%   See also ZERNFUN, ZERNFUN2. >-\^)z  
etT9}RbQ  
% A note on the algorithm. Q>\ Ho'  
% ------------------------ yH=<KYk  
% The radial Zernike polynomials are computed using the series '$Z@oCY#  
% representation shown in the Help section above. For many special { TI,|'>5[  
% functions, direct evaluation using the series representation can *+zFsu4l  
% produce poor numerical results (floating point errors), because )sW!s3>S>  
% the summation often involves computing small differences between F53 .g/[  
% large successive terms in the series. (In such cases, the functions  pdm(7^  
% are often evaluated using alternative methods such as recurrence Xq )7Im}?  
% relations: see the Legendre functions, for example). For the Zernike _h4]gZ  
% polynomials, however, this problem does not arise, because the +pq) 7  
% polynomials are evaluated over the finite domain r = (0,1), and CVvl &on  
% because the coefficients for a given polynomial are generally all B8eZ}9X  
% of similar magnitude. bl&9O  
% @54$IhhT~  
% ZERNPOL has been written using a vectorized implementation: multiple b+q'xnA=>  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] nBd]rak'  
% values can be passed as inputs) for a vector of points R.  To achieve V dvj*I  
% this vectorization most efficiently, the algorithm in ZERNPOL k~so+k&=b  
% involves pre-determining all the powers p of R that are required to 4CchE15  
% compute the outputs, and then compiling the {R^p} into a single Iila|,cM  
% matrix.  This avoids any redundant computation of the R^p, and "=n%L +6%  
% minimizes the sizes of certain intermediate variables. %TRJ  
% IP$eJL[&D"  
%   Paul Fricker 11/13/2006 %,1TAmJfHa  
/k ?l%AH  
r>! @Z2%s  
% Check and prepare the inputs: QnOs8%HS-  
% ----------------------------- n|?sNM<J3  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s0]ZE\`H>  
    error('zernpol:NMvectors','N and M must be vectors.') |EdEV*.ej  
end /s%-c!o^  
S"@6,  
if length(n)~=length(m) @{{L1[~:0  
    error('zernpol:NMlength','N and M must be the same length.') ern\QAhXX  
end f+ZOE?"  
fd #QCs  
n = n(:); 9{U@s  
m = m(:); lK/4"&  
length_n = length(n); %QrOEs  
kCEo */,  
if any(mod(n-m,2)) o/ 51 RH  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') aCH;l~+U  
end KPDJ$,:  
@aN~97 H\  
if any(m<0) 7[0Mr,^  
    error('zernpol:Mpositive','All M must be positive.') uH? 4d!G  
end ctHQZ#.[(  
$<XQv$YS  
if any(m>n) Y@k=m )zE  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Z ztp %2c  
end Yc?S<  
TD*AFR3Oz  
if any( r>1 | r<0 ) T%9t8?I  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') p5OoDo  
end ns~bz-n  
-K$ugDi  
if ~any(size(r)==1) i;/;zG^=_  
    error('zernpol:Rvector','R must be a vector.') _t;^\"\  
end :-U& _%#w  
#@w/S:KbJt  
r = r(:); (VmFYNt&  
length_r = length(r); }+MA*v[06  
^\ln8!;  
if nargin==4 8kSyT'k C%  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); nj00g>:>  
    if ~isnorm 55TFBDc  
        error('zernpol:normalization','Unrecognized normalization flag.') ltU{P|7!E  
    end yK9EHJ$  
else 0~_I9|FN  
    isnorm = false; RrH{Y0  
end >dgq2ok!u  
_<2{8>EVf  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E}F-*go  
% Compute the Zernike Polynomials TG8U=9qt  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p:$v,3:  
? p[Rv  
% Determine the required powers of r: -qvMMit%7  
% ----------------------------------- IY[qWs  
rpowers = []; 8 l= EL7  
for j = 1:length(n) T*Ge67  
    rpowers = [rpowers m(j):2:n(j)]; A.7lo  
end lTN^c?  
rpowers = unique(rpowers); 7BqP3T=&_  
xT* 3QwK  
% Pre-compute the values of r raised to the required powers, &}C-W* f,Z  
% and compile them in a matrix: {,6J*v"o  
% ----------------------------- qf ]le]J  
if rpowers(1)==0  !a\HdQ  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *81/q8Az  
    rpowern = cat(2,rpowern{:}); UUbO\_&y  
    rpowern = [ones(length_r,1) rpowern]; ps8tr:T^=  
else yP} |8x  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); X7-[#} T  
    rpowern = cat(2,rpowern{:}); [euR<i*I#  
end Y=_*Ai  
t5i58@{~  
% Compute the values of the polynomials: %qE"A6j  
% -------------------------------------- W?!rqo2SP  
z = zeros(length_r,length_n); 9C Ki$L  
for j = 1:length_n wL]#]DiE  
    s = 0:(n(j)-m(j))/2; 6@47%%,}  
    pows = n(j):-2:m(j); |/8!P Km  
    for k = length(s):-1:1 |=~mRqG  
        p = (1-2*mod(s(k),2))* ... J{kS4v*J  
                   prod(2:(n(j)-s(k)))/          ... (Rq6m`M2  
                   prod(2:s(k))/                 ... vr?u=_%Z  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... Tj!\SbnA[  
                   prod(2:((n(j)+m(j))/2-s(k))); (Uu5$q(  
        idx = (pows(k)==rpowers); *}Gys/\!S  
        z(:,j) = z(:,j) + p*rpowern(:,idx); a+O?bO  
    end u#y)+A2&!  
     CK|AXz+EN  
    if isnorm cH:&S=>h  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); -`z%<)!Y  
    end Fo%`X[?  
end `(P71T  
Uugq.'>  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Q[H4l({E  
=eDC{/K  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 rTJqw@]#WH  
| "M1+(k7  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计