首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 O?Tg`]EX  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! c-d}E!C:  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 P+h&tXZn8  
function z = zernfun(n,m,r,theta,nflag) 4fswx@l  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. )/'s& D  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ri ~2t3gg  
%   and angular frequency M, evaluated at positions (R,THETA) on the /+msrrpD  
%   unit circle.  N is a vector of positive integers (including 0), and TZg7BLfy  
%   M is a vector with the same number of elements as N.  Each element KG$2u:n  
%   k of M must be a positive integer, with possible values M(k) = -N(k) ZD(gYNi  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, .EO1{2=  
%   and THETA is a vector of angles.  R and THETA must have the same 9K!='u`  
%   length.  The output Z is a matrix with one column for every (N,M) r8rR_ M{P  
%   pair, and one row for every (R,THETA) pair. HenJlo  
% >.|gmo>b  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike hLRQ)  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), xJCpWU3wM  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral >Fz$DKr[  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #ZA YP  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized }T,uw8?f!  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. hh9{md\  
% [@6iStRg7  
%   The Zernike functions are an orthogonal basis on the unit circle. 3QpT O,  
%   They are used in disciplines such as astronomy, optics, and V_!i KEU  
%   optometry to describe functions on a circular domain. 8*wI^*Q  
% e=2D^ G#qE  
%   The following table lists the first 15 Zernike functions. bd4q/w4q  
% 0N.*c  
%       n    m    Zernike function           Normalization YVT^}7#  
%       -------------------------------------------------- o9i\[Ul  
%       0    0    1                                 1 OjZ@_V:  
%       1    1    r * cos(theta)                    2 JFZ p^{  
%       1   -1    r * sin(theta)                    2 iweP3u##  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) W= !f  
%       2    0    (2*r^2 - 1)                    sqrt(3) #82B`y<<y/  
%       2    2    r^2 * sin(2*theta)             sqrt(6) c+JlM1p@  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) !T*izMX}  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Lmb<)YY  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 2xX7dl(cC  
%       3    3    r^3 * sin(3*theta)             sqrt(8) PO&`r r  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) scdT/|(U$  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) r`2& o  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) =R05H2hs  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) amRtFrc|  
%       4    4    r^4 * sin(4*theta)             sqrt(10) #XsqTK_nk  
%       -------------------------------------------------- )n.peZ  
% o0 Ae*Y0  
%   Example 1: ~J|0G6H  
% yFSL7`p+  
%       % Display the Zernike function Z(n=5,m=1) KjadX&JD  
%       x = -1:0.01:1; 6{M.S}.^  
%       [X,Y] = meshgrid(x,x); B !XT:.+  
%       [theta,r] = cart2pol(X,Y); L$g;^@j  
%       idx = r<=1; _3hEYeh  
%       z = nan(size(X)); b7-a0zaN  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); 6XP>p$-  
%       figure J ?&9ofj&  
%       pcolor(x,x,z), shading interp DsoF4&>g[B  
%       axis square, colorbar mS0W@#|K  
%       title('Zernike function Z_5^1(r,\theta)') + '`RJ,K+[  
% @:63OLlrG  
%   Example 2: 1 !sYd@iD@  
% M0|z^2  
%       % Display the first 10 Zernike functions qVfOf\x.e  
%       x = -1:0.01:1; T4[eBO  
%       [X,Y] = meshgrid(x,x); \21!NPXH2  
%       [theta,r] = cart2pol(X,Y); WI%,m~  
%       idx = r<=1; CV k8MA  
%       z = nan(size(X)); !Ej<J&e  
%       n = [0  1  1  2  2  2  3  3  3  3]; YW*ti|u|w  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; y3x_B@}BY  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; q45n.A6a  
%       y = zernfun(n,m,r(idx),theta(idx)); 344- ~i*  
%       figure('Units','normalized') W+QI D/  
%       for k = 1:10 zIu1oF4[  
%           z(idx) = y(:,k); fA8 ,wy|>  
%           subplot(4,7,Nplot(k)) !59q@M ya[  
%           pcolor(x,x,z), shading interp ?IK[]=!  
%           set(gca,'XTick',[],'YTick',[]) K&/W cuP &  
%           axis square y=t -/*K  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !>M: G:K  
%       end L(.5:&Y=`  
% ]]+"`t,-  
%   See also ZERNPOL, ZERNFUN2. 2'D2>^os  
>">-4L17m  
%   Paul Fricker 11/13/2006 .L}ar7  
+U[A.^t  
ujaaO6oZ7  
% Check and prepare the inputs: E11"uWk`  
% ----------------------------- oZQu&O'  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Lr`yl$6  
    error('zernfun:NMvectors','N and M must be vectors.') Yv>% 5`  
end 1'ZBtX~A  
1c]GS&(RP  
if length(n)~=length(m) zJPzI{-w|  
    error('zernfun:NMlength','N and M must be the same length.') !^y'G0  
end #jQITS7  
SO|$X  
n = n(:); G3q\Z`|3h  
m = m(:); 0L'h5i>H)  
if any(mod(n-m,2)) "bJWyUb  
    error('zernfun:NMmultiplesof2', ... 4v;/"4)'  
          'All N and M must differ by multiples of 2 (including 0).') WHL@]^E@m  
end *t63c.S  
jVr:O `  
if any(m>n) OF}vY0oiw?  
    error('zernfun:MlessthanN', ... \]zH M.E1  
          'Each M must be less than or equal to its corresponding N.') $. Ih-  
end V V<Zl  
'Je;3"@  
if any( r>1 | r<0 ) rAgb<D@,H  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5~v({R.  
end k/>k&^?  
h DCR>G  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^]K_k7`I  
    error('zernfun:RTHvector','R and THETA must be vectors.') yN9/'c~  
end }}<^f M  
}5EvBEv-)  
r = r(:); *5u0`k^j  
theta = theta(:); /@:I\&{f'9  
length_r = length(r); dW6sA65<Y  
if length_r~=length(theta)  Hi#hf"V  
    error('zernfun:RTHlength', ... arm26YA-,  
          'The number of R- and THETA-values must be equal.') d-y8c  
end W;Ct[Y 8m  
12.|Ed*72  
% Check normalization: v#TU7v?~  
% -------------------- 6YNd;,it>p  
if nargin==5 && ischar(nflag) %AaZc=a[c  
    isnorm = strcmpi(nflag,'norm'); 9J*.'Y  
    if ~isnorm W|4:3 c4  
        error('zernfun:normalization','Unrecognized normalization flag.') EJrP{GH  
    end \<TWy&2&  
else qf;x~1efC4  
    isnorm = false; ) vn {?Ulj  
end G8}k9?26(  
@P@?KZ..v!  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Phr+L9Eog  
% Compute the Zernike Polynomials wt]onve}%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;X, A|m$(  
!c W6dc^  
% Determine the required powers of r: $i1$nc8  
% ----------------------------------- }Y:V&4DW  
m_abs = abs(m); W^k95%zBM  
rpowers = []; {\hjKP  
for j = 1:length(n) h/k00hD60  
    rpowers = [rpowers m_abs(j):2:n(j)]; 3?5JY;}h>"  
end DHQS7%)f`  
rpowers = unique(rpowers); fN&@y$  
FF#T"y0Y  
% Pre-compute the values of r raised to the required powers, 3$G &~A{  
% and compile them in a matrix: H\RejGR  
% ----------------------------- jl9hFubwW  
if rpowers(1)==0 VkFMr8@|  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >e>%AMzo[  
    rpowern = cat(2,rpowern{:}); >jz9o9?8  
    rpowern = [ones(length_r,1) rpowern]; >e^bq/'  
else &n9&k Em  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^p)#;$6b  
    rpowern = cat(2,rpowern{:}); z;DNl#|!L  
end Wz%H?m:g#  
|P@N}P@  
% Compute the values of the polynomials: ,<k%'a!B  
% -------------------------------------- z^vfha  
y = zeros(length_r,length(n)); ox*1F+Xri  
for j = 1:length(n) dIW@L  
    s = 0:(n(j)-m_abs(j))/2; hi`[  
    pows = n(j):-2:m_abs(j); xpX<iT>5u  
    for k = length(s):-1:1 o%7-<\qS  
        p = (1-2*mod(s(k),2))* ... D6-R>"}  
                   prod(2:(n(j)-s(k)))/              ... > a;iX.K  
                   prod(2:s(k))/                     ... `*6|2  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /%g+|C  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); R:4@a ':H  
        idx = (pows(k)==rpowers); 60;_^v  
        y(:,j) = y(:,j) + p*rpowern(:,idx); LTxP@pr  
    end %_."JT$v{  
     OClG dFJ|  
    if isnorm hC[ =e`j  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Om^(CAp  
    end s]]lB018O\  
end 63'm @oZ  
% END: Compute the Zernike Polynomials ; [G:  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HjIIhl?UY  
G9NI`]k  
% Compute the Zernike functions: ?7}ybw3t]  
% ------------------------------ v4<W57oH  
idx_pos = m>0; ^s6}[LDW>@  
idx_neg = m<0; ;plBo%EBV  
Z#.1p'3qm1  
z = y; ^D<CoxG  
if any(idx_pos) /{f"0]-RA  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); " i:[|7  
end `6)(Fk--"  
if any(idx_neg) GF6o  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !NH(EWER  
end -'Ay(h   
0N^+d,Xt.  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) {.542}A  
%ZERNFUN2 Single-index Zernike functions on the unit circle. y_X jY  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated =WjHf8v;  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive c ef[T(>  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, ?h6|N%U'  
%   and THETA is a vector of angles.  R and THETA must have the same mFg$;F  
%   length.  The output Z is a matrix with one column for every P-value, 2HtsSS#0Q  
%   and one row for every (R,THETA) pair. 9j|v D  
% a M9v  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike %ggf|\ -e  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) r[4n2Mys  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) (IBT|K  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 @QV0l]H0+  
%   for all p. GA[Ebzi  
% g!R7CRt%  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 \?; `_E`j  
%   Zernike functions (order N<=7).  In some disciplines it is YZ5,K6u  
%   traditional to label the first 36 functions using a single mode #m,H1YH M  
%   number P instead of separate numbers for the order N and azimuthal y92R}e\M  
%   frequency M. Ez;Qo8  
% =nHKTB>  
%   Example: `p&[b]b  
% k?Z:=.YW  
%       % Display the first 16 Zernike functions Ec!!9dgRQ  
%       x = -1:0.01:1; l3sF/zkH  
%       [X,Y] = meshgrid(x,x); !{g<RS( c  
%       [theta,r] = cart2pol(X,Y); ao2^3e  
%       idx = r<=1; c`soVqT$?  
%       p = 0:15; )[ A-d(y=  
%       z = nan(size(X)); q0NFz mG  
%       y = zernfun2(p,r(idx),theta(idx)); :D*U4< /u  
%       figure('Units','normalized') z~#;[bER  
%       for k = 1:length(p) o5bp~.m<  
%           z(idx) = y(:,k); EY)2,  
%           subplot(4,4,k) B W<Dmn  
%           pcolor(x,x,z), shading interp Ea&|kO|  
%           set(gca,'XTick',[],'YTick',[]) mY.v:  
%           axis square &]DB-t#\  
%           title(['Z_{' num2str(p(k)) '}']) H].|K/-p  
%       end #B;P4n3  
% B+K6(^j,,y  
%   See also ZERNPOL, ZERNFUN. BB6[(Z  
moM? aYm  
%   Paul Fricker 11/13/2006 Wd:pqhLh  
{4D`VfX_  
'{"Rjv7  
% Check and prepare the inputs: _ocCt XI9  
% ----------------------------- Kcm+%p^  
if min(size(p))~=1 ECOJ .^  
    error('zernfun2:Pvector','Input P must be vector.') +nE>)ZH  
end nF@**,C Q  
K6kz{R%`  
if any(p)>35 n9'3~qVZ  
    error('zernfun2:P36', ... c_3B:F7  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... I8Aq8XBw  
           '(P = 0 to 35).']) ^.6[vmmq  
end eX+36VG\  
VBX)xQazU  
% Get the order and frequency corresonding to the function number: W:_-I4 q~  
% ---------------------------------------------------------------- <y@v v  
p = p(:); <E2 IU~e  
n = ceil((-3+sqrt(9+8*p))/2); *%Rmdyn  
m = 2*p - n.*(n+2); \baY+,Dr+  
$ln8Cpbca  
% Pass the inputs to the function ZERNFUN: i "h\*B=  
% ---------------------------------------- J8 qFdNK  
switch nargin )2&3D"V  
    case 3 V4[-:k  
        z = zernfun(n,m,r,theta); iH8we,s'  
    case 4 o;$xN3f,  
        z = zernfun(n,m,r,theta,nflag); iFd !ED  
    otherwise 1&|]8=pG7  
        error('zernfun2:nargin','Incorrect number of inputs.') Ymz/:  
end {7o3wxsS  
tF:AnNp=  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) ON,[!pc  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. S(gr>eC5  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of |Xt.[1  
%   order N and frequency M, evaluated at R.  N is a vector of 5W&L6.J}+  
%   positive integers (including 0), and M is a vector with the |0n )U(  
%   same number of elements as N.  Each element k of M must be a 8ymdg\I+L  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) 39v Bsc  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 7hHID>,o9%  
%   a vector of numbers between 0 and 1.  The output Z is a matrix }J#HIE\RG  
%   with one column for every (N,M) pair, and one row for every ^&qK\m_A  
%   element in R. z@,pT"rb  
% l77 -I:  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- bf_ > ?F^  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ZC?~RXL(  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to +F)EGB%LXs  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 EpS/"adI-!  
%   for all [n,m]. }j/\OY _&  
% #Zdh<.   
%   The radial Zernike polynomials are the radial portion of the 2P"643tz  
%   Zernike functions, which are an orthogonal basis on the unit UD-+BUV  
%   circle.  The series representation of the radial Zernike V'kBF2}   
%   polynomials is >V"{]v  
% YK/? mj1x  
%          (n-m)/2 y\??cjWb]  
%            __ W`[VLi}fe  
%    m      \       s                                          n-2s A%^?z.  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Y/sav;  
%    n      s=0 jr` swyg  
% f Fi=/}  
%   The following table shows the first 12 polynomials. tK3$,9+  
% W>jKWi,{  
%       n    m    Zernike polynomial    Normalization fEBi'Ad  
%       --------------------------------------------- Qsbyy>o)  
%       0    0    1                        sqrt(2) [j6]!p]S$  
%       1    1    r                           2 y4kn2Mw;  
%       2    0    2*r^2 - 1                sqrt(6) #(tdJ<HvC|  
%       2    2    r^2                      sqrt(6) QD-\'Bp/X  
%       3    1    3*r^3 - 2*r              sqrt(8) iHv+I~/  
%       3    3    r^3                      sqrt(8) {,Z|8@Sl%  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) WSozDNF!'f  
%       4    2    4*r^4 - 3*r^2            sqrt(10) OC&BJNOi  
%       4    4    r^4                      sqrt(10) 2hHRitt36  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) g:!U,<C^a  
%       5    3    5*r^5 - 4*r^3            sqrt(12) [A~?V.G  
%       5    5    r^5                      sqrt(12) kX L0  
%       --------------------------------------------- - |p eD L  
% =X'[r  
%   Example: e#oK% {A  
% o(tJc}Mh+(  
%       % Display three example Zernike radial polynomials pLu5x<  
%       r = 0:0.01:1; `oMZ9Gq2E  
%       n = [3 2 5]; zfop-qDOc  
%       m = [1 2 1]; t^&hG7L_m,  
%       z = zernpol(n,m,r); y(DT ^>0  
%       figure f>Rux1Je4  
%       plot(r,z) dQ*^WNUB  
%       grid on ?b7ttlX{  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') :Quep-:fy<  
% Ar)EbGId  
%   See also ZERNFUN, ZERNFUN2. qlM<X?  
,=e.Q AF!"  
% A note on the algorithm. {+lU4u  
% ------------------------ 4rDV CXE  
% The radial Zernike polynomials are computed using the series Tv#d>ZSD  
% representation shown in the Help section above. For many special 3/gR}\=  
% functions, direct evaluation using the series representation can 1L`V{\_0s  
% produce poor numerical results (floating point errors), because 5@RcAQb:  
% the summation often involves computing small differences between #e.x]v:  
% large successive terms in the series. (In such cases, the functions )"?'~5A  
% are often evaluated using alternative methods such as recurrence >,Y+ 1  
% relations: see the Legendre functions, for example). For the Zernike 8Y-*rpLy  
% polynomials, however, this problem does not arise, because the r0nnmy]{d  
% polynomials are evaluated over the finite domain r = (0,1), and S0StC$$1  
% because the coefficients for a given polynomial are generally all o~'p&f  
% of similar magnitude. zHKP$k8  
% 1Xi>&;],  
% ZERNPOL has been written using a vectorized implementation: multiple  3*Q=)}  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] 9qDM0'WuU  
% values can be passed as inputs) for a vector of points R.  To achieve &w9*pJR %  
% this vectorization most efficiently, the algorithm in ZERNPOL aEzf*a|fSV  
% involves pre-determining all the powers p of R that are required to ]Sj;\Iz  
% compute the outputs, and then compiling the {R^p} into a single (1cB Tf  
% matrix.  This avoids any redundant computation of the R^p, and E-1u_7  
% minimizes the sizes of certain intermediate variables. yR~$i3Z*  
% 1BmKwux:  
%   Paul Fricker 11/13/2006 Y;R,ph.a  
vJs6nVbK  
,|z@ Dy  
% Check and prepare the inputs: UB+~K/  
% ----------------------------- PK|qiu-O&*  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Zrwd  
    error('zernpol:NMvectors','N and M must be vectors.') 3XB`|\:  
end )o:sDj`b]  
Jqzw94  
if length(n)~=length(m) 4Y'Ne2M{  
    error('zernpol:NMlength','N and M must be the same length.') dfAw\7v/  
end y =sae  
6|lsG6uf  
n = n(:); &_]G0~e  
m = m(:); 8D>5(Dg-  
length_n = length(n); %AJ9fs4/  
` Ft-1eE  
if any(mod(n-m,2)) [f\Jcjc  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 9:g A0Z  
end W\-`}{B_/  
]["%e9#aX  
if any(m<0) s#<fj#S  
    error('zernpol:Mpositive','All M must be positive.') :' 5J[]J  
end 4r83;3WXs  
u[KxI9Q  
if any(m>n) :LB*l5\  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') EZ>(}  
end <B T18u\  
x~uDCbL  
if any( r>1 | r<0 ) Id^q!4Th9  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') x0)=jp '  
end tq,^!RSbZ  
NRG06M  
if ~any(size(r)==1) g?|Z/eVJ  
    error('zernpol:Rvector','R must be a vector.') >`3F`@1L0  
end A",}Ikh='`  
Y,L[0%  
r = r(:); IR]5,K^l  
length_r = length(r); u(yN81  
[(g2u@  
if nargin==4 Z&?4<-@6\p  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); \: F$7 *Ne  
    if ~isnorm g||EjCsp  
        error('zernpol:normalization','Unrecognized normalization flag.') 6:S, {@G  
    end F,)+9/S&  
else G6{'|CV  
    isnorm = false; ^w%%$9=:r  
end &Jb$YKt  
/~s<@<1!X  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CAviP61T  
% Compute the Zernike Polynomials UAz^P6iQ`~  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d 4tL  
JFc, f  
% Determine the required powers of r: #b&tNZ4!_  
% ----------------------------------- z&n2JpLY7  
rpowers = []; "0nsYE  
for j = 1:length(n) h{_\ok C>  
    rpowers = [rpowers m(j):2:n(j)]; vO$cF*  
end Z'9|  
rpowers = unique(rpowers); 4a& 8G  
_#v"sGmN  
% Pre-compute the values of r raised to the required powers, I6;6x  
% and compile them in a matrix: r aOuD3  
% ----------------------------- lijT L-3  
if rpowers(1)==0 #?r|6<4X  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 1yz%ud-l  
    rpowern = cat(2,rpowern{:}); &`s{-<t<L  
    rpowern = [ones(length_r,1) rpowern]; LHx ")H?,  
else "(W;rl  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {5  pK8  
    rpowern = cat(2,rpowern{:}); Vb#a ,t  
end ,<K+.7,)E  
vy5Fw&?"  
% Compute the values of the polynomials: ,J+L_S+B~  
% -------------------------------------- "8uNa  
z = zeros(length_r,length_n); _kRc"MaB  
for j = 1:length_n N2 3:+u<)E  
    s = 0:(n(j)-m(j))/2; Kv!:2br  
    pows = n(j):-2:m(j); 6 %aaK|0  
    for k = length(s):-1:1 3f^jy(  
        p = (1-2*mod(s(k),2))* ... U5-8It2OR  
                   prod(2:(n(j)-s(k)))/          ... ct|0zl~  
                   prod(2:s(k))/                 ... ng|^Zm%   
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... ?mC'ZYQI  
                   prod(2:((n(j)+m(j))/2-s(k))); ed5oN^V.<  
        idx = (pows(k)==rpowers); oDD"h,Z  
        z(:,j) = z(:,j) + p*rpowern(:,idx); ?5ZvvAi  
    end IEm~^D#<=  
     '?m2|9~  
    if isnorm ~vpF|4Zn5  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 6Hb a@Q1`  
    end h]~FYY  
end #m UQ@X@K  
b"#S92R+  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  =Oh$pZRymu  
Si~wig2  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 bvZD@F`2  
rmvrv.$3  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计