| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _l{5'm function z = zernfun(n,m,r,theta,nflag) R$;&O.
5M %ZERNFUN Zernike functions of order N and frequency M on the unit circle. gM5p1?E % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =u3@ Dhw % and angular frequency M, evaluated at positions (R,THETA) on the ]-5jgz" % unit circle. N is a vector of positive integers (including 0), and 5 *pN<S % M is a vector with the same number of elements as N. Each element 61rh\<bn % k of M must be a positive integer, with possible values M(k) = -N(k) ;Y|~!%2~ % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, |Q)w3\S$ % and THETA is a vector of angles. R and THETA must have the same PSQ:' % length. The output Z is a matrix with one column for every (N,M) >wS:3$Q % pair, and one row for every (R,THETA) pair. cJWfLD>2_! % S.F=$z.% % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .kKwdqO+zB % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Nj-rZ%& % with delta(m,0) the Kronecker delta, is chosen so that the integral b;{"lJ:+Z % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q}F%o0 % and theta=0 to theta=2*pi) is unity. For the non-normalized $t
H.np % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. C.B}Py+
% BSu)O~s % The Zernike functions are an orthogonal basis on the unit circle. 6u, 0y$3 % They are used in disciplines such as astronomy, optics, and 7@cvy?
v{ % optometry to describe functions on a circular domain. M7<#=pX& % ?!
_pP| % The following table lists the first 15 Zernike functions. 7CL@iL Tq % HJ1\FO9\ % n m Zernike function Normalization w$;*~Qc % -------------------------------------------------- Y7V&zF{ % 0 0 1 1 Y$$?8xr
~ % 1 1 r * cos(theta) 2 ?M-8Fp3 + % 1 -1 r * sin(theta) 2 Q.2nUT` % 2 -2 r^2 * cos(2*theta) sqrt(6) O-lh\9{'R % 2 0 (2*r^2 - 1) sqrt(3) i[\u-TF % 2 2 r^2 * sin(2*theta) sqrt(6) fQ.>G+0I> % 3 -3 r^3 * cos(3*theta) sqrt(8) 7RFkHME % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) lvJ{=~u % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) f<sPh>n
% 3 3 r^3 * sin(3*theta) sqrt(8) MirBJL % 4 -4 r^4 * cos(4*theta) sqrt(10) f uNXY-; % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rHBjR_L.2 % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 27 TZ+? % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Bpo68%dx89 % 4 4 r^4 * sin(4*theta) sqrt(10) TIhzMW\/K % -------------------------------------------------- z slEUTj) % wBHDof
xX % Example 1: EM
w(%}8w % A^@ <+? % % Display the Zernike function Z(n=5,m=1) jL%}y1m? % x = -1:0.01:1; yj+b/9My
% [X,Y] = meshgrid(x,x); w:zC/5x` % [theta,r] = cart2pol(X,Y); /P"\+Qp % idx = r<=1; dsZ( D:) % z = nan(size(X)); ?[B[ F % z(idx) = zernfun(5,1,r(idx),theta(idx)); Dj.+5f' % figure XK-x*| % pcolor(x,x,z), shading interp 6%INNIyAWa % axis square, colorbar UBHQzc+, % title('Zernike function Z_5^1(r,\theta)') ;OJ0}\*iP8 % KL"L65g& % Example 2: ]]o[fqD-Zn % VX[!Vh % % Display the first 10 Zernike functions
5g>kr<K % x = -1:0.01:1; "I FGW4FnL % [X,Y] = meshgrid(x,x); xi. KD % [theta,r] = cart2pol(X,Y); {1DYXKe % idx = r<=1; rK) % z = nan(size(X)); aB!Am +g % n = [0 1 1 2 2 2 3 3 3 3]; ~WXxVm*@ % m = [0 -1 1 -2 0 2 -3 -1 1 3]; OT3;qT*fw % Nplot = [4 10 12 16 18 20 22 24 26 28]; ZKPkx~,U[ % y = zernfun(n,m,r(idx),theta(idx)); 2I7` % figure('Units','normalized') NB+O; % for k = 1:10 k+M-D~@5H % z(idx) = y(:,k); ,6Q-k4_ % subplot(4,7,Nplot(k)) yP4.Z9 % pcolor(x,x,z), shading interp K61os&K % set(gca,'XTick',[],'YTick',[]) K)\gbQ| % axis square 8~#Q * % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])
#de^~ % end DJ0T5VE W3 % }c5`~ LLK % See also ZERNPOL, ZERNFUN2. 4yv31QG$ oa !P]r % Paul Fricker 11/13/2006 ,x.)L=Cx8 mJR
T+SZ JHH&@Cn % Check and prepare the inputs: 82!GM.b % ----------------------------- Vp{2Z9]} if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T["(YFCByg error('zernfun:NMvectors','N and M must be vectors.') !r0P\ end 695ppiKU /y|r iW if length(n)~=length(m) pPpnO error('zernfun:NMlength','N and M must be the same length.') C~V$G}mM end YH9]T, z1s"C[W2T n = n(:); 5K~6` m = m(:); V/}8+Xq if any(mod(n-m,2)) %([H*sLX error('zernfun:NMmultiplesof2', ... xR`2+t&t 'All N and M must differ by multiples of 2 (including 0).') f"^tOgGH end V7_??L%Ct` 0 %+k>(@R if any(m>n) ,m]q+7E error('zernfun:MlessthanN', ... hj,x~^cS 'Each M must be less than or equal to its corresponding N.') eCd?.e0@j end rtE,SN 1tpD| if any( r>1 | r<0 ) dxWw%_Q error('zernfun:Rlessthan1','All R must be between 0 and 1.') /Ql}jSKi end L{p-'V [F EQ@ if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )
&_j4q error('zernfun:RTHvector','R and THETA must be vectors.') Q4q#/z end Zh^w)}(W bp,CvQ'}a r = r(:); o7zfD94I theta = theta(:); GK&Dd"v length_r = length(r); fif<[Ax if length_r~=length(theta) Shz;)0To error('zernfun:RTHlength', ... sKO
;p 'The number of R- and THETA-values must be equal.') g"Bv!9*H end Q,`kfxA`O _@2G]JD % Check normalization: y9)",G! % -------------------- O]lfs>>x if nargin==5 && ischar(nflag) {eUfwPAa3 isnorm = strcmpi(nflag,'norm'); +)SX if ~isnorm ,RQ-w2j? error('zernfun:normalization','Unrecognized normalization flag.') T`sM4 VWqU end rI/KrBM else q=6Y2Q isnorm = false; vNGvEJ`qn end 5Y^YKV{ ?f..N,s %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +E4_^ % Compute the Zernike Polynomials ez{&Y>n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t/|^Nt@XT y e'5A % Determine the required powers of r: <lR8MqjM_ % ----------------------------------- ;rgsPVbVf m_abs = abs(m); YPl{5= rpowers = []; mz1g8M`@[D for j = 1:length(n) o@. !Z8 rpowers = [rpowers m_abs(j):2:n(j)]; X;h~s:LM
end '! (`? rpowers = unique(rpowers); 1~Nz6 "Q1hP9xV % Pre-compute the values of r raised to the required powers, Kl? 1)u3^4 % and compile them in a matrix: =xoTH3/,> % -----------------------------
)f
Rh^6 if rpowers(1)==0 {y'kwU rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &kvVMnok rpowern = cat(2,rpowern{:}); Sf9+TW rpowern = [ones(length_r,1) rpowern]; zeX?]@]Y else )Pq.kn{Sp rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $G3P3y:
[ rpowern = cat(2,rpowern{:}); bX,Z<BvbF end P;Ox| /l
L*U % Compute the values of the polynomials: =#fqFL, % -------------------------------------- B_>
Fd& y = zeros(length_r,length(n)); k:sh:G+=$d for j = 1:length(n) Y2Bu,/9^ s = 0:(n(j)-m_abs(j))/2; JS9q'd pows = n(j):-2:m_abs(j); i+}M#Y-O for k = length(s):-1:1 i&Ea@b p = (1-2*mod(s(k),2))* ... v&Kw
3!X#E prod(2:(n(j)-s(k)))/ ... _
0-YsD prod(2:s(k))/ ... 3?:}lY<, prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~&kV prod(2:((n(j)+m_abs(j))/2-s(k))); PyYe>a;. idx = (pows(k)==rpowers); i|*:gH y(:,j) = y(:,j) + p*rpowern(:,idx); 0!Yi.'+ end "2mVW_k y}A-o_u@cD if isnorm \ CYu; y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); rAWBuEU;! end 5gGr|d|( end @ o]F~x % END: Compute the Zernike Polynomials l<5!R;?$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XZhhr1-<a ; ?!sU % Compute the Zernike functions: J#\/znT % ------------------------------ }U9e#>ex idx_pos = m>0; ,M9'S;&^ idx_neg = m<0; &3rh{" ^9 @B+];lr/- z = y; -
0zo>[c/p if any(idx_pos) .fgoEB,( z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); YV+e];s end g&
{YHq^+ if any(idx_neg) xed$z z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); X:YxsZQ5Y end bbz86]AhY pcE.
% EOF zernfun
|
|