| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4qo4g+ function z = zernfun(n,m,r,theta,nflag) rks+\e}^Z %ZERNFUN Zernike functions of order N and frequency M on the unit circle. u38FY@U$ % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N $~c?qU % and angular frequency M, evaluated at positions (R,THETA) on the :"? boA#L % unit circle. N is a vector of positive integers (including 0), and R)?b\VK2$ % M is a vector with the same number of elements as N. Each element \ &1)k/ % k of M must be a positive integer, with possible values M(k) = -N(k) P
lJl#-BO % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, [ C d"@!yA % and THETA is a vector of angles. R and THETA must have the same *u.6,jw % length. The output Z is a matrix with one column for every (N,M) +;SQ}[ % pair, and one row for every (R,THETA) pair. 2zR*`9$ % Srj%6rgsB % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike p%e!&:! % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), iJ_`ZM.w % with delta(m,0) the Kronecker delta, is chosen so that the integral :/fG %e % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8;9GM^L % and theta=0 to theta=2*pi) is unity. For the non-normalized i$[wgvJIV
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. R_J=x % ,t5X'sY L % The Zernike functions are an orthogonal basis on the unit circle. c 2j?<F1 % They are used in disciplines such as astronomy, optics, and )BNm~sP % optometry to describe functions on a circular domain. 3n9$qr=' % .CFaBwj % The following table lists the first 15 Zernike functions. WL-+;h@VQ % en>d T % n m Zernike function Normalization |8}f % -------------------------------------------------- Frn#?n)S9 % 0 0 1 1 /G`&k{SiK % 1 1 r * cos(theta) 2 ut%t`Y(
] % 1 -1 r * sin(theta) 2 i.2O~30ST % 2 -2 r^2 * cos(2*theta) sqrt(6) h-h U=I8 % 2 0 (2*r^2 - 1) sqrt(3) ~(Gv/x % 2 2 r^2 * sin(2*theta) sqrt(6) cAC2Xq % 3 -3 r^3 * cos(3*theta) sqrt(8) awuUaE % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) J'^s5hxn+0 % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) dj4 g % 3 3 r^3 * sin(3*theta) sqrt(8) Y9~;6fg % 4 -4 r^4 * cos(4*theta) sqrt(10) >|SB]'C| % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ERQa,h/ % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) d$)'?Sf]h % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !3Fj`Oh % 4 4 r^4 * sin(4*theta) sqrt(10) d}tn/Eu?B % -------------------------------------------------- ZV}BDwOFI % VHVU*6_w % Example 1: ie^:PcU % B5Rm z& % % Display the Zernike function Z(n=5,m=1) AC3K*)`E % x = -1:0.01:1; R[
S*ON % [X,Y] = meshgrid(x,x); >bxT_qEm % [theta,r] = cart2pol(X,Y); w_G/[R3 % idx = r<=1; xtf]U:c % z = nan(size(X)); b,5H|$nLu % z(idx) = zernfun(5,1,r(idx),theta(idx)); 0TU~Q % figure {y<[1Pms % pcolor(x,x,z), shading interp f2[z)j7 % axis square, colorbar |GE3.g % title('Zernike function Z_5^1(r,\theta)') PYr#vOH % =O1CxsKt6 % Example 2: mU:C{<Z % vrn IEur % % Display the first 10 Zernike functions !.iu_xJ % x = -1:0.01:1; R6dw#;6{I % [X,Y] = meshgrid(x,x); &q1(v3cOO % [theta,r] = cart2pol(X,Y); 1iaNb[:QX % idx = r<=1; 1JgnuBX" % z = nan(size(X)); UV)[a%/SB& % n = [0 1 1 2 2 2 3 3 3 3]; Q@%VJPLv. % m = [0 -1 1 -2 0 2 -3 -1 1 3]; lT$Vv=M % Nplot = [4 10 12 16 18 20 22 24 26 28]; l0Jpf9Aue % y = zernfun(n,m,r(idx),theta(idx)); <Sm -Z,| % figure('Units','normalized') _Pa(5-S'KR % for k = 1:10 FB@c
+*1 % z(idx) = y(:,k); +^<CJNDL9 % subplot(4,7,Nplot(k)) zm2&\8J % pcolor(x,x,z), shading interp .{HU1/! % set(gca,'XTick',[],'YTick',[]) ~CldqXeI % axis square ~b5aT;ObR % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) fMwJwMT8 % end O(,Ezyx % 4PTHUyX % See also ZERNPOL, ZERNFUN2. ,!kqEIp% ^C>i(j& % Paul Fricker 11/13/2006 aMuc]Wy# 65N;PH59D QpS0iUG % Check and prepare the inputs: !40{1U&@a` % ----------------------------- 8U\;N if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -`]B4Nt6 error('zernfun:NMvectors','N and M must be vectors.') j9%u& end Ts0.Ck $J[h(>-X if length(n)~=length(m) 4u X<sJ* error('zernfun:NMlength','N and M must be the same length.') ?)Z~H,Q(z end )8ctNpQt //Ioh (N n = n(:); #93;V'b] m = m(:); P\iw[m7O if any(mod(n-m,2)) Ha$|9li` error('zernfun:NMmultiplesof2', ... ;W?e@ Lgxk 'All N and M must differ by multiples of 2 (including 0).') en!cu_]t end KmZUDU%R [[JwHM8H& if any(m>n) 8_U*_I7( error('zernfun:MlessthanN', ... y2\, L 'Each M must be less than or equal to its corresponding N.') {4CkF\ end P`[6IS#\S P_hwa1~d if any( r>1 | r<0 ) "6
dC error('zernfun:Rlessthan1','All R must be between 0 and 1.') KmEm end hc>hNC:a dQ`ch~HVUW if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Kx*;!3-V$ error('zernfun:RTHvector','R and THETA must be vectors.') |g> K$m^ end |6`yE]3-( :2 ?dl:l r = r(:); `"I^nD^t>Y theta = theta(:); 7 -gt V# length_r = length(r); 3 _:yHwkD if length_r~=length(theta) ff-9NvW4v error('zernfun:RTHlength', ... nEQw6q~je 'The number of R- and THETA-values must be equal.') p:k>!8.Qho end h:"<x$F } UHuFff, % Check normalization: -nN }8&l % -------------------- Nk86Y2h if nargin==5 && ischar(nflag) q<r{ps isnorm = strcmpi(nflag,'norm'); 1`5d~>fV if ~isnorm KSqWq:W+ error('zernfun:normalization','Unrecognized normalization flag.') n:`> QY end `DC)U1 else e}(ws~. isnorm = false; `t{aN|3V[ end vov"60K )]n:y M %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'RTz*CSZ % Compute the Zernike Polynomials 6Ei>VcN4a %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n_)d4d zl 4punJg~1 % Determine the required powers of r: B:&/*HU % ----------------------------------- 4ZQXYwfC| m_abs = abs(m); d.% Vm&3 rpowers = []; \.9-:\'( for j = 1:length(n) QlSZr[^v rpowers = [rpowers m_abs(j):2:n(j)]; PZf^r end lk%rE
rpowers = unique(rpowers); u(\b1h n '?v.O} % Pre-compute the values of r raised to the required powers, $wdIOfaH % and compile them in a matrix: kJlRdt2 % ----------------------------- ,l#V eC if rpowers(1)==0 C*/d%eHD rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [|<|a3']| rpowern = cat(2,rpowern{:}); xQm!
rpowern = [ones(length_r,1) rpowern]; j Bl I^ else 31
QT rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Cc]t*;nU_ rpowern = cat(2,rpowern{:}); (YGJw?] end ]{0
2! J5mMx)t@ % Compute the values of the polynomials: x!tCK47Yq % -------------------------------------- <lB^>Hfu y = zeros(length_r,length(n)); Xi6XV3G for j = 1:length(n) &xj?MgdNL s = 0:(n(j)-m_abs(j))/2; ZvkO#j pows = n(j):-2:m_abs(j); ]p `#KVW for k = length(s):-1:1 4@4$kro p = (1-2*mod(s(k),2))* ... Qg%B<3 < prod(2:(n(j)-s(k)))/ ... bEMD2ABm prod(2:s(k))/ ... Ih{(d O; prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... bfQ+}|; prod(2:((n(j)+m_abs(j))/2-s(k))); -nV]%vJ$R} idx = (pows(k)==rpowers); \.POb5]p0 y(:,j) = y(:,j) + p*rpowern(:,idx); a^@6hC>sr end "/(J*)%{ 2Vr F~+ if isnorm "/S-+Ufn y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); /Pxt f~$ end `$AX!,<!G end HKP<=<8/O % END: Compute the Zernike Polynomials }~:`9PV)Z% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MIsjTKE Z7V1e<E % Compute the Zernike functions: l <Tkg9 % ------------------------------ Y#=0C*FS idx_pos = m>0; .Qyq*6T3& idx_neg = m<0; .Lr;{B p[!&D}&6h z = y; ?rKewdGY if any(idx_pos) &_x:+{06 z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); q3z<v:=1y end Q=)$ if any(idx_neg) ~5N0=) z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @dvlSqm) end {dH87 nt [1F.
% EOF zernfun
|
|