首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ^D!UF(H  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦!  HSTtDTo  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 La9dFe-uu{  
function z = zernfun(n,m,r,theta,nflag) htIV`_<Ro  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. y%43w4  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N (d@lG*K  
%   and angular frequency M, evaluated at positions (R,THETA) on the [7$.)}Q-  
%   unit circle.  N is a vector of positive integers (including 0), and 4SmhtC  
%   M is a vector with the same number of elements as N.  Each element tM~R?9OaJ  
%   k of M must be a positive integer, with possible values M(k) = -N(k) mhh8<BI  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^G=s<pp  
%   and THETA is a vector of angles.  R and THETA must have the same Dk/;`sXV  
%   length.  The output Z is a matrix with one column for every (N,M) vX&Nh"0H&  
%   pair, and one row for every (R,THETA) pair. 3. Kh  
% {G_ZEo#x8,  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -$t#AYKz  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), =p$1v{L8  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral GBN^ *I  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 1H%LUA  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized Fj|C+;Q.  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. W,}C*8{+  
% uT ngDk  
%   The Zernike functions are an orthogonal basis on the unit circle. ?PLf+S  
%   They are used in disciplines such as astronomy, optics, and LY/K ,6^a  
%   optometry to describe functions on a circular domain. Q!MS_ #O  
% UZv^3_,qz  
%   The following table lists the first 15 Zernike functions. `9%@{Ryo  
% Yaht<Hy  
%       n    m    Zernike function           Normalization 9tWu>keu  
%       -------------------------------------------------- a//<S?d$:  
%       0    0    1                                 1 )y_MI r  
%       1    1    r * cos(theta)                    2 Z_Hc":4i  
%       1   -1    r * sin(theta)                    2 fC52nK&T8  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) 3 `$-  
%       2    0    (2*r^2 - 1)                    sqrt(3) qf7 lQovK  
%       2    2    r^2 * sin(2*theta)             sqrt(6) vEk jd#  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) V~%!-7?  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) {|bf`  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) "}Vow^vb  
%       3    3    r^3 * sin(3*theta)             sqrt(8) m o nqaSF  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) |-%[Z  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +\2{{~_z  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) <x *.M"6?  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~A(fn:d  
%       4    4    r^4 * sin(4*theta)             sqrt(10) 1!~=8FTv  
%       -------------------------------------------------- |1uyJ?%B  
% ?zM]p"M  
%   Example 1: B ;@7  
% $OldHe[p  
%       % Display the Zernike function Z(n=5,m=1) IZoS2^:yw  
%       x = -1:0.01:1; HM /2/ /  
%       [X,Y] = meshgrid(x,x); _?]bd-E  
%       [theta,r] = cart2pol(X,Y); 8XIG<Nc  
%       idx = r<=1; yyW;VKN  
%       z = nan(size(X)); gi#bU  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); EIPNR:6t  
%       figure Lk9X>`b#B  
%       pcolor(x,x,z), shading interp _o`+c wc  
%       axis square, colorbar _8P0iC8Zg#  
%       title('Zernike function Z_5^1(r,\theta)') % \IB_M  
% JvX]^t/}  
%   Example 2: Nk*d=vj  
% -|YG**i/  
%       % Display the first 10 Zernike functions L3/m}AH,  
%       x = -1:0.01:1; PUZH[-:c  
%       [X,Y] = meshgrid(x,x); -fKo~\Pr  
%       [theta,r] = cart2pol(X,Y); agp`<1h9  
%       idx = r<=1; QH7"' u6  
%       z = nan(size(X)); E">FH >8K}  
%       n = [0  1  1  2  2  2  3  3  3  3]; ? Dm={S6  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; \"Jgs.  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; P'MfuTtT&  
%       y = zernfun(n,m,r(idx),theta(idx)); 0N>NX?r  
%       figure('Units','normalized') H3CG'?{ _  
%       for k = 1:10 jwhc;y  
%           z(idx) = y(:,k); d 5jZ?  
%           subplot(4,7,Nplot(k)) /enlkZx=8  
%           pcolor(x,x,z), shading interp i[_B~/_  
%           set(gca,'XTick',[],'YTick',[]) c_wvuKa  
%           axis square 2t 7':X  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) imw,Nb  
%       end pDqX% $^  
% Vi1l^ Za  
%   See also ZERNPOL, ZERNFUN2. Z$jqB~=^e  
d^h`gu~3  
%   Paul Fricker 11/13/2006 v_^>*Vm*  
~j3O0s<gK  
;GQCq@)-  
% Check and prepare the inputs: *WMI<w~_  
% ----------------------------- cH>@ZFTF  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @%iZT4`Ejf  
    error('zernfun:NMvectors','N and M must be vectors.') m-?hHd O  
end gOb"-;Zw  
-J &y]'  
if length(n)~=length(m) iepolO=  
    error('zernfun:NMlength','N and M must be the same length.') pNUe|b+P  
end HE!"3S2S&+  
Z?JR6;@W  
n = n(:); -So$ f-y  
m = m(:); zD^*->`p  
if any(mod(n-m,2)) gug9cmA/Q7  
    error('zernfun:NMmultiplesof2', ... Ob!NC&  
          'All N and M must differ by multiples of 2 (including 0).') OTe h8h  
end xu%_Zt2/?j  
~t+T5`K  
if any(m>n) iy!SqC  
    error('zernfun:MlessthanN', ... d!57`bVOd  
          'Each M must be less than or equal to its corresponding N.') 3ch<a0  
end x&p.-Fi  
Fv_B(a  
if any( r>1 | r<0 ) Phq"A[4=O  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') f/PqkHF  
end QJ\+u  
H~$*R7~  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) G22{',#r8  
    error('zernfun:RTHvector','R and THETA must be vectors.') 9QP-~V{$  
end /6 y9 u}  
6L<Y   
r = r(:); u_HCXpP!Q  
theta = theta(:); ]A=yj@o$xN  
length_r = length(r); w%1-_;.aU6  
if length_r~=length(theta) @#r6->%W  
    error('zernfun:RTHlength', ... S:lie*Aux*  
          'The number of R- and THETA-values must be equal.') sEymwpm9  
end 6nA/LW\x  
.QU]  
% Check normalization: #fx>{ vzH  
% -------------------- %ZsdCQc{`  
if nargin==5 && ischar(nflag) {h*)|J  
    isnorm = strcmpi(nflag,'norm'); NR3h|'eC  
    if ~isnorm b|-}?@&7&q  
        error('zernfun:normalization','Unrecognized normalization flag.') KwHlpW*  
    end v#|yr<  
else :u]QEZ@@  
    isnorm = false; 4iDqd  
end }Y"vUl_I2  
&#zx/$  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @+{F\SD\  
% Compute the Zernike Polynomials -K (>uV!?  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f"z;'  
&g"`J`  
% Determine the required powers of r: }  fa  
% ----------------------------------- <2af&-EG s  
m_abs = abs(m); Q h{P>}  
rpowers = []; z3c7  
for j = 1:length(n) R=2"5Hy=  
    rpowers = [rpowers m_abs(j):2:n(j)]; )g?ox{Hol  
end ~8&P*oFC  
rpowers = unique(rpowers); JU#m?4g  
.?`8B9w  
% Pre-compute the values of r raised to the required powers, 3#? 53s   
% and compile them in a matrix: =w!2R QB  
% ----------------------------- !k Heslvi  
if rpowers(1)==0 :K~sazs7J  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |~o0 -: 'C  
    rpowern = cat(2,rpowern{:}); <naxpflom0  
    rpowern = [ones(length_r,1) rpowern]; [<|$If99\  
else IczMf%  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F/PH=Dk  
    rpowern = cat(2,rpowern{:}); K$l@0r ~k  
end mp)+wZAN&  
;X;(7  
% Compute the values of the polynomials: OZ33w-X<  
% -------------------------------------- Y2IMHN tH  
y = zeros(length_r,length(n)); w^9< I]  
for j = 1:length(n) vb| d  
    s = 0:(n(j)-m_abs(j))/2; f/QwXO-U  
    pows = n(j):-2:m_abs(j); aL*}@|JL"  
    for k = length(s):-1:1 R^mkQb>m.  
        p = (1-2*mod(s(k),2))* ... S,EL=3},=  
                   prod(2:(n(j)-s(k)))/              ... 3Vbt(K  
                   prod(2:s(k))/                     ... UxxX8N  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...  |e<$  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); D|amKW7  
        idx = (pows(k)==rpowers); *+XiBho  
        y(:,j) = y(:,j) + p*rpowern(:,idx); G`;\"9t5h  
    end dBwoAq`'  
     uq/Fapl  
    if isnorm *\@RBJGF  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ftKL#9,s(  
    end ~%2yDhdQ  
end UM`{V5NG#  
% END: Compute the Zernike Polynomials O c.fvP^ZD  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D2GF4%|  
1]9w9! j  
% Compute the Zernike functions: -k@1# c+z  
% ------------------------------ EDuH+/:n  
idx_pos = m>0; w5^k84vye  
idx_neg = m<0;  +hKs  
, @!X! L  
z = y; jABFdNjri  
if any(idx_pos) 8rx|7  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "h #/b}/  
end 93Zij<bH?e  
if any(idx_neg) [2YPV\=  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); '<xE 0<  
end ?68~g<d,  
'9=b@SaAj  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) Zk/ejhy0  
%ZERNFUN2 Single-index Zernike functions on the unit circle. xticC>  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated LR{bNV[i  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive 4lWqQVx  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, :p,|6~b$  
%   and THETA is a vector of angles.  R and THETA must have the same V0rQtxE{F  
%   length.  The output Z is a matrix with one column for every P-value, I 44]W&  
%   and one row for every (R,THETA) pair. 5eE\ X /  
% W~2,J4=  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike gL-kI *Ra  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 8zpzVizDG  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) /t< &  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 7y&6q`y E  
%   for all p. z HvE_ -  
% $,J0) ~  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 h`n '{s  
%   Zernike functions (order N<=7).  In some disciplines it is G<=I\T'g;  
%   traditional to label the first 36 functions using a single mode c|JQ0] K  
%   number P instead of separate numbers for the order N and azimuthal BWQ`8  
%   frequency M. qHp2;  
% :o ~'\:/  
%   Example: 2$kB^g!:o  
% H8I)D& cw  
%       % Display the first 16 Zernike functions rAAx]nQ@  
%       x = -1:0.01:1; \O4s0*gw  
%       [X,Y] = meshgrid(x,x); uS,?oS  
%       [theta,r] = cart2pol(X,Y); j~1K(=Ng  
%       idx = r<=1; -3i(N.)<;  
%       p = 0:15; Y.) QNTh  
%       z = nan(size(X)); <" nWGF4d  
%       y = zernfun2(p,r(idx),theta(idx)); qD4s?j-9  
%       figure('Units','normalized') xEu rkR  
%       for k = 1:length(p) ;4ybkOD  
%           z(idx) = y(:,k); ['Lo8 [  
%           subplot(4,4,k) m~*qS4  
%           pcolor(x,x,z), shading interp p<(a);<L  
%           set(gca,'XTick',[],'YTick',[]) =.;ib6M  
%           axis square Y,v9o  
%           title(['Z_{' num2str(p(k)) '}']) Dk a8[z7  
%       end km C0.\  
% eOiH7{OA,  
%   See also ZERNPOL, ZERNFUN. -&`_bf%M  
:d9GkC  
%   Paul Fricker 11/13/2006 3e;|KU   
c5$DHT @N"  
>!@D^3PPA  
% Check and prepare the inputs: u9|Eos i  
% ----------------------------- vT0Op e6m  
if min(size(p))~=1 dp^PiyL  
    error('zernfun2:Pvector','Input P must be vector.') d@g29rs  
end gJX"4]Ol#}  
}a[]I%bu 2  
if any(p)>35  mjP  
    error('zernfun2:P36', ... 5I2 h(Td  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... )K@D4sl  
           '(P = 0 to 35).']) K"XwSZ/  
end Z2m^yRQ(  
esA^-$  
% Get the order and frequency corresonding to the function number: WN{8gL&y  
% ---------------------------------------------------------------- 8v2Wi.4T  
p = p(:); Cip|eM&l  
n = ceil((-3+sqrt(9+8*p))/2); J.:  
m = 2*p - n.*(n+2); t2{(ETV  
D((/fT)eD  
% Pass the inputs to the function ZERNFUN: 1="]'!2Is  
% ---------------------------------------- ]Ss63Vd  
switch nargin &odQ&%X  
    case 3 eA(\#+)X `  
        z = zernfun(n,m,r,theta); Mn/  
    case 4 5I6?gv/  
        z = zernfun(n,m,r,theta,nflag); USN'-Ah  
    otherwise \mGb|aF8  
        error('zernfun2:nargin','Incorrect number of inputs.') .wd7^wI^S  
end ty~Sf-Pri  
xjU0&  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) y'8T=PqY[t  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. NiVLx_<Pr'  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of nt|n[-}  
%   order N and frequency M, evaluated at R.  N is a vector of =Xr{ Dg  
%   positive integers (including 0), and M is a vector with the U&B(uk(2  
%   same number of elements as N.  Each element k of M must be a /G7^l>pa  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k)  EJC}"%h  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ^Ff fc@=  
%   a vector of numbers between 0 and 1.  The output Z is a matrix W%ix|R^2]  
%   with one column for every (N,M) pair, and one row for every :/=P6b;  
%   element in R. YK8l#8K  
% $aTo9{M^  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- st"@kHQ3  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is teDRX13=;  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to `O3#/1+  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 =r]_$r%gR  
%   for all [n,m]. K ~\b+  
% j^ 8Hjg  
%   The radial Zernike polynomials are the radial portion of the !$iwU3~<  
%   Zernike functions, which are an orthogonal basis on the unit md{1Jn"  
%   circle.  The series representation of the radial Zernike |Zn,|-iW  
%   polynomials is C|FI4/-e  
% L)|hjpQ  
%          (n-m)/2 )0 6. dZq\  
%            __ f~=e  
%    m      \       s                                          n-2s j y p.2c  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ZyC[w 7$I2  
%    n      s=0 , 82?kky  
% ?j!/ Hc/b4  
%   The following table shows the first 12 polynomials. I %1P:-  
% ;erxB6*  
%       n    m    Zernike polynomial    Normalization  /*S6/#  
%       --------------------------------------------- H9VdoxKo  
%       0    0    1                        sqrt(2) \@Z D.d#  
%       1    1    r                           2 o~:({  
%       2    0    2*r^2 - 1                sqrt(6) * e,8o2C$  
%       2    2    r^2                      sqrt(6) f]Z9=  
%       3    1    3*r^3 - 2*r              sqrt(8) %7TG>tc  
%       3    3    r^3                      sqrt(8) fEK%)Z:0  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) sV~|9/r  
%       4    2    4*r^4 - 3*r^2            sqrt(10) ) { "}bMf  
%       4    4    r^4                      sqrt(10) >]\oVG  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 3=L5Y/  
%       5    3    5*r^5 - 4*r^3            sqrt(12) zBrqh9%8e  
%       5    5    r^5                      sqrt(12) ~ebm,3?  
%       --------------------------------------------- ,`ehR6b  
% r`0oI66B/  
%   Example: #{bT=:3a  
% x*^)B~7}  
%       % Display three example Zernike radial polynomials a! x?Apww  
%       r = 0:0.01:1; |oOA;JC)(  
%       n = [3 2 5]; tN;~.\TKg  
%       m = [1 2 1]; ;x{J45^  
%       z = zernpol(n,m,r); ~|wh/]{b9  
%       figure kf",/?s2Z  
%       plot(r,z) 8`b_,(\N  
%       grid on !| GD8i  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') R /c-sV  
% QN~9O^  
%   See also ZERNFUN, ZERNFUN2. Qo["K}Ty  
);z/ @Q  
% A note on the algorithm. /Q9iO&Vu  
% ------------------------ kvt"7;(  
% The radial Zernike polynomials are computed using the series wAF#N1-k  
% representation shown in the Help section above. For many special x5W@zqj  
% functions, direct evaluation using the series representation can 0 s%{m<  
% produce poor numerical results (floating point errors), because g>f_'7F&  
% the summation often involves computing small differences between \9.@T g8`  
% large successive terms in the series. (In such cases, the functions A}03s6^i;  
% are often evaluated using alternative methods such as recurrence pe`&zI_`?  
% relations: see the Legendre functions, for example). For the Zernike %LdFS~  
% polynomials, however, this problem does not arise, because the )d?L*X~y'  
% polynomials are evaluated over the finite domain r = (0,1), and 8nRxx`U\q  
% because the coefficients for a given polynomial are generally all G-T2b,J [  
% of similar magnitude. 9d,2d5Y  
%  A,|lDsvM  
% ZERNPOL has been written using a vectorized implementation: multiple $k3l[@;hE  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] RZKczZGZg  
% values can be passed as inputs) for a vector of points R.  To achieve ^pa -2Ao6  
% this vectorization most efficiently, the algorithm in ZERNPOL p8u -3  
% involves pre-determining all the powers p of R that are required to Q(YQ$ i"S  
% compute the outputs, and then compiling the {R^p} into a single h)C `w'L  
% matrix.  This avoids any redundant computation of the R^p, and 9"k^:}8.  
% minimizes the sizes of certain intermediate variables. NA8$G|.?  
% ZzO.s$  
%   Paul Fricker 11/13/2006 )eSD5hOI)  
[mI;>q  
{f)"F;]V  
% Check and prepare the inputs: Y]t)k9|vv  
% ----------------------------- S A16Ng  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) y{\K:    
    error('zernpol:NMvectors','N and M must be vectors.') IOOAaa @(  
end 2l!* o7  
!|S{e^WhbU  
if length(n)~=length(m) a)Ca:p  
    error('zernpol:NMlength','N and M must be the same length.') 7~Md6.FtM  
end 2r&T.  
|nj,]pA  
n = n(:); onAC;<w  
m = m(:); @5\ns-%  
length_n = length(n); iPPW_Q9x  
y\"Kur*O  
if any(mod(n-m,2)) mC(q8%/;  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 4#y  
end ?KfV>.()  
N-Nq*  
if any(m<0) A5> ,e|  
    error('zernpol:Mpositive','All M must be positive.') >w"k:O17  
end !,< )y}L^)  
PxHH h{y%c  
if any(m>n) gNG_,+=!  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') !* C9NX  
end IvyBK]{|  
k9<P]%  
if any( r>1 | r<0 ) Xy(o0/7F9  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') eO:wx.PW  
end #{kwl|c   
.3.oan*i  
if ~any(size(r)==1) jQs"8[=s  
    error('zernpol:Rvector','R must be a vector.') !4f0VQI  
end _*O^|QbM  
,D`iV| (  
r = r(:); IA XoEBlMs  
length_r = length(r); hs"=>(P)  
-C|1O%.  
if nargin==4 AI&Bv  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ( o_lH2  
    if ~isnorm ^sp+ sr :  
        error('zernpol:normalization','Unrecognized normalization flag.') VY5/C;0^h  
    end 1c} %_Z/  
else F#w= z/  
    isnorm = false; |h; _r&  
end IE-c^'W=}m  
Sb&[V>!2^  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ./009p  
% Compute the Zernike Polynomials }0P5~]S<5A  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RTW4r9~'  
&K_"5.7-56  
% Determine the required powers of r: $=iV)-  
% ----------------------------------- s3*h=5bX=  
rpowers = []; 0OndSa,  
for j = 1:length(n) VE<&0d<  
    rpowers = [rpowers m(j):2:n(j)]; '@ym-\,  
end L`$MOdF{_  
rpowers = unique(rpowers); Q}N.DM@d3  
,[lS)`G  
% Pre-compute the values of r raised to the required powers, (C RY$+d  
% and compile them in a matrix: MHv2r  
% ----------------------------- JwNG`M Gc  
if rpowers(1)==0 Su0[f/4m.Q  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); QGYO{S  
    rpowern = cat(2,rpowern{:}); ,{ C   
    rpowern = [ones(length_r,1) rpowern]; rTiW&#  
else  Sxrbhnx  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); v(? ^#C>6W  
    rpowern = cat(2,rpowern{:}); R)AFaP |  
end `[<j5(T  
5h9`lS2  
% Compute the values of the polynomials: >g!a\=-[  
% -------------------------------------- q^ {Xn-G  
z = zeros(length_r,length_n); 0jsU^m<g  
for j = 1:length_n $q]:m+Fm  
    s = 0:(n(j)-m(j))/2; 'J (4arN  
    pows = n(j):-2:m(j); ;IC:]Zu  
    for k = length(s):-1:1 xr uQ=Q  
        p = (1-2*mod(s(k),2))* ... W_NQi  
                   prod(2:(n(j)-s(k)))/          ... d~](S<k  
                   prod(2:s(k))/                 ... ]>NP?S )R  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... \$o!M1j  
                   prod(2:((n(j)+m(j))/2-s(k))); uP\?y(= "  
        idx = (pows(k)==rpowers); #:{Bd8PS  
        z(:,j) = z(:,j) + p*rpowern(:,idx); t> J 43  
    end 85rXm*Df  
     ;?>xuC$  
    if isnorm [-X=lJ:+h  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); M^\#(0^2@  
    end `p@YV(  
end fKzOt<wm  
X'4g\)*  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  zr~hGhfq  
q<mDs$^K  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 h2g|D(u)  
Wk$ 7<gkr  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计