首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 #7;?Ls  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! $yU 5WEX  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 20I`F>-*  
function z = zernfun(n,m,r,theta,nflag) k"#gSCW$  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. :uo)-9_  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ZH~bY2^;  
%   and angular frequency M, evaluated at positions (R,THETA) on the pW+uVv,  
%   unit circle.  N is a vector of positive integers (including 0), and iw#~xel<ez  
%   M is a vector with the same number of elements as N.  Each element \W=3P[gb  
%   k of M must be a positive integer, with possible values M(k) = -N(k) qu^g~"s  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, @QTw9,pS  
%   and THETA is a vector of angles.  R and THETA must have the same !4Aj#`)  
%   length.  The output Z is a matrix with one column for every (N,M) |ufL s  
%   pair, and one row for every (R,THETA) pair. 89>}`:xS^  
% Tdh(J",d  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike KBM*7raA  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *AV%=   
%   with delta(m,0) the Kronecker delta, is chosen so that the integral JDf>Qg{  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, t U}6^yc  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized 1j<uFhi>  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {m!5IR  
% u xyj6(  
%   The Zernike functions are an orthogonal basis on the unit circle. Ma!  
%   They are used in disciplines such as astronomy, optics, and u7mPp3ZYK  
%   optometry to describe functions on a circular domain. J4ZHE\  
% R?u(aY)P  
%   The following table lists the first 15 Zernike functions. X$KTsG*  
% a0hBF4+6  
%       n    m    Zernike function           Normalization q\@_L.tc[  
%       -------------------------------------------------- ?j8!3NCl}  
%       0    0    1                                 1 fY^CI b$Y  
%       1    1    r * cos(theta)                    2 #czTX%+9(e  
%       1   -1    r * sin(theta)                    2 t Cb34Wpf  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) _<RTes  
%       2    0    (2*r^2 - 1)                    sqrt(3) @%fTdneH  
%       2    2    r^2 * sin(2*theta)             sqrt(6) ^?RH<z  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) CNb(\]  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) TC-Vzk G|  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) hZfj$|<  
%       3    3    r^3 * sin(3*theta)             sqrt(8) 3!8(A/YP;  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) ^"O>EY':  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) d4ecF%R  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) :pM 8Q1:B  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {@CQ (  
%       4    4    r^4 * sin(4*theta)             sqrt(10) MrzD ah9UG  
%       -------------------------------------------------- |kK5:\H  
% |dQz(z&6{5  
%   Example 1: m"rht:v5  
% {ol7*%u  
%       % Display the Zernike function Z(n=5,m=1) O|sk "YXF  
%       x = -1:0.01:1; >%;i@"  
%       [X,Y] = meshgrid(x,x); }$z(?b  
%       [theta,r] = cart2pol(X,Y); ]=t}8H  
%       idx = r<=1; 6HZtdRQF  
%       z = nan(size(X)); mDK*LL5]W  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); MlYm\x8{M  
%       figure N `:MF 9  
%       pcolor(x,x,z), shading interp zYV{ |Z  
%       axis square, colorbar CPZ,sWg5  
%       title('Zernike function Z_5^1(r,\theta)') W+ ;=8S  
% 3" m]A/6C}  
%   Example 2: 2Snb+,o2  
% mH\zSk  
%       % Display the first 10 Zernike functions @*|VWHR  
%       x = -1:0.01:1; iO?AY  
%       [X,Y] = meshgrid(x,x); 7YD+zd:  
%       [theta,r] = cart2pol(X,Y); !.,J;Qt  
%       idx = r<=1; "<+~uz  
%       z = nan(size(X)); 5@+?{Cl  
%       n = [0  1  1  2  2  2  3  3  3  3]; R/x3+_.f  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Xgd-^  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7P2n{zd,  
%       y = zernfun(n,m,r(idx),theta(idx)); 7(]F+\A3  
%       figure('Units','normalized') o3hgkoF   
%       for k = 1:10 )Xg5=zn$  
%           z(idx) = y(:,k); &u[{VR:  
%           subplot(4,7,Nplot(k)) peu9B gs  
%           pcolor(x,x,z), shading interp (9RfsV4^  
%           set(gca,'XTick',[],'YTick',[]) g ptf*^s  
%           axis square <4.Exha;=  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Fn .J tIu  
%       end O Ol:  
% lS,Jo/T@  
%   See also ZERNPOL, ZERNFUN2. ~D3 S01ecM  
1W'Ai"DLw  
%   Paul Fricker 11/13/2006 *JDz0M4f  
:.ZWYze  
u ,3B[  
% Check and prepare the inputs: OM0r*<D"!  
% ----------------------------- avq$aq(3&  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _M/N_Fm  
    error('zernfun:NMvectors','N and M must be vectors.') d~qQ_2M[G  
end F:q4cfL6  
.fJ8  
if length(n)~=length(m) zQulPU  
    error('zernfun:NMlength','N and M must be the same length.') UgAp9$=z  
end iGhvQmd(/*  
6Yn>9llo}=  
n = n(:); ^%,{R},s  
m = m(:); ={;pg(  
if any(mod(n-m,2)) W"Y)a|rG%  
    error('zernfun:NMmultiplesof2', ... *"WP*A\1  
          'All N and M must differ by multiples of 2 (including 0).') 53{\H&q  
end 9oJM?&i  
Mu>  
if any(m>n) A .&c>{B7  
    error('zernfun:MlessthanN', ... kyAN O  
          'Each M must be less than or equal to its corresponding N.') n5kGHL2   
end =F$?`q`  
2>9\o]ac4  
if any( r>1 | r<0 ) N_NN0  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') Y M:9m)  
end `B@eeXa;u  
rQ{|0+l  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) kVQm|frUz  
    error('zernfun:RTHvector','R and THETA must be vectors.') 1<'z)r4  
end LH(P<k&  
ybiTWM  
r = r(:); <VhmtT%7  
theta = theta(:); 3XlQ4  
length_r = length(r); 9Of;8R  
if length_r~=length(theta) 1"Oe*@`pV  
    error('zernfun:RTHlength', ... S'34](9n6  
          'The number of R- and THETA-values must be equal.') ij0I!ilG4  
end 9JP:wE~y  
yS~Y"#F!.  
% Check normalization: `15}jTi  
% -------------------- Q,5PscE6&k  
if nargin==5 && ischar(nflag) VQpt1cK*  
    isnorm = strcmpi(nflag,'norm'); aInt[D(  
    if ~isnorm jdG2u p  
        error('zernfun:normalization','Unrecognized normalization flag.') ;S U<T^a  
    end ;)FvTm'"\.  
else 6"G(Iq'2t3  
    isnorm = false; 5 %\K  
end Bbs1U  
]7_>l>  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qY8; k #  
% Compute the Zernike Polynomials N9M}H#  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5z0Sns  
#6\m TL4vg  
% Determine the required powers of r: f?. VVlD  
% ----------------------------------- Xw9]WJc  
m_abs = abs(m); Pr} l y  
rpowers = []; -Ct+W;2  
for j = 1:length(n) 4ct-K)Ris  
    rpowers = [rpowers m_abs(j):2:n(j)]; &6CDIxH{  
end \@Cz 32wg  
rpowers = unique(rpowers); >bV3~m$a+  
]\fHc"/  
% Pre-compute the values of r raised to the required powers, CrI<rD%'  
% and compile them in a matrix: /E<Q_/'Z  
% ----------------------------- ppIXS(  
if rpowers(1)==0 *Hn=)q  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); F.y_H#h  
    rpowern = cat(2,rpowern{:}); EwzcB\m  
    rpowern = [ones(length_r,1) rpowern]; =)+^y}xb  
else wp}Q4I  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); uB"B{:Kz  
    rpowern = cat(2,rpowern{:}); +ZjDTTk  
end S Yi!%  
O<p=&=TD7  
% Compute the values of the polynomials: h$`m0-'  
% -------------------------------------- }R+#>P  
y = zeros(length_r,length(n)); $MDmY4\  
for j = 1:length(n) w%`S>+kX&  
    s = 0:(n(j)-m_abs(j))/2; ;v]C8}L^  
    pows = n(j):-2:m_abs(j); t"Du  
    for k = length(s):-1:1 ;Lfn&2G  
        p = (1-2*mod(s(k),2))* ... >uZc#Zt  
                   prod(2:(n(j)-s(k)))/              ... @:w^j0+h  
                   prod(2:s(k))/                     ... % m6qL  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cu1!WD  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); Sm {Sq  
        idx = (pows(k)==rpowers); U0 -RG  
        y(:,j) = y(:,j) + p*rpowern(:,idx); 5GAW3j{  
    end =A,T:!}'  
     yH:p*|%:  
    if isnorm _}47U7s8  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 38&K"  
    end "\Dqtr w  
end /Zs_G=\>  
% END: Compute the Zernike Polynomials d1.@v;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O6$,J1 2l  
, SUx!o  
% Compute the Zernike functions: yqx!{8=V  
% ------------------------------ V"8Go;[  
idx_pos = m>0; yD \Kn{  
idx_neg = m<0; }#.OJub  
pFMJG<W9,  
z = y; PSAEW.L  
if any(idx_pos) T] H 'l  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [}Xw/@Uc;  
end 3BK 8{/  
if any(idx_neg) T*B`8P  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5/6Jq  
end j/oc+ M^  
*eXs7"H  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) Vq#0MY)2gS  
%ZERNFUN2 Single-index Zernike functions on the unit circle. D dwFKc&  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated C+!=C{@7di  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive a%m >v,  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, |Z>}#R!,P  
%   and THETA is a vector of angles.  R and THETA must have the same #(}{*d R  
%   length.  The output Z is a matrix with one column for every P-value, |2TH[J_a  
%   and one row for every (R,THETA) pair. {gEz;:!):  
% (oCpQDab@  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Yt_tAm  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) !j  #8zN  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) !+Cc^{  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 +#>nOn(B  
%   for all p. !}mM"|<  
% $&, KZ>  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 /!5cf;kl*l  
%   Zernike functions (order N<=7).  In some disciplines it is g|^U?|;p  
%   traditional to label the first 36 functions using a single mode EN ^L.q9#  
%   number P instead of separate numbers for the order N and azimuthal LD WYFOGQ  
%   frequency M. 3^H-,b0^  
% wmbG$T%k  
%   Example: mbhh  
% H_8PK$c;  
%       % Display the first 16 Zernike functions (G{:O   
%       x = -1:0.01:1; @~=d4Wj6  
%       [X,Y] = meshgrid(x,x); \qW^AD(it<  
%       [theta,r] = cart2pol(X,Y); ,Cm1~ExJ  
%       idx = r<=1; X6!KFc  
%       p = 0:15; =mwAbh)[7n  
%       z = nan(size(X)); P _Gu~B!Y  
%       y = zernfun2(p,r(idx),theta(idx)); jv29,46K  
%       figure('Units','normalized') /55 3v;l<  
%       for k = 1:length(p) (3x2^M8  
%           z(idx) = y(:,k); y9i+EV  
%           subplot(4,4,k) uu0t}3l  
%           pcolor(x,x,z), shading interp jX$U)O  
%           set(gca,'XTick',[],'YTick',[]) KCa @0  
%           axis square J8@bPS27q  
%           title(['Z_{' num2str(p(k)) '}']) |gk"~D  
%       end m=iKu(2xRq  
% 4e[ 0.2?  
%   See also ZERNPOL, ZERNFUN. 2xy{g&G  
N- <,wUxf  
%   Paul Fricker 11/13/2006 8v^AVg  
l,QO+ >)z  
?ODBW/{[G  
% Check and prepare the inputs: 5}9rpN{y  
% ----------------------------- F CfU=4O  
if min(size(p))~=1 0x,4H30t(  
    error('zernfun2:Pvector','Input P must be vector.') @[$q1Nm  
end ?ZKIs9E[m  
KAT^vbR  
if any(p)>35 2mthUq9b*  
    error('zernfun2:P36', ... 7W/55ZTmJ  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 7bM H  
           '(P = 0 to 35).']) \rbvlO?}  
end >O1u![9K|w  
8f&#WIZ  
% Get the order and frequency corresonding to the function number: .,p@ee$q  
% ---------------------------------------------------------------- n5#9o},oK  
p = p(:); *ES"^N/88  
n = ceil((-3+sqrt(9+8*p))/2); V8%( h[  
m = 2*p - n.*(n+2); ]MMXpj,9h  
!1+!;R@&H>  
% Pass the inputs to the function ZERNFUN: 1[Jv9S*f/  
% ---------------------------------------- ~05(92bK  
switch nargin }"^d<dvuz  
    case 3 2Nx#:Rz  
        z = zernfun(n,m,r,theta); w^ 8^0i-  
    case 4 ot^$/(W  
        z = zernfun(n,m,r,theta,nflag); Zr!CT5C5  
    otherwise >ufN[ab  
        error('zernfun2:nargin','Incorrect number of inputs.') Ve\!:,(Y_  
end 0ARj3   
u |ru$cIo  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) _7-P8"m  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. <;E>1*K}8  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of yuZh ak  
%   order N and frequency M, evaluated at R.  N is a vector of z 2Ao6*%  
%   positive integers (including 0), and M is a vector with the J#k.!]r,Y  
%   same number of elements as N.  Each element k of M must be a ozG!OiRW  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) 0yKPYA*j  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is FPuF1@K  
%   a vector of numbers between 0 and 1.  The output Z is a matrix YjeHNPf  
%   with one column for every (N,M) pair, and one row for every p( [FZ  
%   element in R. `SESj)W(y  
% hjoxx F\_  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- + gP 4MP  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is (qy82F-|2  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to _s NJU  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 JI~@H /j  
%   for all [n,m]. - z"D_5  
% sJcwN.s  
%   The radial Zernike polynomials are the radial portion of the kF"G {5  
%   Zernike functions, which are an orthogonal basis on the unit P*8DM3':  
%   circle.  The series representation of the radial Zernike Z= /bD*\g  
%   polynomials is T#G (&0J5  
% <nT).S>+  
%          (n-m)/2 -]vPF|  
%            __ ! ^U!T\qDi  
%    m      \       s                                          n-2s vWpkU<&3|  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r <-a6'g2y  
%    n      s=0 ePwoza  
% j[YO1q*  
%   The following table shows the first 12 polynomials. 7S]akcT/  
% `Ot;KDz  
%       n    m    Zernike polynomial    Normalization km#Rh^  
%       --------------------------------------------- yBwCFn.uP-  
%       0    0    1                        sqrt(2) 73d7'Fw  
%       1    1    r                           2 5"&{Egc_  
%       2    0    2*r^2 - 1                sqrt(6) N2S7=`5/T  
%       2    2    r^2                      sqrt(6) "G @(AE(  
%       3    1    3*r^3 - 2*r              sqrt(8) ){{]3r  
%       3    3    r^3                      sqrt(8) \A9hYTC)  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) B<uUf)t  
%       4    2    4*r^4 - 3*r^2            sqrt(10) = ^A/&[&31  
%       4    4    r^4                      sqrt(10) V9i[ dF  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Hb{G RG70  
%       5    3    5*r^5 - 4*r^3            sqrt(12) ZAcW@xfb  
%       5    5    r^5                      sqrt(12) W"L;8u  
%       --------------------------------------------- Qh. : N  
% ZSg["`  
%   Example: _3?7iH  
% /5c;,.hm1R  
%       % Display three example Zernike radial polynomials /SDDCZ`;|c  
%       r = 0:0.01:1; Z39I*-6F9W  
%       n = [3 2 5]; \%D/]"@r  
%       m = [1 2 1]; $x %VUms  
%       z = zernpol(n,m,r); s9-aPcA  
%       figure .TTXg,8#D  
%       plot(r,z) /_ MEb42&  
%       grid on }vLK-V v  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') QX j4cg  
% .U:DuyT  
%   See also ZERNFUN, ZERNFUN2. #RwqEZ  
w;p!~o &  
% A note on the algorithm. 5+[`x ']l  
% ------------------------ ` d[ja,  
% The radial Zernike polynomials are computed using the series " )87GQ(R  
% representation shown in the Help section above. For many special " %)zTH  
% functions, direct evaluation using the series representation can f}1R,N_fC  
% produce poor numerical results (floating point errors), because (X"WEp^Q{I  
% the summation often involves computing small differences between dkRG4 )~g  
% large successive terms in the series. (In such cases, the functions L:g!f  
% are often evaluated using alternative methods such as recurrence a:(.{z?nM  
% relations: see the Legendre functions, for example). For the Zernike 1Goju ey  
% polynomials, however, this problem does not arise, because the V:w=h>z8  
% polynomials are evaluated over the finite domain r = (0,1), and c_xo6+:l  
% because the coefficients for a given polynomial are generally all w Kq-|yf,  
% of similar magnitude. 'h&"xXv4|  
% bQ" w%!  
% ZERNPOL has been written using a vectorized implementation: multiple +EWfsKz  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] pU|SUM  
% values can be passed as inputs) for a vector of points R.  To achieve 62X;gb  
% this vectorization most efficiently, the algorithm in ZERNPOL FM3DJ?\L-  
% involves pre-determining all the powers p of R that are required to T53|*~u  
% compute the outputs, and then compiling the {R^p} into a single ~#b&UR  
% matrix.  This avoids any redundant computation of the R^p, and  {u}Lhv  
% minimizes the sizes of certain intermediate variables. ;(0E#hGN  
% 3d2|vQx,K  
%   Paul Fricker 11/13/2006 Y4 Y;xK"  
.7*3V6h=F  
iS{8cN3R  
% Check and prepare the inputs: Y!6,ty'  
% ----------------------------- 9(>l trA  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =2z9Aq{  
    error('zernpol:NMvectors','N and M must be vectors.') :Sx!jx>W  
end D e>'  
OI9V'W$  
if length(n)~=length(m) D4x~Vk%H  
    error('zernpol:NMlength','N and M must be the same length.') 8yH*  
end vElVw. P  
DJv;ed%x  
n = n(:); Z[DiLXHL  
m = m(:); Ed%8| M3  
length_n = length(n); "]dNN{Wka  
RQZ|:SvV  
if any(mod(n-m,2)) "`Q.z~  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') (bIg6_U7\  
end \B'rWk 33,  
s.E}xv  
if any(m<0) HrUQ X4  
    error('zernpol:Mpositive','All M must be positive.') eUyQSI4A  
end )|88wa(M  
jrMY]Ea2`  
if any(m>n) 5y. n  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') A d0dg2Gw  
end ,1"w2,=  
&J)q_Z8  
if any( r>1 | r<0 ) vpy_piG|  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') H1(Zz n1  
end w !N; Y0  
L-  -  
if ~any(size(r)==1) GUJaeFe  
    error('zernpol:Rvector','R must be a vector.') [/}y!;3iXM  
end Y~qv 0O6K  
zW`$T 88~  
r = r(:); Hz}6XS@  
length_r = length(r); P&@:''  
17Q1Xa  
if nargin==4 }nDKSC/[V!  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); u.wm;eK[  
    if ~isnorm fX,L;Se"  
        error('zernpol:normalization','Unrecognized normalization flag.') x(/KHpSWK  
    end %ec9`0^4S  
else | fMjg'%{}  
    isnorm = false; 8*nl Wl9qo  
end =v4;t'_^  
Z&hzsJK{m$  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l[EnFbD6  
% Compute the Zernike Polynomials *t{$GBP  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qc}r.'p  
7Vf2Qx1_  
% Determine the required powers of r: Ex'6 WN~kD  
% ----------------------------------- -9XB.)\#  
rpowers = []; sp4J%2b  
for j = 1:length(n) VJ` c/EVIt  
    rpowers = [rpowers m(j):2:n(j)]; Vy-EY*r|  
end oT7=  
rpowers = unique(rpowers); 6&p I{  
~c~$2Xo  
% Pre-compute the values of r raised to the required powers, o2 =UUD&  
% and compile them in a matrix: ~429sT(   
% ----------------------------- 8Wn;U!qT  
if rpowers(1)==0 ^goa$ uxU  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Y}_J@&:  
    rpowern = cat(2,rpowern{:}); Ju""i4  
    rpowern = [ones(length_r,1) rpowern]; h)[{{JSf  
else ~n:dHK`  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); s)#8>s-  
    rpowern = cat(2,rpowern{:}); Ys@M1o  
end B+G,v:)R6z  
0f.rjd  
% Compute the values of the polynomials: Y6T1_XG  
% -------------------------------------- R;9H`L/>  
z = zeros(length_r,length_n); ?@U7tNI  
for j = 1:length_n yoKl.U"&  
    s = 0:(n(j)-m(j))/2; XeD9RMT  
    pows = n(j):-2:m(j); \\80c65-  
    for k = length(s):-1:1 HZBU?{  
        p = (1-2*mod(s(k),2))* ... 2Y~6~*8*~  
                   prod(2:(n(j)-s(k)))/          ... GE`:bC3  
                   prod(2:s(k))/                 ... o8+ZgXct  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... %vjLw`  
                   prod(2:((n(j)+m(j))/2-s(k))); zGrUl|j  
        idx = (pows(k)==rpowers); $dAQ'\f7  
        z(:,j) = z(:,j) + p*rpowern(:,idx); AtRu)v6r  
    end si.A"\bm  
     ]C |Zs=5  
    if isnorm 14TA( v]T  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 2|vArRKt  
    end [h "*>J{  
end 5Xn+cw*  
W2L:  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  u"IYAyzL  
~m^.&mv3/  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 }X{#=*$GQ  
6@pP aq6  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计