| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 'AZxR4W function z = zernfun(n,m,r,theta,nflag) @su!9 ]o %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]6,D9^{; % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N s$ ?;C % and angular frequency M, evaluated at positions (R,THETA) on the U"a7myB+jX % unit circle. N is a vector of positive integers (including 0), and xggF:El3{ % M is a vector with the same number of elements as N. Each element mBQpf/PG % k of M must be a positive integer, with possible values M(k) = -N(k) m1M6N`f % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, >".@; % and THETA is a vector of angles. R and THETA must have the same =tl~@~pqI % length. The output Z is a matrix with one column for every (N,M) Ei89Ngp\} % pair, and one row for every (R,THETA) pair. z</^qy % -:Bgp*S % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike d"thM % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), X#o;`QM % with delta(m,0) the Kronecker delta, is chosen so that the integral P[jh^!<j % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, l/A!ofc#) % and theta=0 to theta=2*pi) is unity. For the non-normalized N3wy][bo % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. $ SZIJe"K % uFFC.w % The Zernike functions are an orthogonal basis on the unit circle. GZm=>!T % They are used in disciplines such as astronomy, optics, and 6sT(t8[ % optometry to describe functions on a circular domain. cvYKZB % IH.EvierJ % The following table lists the first 15 Zernike functions. *?+2%zP % XY<KLO% % n m Zernike function Normalization =FfR?6 ~ % -------------------------------------------------- {a(<E8-^ % 0 0 1 1 }Ggn2 X % 1 1 r * cos(theta) 2 Is9.A_0h % 1 -1 r * sin(theta) 2 8#HQ05q> % 2 -2 r^2 * cos(2*theta) sqrt(6) !(y(6u# % 2 0 (2*r^2 - 1) sqrt(3) ovaX_d)cU % 2 2 r^2 * sin(2*theta) sqrt(6) zo@,>'m % 3 -3 r^3 * cos(3*theta) sqrt(8) uxL3 8d] % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) )))AxgM % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) /Z]hX*QR % 3 3 r^3 * sin(3*theta) sqrt(8) j?VHR$ % 4 -4 r^4 * cos(4*theta) sqrt(10) ^MVOaV65 % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) P1<McQ % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) aj-:JTf % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !e('T@^u6u % 4 4 r^4 * sin(4*theta) sqrt(10) /9| 2uw` % -------------------------------------------------- S(lqj6aa} % qBZ;S3 % Example 1: *Zn,v-d % ,<[x9 "3\ % % Display the Zernike function Z(n=5,m=1) {vur9L % x = -1:0.01:1; ]-l4 % [X,Y] = meshgrid(x,x); s:I 8~Cc % [theta,r] = cart2pol(X,Y); %h
v-3L#V % idx = r<=1; 5'_:>0} % z = nan(size(X)); <ILi38%Y % z(idx) = zernfun(5,1,r(idx),theta(idx)); muO;g& % figure K]&GSro % pcolor(x,x,z), shading interp ,? Q1JZPy@ % axis square, colorbar &+GbklUB~ % title('Zernike function Z_5^1(r,\theta)') ,/[1hhP@ % Gi&/`vm % Example 2: WL3J>S_ % T;i+az{N:V % % Display the first 10 Zernike functions z]j_,3Hff % x = -1:0.01:1; y tTppmJF % [X,Y] = meshgrid(x,x); zoj
w^%W % [theta,r] = cart2pol(X,Y); _V` QvnT} % idx = r<=1; Ef=4yH?\j % z = nan(size(X)); @"m+9ZY % n = [0 1 1 2 2 2 3 3 3 3]; 5,R<9FjW % m = [0 -1 1 -2 0 2 -3 -1 1 3]; y/+y |.Xg % Nplot = [4 10 12 16 18 20 22 24 26 28]; _HkQv6fXpE % y = zernfun(n,m,r(idx),theta(idx)); t`1~5#?Du( % figure('Units','normalized') B'6(Ao=3/ % for k = 1:10 =-G4BQ % z(idx) = y(:,k); ~-~iCIaTb % subplot(4,7,Nplot(k)) (>dL % pcolor(x,x,z), shading interp $C8s % set(gca,'XTick',[],'YTick',[]) %@%~<U)W % axis square 0p'g+ 2 % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |2I
p* % end c32"$g % M$3/jl*#} % See also ZERNPOL, ZERNFUN2. ~~#/jULbV ^L'<%_#. % Paul Fricker 11/13/2006 ]K<7A!+@@p ##U/Wa3 A$TFa:O| % Check and prepare the inputs: mQ\oR| % ----------------------------- @! jpJ} if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "p&4Sn3T2? error('zernfun:NMvectors','N and M must be vectors.') +sXnC\ end B:)vPO+ d H#QPcp@ if length(n)~=length(m) YV6w}b: error('zernfun:NMlength','N and M must be the same length.') ^!SwY_> end Qe=eer~jI Rtai? n = n(:); mm N$\2 m = m(:); +b{tk=Q: if any(mod(n-m,2)) `>`{DEDx{5 error('zernfun:NMmultiplesof2', ... 5NMju!/ 'All N and M must differ by multiples of 2 (including 0).') ))J#t{X/8v end ZMch2 U8 ;(LC{jY if any(m>n) "=0JYh)%_ error('zernfun:MlessthanN', ... gn[h:+H& 'Each M must be less than or equal to its corresponding N.') wA6<BujD end jDW$}^
6 8HdjZ! if any( r>1 | r<0 ) OPDRV\ error('zernfun:Rlessthan1','All R must be between 0 and 1.') KPa&P:R3 end U?ZxQj66} -yY]0 if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) AaJz3oncJ error('zernfun:RTHvector','R and THETA must be vectors.') 1i
6>~ end d C6t+ OI)/J;[-e r = r(:); `R:HMO[ow theta = theta(:); 1@Rl^ey length_r = length(r); w5mSoKb if length_r~=length(theta) k7bfgb{ error('zernfun:RTHlength', ... n^rzl6dy 'The number of R- and THETA-values must be equal.') 1!2,K ot end 1$uO% 7XiR)jYo* % Check normalization: 1Gk'f?dw % -------------------- .p\<niu7 if nargin==5 && ischar(nflag) AO0aOX8_+D isnorm = strcmpi(nflag,'norm'); ['@R]Si"! if ~isnorm wTVd){q`. error('zernfun:normalization','Unrecognized normalization flag.') t8S,C4 end gOn^}%4.I else ~`VD}{[,B isnorm = false; )}T0SGY end CGCSfoS9f W$u/tRF %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QCvst* % Compute the Zernike Polynomials P\.1w>X %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +q)B4A'J! _,E! < % Determine the required powers of r: bOdyrynh % ----------------------------------- M\be a m_abs = abs(m); m#t rpowers = []; r`d.Wy Zj for j = 1:length(n) @m ?&7{y#? rpowers = [rpowers m_abs(j):2:n(j)]; Pqv9>N| end r!O4]j_3 rpowers = unique(rpowers); 8J+:5b_? *qL"&h5W % Pre-compute the values of r raised to the required powers, F5/,H:K\ % and compile them in a matrix: x-ZCaa}O % ----------------------------- >[TJ-%V>oR if rpowers(1)==0 NFlrr*=t> rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); H%`|yUE( rpowern = cat(2,rpowern{:}); ? Eh)JJt rpowern = [ones(length_r,1) rpowern]; -nC!kpo else <!.Qn
Y rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jRo4+8 rpowern = cat(2,rpowern{:}); .g95E<bd end *61G<I }TAHVcX*p % Compute the values of the polynomials: X4:SH>U! % -------------------------------------- EXTQ:HSES y = zeros(length_r,length(n)); >&2n\HR\ for j = 1:length(n) ~:lN("9OI s = 0:(n(j)-m_abs(j))/2; BX6]d:S pows = n(j):-2:m_abs(j); ;l2pdP4jf for k = length(s):-1:1 eXZH#K7S# p = (1-2*mod(s(k),2))* ... N"#=Q=)x prod(2:(n(j)-s(k)))/ ... %4HpTx prod(2:s(k))/ ... MbeO(Q prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... jCv%[H7 prod(2:((n(j)+m_abs(j))/2-s(k))); 0`l(c idx = (pows(k)==rpowers); \Dn
an5H/ y(:,j) = y(:,j) + p*rpowern(:,idx);
dzwto; end K=X13As_ h>A}vI*: if isnorm \3v}:E+3 y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ITu5Y"x end l:rT{l=8* end W-ll2b % END: Compute the Zernike Polynomials !]z6?kUK %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $mp'/] $f]dL}; % Compute the Zernike functions: 8]-c4zK % ------------------------------ o{wXq)b idx_pos = m>0;
V;-YM W idx_neg = m<0; BSib/)p >,. x'{ z = y; |=9=a@l]P if any(idx_pos) R-2V C z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {]CO;5: end z^r if any(idx_neg) m6=Jp< z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !K$qh{n end `;fk,\8t% 3m9ab" % EOF zernfun
|
|