| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 }OO(uC2 function z = zernfun(n,m,r,theta,nflag) 8[i#x|`g %ZERNFUN Zernike functions of order N and frequency M on the unit circle. v0!>": % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N md7Aqh % and angular frequency M, evaluated at positions (R,THETA) on the j"o`K}C % unit circle. N is a vector of positive integers (including 0), and =W)Fa6P3j( % M is a vector with the same number of elements as N. Each element rP.qCl+J % k of M must be a positive integer, with possible values M(k) = -N(k) mfOr+ % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, "-xm+7 % and THETA is a vector of angles. R and THETA must have the same r,=xI`XH % length. The output Z is a matrix with one column for every (N,M) FRI<A8 % pair, and one row for every (R,THETA) pair. I@P[}XS % 3/8o)9f. % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike
r(pp = % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0-"ps ]X % with delta(m,0) the Kronecker delta, is chosen so that the integral vPEL'mw/3# % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, NGB%fJ % and theta=0 to theta=2*pi) is unity. For the non-normalized x8%Q TTY % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _F
xq % uy\<t % The Zernike functions are an orthogonal basis on the unit circle. N8(xz-6 % They are used in disciplines such as astronomy, optics, and
VVeO>j d % optometry to describe functions on a circular domain. {:40Jf
% -xq)brG % The following table lists the first 15 Zernike functions. B1m@ % r AMnM>` % n m Zernike function Normalization uRG0}>]|U % -------------------------------------------------- BDZB;DPb % 0 0 1 1 F.c`0u;= % 1 1 r * cos(theta) 2 &'V_80vA % 1 -1 r * sin(theta) 2 +<6L>ZAL % 2 -2 r^2 * cos(2*theta) sqrt(6) G T#hqt'1x % 2 0 (2*r^2 - 1) sqrt(3) +B^/ =3P % 2 2 r^2 * sin(2*theta) sqrt(6) e/lfT?J\ % 3 -3 r^3 * cos(3*theta) sqrt(8) QlIg'B6 % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) CF9a~^+% % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) yCkfAx8] % 3 3 r^3 * sin(3*theta) sqrt(8) ,GXwi|Y % 4 -4 r^4 * cos(4*theta) sqrt(10) h8>7si % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iaXNf
])? % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) t
),~w,7(J % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .Tt \U % 4 4 r^4 * sin(4*theta) sqrt(10) T+NEw8C?/ % -------------------------------------------------- Zoj.F % {g\Yy(r
% Example 1: CyO2Z
% vn3<LQ] % % Display the Zernike function Z(n=5,m=1) =[(1u|H9 % x = -1:0.01:1; {YWj`K
% [X,Y] = meshgrid(x,x); ,WA7Kp9 % [theta,r] = cart2pol(X,Y); t5N@z % idx = r<=1; *3WK:0 % z = nan(size(X)); ;YNN)P%" % z(idx) = zernfun(5,1,r(idx),theta(idx)); ~\4l*$3(^ % figure LtbL[z>] % pcolor(x,x,z), shading interp ZgF-.(GV % axis square, colorbar 4>>{}c!nf % title('Zernike function Z_5^1(r,\theta)') WK0?$[|=r % A=!&2( % Example 2: hLG UkG?6G % AuHOdiJ % % Display the first 10 Zernike functions 67%eAS % x = -1:0.01:1; |\@e % [X,Y] = meshgrid(x,x); nH}api^0A % [theta,r] = cart2pol(X,Y); UevbLt1Y % idx = r<=1; OP]=MZP| % z = nan(size(X)); A?|KA<&m#u % n = [0 1 1 2 2 2 3 3 3 3]; ?l`DkUo*j % m = [0 -1 1 -2 0 2 -3 -1 1 3]; QKc3Q5)@j % Nplot = [4 10 12 16 18 20 22 24 26 28]; 6@g2v^ % % y = zernfun(n,m,r(idx),theta(idx)); 4ao
oBY$ % figure('Units','normalized') 2,puu2F % for k = 1:10 4Ub_;EI> % z(idx) = y(:,k); hJ.XG<?]$ % subplot(4,7,Nplot(k)) ?;>s< % pcolor(x,x,z), shading interp y/mxdPw % set(gca,'XTick',[],'YTick',[]) ur={+0
y % axis square *!%y.$\cE % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) iq,qf)BY.| % end ~[Mk QJxe % #9EpQc[4 % See also ZERNPOL, ZERNFUN2. ~cy/\/oO nf+8OH7 % Paul Fricker 11/13/2006 su j? e6 3ag*dBbs g2;JJ} % Check and prepare the inputs: 5fv eQI~! % ----------------------------- dm,7OQ if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) iU9de error('zernfun:NMvectors','N and M must be vectors.') 'Fo*h6= end f3lFpS 0`"]mYH if length(n)~=length(m) {5-4^|! error('zernfun:NMlength','N and M must be the same length.') |@]J*Kh end :N\*;> Z}f$KWj n = n(:); H:#b(&qw2 m = m(:); sI/Hcm if any(mod(n-m,2)) 7A8jnq7m/ error('zernfun:NMmultiplesof2', ... =#^%; 6 6z 'All N and M must differ by multiples of 2 (including 0).') yU\&\fD>j end +c/am`` s6OnHX\it7 if any(m>n) gZ
error('zernfun:MlessthanN', ... CY)/1 # J 'Each M must be less than or equal to its corresponding N.') B@HW@j end dl'pl HC*=E.J if any( r>1 | r<0 ) Wd_bDZQ error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5,I'6$J
end z!)_'A !e&ZhtTuC if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Z*.fSmT8) error('zernfun:RTHvector','R and THETA must be vectors.') qw&Wfk\} end iN0pYqY* apF!@O^}y r = r(:); C 6Bh[:V& theta = theta(:); l^:m!SA_ length_r = length(r); m'KY;C if length_r~=length(theta) jiYYDGs77 error('zernfun:RTHlength', ... ~KDx 'The number of R- and THETA-values must be equal.') enj Ti5X end <_uLf9ja skR/Wf9DH % Check normalization: ct3QtX0B % -------------------- 1}tZ,w> if nargin==5 && ischar(nflag) :7D&=n ) isnorm = strcmpi(nflag,'norm'); 2JYp.CJv if ~isnorm %Xh/16X${ error('zernfun:normalization','Unrecognized normalization flag.') |]RV[S3v end `i8osX[ &p else .S`Ue,H isnorm = false; gq*- v:P> end r*N:-I~z Pg-~^"?y %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v$K`C; % Compute the Zernike Polynomials pB@8b$8(Z %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PYkcGtVa_ ;
@
h{-@ % Determine the required powers of r: +)^F9LPl % ----------------------------------- iH#~eg m_abs = abs(m); ;y%l OYm rpowers = []; `x lsvK> for j = 1:length(n) H;k;%Zg; rpowers = [rpowers m_abs(j):2:n(j)]; 7fLLV2 end Dp6]!;kx rpowers = unique(rpowers); bESmKe( a^< % Pre-compute the values of r raised to the required powers, Nb>|9nu
O % and compile them in a matrix: R@5jEf % ----------------------------- ilw<Q-o4( if rpowers(1)==0 @X>k@M rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6i(V+ rpowern = cat(2,rpowern{:}); Ox8dnPcx rpowern = [ones(length_r,1) rpowern]; ZwAX+0 else Cc0`Y lx~( rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); D'YF[l rpowern = cat(2,rpowern{:}); k;3Bv 6 end Nv,[E+a2 O_nk8 % Compute the values of the polynomials: b,Ed}Ir % -------------------------------------- nZfTK>)A0 y = zeros(length_r,length(n)); +uM1#-+h for j = 1:length(n) {:IOTy s = 0:(n(j)-m_abs(j))/2; -g]/Ko]2@$ pows = n(j):-2:m_abs(j); 3I^KJ/)A for k = length(s):-1:1 4))u*c/, p = (1-2*mod(s(k),2))* ... >@[`, prod(2:(n(j)-s(k)))/ ... bS3qX{5 prod(2:s(k))/ ... I--WS[ prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {p|OKf prod(2:((n(j)+m_abs(j))/2-s(k))); *ys@'Ai? idx = (pows(k)==rpowers); W:aAe%S y(:,j) = y(:,j) + p*rpowern(:,idx); q =b.!AZy end 2}'qu) {0lY\#qcE if isnorm kI<C\*N y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Bg-C:Ok2' end -DlKFN end k)'hNk"x % END: Compute the Zernike Polynomials M/5/Tp %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
doBfpQ2 MnO,Cd6{%d % Compute the Zernike functions: ":"QsS#*"# % ------------------------------ />Wh idx_pos = m>0; R I:x`do idx_neg = m<0; <.HHV91 PkLRQ} z = y; zpZlA_
if any(idx_pos) L4zSro:Si z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =3{h9 end @~ N:F~ if any(idx_neg) 0Q;T
<%U z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); $e+@9LNK end %aaOws W2wDSP- % EOF zernfun
|
|