niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 20I`F>-* function z = zernfun(n,m,r,theta,nflag) k"#gSCW$ %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :uo)-9_ % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ZH~bY2^; % and angular frequency M, evaluated at positions (R,THETA) on the pW+uVv, % unit circle. N is a vector of positive integers (including 0), and iw#~xel<ez % M is a vector with the same number of elements as N. Each element \W=3P[gb % k of M must be a positive integer, with possible values M(k) = -N(k) qu^g~"s % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, @QTw9,pS % and THETA is a vector of angles. R and THETA must have the same !4Aj#`) % length. The output Z is a matrix with one column for every (N,M) |ufL s % pair, and one row for every (R,THETA) pair. 89>}`:xS^ % Tdh(J",d % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike KBM*7raA % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *AV%= % with delta(m,0) the Kronecker delta, is chosen so that the integral JDf>Qg{ % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, t
U}6^yc % and theta=0 to theta=2*pi) is unity. For the non-normalized 1j<uFhi> % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {m!5IR % uxyj6( % The Zernike functions are an orthogonal basis on the unit circle. Ma! % They are used in disciplines such as astronomy, optics, and u7mPp3ZYK % optometry to describe functions on a circular domain. J4ZHE\ % R?u(aY)P % The following table lists the first 15 Zernike functions. X$KTsG* % a0hBF4+6 % n m Zernike function Normalization q\@_L.tc[ % -------------------------------------------------- ?j8!3NCl} % 0 0 1 1 fY^CIb$Y % 1 1 r * cos(theta) 2 #czTX%+9(e % 1 -1 r * sin(theta) 2 t Cb34Wpf % 2 -2 r^2 * cos(2*theta) sqrt(6) _<RTes % 2 0 (2*r^2 - 1) sqrt(3) @%fTdneH % 2 2 r^2 * sin(2*theta) sqrt(6) ^?RH<z % 3 -3 r^3 * cos(3*theta) sqrt(8) CNb(\] % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) TC-Vzk G| % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) hZfj$|< % 3 3 r^3 * sin(3*theta) sqrt(8) 3!8(A/YP; % 4 -4 r^4 * cos(4*theta) sqrt(10) ^"O>EY': % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) d4ecF%R % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :pM8Q1:B % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {@CQ
( % 4 4 r^4 * sin(4*theta) sqrt(10) MrzD
ah9UG % -------------------------------------------------- |kK5:\H % |dQz(z&6{5 % Example 1: m"rht:v5 % {ol7*% u % % Display the Zernike function Z(n=5,m=1) O|sk"YXF % x = -1:0.01:1; >%;i@" % [X,Y] = meshgrid(x,x); }$z(?b % [theta,r] = cart2pol(X,Y); ]=t}8H % idx = r<=1; 6HZtdRQF % z = nan(size(X)); mDK*LL5]W % z(idx) = zernfun(5,1,r(idx),theta(idx)); MlYm\x8{M % figure N `:MF 9 % pcolor(x,x,z), shading interp zYV{ |Z % axis square, colorbar CPZ,sWg5 % title('Zernike function Z_5^1(r,\theta)') W+;=8S % 3"m]A/6C} % Example 2: 2Snb+,o2 % mH\zSk % % Display the first 10 Zernike functions @*|VWHR % x = -1:0.01:1; iO?AY % [X,Y] = meshgrid(x,x); 7YD+zd: % [theta,r] = cart2pol(X,Y); !.,J;Qt % idx = r<=1; "<+~uz % z = nan(size(X)); 5@+?{Cl % n = [0 1 1 2 2 2 3 3 3 3]; R/x3+_.f % m = [0 -1 1 -2 0 2 -3 -1 1 3]; Xgd-^ % Nplot = [4 10 12 16 18 20 22 24 26 28]; 7P2n{zd, % y = zernfun(n,m,r(idx),theta(idx)); 7(]F+\A3 % figure('Units','normalized') o3hgkoF % for k = 1:10 )Xg5=zn$ % z(idx) = y(:,k); &u[{V R: % subplot(4,7,Nplot(k)) peu9Bgs % pcolor(x,x,z), shading interp (9RfsV4^ % set(gca,'XTick',[],'YTick',[]) g
ptf*^s % axis square <4.Exha;= % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Fn.JtIu % end O
Ol: % l S,Jo/T@ % See also ZERNPOL, ZERNFUN2. ~D3S01ecM 1W'Ai"DLw % Paul Fricker 11/13/2006 *JDz0M4f :.ZWYze u ,3B[ % Check and prepare the inputs: OM0r*<D"! % ----------------------------- avq$aq(3& if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _M/N_Fm error('zernfun:NMvectors','N and M must be vectors.') d~qQ_2M[G end F:q4cfL6 .f J8 if length(n)~=length(m) zQulPU error('zernfun:NMlength','N and M must be the same length.') UgAp9$=z end iGhvQmd(/* 6Yn>9llo}= n = n(:); ^%,{R},s m = m(:); ={;pg( if any(mod(n-m,2)) W"Y)a|rG% error('zernfun:NMmultiplesof2', ... *"WP*A\1 'All N and M must differ by multiples of 2 (including 0).') 53{\H&q end 9oJM?&i Mu> if any(m>n) A
.&c>{B7 error('zernfun:MlessthanN', ... kyAN O 'Each M must be less than or equal to its corresponding N.') n5kGHL2 end =F$?`q` 2>9\o]ac4 if any( r>1 | r<0 ) N_NN0 error('zernfun:Rlessthan1','All R must be between 0 and 1.') Y
M:9m) end `B@eeXa;u rQ{|0+l if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) kVQm|frUz error('zernfun:RTHvector','R and THETA must be vectors.') 1<'z)r4 end LH(P<k& ybiTWM r = r(:); <VhmtT%7 theta = theta(:); 3XlQ 4 length_r = length(r); 9Of;8R if length_r~=length(theta) 1"Oe*@`pV error('zernfun:RTHlength', ... S'34](9n6 'The number of R- and THETA-values must be equal.') ij0I!ilG4 end 9JP:wE~y yS~Y"#F!. % Check normalization: `15}jTi % -------------------- Q,5PscE6&k if nargin==5 && ischar(nflag) VQpt1cK* isnorm = strcmpi(nflag,'norm'); aInt[D( if ~isnorm jdG2u
p error('zernfun:normalization','Unrecognized normalization flag.') ;SU<T^a end ;)FvTm'"\. else 6"G(Iq'2t3 isnorm = false; 5%\K end Bbs1U ]7_>l> %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qY8; k
# % Compute the Zernike Polynomials N9 M}H# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5z0Sns #6\mTL4vg % Determine the required powers of r: f?.VVlD % ----------------------------------- Xw9]WJc m_abs = abs(m); Pr}
l
y rpowers = []; -Ct+W;2 for j = 1:length(n) 4ct-K)Ris rpowers = [rpowers m_abs(j):2:n(j)]; &6CDIxH{ end \@Cz 32wg rpowers = unique(rpowers); >bV3~m$a+ ]\fHc"/ % Pre-compute the values of r raised to the required powers, CrI<rD%' % and compile them in a matrix: /E<Q_/'Z % ----------------------------- ppIXS( if rpowers(1)==0 *Hn=)q rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); F.y_H#h rpowern = cat(2,rpowern{:}); Ewz cB\m rpowern = [ones(length_r,1) rpowern]; =)+^ y}xb else wp }Q4I rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); uB"B{:Kz rpowern = cat(2,rpowern{:}); +ZjDTTk end S Yi !% O<p=&=TD7 % Compute the values of the polynomials: h$`m0-' % -------------------------------------- }R+#>P y = zeros(length_r,length(n)); $MDmY4\ for j = 1:length(n) w%`S>+kX& s = 0:(n(j)-m_abs(j))/2; ;v]C8 }L^ pows = n(j):-2:m_abs(j); t"Du for k = length(s):-1:1 ;L fn&2G p = (1-2*mod(s(k),2))* ... >uZc#Zt prod(2:(n(j)-s(k)))/ ... @:w^j0+h prod(2:s(k))/ ... %m6qL prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cu1!WD prod(2:((n(j)+m_abs(j))/2-s(k))); Sm {Sq idx = (pows(k)==rpowers); U0-RG y(:,j) = y(:,j) + p*rpowern(:,idx); 5GAW3j{ end =A,T:!}' yH:p*|% : if isnorm _}47U7s8 y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3 8&K" end "\Dqtr w end /Zs_G=\> % END: Compute the Zernike Polynomials d1.@v; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O6$,J12l , SUx!o % Compute the Zernike functions: yq x!{8=V % ------------------------------ V"8Go;[ idx_pos = m>0; yD\Kn{ idx_neg = m<0; }#.OJub pFMJG<W9, z = y; PSAEW.L if any(idx_pos) T] H'l z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [}Xw/@Uc; end 3BK
8{/ if any(idx_neg) T*B`8P z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5/6Jq end j/oc+ M^ *eXs7 "H % EOF zernfun
|
|