| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 8_ju.h[ function z = zernfun(n,m,r,theta,nflag) (3_2h4O %ZERNFUN Zernike functions of order N and frequency M on the unit circle. HeR-;L % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _tYt<oB~% % and angular frequency M, evaluated at positions (R,THETA) on the AU)Qk$c % unit circle. N is a vector of positive integers (including 0), and Vg2s~ce{ % M is a vector with the same number of elements as N. Each element &&tQ,5H5 % k of M must be a positive integer, with possible values M(k) = -N(k) m-;u]X=a % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, KUB"@wUr % and THETA is a vector of angles. R and THETA must have the same lKe aI % length. The output Z is a matrix with one column for every (N,M) >yT:eG % pair, and one row for every (R,THETA) pair. *S;v406 % dmf~w_(7 % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike N>@AsI % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %1e`R*I % with delta(m,0) the Kronecker delta, is chosen so that the integral /(vT49(] % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, zQ7SiRt7* % and theta=0 to theta=2*pi) is unity. For the non-normalized @aBZ|8 % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d<#Xqc % G;,2cu
K % The Zernike functions are an orthogonal basis on the unit circle. 0;V2>! % They are used in disciplines such as astronomy, optics, and 4(o0I~hpB? % optometry to describe functions on a circular domain. ~Fisno % Tqm9><!r % The following table lists the first 15 Zernike functions. O@Xl_QNxc! % `qX'9e3VP+ % n m Zernike function Normalization ^2Op?J % -------------------------------------------------- LkJ3 :3O % 0 0 1 1 *}yW8i}36 % 1 1 r * cos(theta) 2 I_N"mnn@Nr % 1 -1 r * sin(theta) 2 QK//bV) % 2 -2 r^2 * cos(2*theta) sqrt(6) $(C71M|CT % 2 0 (2*r^2 - 1) sqrt(3) "i9$w\lm % 2 2 r^2 * sin(2*theta) sqrt(6) jtl7t59R % 3 -3 r^3 * cos(3*theta) sqrt(8) 8a"aJYj % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) (}bP`[@rX! % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ,TP^i 0 % 3 3 r^3 * sin(3*theta) sqrt(8) AvhmN5O= % 4 -4 r^4 * cos(4*theta) sqrt(10) U4M!RdG % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Qx$Yj % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ~/
"aD % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3\6jzD % 4 4 r^4 * sin(4*theta) sqrt(10) !AP|ozkL % -------------------------------------------------- [|uAfp5R % } fSbH % Example 1: !)
LMn % `N2zeFG % % Display the Zernike function Z(n=5,m=1) .rax`@\8 % x = -1:0.01:1; 0I079fqk< % [X,Y] = meshgrid(x,x); sL[,J[AN; % [theta,r] = cart2pol(X,Y); <A+Yo3|7 % idx = r<=1; -s4qm)\ % z = nan(size(X)); }1epn#O_4 % z(idx) = zernfun(5,1,r(idx),theta(idx)); =7#)8p[ % figure C{+~x@
% pcolor(x,x,z), shading interp |PTL!>ym2 % axis square, colorbar TQYud'u/ % title('Zernike function Z_5^1(r,\theta)') 8h-6;x^^ % Hd6Qy {,*- % Example 2: A*E$_N % C %y AMQ % % Display the first 10 Zernike functions P2 f~sx9 % x = -1:0.01:1; hA)3Ah* % [X,Y] = meshgrid(x,x); N2=gSEY % [theta,r] = cart2pol(X,Y); eDIjcZ % idx = r<=1; \)`\F$CF % z = nan(size(X)); CP/`ON % n = [0 1 1 2 2 2 3 3 3 3]; }fL8<HM\'c % m = [0 -1 1 -2 0 2 -3 -1 1 3]; F5{~2~Cw( % Nplot = [4 10 12 16 18 20 22 24 26 28]; N!r@M." % y = zernfun(n,m,r(idx),theta(idx)); Vh4z+JOC % figure('Units','normalized') u6cWLVt % for k = 1:10 0;r+E*`DA % z(idx) = y(:,k); Up)b;wR % subplot(4,7,Nplot(k)) 0 UjT<t^F % pcolor(x,x,z), shading interp prhFA3
rW. % set(gca,'XTick',[],'YTick',[]) A]ciox$AjW % axis square ]D%D:>9|/ % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Y
KeOH % end 19&!#z % z`m-Ca>6 % See also ZERNPOL, ZERNFUN2. B1J+`R3OX K|E}Ni % Paul Fricker 11/13/2006 d),@&MSN `N
;!=7y7Y NTls64AS. % Check and prepare the inputs: .K;*uq:0 % ----------------------------- P[aB}<1f0 if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (Q\QZu@ error('zernfun:NMvectors','N and M must be vectors.') 23&;28)8 end *+lnAxRa? ] QtG gWtC if length(n)~=length(m) ${0Xq k error('zernfun:NMlength','N and M must be the same length.') pA"pt~6 end B5P++aQ ~\Fde^1 n = n(:); |]Pigi7y- m = m(:); U/wY;7{)# if any(mod(n-m,2)) !5Z?D8dcx error('zernfun:NMmultiplesof2', ... p"JITH:G 'All N and M must differ by multiples of 2 (including 0).') |4x&f!%m end 3zMmpeq qS+'#Sn if any(m>n) FxD\F error('zernfun:MlessthanN', ... ?^5W.`Y2i 'Each M must be less than or equal to its corresponding N.') Y-7x**I end h9&<-k %[&cy' if any( r>1 | r<0 ) nS]/=xP{ error('zernfun:Rlessthan1','All R must be between 0 and 1.') X*}S(9cg\i end
Js'COO <@(HQuL# if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5H""_uw error('zernfun:RTHvector','R and THETA must be vectors.') Jel%1'Dc^ end (;V]3CtU* 6@; w%Ea r = r(:); x!]ZVl] theta = theta(:); jKM-(s!( length_r = length(r); %pe7[/ if length_r~=length(theta) G2
xYa$&][ error('zernfun:RTHlength', ... E':y3T@." 'The number of R- and THETA-values must be equal.') h:Npi
`y end =HYMX"s Op\l % Check normalization: =r:D]?8oC % -------------------- 6pxj9@X+ if nargin==5 && ischar(nflag) UIIunA9 isnorm = strcmpi(nflag,'norm'); *.n9D if ~isnorm (:vY:-\ bO error('zernfun:normalization','Unrecognized normalization flag.') 6n45]? end Z!^iPB0~D else }m\ isnorm = false; OfbM]:}<3 end 4}LGE> ].7)^ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5 S7\m5 % Compute the Zernike Polynomials \/S?.P#L~ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a~:'OW:Q =DcKHL(m % Determine the required powers of r: 4$1sBY/ % ----------------------------------- D{PO!WzW m_abs = abs(m); 9Z6O{
> rpowers = []; htkn#s~= for j = 1:length(n) `cMa Fc-y/ rpowers = [rpowers m_abs(j):2:n(j)]; /8Ca8Ju end 3:dQN;= rpowers = unique(rpowers); - "h
{B "a>%tsl$K % Pre-compute the values of r raised to the required powers, Cf@WjgR
% and compile them in a matrix: oT_k"]~Q~2 % ----------------------------- enDjP if rpowers(1)==0 57%:0loW rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +c+#InsY rpowern = cat(2,rpowern{:}); p`T7Y\\#! rpowern = [ones(length_r,1) rpowern]; h9 [ov) else ,d&~#W] rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `?2S4lN/ rpowern = cat(2,rpowern{:}); G'#a&6 end bUU_NqUf*3 N=)N
% Compute the values of the polynomials: oju4.1 % -------------------------------------- pn{Nk1Pl y = zeros(length_r,length(n)); ;~tKNytD`B for j = 1:length(n) 7o'kdYJzo s = 0:(n(j)-m_abs(j))/2; 87r#;ND pows = n(j):-2:m_abs(j); `:R8~>p for k = length(s):-1:1 u2@:[:Ao p = (1-2*mod(s(k),2))* ... Ycn*aR2 prod(2:(n(j)-s(k)))/ ... QE m6#y prod(2:s(k))/ ... ]M-j_("& prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _LCK|H%v' prod(2:((n(j)+m_abs(j))/2-s(k))); `>g:
: idx = (pows(k)==rpowers); 8! pfy" y(:,j) = y(:,j) + p*rpowern(:,idx); G#
.z((Rj end xCiY
jl$ f*aYS if isnorm tg7%@SI5^- y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); yI)~- E. end
BJB'o end [?.k 8;k % END: Compute the Zernike Polynomials 65)/|j+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ip|~j}
} &3:-(:<U % Compute the Zernike functions: QZYD;&iY& % ------------------------------ "!+q0l1]@ idx_pos = m>0; /!P,o}l7 idx_neg = m<0; 9]xOuCb N0vr>e` z = y; ?qO_t;:0> if any(idx_pos) D0.7an6 z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8I$>e ( end &?#V*-;^ if any(idx_neg) ?WKFDL'_0j z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5,Mc`IIK1 end wC}anq>> eYOwdTrq % EOF zernfun
|
|