niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 i3o;G"IcD function z = zernfun(n,m,r,theta,nflag) OsNJ;B %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !s(s^ % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Un\
T}
c % and angular frequency M, evaluated at positions (R,THETA) on the [PL]!\NJ % unit circle. N is a vector of positive integers (including 0), and T#-U\C~o % M is a vector with the same number of elements as N. Each element /%i: (Ny % k of M must be a positive integer, with possible values M(k) = -N(k) yPVK>em5 % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, qp55U* % and THETA is a vector of angles. R and THETA must have the same poVtg}n % length. The output Z is a matrix with one column for every (N,M) CL<m+dW%* % pair, and one row for every (R,THETA) pair. *&~wl(+O= % oE'Flc. % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Qk`LBvg1 % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \* SEj&9 % with delta(m,0) the Kronecker delta, is chosen so that the integral KN"<f:u % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u]s}@(+. % and theta=0 to theta=2*pi) is unity. For the non-normalized 6:qh%ZR % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0'~Iv\s % g0A,VX:2 % The Zernike functions are an orthogonal basis on the unit circle. _4~q&?}V % They are used in disciplines such as astronomy, optics, and fkJE lO-F % optometry to describe functions on a circular domain. 4?.L+wL % i[m-&
% The following table lists the first 15 Zernike functions. >IE`, fe % C^nTLw;K % n m Zernike function Normalization s!WI:E7 % -------------------------------------------------- esK0H<] % 0 0 1 1 9O\N
K:2 % 1 1 r * cos(theta) 2 ]%Z7wF</ % 1 -1 r * sin(theta) 2 f%Vdao[ % 2 -2 r^2 * cos(2*theta) sqrt(6) |ZJ<N\\h- % 2 0 (2*r^2 - 1) sqrt(3) v7G&`4~ % 2 2 r^2 * sin(2*theta) sqrt(6) tzdh3\6F % 3 -3 r^3 * cos(3*theta) sqrt(8) 41NVF_R6J % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) .yb=I6D;<3 % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) X!!3>`| % 3 3 r^3 * sin(3*theta) sqrt(8) IhPX/P % 4 -4 r^4 * cos(4*theta) sqrt(10) L5A?9zum/! % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N_| '`]D % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) .fD%*- % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?`U=Ps % 4 4 r^4 * sin(4*theta) sqrt(10) zb& 3{, % -------------------------------------------------- I#9q^,,F % !7jVKI80 % Example 1: QV9z81[ % _Sn45h@" % % Display the Zernike function Z(n=5,m=1) ^Bu55q % x = -1:0.01:1; Ff{dOV.i % [X,Y] = meshgrid(x,x); Tb<}GcwJ % [theta,r] = cart2pol(X,Y); QB L| n+ % idx = r<=1; B):hm % z = nan(size(X)); c@/K} % z(idx) = zernfun(5,1,r(idx),theta(idx)); POt8G % figure ]Ofs,U^ % pcolor(x,x,z), shading interp vmIt!x % axis square, colorbar =uD^#AX % title('Zernike function Z_5^1(r,\theta)') mk]8}+^. % .+$ox-EK8 % Example 2: =9L1Z \f % sG8G}f % % Display the first 10 Zernike functions JpC_au7CX % x = -1:0.01:1; t(:w):zE % [X,Y] = meshgrid(x,x); ^s_7-p])( % [theta,r] = cart2pol(X,Y); x f<wM]& % idx = r<=1; -SN6&-#c_ % z = nan(size(X)); +S
],){ % n = [0 1 1 2 2 2 3 3 3 3]; =U,mzY( % m = [0 -1 1 -2 0 2 -3 -1 1 3]; v]X*(e % Nplot = [4 10 12 16 18 20 22 24 26 28]; ]1&}L^a % y = zernfun(n,m,r(idx),theta(idx)); O8)N`#1>+ % figure('Units','normalized') G*%:"qleT$ % for k = 1:10 (qdvvu#E % z(idx) = y(:,k); a<CACWsN.T % subplot(4,7,Nplot(k)) B<oBo&uA % pcolor(x,x,z), shading interp vXT>Dc2\! % set(gca,'XTick',[],'YTick',[]) *^[j6 % axis square 2./;i>H[u % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) U*:E|'> % end ndS8p]P&o( % Usq.'y/o % See also ZERNPOL, ZERNFUN2. )>I-j$%=2 r>cN,C % Paul Fricker 11/13/2006 njckPpyb@ {.o@XP,. 9A ?)n<3d % Check and prepare the inputs: \h5!u1{L % ----------------------------- <d~si^*\ch if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2(H-q( error('zernfun:NMvectors','N and M must be vectors.') LsO}a;t5 end '^%k TNn aM YtWj if length(n)~=length(m) ;"|QW?>$D error('zernfun:NMlength','N and M must be the same length.') frT<9$QUL end )W*A[c
2 R'Uf#. n = n(:); aKz:hG m = m(:); I`;SA~5 if any(mod(n-m,2)) k8 z1AP error('zernfun:NMmultiplesof2', ... Bu"5NB 'All N and M must differ by multiples of 2 (including 0).') _BZ6Ws$C2 end (!%9# uF+0nv+ if any(m>n) Dvm[W),(k error('zernfun:MlessthanN', ... 8p_6RvG 'Each M must be less than or equal to its corresponding N.') Ui.S)\B end (9Q@I8}Iy lRR A2Kql if any( r>1 | r<0 ) c3.;o error('zernfun:Rlessthan1','All R must be between 0 and 1.') nXw98; end 8]Q#P i!EAs`$o` if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) tE,&
G-jU error('zernfun:RTHvector','R and THETA must be vectors.') 8kT`5`}lB end ^@^K
<SVc +`tk LvM r = r(:); m UUNR, theta = theta(:); ><I{R|bC length_r = length(r); Raf(m,o( if length_r~=length(theta) %~L"TK`? error('zernfun:RTHlength', ... >:HmIW0PLe 'The number of R- and THETA-values must be equal.') K/K|[=bl end Ll.P>LH ?AK`M #M % Check normalization: jl5&T{z % --------------------
9}5o> iR if nargin==5 && ischar(nflag) " =6kH, isnorm = strcmpi(nflag,'norm'); @qEUp7W.? if ~isnorm .wB'"z8L error('zernfun:normalization','Unrecognized normalization flag.') c(aykIVOo end /36gf else ;8a9S0eS isnorm = false; <~P!yL r end pQ>|dH+. E+lr{~ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W/g_XQ % Compute the Zernike Polynomials 4:5M,p %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -iKoQkHt 5XV|*O; % Determine the required powers of r: `aTw!QBfG % ----------------------------------- +lb&_eD m_abs = abs(m); Ec@cW6g(% rpowers = []; .N( X.C for j = 1:length(n) F?[1m2 rpowers = [rpowers m_abs(j):2:n(j)]; L9-Jwy2(> end [S1 b\f# rpowers = unique(rpowers); 05g %5vHF Jy\0y[f* % Pre-compute the values of r raised to the required powers, YxrMr9>l1 % and compile them in a matrix: `mA;1S % ----------------------------- c g)>A if rpowers(1)==0 zc$}4o rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); L^*f$Balz rpowern = cat(2,rpowern{:}); h8X[*Wme rpowern = [ones(length_r,1) rpowern]; 1\~I "$} else &,yF{9$G rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -DK6(<:0 rpowern = cat(2,rpowern{:}); }0tHzw=#%e end 8&M<?oe _QEw=*.< % Compute the values of the polynomials: mP Hto-=fB % -------------------------------------- ?|98Y"w y = zeros(length_r,length(n)); $v # for j = 1:length(n) ~_Fx2T:X s = 0:(n(j)-m_abs(j))/2; |'z24 :8 pows = n(j):-2:m_abs(j); NU3TXO for k = length(s):-1:1 4\5i}MIS0 p = (1-2*mod(s(k),2))* ... zjh:jrv~ prod(2:(n(j)-s(k)))/ ... Arm'0)B> prod(2:s(k))/ ... 0|.jIix; prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... qajZ~oB{ prod(2:((n(j)+m_abs(j))/2-s(k))); c BZ,"kp- idx = (pows(k)==rpowers); BGxwPJd y(:,j) = y(:,j) + p*rpowern(:,idx); AO>b\,0Me end g$^-WmX\m }X?#"JFX? if isnorm
y*ZA{ y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Hy1$Kvub end KE ?NQMU end 57EX#:a % END: Compute the Zernike Polynomials 9TQVgkW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WG3!M/4r H fLqjBG]< % Compute the Zernike functions: !^&VZh % ------------------------------ _dRB=bl"O idx_pos = m>0; 1O<6=oH idx_neg = m<0; #Tei0B7 *asv^aFpS z = y; mvK^') if any(idx_pos) \
a,}1FS z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); c8YbBdk' end h x&"f e if any(idx_neg) 8QK8q:| z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); >h)kbsSU0z end gT0yI;g] eG1V:%3 % EOF zernfun
|
|