200833 |
2010-10-13 23:12 |
转换半导体激光器的波长面临挑战
利用非线性光学的谐波产生和混频技术,可以对半导体激光器进行频率转换,但是这需要高功率,高光束质量和窄线宽。 CDdkoajBa :2y"3azxk 非线性光学技术是填补激光光谱空白的有效办法,它包括简单的谐波产生和更为复杂的光参量振荡器(OPO)。二极管泵浦钕激光器的倍频使得绿色激光指示器的价格更低、结构紧凑,但是为什么开发人员不放弃激光泵浦,然后直接通过倍频的方式来产生所需的波长呢? 7bF*AYM W^3;F1 绿光激光器实现了这一点,MicorVision公司生产的微微投影仪已经进入市场。但是这并不容易。非线性波长转换不仅需要高的激光源功率,而且需要高的光束质量和窄线宽发射。把这些特性都集中到一台半导体激光器上并不容易。然而随着技术的不断进步,第一款产品已经进入市场,开发人员还在报告着更多令人兴奋的成果,包括新型激光器设计、二极管泵浦OPO、量子级联激光器的谐波和差频的产生。 50n}my'2h 33a uho
寻求倍频的二极管激光器 /3B6Mtb qZ X/@Yxz 对二级管激光器进行倍频的工作起始于上世纪90年代早期,当时二极管已经达到较高的功率水平,但是波长止于红光。对近红外二极管激光器的输出进行倍频,可以得到可见光谱中的短波输出。针对激光显示等应用,还可使用直接调制的短波激光器。 926Tl 9wh2f7k 相干公司成功研制出一款名为D3的激光器(直接倍频二极管激光器),该激光器对860nm二极管激光器的100mW输出进行倍频,从而生成10mW的430nm波长的蓝光。[1]它使用分布式布拉格反射激光器用于窄线宽输出,其输出还需要模式匹配并且相位锁定到外腔谐波发生器。这是业界第一款产品,但是由于没有找到合适的应用而最终退出市场。毫无疑问,部分原因是由于当时在日亚化学株式会社的中村修二成功开发出了蓝光氮化铟镓(InGaN)激光器。相干公司最终开发出了光泵表面发射半导体激光器,它可以倍频输出可见光,但是其更像固体激光器而非二极管激光器。 ^Z}Ob= .G 8)wt$b 蓝光二极管激光器的成功,在绿光为中心的可见光光谱中留下了空隙。几年后,当消费电子领域寻找一种新技术用于投影电视的时候,这一问题凸显出来。如果可以找到合适的530nm激光源,激光背投电视可以提供比平板显示更好的色域。倍频钕激光器似乎是一个合理的选择,但是由于不能按照所需速率直接对其进行调制,因此开发人员转而寻求倍频1060nm的二极管激光器或其他激光器,以生成530nm的绿光。随着背投电视逐渐淡出消费电子市场,大多数项目都因此搁浅,但也有一些项目转向了那些用于移动设备的微微投影仪。Portola Valley公司的光学顾问John Nightingale表示,这类应用的成本要远低于电视应用。 vAi$[p*im P8I*dvu _ 康宁公司已经在刚起步的微投影仪市场上有所开拓。去年该公司推出了一款商用版的投影仪,并为MicroVision公司的Showwx投影仪提供激光器,后者用于iPod和笔记本电脑。康宁公司的绿光激光器对分布式布拉格反射(DBR)激光器的1060nm的输出进行倍频,该DBR激光器发射单频单模激光。该激光器包括三部分:第一部分是DBR光栅,第二部分是相位调节器,第三部分是增益介质。康宁公司最初报道的结果是,通过把红外DBR输出激光耦合到周期性极化铌酸锂晶体内的二次谐波发生器,可以产生功率最高达104.6mW的530nm的二次谐波输出。[2]测试结果表明,该绿光光源可以在高于投影仪所需的50MHz的速率下进行调制,此后实验室版本的激光器的绿光输出功率达到了184mW。[3] FWY2s(5p _MfD 康宁公司去年发布的第一款商用样机可以输出60mW的激光(见图1)。2010年5月,该公司发布了80mW的样机,并表示其电光转换效率为8%,调制速率高达150MHz,可满足高图像分辨率的速率要求。 YZE.@Rz H{(]9{ 图1:康宁公司的用于微微投影仪的绿色激光器模块,它只有4mm厚。 nE|@IGH 图中显示了其与智能手机尺寸的对比 ^gYD*K!* Cifd21v4 锥形激光放大器 ?c#$dc" g/Wh,f3 另一种生成高效谐波所需的高质量、高功率光束的办法是将单模脊形波导DBR二极管激光器和一个锥形放大器相结合(见图2)。德国Ferdinand Braun学院的Götz Erbert研究小组正在进行一项为期五年的研究项目,其目的是开发在可见光波段、输出功率仅为数瓦的小型二次谐波光源,以满足从照相机大小的投影仪到精密光学仪器的一系列应用需求。该课题组已经生成了980nm、0.012nm线宽、12W功率的基频输出,该输出光束带有小于15°的垂直发散角,接近衍射极限。[4]周期性极化铌酸锂波导中产生的单程二次谐波的波长为488nm,功率大于1W。该课题组同时也在探索利用非线性光学技术产生从紫外到红外波段的光源,并与PicoQuant GmbH公司的Sina Riecke合作,生成了531nm、兆赫兹重复频率的30ps的脉冲。[5] ,Em$ !n 51xk>_Hm}| 图2:Braun学院研制的锥形放大器包括一个2mm长、4μm厚的脊形波导,1mm长的增益区域以及背面1mm长的分布式布拉格反射镜。4mm长的放大级锥形角为6° io%')0p5q XDz5b., Braun学院的课题组同时与Potsdam大学合作研究耦合环形谐振器器,用于谐波产生(见图3)。主要的环形腔利用惯性谐振锁定从锥形激光放大器输出的激光,并将基频光耦合到一个更小的、包含周期性极化铌酸锂晶体谐波发生器的环形腔内。最近的实验结果实现了功率310mW、线宽50MHz、电光转换效率为18%的488nm的激光输出。[6] nII^mg~ lE5v-z? &| 图3:Potsdam大学和Braun学院共同研制的用于二极管激光器谐波产生分的耦合环形谐振器。该谐振器包括顶部环形腔内锥形放大器(TA)、全息衍射光栅(G)、激光二极管(OD)、半波片(HWP)、偏振分光镜(PBS)、分光镜(BS)以及数个透镜。周期性极化铌酸锂谐波发生器(PPLN)由上下环腔共用 OB^Tq~i nH[+n `{o 丹麦科技大学的Paul Michael Petersen小组利用可调二极管激光器生成了659~675nm波段、线宽为0.07nm、功率为1.38W的基频输出。[7]该输出值是可调二极管激光器在这个波段的最高值,通过倍频可使波长达到335nm,短于目前紫外二极管激光器的输出波长。 g,kzQ}_ )^O-X.1 将高质量的近红外激光器同非线性光学元件相结合,可以产生具有更长红外波长的激光,而在这一波长没有很好的光源可供使用。通过与荷兰Twente大学的合作,Paul Michael Petersen小组从单片二极管放大器中输出了功率为8.05W、波长1062nm的激光,用其泵浦周期性极化铌酸锂晶体的单腔光参量振荡器。用于信号波的调谐范围为1541~1600nm,作为闲频信号的调谐范围是3154~3415nm。闲频光在3373nm波长时的输出功率超过1.1W,这是目前为止二极管泵浦OPO输出的最高记录。其44%的光光转换效率使总电光转效率达到14.9%,这是利用二极管泵浦激光器泵浦OPO的7倍。[8] Of[;Qn +R.N%_ 量子级联激光器波长的转换 Tg
?x3?kw Vpp& | |