cyqdesign |
2010-03-26 18:43 |
光电子光谱学原理和应用(Photoelectron spectroscopy),第3版
光电子谱技术是研究原子、分子、固体和表面电子结构的一种非常有效的手段。本书全面系统地介绍了光电子谱技术的原理和应用,并简明讨论了逆光发射、自旋极化光发射和光电子衍射等现象。本书是一本非常实用的光电子谱技术的专著,内容几乎覆盖了光电子研究的所有领域。其特点是紧密联系实验,并利用理论详细解释实验结果,达到理论和应用的有机结合。书中还收集了大量的实际材料的光电子谱分析,同时给出了大量的实验数据,以便于读者的查阅。总之,该书既是一本很有价值的参考书,又可作为初学者的入门教材。 Na@bXcz) MkW=sD_ 作者在该领域做出了杰出的贡献。在第3版中,作者介绍了大量最新研究成果,并对光电子谱技术很多方面给出了有深刻见解的讨论。 W" =l@}I )at:Xm<s 读者对象:适用于凝聚态物理学、材料物理学和光电子学等专业的高年级本科生、研究生和相关专业的科研人员。 Zk`y"[ J 8#!g;`~ D [attachment=25361] ?j&hG|W9<z tR51Pw 市场价:¥88.00 S(@kdL 优惠价:¥78.60 为您节省:9.40元 (89折) |GMo"[
bo<P%$(D cfmLErkp 目录 3$hIc) 1. Introduction and Basic Principles {Q>OZm\+ 1.1 Historical Development <M9NyD` 1.2 The Electron Mean Free Path 4eWv). 1.3 Photoelectron Spectroscopy and Inverse Photoelectron Spectroscopy ]9_gbQ 1.4 Experimental Aspects =`x }9|[ 1.5 Very High Resolution BP..p ^EPN 1.6 The Theory of Photoemission 8SpG/gl" 1.6.1 Core-Level Photoemission Hn >VPz+I 1.6.2 Valence-State Photoemission aV5M}:D 1.6.3 Three-Step and One-Step Considerations rp\`uj*D 1.7 Deviations from the Simple Theory of Photoemission ]RAh['u| References l%}q&_ ezw*Lo! 2. Core Levels and Final States =rymd3/ 2.1 Core-Level Binding Energies in Atoms and Molecules E5i5gE"\ 2.1.1 The Equivalent-Core Approximation fTXip)n!r 2.1.2 Chemical Shifts ZK;/~9KU 2.2 Core-Level Binding Energies in Solids WVD48}HF- 2.2.1 The Born-Haber Cycle in Insulators TG;[,oa 2.2.2 Theory of Binding Energies '$Z)2fn7 2.2.3 Determination of Binding Energies and Chemical Shifts from Thermodynamic Data XaCvBQ 2.3 Core Polarization {9(0s| pr 2.4 Final-State Multiplets in Rare-Earth Valence Bands gcnX^[`S 2.5 Vibrational Side Bands NCh-BinK@ 2.6 Core Levels of Adsorbed Molecules %%ouf06.| 2.7 Quantitative Chemical Analysis from Core-Level Intensities xO_>%F^? References W,EIBgR(R5 ~AjPa}@ f 3. Charge-Excitation Final States: Satellites Mf14> `<` 3.1 Copper Dihalides; 3d Transition Metal Compounds *%/O (ohs@ 3.1.1 Characterization of a Satellite #
bHkI~ 3.1.2 Analysis of Charge-Transfer Satellites 3Ewdu 3.1.3 Non-local Screening F. U@8lr 3.2 The 6-eV Satellite in Nickel | Uics:cQC 3.2.1 Resonance Photoemission ,K[e?(RP 3.2.2 Satellites in Other Metals |8f }3R 9 3.3 The Gunnarsson-Sch6nhammer Theory ,c:NdY(,) 3.4 Photoemission Signals and Narrow Bands in Metals ;N#}3lpLqg References 9h|6"6 O*v&CHd3 4. Continuous Satellites and Plasmon Satellites: XPS Photoemission in Nearly Free Electron Systems 7;|"1H:cmw 4.1 Theory ~;9n6U 4.1.1 General ,=\.L_' 4.1.2 Core-Line Shape PS"rXaY 4.1.3 Intrinsic Plasmons 4GP?t4][ 4.1.4 Fxtrinsic FAectron Scattering: Plasmons and Background T#Q7L~?zY 4.1.5 The Total Photoelectron Spectrum f2[R2sto@ 4.2 Experimental Results ?fH1?Z\'K 4.2.1 The Core Line Without Plasmons hu$eO'M_ 4.2.2 Core-Level Spectra Including Plasmoas MO$yst?fK 4.2.3 Valence-Band Spectra of the Simple Metals z=KDkpV 4.2.4 Simple Metals: A General Comment #I?Z,;DI= 4.3 The Background Correction 7Tk//By7 References -&D=4,# 2!0tD+B
5. Valence Orbitals in Simple Molecules and Insulating Solids l6#Y}<tq 5.1 UPS Spectra of Monatomic Gases 61Cc? a*_ 5.2 Photoelectron Spectra of Diatomic Molecules 3}FZg
w . 5.3 Binding Energy of the H2 Molecule 8OZasf 5.4 Hydrides Isoelectronic with Noble Gases P!Fykg Neon (Ne) _^Q!cB'~/` Hydrogen Fluoride (HF) QTBc_Z Water (H2O) AuK$KGCI= Ammonia (NH3) Eo2`Vr9g Methane (CH4) }0pp"[JU 5.5 Spectra of the Alkali HMides ~(v5p"]dj 5.6 Transition Metal Dihalides UstUPO 5.7 Hydrocarbons (Ff}Y.4 5.7.1 Guidelines for the Interpretation of Spectra from Free Molecules <[\I`kzq 5.7.2 Linear Polymers d7](fw@c 5.8 Insulating Solids with Valence d Electrons aC`>~uX##V 5.8.1 The NiO Problem VIdKe&, 5.8.2 Mort Insulation |P]W#~Y- 5.8.3 The Metal-Insulator Transition;the Ratio of the Correlation Energy and the Bandwidth;Doping C<C$df
5.8.4Band Structures of Transition Metal Compounds 5e.aTW;U 5.9 High—Temperature Superconductors ]}lt^7\= 5.9.1valence-Band Electronic Structure;Polycrystalline Samples `$Rgn3 5.9.2 Dispersion Relations in High Temperature Superconductors;Single Crystals :0:Tl/)) 5.9.3 The Superconducting Gap C0[U}Y/r2 5.9.4 Symmetry of the Order Parameter in the High-Temperature SuDerconductors Qu[QcB{ro- 5.9.5 Core—Level Shifts .F8[;+ 5.10 The Fermi Liquid and the Luttinger Liquid
^Zz^h@+ 5.11 Adsorbed Molecules B?i#m^S 5.11.1 Outline z(A[xN@/W< 5.11.2 CO on Metal Surfaces [-*&ZYp References %\
i&g$ ]UUa/ep- 6.Photoemission of Valence Electrons froill Metallic Solids in the OHe-Electron Approximation )>{.t=# 6.1 Theory of Photoemission:A Summary of the Three-Step Model V5(_7b#z`` 6.2 Discussion of the Photocurrent `sqr>QD 6.2.1 Kinematics of Internal Photoemission in a Polycrystalline Sample "6\5eFN; 6.2.2 Primary and Secondary Cones in the Photoemission from a Real Solid U.,S.WP+d 6.2.3 Angle-Integrated and Angle-Resolved Data Collection pM@8T25= 6.3 Photoemission from the Semi—infinite Crystal:The Inverse LEED Formalism g_cED15 6.3.1 Band Structure Regime >fWGiFmlk 6.3.2 XPS Regime 0]bt}rh 6.3.3 Surface Emission e:Y+-C5 6.3.4 One-Step Calculations (*$F7oO< 6.4 Thermal Effects YA$YT8iMe 6.5 Dipole Selection Rules for Direct Optical Transitions w"?Q0bhV9y References Ur#jJR@%3 q 7.Band Structtire and Angular-Resolved Photoelectron Spectra |&8XmexLb 7.1 Free-Electron Final—State Model <b
H*f w 7.2 Methods Employing Calculated Band Structures K bLSK 7.3 Methods for the Absolute Determination of the Crystal Momentum N_bgW QY 7.3.1 Triangulation or Energy Coincidence Method QUW`Yc 7.3.2 Bragg Plane Method: Variation of External Emission Angle at Fixed Photon Frequency (Disappearance/Appearance Angle Method 0 YFXF 7.3.3 Bragg Plane Method: Variation of Photon Energy at Fixed Emission Angle (Symmetry Method) @$r[$D
v 7.3.4 The Surface Emission Method and Electron Damping uQvTir*e 7.3.5 The Very-Low-Energy Electron Diffraction Method )nO ^Ay 7.3.6 The Fermi Surface Method Rb:H3zh 7.3.7 Intensities and Their Use in Band-Structure Determinations 'r 7[9[ 7.3.8 Summary je^VJ&ac 7.4 Experimental Band Structures :|s;2Y 7.4.1 One- and Two-Dimensional Systems =!q]0# 7.4.2 Three-Dimensional Solids: Metals and Semiconductors yF(9=z"? 7..4.3UPS Band Structures and XPS Density of States aC[G_ACwc 7.5 A Comment _y[C52, References 9Of;8R ;/$pxD 8.Surface States, Surface Effects &zF>5@fM 8.1 Theoretical Considerations n7bVL#Sq[ 8.2 Experimental Results on Surface States C/Q20 8.3 Quantum-Well States (.P}>$M9 8.4 Surface Core-Level Shifts (G>su References >`UqS`YQK 68,j~e3-i 9.Inverse Photoelectron Spectroscopy :4V5p
=v- 9.1 Surface States }{N#JTmjB# 9.2 Bulk Band Structures KsOSPQDGE 9.3 Adsorbed Molecules [T r7SU#x References b\ED<' _MC',p& 10. Spin-Polarized Photoelectron Spectroscopy !6-t_S 10.1 General Description ;GM`=M4 10.2 Examples of Spin-Polarized Photoelectron Spectroscopy P_3IFHe 10.3 Magnetic Dichroism $/"Ymm#"\Y References n~6$CQ5dF( 4j3_OUwWZx 11. Photoelectron Diffraction 5%2~/
" 11.1 Examples \;Q(o$5< 11.2 Substrate Photoelectron Diffraction |iUF3s|? 11.3 Adsorbate Photoelectron Diffraction r5s{t4 ;Ch 11.4 Fermi Surface Scans lVT*Ev{&. References _m?i$5 d~QKZ&jf Appendix NOs00 H A.1 Table of Binding Energies Ne+Rs+~4 A.2 Surface and Bulk Brillouin Zones of the Three Low-Index Faces of a Face—Centered Cubic(fcc)Crystal Face d[l8qaD A.3 Compilation of Work Functions [!%5(Ro_ References /E<Q_/'Z Index
|
|