| cyqdesign |
2010-01-29 22:58 |
Modern Classical Optics(现代经典光学),作者:(英国)布鲁克(Brooker.G)
《现代经典光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:衍射、干涉、薄膜和全息光学,也涉及了高斯光束.激光腔、cD阅读器和共焦显微镜。涉及少量的量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。 ` Fa~ 《现代经典光学》作者为牛津大学物理系的Geoffrey Brooker。 ,0M_Bk" 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。 xQ f* [attachment=24290] }|h# \$w R`NYEptJ 市场价:¥78.00 f z'@_4hg 优惠价:¥58.50 免费送货,货到付款! P78g/p T
cN/6SGHK ^9v4O UG 1 Electromagnetism and basic optics `KZm0d{H 1.1 Introduction l{*@v=b( 1.2 The Maxwell eqiations b6,iZ+] 1.3 Linear isotropic media =9H7N]*h 1.4 Plane electromagnetic waves uy>q7C 1.5 Energy flow is?{MJZ_ 1.6 Scalar wave amplitudes *3+4[WT0]a 1.7 Dispersive media D}-/c"':} 1.8 Electrical transmission lines !z\h|wU+ 1.9 Elementary(ray)optics G<L;4nA) 1.9.1 The thin lens {5Q!Y&N.% 1.9.2 Sign conventions S,88*F(<^q 1.9.3 Refraction at a spherical surface x+\`gK5 1.9.4 The thick lens ju8>:y8 1.10 Rays and waves LQ@"Xe]5 Problems AP3a;4Z# yl'u'-Zb6 2 Fourier series and Fourier transforms 5?f ^Rz 2.1 Introduction ^
gdaa>L 2.2 Fourier series:spectrum of a periodic waveform fW?vdYF 2.3 Fourier series:a mathematical reshape =>m<GvQz 2.4 The Fourier transform:spectrum of a non-periodic waveform iDpSj!x/_ 2.5 The analytic signal z<MsKD0Q 2.6 The Dirac δ-function 3/P1!:g9 2.7 Frequency and angular frequency /4y o` 2.8 The power spectrum (Lbbc+1m 2.9 Examples of Fourier transforms f[]dfLS"W 2.9.1 A single rectangular pulse ?e%ZOI 2.9.2 The double pulse dn&s* 2.9.3 A δ-function pulse 6,pnw 2.9.4 A regular array of δ-functions FUiRTRIYe 2.9.5 A random array of δ-functions 0j^Kgx 2.9.6 An infinite sinewave atj(eg 2.10 Convolution and the convolution theorem d9k0F
OR1 2.11 Examples of convoltion &5>Kl}7 2.12 Sign choices with Fourier transforms EfqX
y>W problems rjK%t|aV^ T; 4NRC 3 Diffraction &j;wCvE4+ 3.1 Introduction |44Ploz2b 3.2 Monochromatic spherical wave (O\)_#-D 3.3 The Kirchhoff diffraction integral ;xy"\S] 3.4 The Kirchhoff boundary conditions \UA[ 3.5 Simplifying the Kirchhoff inregral L7l
FtX+b 3.6 Complementary screens:the Babinet principle q9B$"n 3.7 The Fraunhofer condition I:provisional [:dY0r+ 3.8 Fraunhofer diffraction in'one dimension' 9p]QM)M 3.9 Fraunhofer diffraction in'two dimensions' &<z1k-&! 3.10 Two ways of looking at diffraction &s(^@OayE 3.11 Examples of Fraunhofer diffraction rm7ANMB: 3.12 Fraunhofer diffraction and Fourier transforms EAUEQk?9 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number VG5i{1
0 3.14 The Fraunhofer condition Ⅲ:object and image e+EQ]<M 3.15 The Fresnel case of diffraction a,,ex i 3.16 Fraunhofer diffraction and optical resolution j;zM{qu_ 3.17 Surfaces whose fields are related by a Fourier transform GC-5X`Sq 3.18 Kirchhoff boundary conditions:a harder look e[1hz_v Problems hDDn,uzpd 9+|$$) 4 Diffraction gratings R*,MfV 4.1 Introduction 6XxvvMA97 4.2 A basic transmission grating ~g91Pr 4.3 The multiple-element pattern XPc^Tq 4.4 Reflection grating
l]5KN 4.5 Blazing 8\^R~K`sY 4.6 Grating spectrometric instruments x>K Or,f 4.7 Spectroscopic resolution gb1V~ 4.8 Making gratings }:zE< bK 4.9 Tricks of the trade %UrueMEO 4.9.1 Normal spectrum RHW]Z
Pr< 4.9.2 Correct illumination X0HZH?V+ 4.9.3 Shortening exposure times with a spectrograph b!t0w{^w 4.9.4 Vacuum instruments [g|_~h 4.9.5 Double monochromator ic:zsuEm 4.9.6 An inventor's paradise '@v\{ l 4.10 Beyond the simple theory b/K PaNv Problems 'ms-*c&
C[cbbp 5 The Fabry-Perot CO/]wS 5.1 Introduction (MM]N=Tw4 5.2 Elementary theory WCZjXDiwJ 5.3 Basic apparatus ]h`&&B qt 5.4 The meaning of finesse 6q\bB 5.5 Free spectral range and resolution (TtkFo'!U 5.5.1 Free spectral range l:~/<`o 5.5.2 Resolution k=$TGqQY? 5.6 Analysis of an étalon fringe pattern q>_.[+6 5.7 Flatness and parallelism of Fabry-Perot plates !/b>sN} 5.8 Designing a Fabry-Perot to do a job BKCiIfkZ 5.9 Practicalities of spectroscopy using a Fabry-Perot s[>,X#7 y 5.10 The Fabry-Perot as a source of ideas [\eeDa Problems 8
/]S^'> +HpA:]#Y 6 Thin films 5{WE~8$ 6.1 Introduction
J[|y:N 6.2 Basic calculation for one layer %A/0 ' 6.3 Matrix elimination of'middle'amplitudes d'gfQlDny 6.4 Reflected and transmitted Waves HVCe;eI 6.5 Impedance concepts h+H%?:FX 6.6 High-reflectivity mirrors )AtD}HEv 6.7 Anti-reflection coatings !PlEO 2at 6.8 Interference filters xj)F55e? 6.9 Practicalities of thin-film deposition VT)oLj/A Problems @gEUm_#HTs a5"D @E 7 Ray matrices and Gaussian beams r|8d
4 7.1 Introduction C
82omL 7.2 Matrix methods in ray optics @i_FTN 7.3 Matrices for translation and refraction sE<V5`Z= 7.4 Reflections BwEN~2u6 7.5 Spherical waves fplo w 7.6 Gaussian beams y14;%aQN 7.7 Properties of a Gaussian beam |^I0dR/w: 7.8 Sign conventions qA7>vi% 7.9 Propagation of a Gaussian beam &ywPuTt 7.10 Electric and magnetic fields S3 %FHS Problems ,-LwtePJ0 >2)OiQ`zg 8 Optical cavities r+i($jMs 8.1 Introduction O63<AY@ 8.2 Gauss-Hermite beams qr^3R&z!} 8.3 Cavity resonator 8'[7
)I= 8.4 Cavity modes ua$GNm 8.5 The condition for a low-loss mode f}ji?p 8.6 Finding the mode shape for a cavity d"mkL- 8.7 Longitudinal modes n,(sBOQ 8.8 High-loss cavities A`$%SVgFV^ 8.9 The symmetrical confocal cavity t|\%VC 8.10 The confocal Fabry-Perot {6|G@""O 8.11 Choice of cavity geometry for a laser rU:`*b< 8.12 Selection of a desired transverse mode uBKgcpvTs 8.13 Mode matching aiUY>M#| Problems #Y`~(K47 _/$Bpr{R 9 Coherence:qualitative n
ATuD 9.1 Introduction ^7cGq+t 9.2 Terminology \ a<h/4#| 9.3 Young fringes:tolerance to frequency range }OR@~V{Gj 9.4 Young fringes:tolerance to collimation )[6U^j4 9.5 Coherence area IqHV)A 9.6 The Michelson stellar interferometer ^ogt+6c 9.7 Aperture synthesis Gr'
CtO 9.8 Longitudinal and transverse coherence :{v#'U/^ 9.9 Interference of two parallel plane waves NO>w+-dGS 9.10 Fast and slow detectors 85$m[+md 9.11 Coherence time and coherence length {X+3;& | |