| cyqdesign |
2010-01-29 22:58 |
Modern Classical Optics(现代经典光学),作者:(英国)布鲁克(Brooker.G)
《现代经典光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:衍射、干涉、薄膜和全息光学,也涉及了高斯光束.激光腔、cD阅读器和共焦显微镜。涉及少量的量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。 S\R5SRE 《现代经典光学》作者为牛津大学物理系的Geoffrey Brooker。 KuJNKuHa. 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。 ckdXla [attachment=24290] Y4Y~ep 8"yZS)09
市场价:¥78.00 H?cJ'Q,5 优惠价:¥58.50 免费送货,货到付款! #bwGDF
9>T5~C'* .)Zs:50l 1 Electromagnetism and basic optics z=yE- I{ 1.1 Introduction kcG_ n 1.2 The Maxwell eqiations DVz_;m6) 1.3 Linear isotropic media J^y?nE(j 1.4 Plane electromagnetic waves yV?qX\~* 1.5 Energy flow ToX--w4 1.6 Scalar wave amplitudes [ahK+J 1.7 Dispersive media za!8:( 1.8 Electrical transmission lines hMnm> 1.9 Elementary(ray)optics YDYN#Ob(; 1.9.1 The thin lens i!;9A6D 1.9.2 Sign conventions bYBE h n 1.9.3 Refraction at a spherical surface $0XR<D 1.9.4 The thick lens \wF-[']N 1.10 Rays and waves X.+|o@G Problems }inV)QQ IxaF*4JG 2 Fourier series and Fourier transforms %ty`Oa2 2.1 Introduction \![ p-mW{ 2.2 Fourier series:spectrum of a periodic waveform Y49&EQ 2.3 Fourier series:a mathematical reshape +t%1FkI\ 2.4 The Fourier transform:spectrum of a non-periodic waveform
3 #"!Hg 2.5 The analytic signal 0Ua&_D" 2.6 The Dirac δ-function Vw]!Kb7tA 2.7 Frequency and angular frequency bs0[ a 1/ 2.8 The power spectrum lokKjs 2.9 Examples of Fourier transforms 1pAcaJzf 2.9.1 A single rectangular pulse otX/sg.B* 2.9.2 The double pulse ZI.Czzx\= 2.9.3 A δ-function pulse Cy dV$!&mP 2.9.4 A regular array of δ-functions qe'RvBz 2.9.5 A random array of δ-functions uHq;z{ 2GI 2.9.6 An infinite sinewave mDx=n.lIz 2.10 Convolution and the convolution theorem M+*K-zt0 2.11 Examples of convoltion -9Dr;2\ 2.12 Sign choices with Fourier transforms -&l%CR,U problems n8tw8o%&[ R@){=8%z 3 Diffraction % {-r'Yi% 3.1 Introduction C5g9Gg 3.2 Monochromatic spherical wave Vh?RlIUA 3.3 The Kirchhoff diffraction integral -Fq`#" 3.4 The Kirchhoff boundary conditions cn: L]%< 3.5 Simplifying the Kirchhoff inregral +)LCYDRV7 3.6 Complementary screens:the Babinet principle 09qfnQG 3.7 The Fraunhofer condition I:provisional BA[ uO3\4 3.8 Fraunhofer diffraction in'one dimension' &\%\"Zh 3.9 Fraunhofer diffraction in'two dimensions' IhRdn1& 3.10 Two ways of looking at diffraction 6-z(34&N 3.11 Examples of Fraunhofer diffraction )-0+O=v 3.12 Fraunhofer diffraction and Fourier transforms 0SQrz$y 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number "
sC]z} 3.14 The Fraunhofer condition Ⅲ:object and image v*OV\h. 3.15 The Fresnel case of diffraction @]!9;?so 3.16 Fraunhofer diffraction and optical resolution J/IRCjQ} 3.17 Surfaces whose fields are related by a Fourier transform *d`KD64 3.18 Kirchhoff boundary conditions:a harder look D5!#c-Y- Problems N0%q66]1 'E&tEbY 4 Diffraction gratings `NTtw;%Y 4.1 Introduction CF
3V)3} 4.2 A basic transmission grating !nq`Py MR 4.3 The multiple-element pattern W*%(J$E 4.4 Reflection grating Wm}gnNwA 4.5 Blazing qV;I<AM 4.6 Grating spectrometric instruments f >.^7.is 4.7 Spectroscopic resolution Q :.i[ 4.8 Making gratings bYoBJ
#UX 4.9 Tricks of the trade p8 Ao{ 4.9.1 Normal spectrum iCLH 4.9.2 Correct illumination Z~<=I }@ 4.9.3 Shortening exposure times with a spectrograph )E}@h%d 4.9.4 Vacuum instruments }LeS3\+UHl 4.9.5 Double monochromator mz+UkA' 4.9.6 An inventor's paradise &_u.q/~ 4.10 Beyond the simple theory ^Ua6.RH8 Problems .cHkh^EDY z1]nC]2 5 The Fabry-Perot QM*
T?PR 5.1 Introduction "}wO<O6[ 5.2 Elementary theory ,<Z,- 0S 5.3 Basic apparatus M9""(`U 5.4 The meaning of finesse )P>/g* 5.5 Free spectral range and resolution \A,zwdt
P 5.5.1 Free spectral range /&<V5?1| 5.5.2 Resolution
rlGv6)vb 5.6 Analysis of an étalon fringe pattern o.kDOqd 5.7 Flatness and parallelism of Fabry-Perot plates ]<C]`W2{ 5.8 Designing a Fabry-Perot to do a job !n` |k 5.9 Practicalities of spectroscopy using a Fabry-Perot Q4hY\\Hi 5.10 The Fabry-Perot as a source of ideas -jy0Kl/p Problems ,wM4X']HR E3l*_b0 6 Thin films IRwtM'%0 6.1 Introduction =JW-EQ6[T 6.2 Basic calculation for one layer d$n31F 6.3 Matrix elimination of'middle'amplitudes fIl!{pv[ 6.4 Reflected and transmitted Waves \1LfDlQk) 6.5 Impedance concepts EEnl' 6.6 High-reflectivity mirrors i#hFpZ6u 6.7 Anti-reflection coatings #4b]j".P!n 6.8 Interference filters w]yVNB 6.9 Practicalities of thin-film deposition b,YNCb]H Problems 7KX27.~F M;,$
)>P 7 Ray matrices and Gaussian beams XL^05 7.1 Introduction \ ZE[7Ae 7.2 Matrix methods in ray optics Y)DX 7.3 Matrices for translation and refraction S,nELV~! 7.4 Reflections U: Wet, 7.5 Spherical waves @aZ Tx/ 7.6 Gaussian beams ($kw*H{Ah^ 7.7 Properties of a Gaussian beam ?h&?`WO( 7.8 Sign conventions )S(Ly. 7.9 Propagation of a Gaussian beam E "}@SaB- 7.10 Electric and magnetic fields $\Y&2&1s Problems *=2W:,$ R6Ov 8 Optical cavities *dw.Ug 8.1 Introduction xsn=Ji2 F 8.2 Gauss-Hermite beams QcW8A ,\q 8.3 Cavity resonator DegbjqZ# 8.4 Cavity modes @$T$ hMl 8.5 The condition for a low-loss mode w\YS5!P,V 8.6 Finding the mode shape for a cavity `H6~<9r 8.7 Longitudinal modes Mh4MaLw
8.8 High-loss cavities ]5c(:T F 8.9 The symmetrical confocal cavity >#x[qX 8.10 The confocal Fabry-Perot #YYJ4^":k 8.11 Choice of cavity geometry for a laser U:C:ugm 8.12 Selection of a desired transverse mode y'`/^>. 8.13 Mode matching V7Cnu:0_ Problems xdm \[s l^9gFp~I 9 Coherence:qualitative <cp9+P < 9.1 Introduction Vv}R
S@4U 9.2 Terminology ^ls@Gr7`P 9.3 Young fringes:tolerance to frequency range `.@sux!lu 9.4 Young fringes:tolerance to collimation )ZpI%M?) 9.5 Coherence area [jzsB:;XB& 9.6 The Michelson stellar interferometer 14B',]` 9.7 Aperture synthesis PY.K_(D 9.8 Longitudinal and transverse coherence {g<D:"Q 9.9 Interference of two parallel plane waves )x7n-|y6 9.10 Fast and slow detectors #@$80eFq 9.11 Coherence time and coherence length fUkqhqe 9.12 A Michelson interferometer investigating longitudinal coherence |(z{)yWbC[ 9.13 Fringe visibility uLS]=:BT 9.14 Orders of magnitude vTO9XHc E 9.15 Discussion q2vD)r 9.15.1 What of lasers? OL>>/T 9.15.2 The Young slits:another look @@Ybg6.+* 9.15.3 Fast and slow detectors:another look *9EwZwE_K 9.15.4 Grating monochromator:another look q>.7VN[
vE 9.15.5 Polarized and unpolarized light U`ttT5; Problems I?3b}#&V9 <|}Z6Ti 10 Coherence:correlation functions FfJp::|ddr 10.1 Introduction qjP~F 10.2 Correlation function:definition rF-SvSj} 10.3 Autocorrelation and the Michelson interferometer 0\tac/ 10.4 Normalized autocorrelation function 9j>2C 10.5 Fringe visibility &-yRa45? 10.6 The Wiener-Khintchine theorem J[ Gpd 10.7 Fourier transform spectroscopy ;\mX=S|a 10.8 Partial coherence:transverse DWt|lO 10.9 The van Cittert-Zernike theorem ltNCti{Q 10.10 Intensity correlation JX=rL6Y@:; 10.11 Chaotic light and laser light gT+g@\u[ 10.12 The Hanbury Brown-Twiss experiment .n]"vpWm[ 10.13 Stellar diameters measured by intensity correlation _YF>Y=D- 10.14 Classical and quantum optics ?$f.[;mh Problems ?% 24M\ 4^L;]v,|7 11 Optical practicalities:étendue,interferometry,fringe localization <T}U 3lL^ 11.1 Introduction 2X@9o4_4q 11.2 Energy flow:étendue and radiance ?'MkaG0g 11.3 Conservation of étendue and radiance _`udd)Y2 11.4 Longitudinal and transverse modes +;KUL6 11.5 étendue and coherence area Ib# -M;{ 11.6 Field modes and entropy f8:nKb>nq$ 11.7 Radianee of some optical sources e"S?qpJK 11.7.1 Radiance of a black body ,<Q 11.7.2 Radiance of a gas-discharge lamp HoGYgye= 11.7.3 Radiance of a light-emitting diode (LED) ,>a!CnK= 11.8 étendue and interferometers }HoCfiE=X 11.9 大Etendue and spectrometers wXQxZuk[ 11.10 A design study:a Fourier-transform spectrometer 0~qc,-)3 11.11 Fringe locahzation |H?t+Dyn)q Problems 7S a9 eP-|3$ 12 Image formation:diffraction theory o9eOp3w30 12.1 Introduction ( eTrqI` 12.2 Image formation with transversely Coherent illumination informal mJUM#ry 12.3 Image formation:ideal optical system lmeTW0U@9( 12.4 Image formation:imperfect optical system }(nT(9| 12.5 Microscope resolution:Abbe theory #rkq
?:Q 12.5.1 Abbe theory:introduction [H}>
2Q 12.5.2 Abbe theory:explanation |4df) 12.6 Improving the basic microscope PILpWhjL$9 12.7 Phase contrast :V'99Esv` 12.8 Dark-ground illumination !O_G%+>5W 12.9 Schlieren Ul}RT xJ 12.10 Apodizing 1rm\ u% 12.11 Holography FiUQ2w4 12.12 The point spread function -5<[oBL; 12.13 Optical transfer function;modulation transfer function |.N[NY Problems XGl2rX& 13 Holography ;4rhhh& | |