| cyqdesign |
2010-01-29 22:58 |
Modern Classical Optics(现代经典光学),作者:(英国)布鲁克(Brooker.G)
《现代经典光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:衍射、干涉、薄膜和全息光学,也涉及了高斯光束.激光腔、cD阅读器和共焦显微镜。涉及少量的量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。 +45.fo 《现代经典光学》作者为牛津大学物理系的Geoffrey Brooker。 73l,PJ 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。 NQcNY= [attachment=24290] #sE:xIR wpD}#LRfm 市场价:¥78.00 88VI
_< 优惠价:¥58.50 免费送货,货到付款! }yaM.+8.
}.D adV r72zWpF!Ss 1 Electromagnetism and basic optics ]sI\.a 1.1 Introduction i_:#][nWX 1.2 The Maxwell eqiations E., 1.3 Linear isotropic media .I]EP- 1.4 Plane electromagnetic waves JfRLqA/ 1.5 Energy flow ?e\u_3-9 1.6 Scalar wave amplitudes LbuhKL}VN 1.7 Dispersive media LK<ZF=z]Z 1.8 Electrical transmission lines 'vV+Wu#[ 1.9 Elementary(ray)optics qIxe)+. 1.9.1 The thin lens n72kJ3u. 1.9.2 Sign conventions 5cb8=W- 1.9.3 Refraction at a spherical surface N|%X/UjZ2. 1.9.4 The thick lens fg/hUUl 1.10 Rays and waves p!EG:B4 Problems w~3z); ;(rK^*`fO 2 Fourier series and Fourier transforms 2Vs+8/ 2.1 Introduction f?TS#jG4} 2.2 Fourier series:spectrum of a periodic waveform S0ReT*I 2.3 Fourier series:a mathematical reshape L)
UCVm 2.4 The Fourier transform:spectrum of a non-periodic waveform !DD4Bqez 2.5 The analytic signal `O!yt 2.6 The Dirac δ-function `Ue5;<K-/ 2.7 Frequency and angular frequency *;l[| 2.8 The power spectrum UgD)O:xaU 2.9 Examples of Fourier transforms k\RS L 2.9.1 A single rectangular pulse X<H{ 2.9.2 The double pulse ANfy+@ 2.9.3 A δ-function pulse eh8lPTKil 2.9.4 A regular array of δ-functions &x$ps 2.9.5 A random array of δ-functions GcG$>&, 2.9.6 An infinite sinewave Z*IW*f&0>1 2.10 Convolution and the convolution theorem u4'B 2.11 Examples of convoltion 1@9M[_<n5 2.12 Sign choices with Fourier transforms >*\yEH9" problems 5=b6B=\*~ Qn.3B 3 Diffraction f ~bgZ 3.1 Introduction AW'$5NF> 3.2 Monochromatic spherical wave RY1-Zjlb< 3.3 The Kirchhoff diffraction integral `|PhXr 3.4 The Kirchhoff boundary conditions >U(E
\`9D 3.5 Simplifying the Kirchhoff inregral DcG=u24Xy! 3.6 Complementary screens:the Babinet principle E,fbIyX 3.7 The Fraunhofer condition I:provisional ce*?crOV 3.8 Fraunhofer diffraction in'one dimension' $LG.rJ/* 3.9 Fraunhofer diffraction in'two dimensions' A-*MH#QUKh 3.10 Two ways of looking at diffraction IJC]Al,df 3.11 Examples of Fraunhofer diffraction 8"A0@fNz 3.12 Fraunhofer diffraction and Fourier transforms wr~Qy4 ny 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number /B|"<`-H 3.14 The Fraunhofer condition Ⅲ:object and image Asy2jw\V 3.15 The Fresnel case of diffraction q\<NW%KtX 3.16 Fraunhofer diffraction and optical resolution x3F94+<n{ 3.17 Surfaces whose fields are related by a Fourier transform c:+UC 3.18 Kirchhoff boundary conditions:a harder look z2Z}mktP Problems %cJdVDW`L ,1]VY/ 4 Diffraction gratings )|#ExyRO 4.1 Introduction 1~j,A[&|< 4.2 A basic transmission grating @jq H8 4.3 The multiple-element pattern MZqHL4<| 4.4 Reflection grating tgHN\@yj 4.5 Blazing 5DO}&%.xt 4.6 Grating spectrometric instruments F%4N/e'L 4.7 Spectroscopic resolution xk3)#* 4.8 Making gratings Vt-V'`Y 4.9 Tricks of the trade @, AB2D 4.9.1 Normal spectrum 0DN&HMI# 4.9.2 Correct illumination R]RLy#j 4.9.3 Shortening exposure times with a spectrograph bJkFCI/ 4.9.4 Vacuum instruments :XTxrYt28 4.9.5 Double monochromator C%j@s| 4.9.6 An inventor's paradise i[w& | |