首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> Pro/ENGINEER,Solidworks -> 21种Pro/E曲线方程 [点此返回论坛查看本帖完整版本] [打印本页]

cyqdesign 2008-09-22 12:20

21种Pro/E曲线方程

1.碟形弹簧  Age  
圓柱坐标 wJ#fmQXKJ5  
方程:r = 5 *nJy  
theta = t*3600 >%Rb}Ki4  
z =(sin(3.5*theta-90))+24*t eaLR-+vEB  
S}L$-7Ct  
图1 OBrbWXp@  
z}?*1c  
2.葉形线. v:/+Oz Y  
笛卡儿坐標标 .}IxZM[}D  
方程:a=10 @CGci lS=  
x=3*a*t/(1+(t^3)) ab"6]%_  
y=3*a*(t^2)/(1+(t^3)) 7|$cM7_r  
Su" 9`  
图2 PF=BXY1<UL  
jw63sn  
3.螺旋线(Helical curve) .quui\I3  
圆柱坐标(cylindrical) DD 8uG`<  
方程: r=t w7Fz(`\  
theta=10+t*(20*360) m# y`  
z=t*3 BG ] w2=  
Dxp8^VL  
图3 f3_-{<FZ  
0_nY70B  
4.蝴蝶曲线 7b>FqW)%  
球坐标 |#_IAN  
方程:rho = 8 * t kp F")0qr  
theta = 360 * t * 4 6<aZr\Ufg  
phi = -360 * t * 8 poLzgd  
4)- ?1?)  
图4 ( X(61[Lu  
\tv^],^`  
5.渐开线 OYnxEdo7  
采用笛卡尔坐标系 ^(}D  
方程:r=1 TpnJm%9`)t  
ang=360*t s?-@8.@  
s=2*pi*r*t etnq{tE5  
x0=s*cos(ang) U(xN}Y ?  
y0=s*sin(ang) g2?kC^=z=  
x=x0+s*sin(ang) FKYPkFB  
y=y0-s*cos(ang) !4;A"B(  
z=0 0%x"Va~"z  
*[VO03  
图5 ?E>(zV1D/  
\!-IY  
6.螺旋线. .\Z/j  
笛卡儿坐标  Tt;h?  
方程:x = 4 * cos ( t *(5*360)) MH wjJ  
y = 4 * sin ( t *(5*360)) +/"Ws '5E  
z = 10*t 0`WjM2So  
,K/l;M5I  
图6 K)ZW1d;  
m-xnbTcQ  
7.对数曲线 RSv?imi=  
笛卡尔坐标系 V(gmC%6%l*  
方程:z=0 uUhqj.::<Y  
x = 10*t 5OJ8o>BF  
y = log(10*t+0.0001) /z=xEnU#  
 w^Mj[v#  
图7 3/?^d;=  
W;Pdbf"  
8.球面螺旋线 !O*'mX  
采用球坐标系 ~mSW.jy}=-  
方程:rho=4 kjj4%0"  
theta=t*180 J\@ r ~x5G  
phi=t*360*20 mB\)Q J.%  
yr;~M{{4  
图8 |\}&mBR  
FR BW(vKE  
9.双弧外摆线 0 _n Pq  
卡迪尔坐标 @PQ% xcOC7  
方程: l=2.5 kT@m*Etr{  
b=2.5 y 4 wV]1  
x=3*b*cos(t*360)+l*cos(3*t*360) hSN{jl{L`  
Y=3*b*sin(t*360)+l*sin(3*t*360) g)3HVAT  
9V'ok.B.x  
图9 p&s~O,Bw$  
=00c1v  
10.星行线 B5A/Iv)2  
卡迪尔坐标 I>bO<T`  
方程:a=5 >P<8E2}*  
x=a*(cos(t*360))^3 h]+UK14m  
y=a*(sin(t*360))^3 ^cz4nW<  
`i2:@?Kl9  
图10 W>E/LBpE4  
H1t`fyri2  
11.心脏线 8mm]>u$  
圓柱坐标 #NyfE|MKBC  
方程:a=10 LJ8 t@ui  
r=a*(1+cos(theta)) B,5kG{2!  
theta=t*360 {`ghX%M(l  
4\_~B{kzZ  
图11 {}n]\zO %  
/Kd9UQU  
12.圆内螺旋线 +QW| 8b  
采用柱座标系 R/WbcQ)  
方程:theta=t*360 3|0wD:Dy  
r=10+10*sin(6*theta) m ?e::W  
z=2*sin(6*theta) : MEB] }  
94}y,\S~  
图12 Pf:;iXH?  
8}?w i[T  
13.正弦曲线 v[2N-  
笛卡尔坐标系 ufi:aE=}  
方程:x=50*t 1RgERj  
y=10*sin(t*360) D#k ~lEPub  
z=0 <r1/& RW,  
h}U>K4BJ  
图13 *-';ycOvr  
u9*7Buou^  
14.太阳线(这本来是做别的曲线的,结果做错了,就变成这样了) fq[1|Q  
] :SbvsPm  
图14 3Fg{?C_l  
cakwGs_{  
15.费马曲线(有点像螺纹线) S]Qf p,  
数学方程:r*r = a*a*theta ri1;i= W  
圓柱坐标 ]~@uStHn  
方程1: theta=360*t*5 pV(qan,  
a=4 O>LqpZ  
r=a*sqrt(theta*180/pi) 0t?g!  
方程2: theta=360*t*5 "!9FJ Y  
a=4 o}=c (u  
r=-a*sqrt(theta*180/pi) B; ^1W{%J  
由于Pro/e只能做连续的曲线,所以只能分两次做 bIXD(5y  
?dy t!>C  
图15 6W/uoH=;  
;r BbLM`  
16.Talbot 曲线 ~='}(Fg:  
卡笛尔坐标 9]^q!~u  
方程:theta=t*360 F|&%Z(@a  
a=1.1 _)Ad%LPsd7  
b=0.666 r`Bm" xI  
c=sin(theta) Kw =RqF  
f=1 jfU$qo!gi  
x = (a*a+f*f*c*c)*cos(theta)/a 8wLGmv^  
y = (a*a-2*f+f*f*c*c)*sin(theta)/b &e3pmHp'  
;--p/h*.  
图16 9hei8L:  
P#9Pq,I  
17.4叶线(一个方程做的,没有复制) tI<6TE'!p#  
4*9BAv  
图17 zmhAeblA  
nH}V:C  
18.Rhodonea 曲线 MP p    
采用笛卡尔坐标系 4xF}rm  
方程:theta=t*360*4 5Y>fVq{U?;  
x=25+(10-6)*cos(theta)+10*cos((10/6-1)*theta) OyQ[}w3o|  
y=25+(10-6)*sin(theta)-6*sin((10/6-1)*theta) KP_7h/e  
6Z5$cR_vC7  
图18 sitgz)Ki^  
v)aV(Oa  
19. 抛物线 F8&L'@m9>  
笛卡儿坐标 r2\ }_pIj  
方程:x =(4 * t) uMjL>YLq{?  
y =(3 * t) + (5 * t ^2) "8 ?6;!,  
z =0 sWKv> bx  
>@EwfM4[e  
图19 I9h{fB  
3uL$+F  
20.螺旋线 LX}|%- iv  
圓柱坐标 qga\icQr  
方程:r = 5 k)zBw(wr  
theta = t*1800 AZ SaI  
z =(cos(theta-90))+24*t b_)SMAsO7  
8l<~zIoO  
图20 E(*S]Z[  
p.5 *`, )  
21.三叶线 S[CWrPaDQ  
圆柱坐标 X=? \A{Y  
方程:a=1 ]YY4{E(9d  
theta=t*380 v}<z_i5/C.  
b=sin(theta) i "aQm  
r=a*cos(theta)*(4*b*b-1) s>=$E~qq  
|!J_3*6$>*  
图21
lijangu 2008-11-13 10:32
怎么没人顶啊,我来顶
monk 2008-11-17 12:57
不懂呀
cgy9901 2009-08-07 08:28
用户被禁言,该主题自动屏蔽!
huanggua 2009-09-26 00:02
对我来说还太高深啦,偶是新手。。。
深蓝 2009-10-30 14:28
谢谢,收藏了
crystalora 2009-11-24 15:58
楼主辛苦了!
cloudfd 2009-11-28 10:38
very good                                              .
simon_h 2009-12-11 14:49
好东东,收藏了
xiaohu111 2009-12-28 23:47
很好很好,我拷一下喽 72y!cK6  
c18725138053 2021-07-15 20:31
求问,有没有非球面的,或者非球面方程在proe里面怎么转化,救救孩子吧,困扰好久了
gx17 2023-05-07 14:53
有公式就方便了
查看本帖完整版本: [-- 21种Pro/E曲线方程 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计