不是美女 |
2008-09-15 14:29 |
CAE技术在注射模冷却系统中的应用
摘要:注射模冷却系统的设计不但关系到塑件质量而且也关系到注射成型生产效率。因塑件所用塑料的性能、塑件的结构以及成型工艺参数不同,注射模对其冷却系统的要求也不相同。本文阐述了CAE(Moldflow)技术在塑料制品(碗橱上盖)注射成型冷却系统中的应用并进行模拟分析,并根据冷却分析的结果提出了相应的优化方案,最终获得了良好的冷却效果。 }
Ved ]zq_gV8k 前言 -^jLU
FC :k )<1ua 在[url=http://plastic.newmaker.com/cat_1110001.html]注塑成型中,模具温度直接影响到塑件的质量(例如:翘曲变形、收缩率、耐应力开裂性)、熔体的充模能力、熔体的温度以及注塑成型的生产率。通过温度调节,保持适当的模具温度,可减小制品的变形、增强制品力学性能、改善制品的表面质量、提高制品尺寸精度;同时,缩短占整个注射循环周期约80%的冷却时间,这将有利于提高注塑成型的生产率。因此,分析并优化设计注塑成型模具的冷却系统,在一定程度上有利于塑件质量的提高和生产成本的降低。 d,rEEc Y O"^a.`27 1 影响冷却系统的因素 PUZXmnB L,A-G"z0Z Is6']bYh 影响注塑模冷却系统的因素很多。如塑件的结构形状和分型面的设计,冷却介质的种类、温度、流速,冷却管道的几何参数及空间布置,模具材料,熔体温度,塑件要求的顶出温度,模具温度,塑件和模具问的热循环交互作用,冷却时间等。例如,提高模具温度会增加制件的冷却时间、增大制件收缩率和脱模后的翘曲,制件成型周期也会因为冷却时间的增加而延长,降低生产率;另一方面,降低模具温度,虽然能够缩短冷却时间、提高生产率,但是,这将会降低熔体在模腔内的流动能力,并导致制件产生较大的内应力或者形成明显的熔接线痕等制件缺陷。冷却时间的长短决定了制件脱模时的温度和成型周期的长短,直接影响产品成本及质量的高低。 AB&wn>q !4,xQ^
基于以上多方面因素的分析,并考虑MPI/Cool提供了对冷却管道(包括隔板管、喷流管、连接软管)、镶块、多种模具材料、冷流道和热流道、分型面及模具边界对模具和制品温度的冷却模拟分析的功能,这些都为优化设计冷却系统提供了可靠的依据。 o`8+#+@f7 )4_6\VaM 2 注塑模的冷却分析 _t;VE06Xjs '/Cz{<, 2au(8IWu 2.1模型的建立及成型工艺参数的预置 Fx99"3`3 O9=H
[b 碗橱上盖大小为500mm×480mm×250mm,整个产品的厚度均为3mm。 4Z~Dxo b
G5 首先应用PROE获得碗橱上盖产品的三维模型,并以*.stl的文件格式导入Moldflow中。然后对制件以Fusion的格式进行网格划分并利用有限元方法的相关软件进行有限元修复,最终获得的参数如下:面单元数=11185,节点数=5680,单元的匹配率=79.0%。 7C?mD75j :+^$?[6] 冷却分析的预置工艺参数如下:成型材料选择Polyflam Rpp1058-295(PP),模具温度50℃,熔体温度230℃,开模时间5秒,注塑保压冷却时问总和为30秒,填充控制、速度/压力控制转换为自动控制,保压控制为填充压力与时间关系,采用默认值。 zu*G4?]~h ApJf4D<V 冷却系统中,预置冷却管道的布局,依据塑件结构预置3根冷却管道,冷却管道的直径为10mm;冷却介质为水,其温度为25℃,流率2.54L/min;人口雷诺系数为10000;模拟分析流程为Cool模式。 ZFuJ2 : ;q&D,4r] 2.2冷却分析 jzA8f+:q hGo|2@sc 冷却分析是用来分析模具内的热传递,主要包含塑件和模具的温度、冷却时间等。决定冷却系统性能优劣的因素如下:树脂熔体对模具的热传导速率;整个模具中从塑料熔体/金属界面到金属/冷却剂界面的热传导速率;从金属/冷却剂界面到冷却剂的传导速率。即热传递性能决定了冷却系统的性能,其中影响塑料熔体到模具壁的热传递速率的因素有:熔体的材料性能,如比热、热传导能力;熔体与模壁之间的温度梯度;熔体和模具之间的接触性能。 0#/
6P&6 c2mt<DtWW MPI/Cool通过对模具、制品、冷却系统的传热分析,为用户提供了丰富的模拟分析结果: cASHgm Hh;6B!zb+ (1)冷却时间。为保证制品在脱模时有足够的强度,以防止脱模后发生变形,要确定合适的冷却时间;MPI/cool能够计算制品完全固化或用户设定的固化百分比所需要的冷却时间。 "sx& | |