首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 光学资源 -> 光学知识共享(回帖就可下载) [点此返回论坛查看本帖完整版本] [打印本页]

<<  1   2   3   4   5   6   7  >>  Pages: ( 11 total )

threewolf 2008-09-05 12:07

光学知识共享(回帖就可下载)

是骗人的阿
tanj.pe 2008-09-10 01:28
光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。17世纪,望辽镜和显微镜的应用大大促进了几何光学的发展。 <$b5Yx9   C<:wSS^@1  
zH"Y0;8   /-lW$.+{?  
光的本性也是光学研究的重要课题。微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。19世纪以前,微粒说比较盛行。但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如乾涉、绕射等,用光的波动性就很容易解释。於是光学的波动说又占了上风。两种学说的争论构成了光学发展史上的一根红线。 vzj lt   7mi=Xa:U  
[\0z2{_3   |]q{ qsy  
狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到 x射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。  # ;sx   :+9. v  
$:sS!h -W   S]fkA6v  
光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。 !q;_,N(   N!?~Dgw  
cL%dfj   0 nI*9  
人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。 Qe*Z,.Y$   JM0+-,dl[  
l3._EgV   4$2HO `@uN  
自《墨经)开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。 ! fPl s   ''9K(p6  
7RL\}e   ixM#|Yq  
1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。 [ 7.mh0(   rFC9y o  
Zdxum( ~   V0,5c`H c  
牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。 @;Yy(Zq   \C;Yn6PK0  
eqG6BXY2   H 9/m6F  
牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。 PRGQ;$s7   T[[E)f1[  
]T0kF0=S   w"M!**bP  
惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。 xJ(\n6i.   UZiL NKc  
+^UTgN ^   1M_6X7PH  
19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝乾涉现象。菲涅耳于1818年以杨氏乾涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的乾涉和衍射现象,也能解释光的直线传播。 IwvAK}CE   qS}{O0  
N+! 1|   j";L{  
在进一步的研究中,观察到了光的偏振和偏振光的乾涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。 5E yXlIM   pkG8g5(w  
{\Jbc@fK   ;/23CFYM  
1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。 g| v1o Pt   _8`S&[E?  
g-a s T   60|m3|0o  
1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。 SFH:T7 !g   OL#i!ia.  
p*>_/d(KG2   lnMU5[g{  
对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用乾涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。 qc++? 2   A;/,</  
,)%7aCNtk   =VWH8w.3  
1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。 P&zRVY@i   CIwI1VR^  
( p8XxCP=   4yMi9Ri4H  
量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。 !>)h|rT,v   XI ><;#  
g+Fw|L   .Q</0*sp  
1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。 [sR*Ib`fw   xw~oR|`U  
rQR%V(;Q1   4rCw#mVtB  
1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。 M qtK`^   f0g_Gn $  
Sy =%YSM   ;L],i<F  
这样,在20世纪初,一方面从光的乾涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。 3uX jo   }DvT6  
UD:ROfk<   y(C',Xn  
1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。 fM #U   LsMq&a-j2  
zFxkAur!   'UCClj;?K  
此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。 r_W>kz-|   aJs! bx>K  
x'Xg6   vvG*DGL)qL  
爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。 LzllS9is;   Fkqw #s(T  
TSxu&:?c   'OhGSs|  
光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。 i IHw   FVOPC:}bj  
O41PrD O-a   0eA |Uq~  
自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。再加上由于激光所提供的相乾光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。 Hq/(   PGTjOkx  
kFOW:Ln#   \<} e?Yx%  
在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。 c  {Y/sB   n;.);  
?KM\yy   8RZqoQDH  
光学的研究内容 S* 2#XE4   FYg{IKg  
N(f%%Am?5   T!&VT;   
我们通常把光学分成几何光学、物理光学和量子光学。  ArU q k   \3 rgwbF  
07$,UQ   8X\":l:  
几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。 ^N=2W   R C!~eJG!  
@>=I(~,A7   )5diX + k  
物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。 g2&@t= 8Np   [;C*9Nl  
~L=C|l:b   N40DL_-  
波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。 g=/)>4x!``   0}>p)k3&A  
i3f7Q%0px   )\izL]=!t  
量子光学  1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。 ,` 2^S|a`J   >ISBK[=H  
k.wFJ+   5G#2#Al(F  
1905年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能。 iIYOvB=<   [GW;RjPE  
hX$ZB2(A   Og2w] B[  
这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。 {l5!Y%   0bQ"s*K  
h17[11 #{   99Nm?$ g  
光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。 s2t%?rt   ]PH'G>x  
gW/i,D   3qp\jh=FE  
应用光学  光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。例如,有关电磁辐射的物理量的测量的光度学、辐射度学;以正常平均人眼为接收器,来研究电磁辐射所引起的彩色视觉,及其心理物理量的测量的色度学;以及众多的技术光学:光学系统设计及光学仪器理论,光学制造和光学测试,干涉量度学、薄膜光学、纤维光学和集成光学等;还有与其他学科交叉的分支,如天文光学、海洋光学、遥感光学、大气光学、生理光学及兵器光学等。光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。17世纪,望辽镜和显微镜的应用大大促进了几何光学的发展。 <$b5Yx9   `y&2Bf  
zH"Y0;8   _6sSS\  
光的本性也是光学研究的重要课题。微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。19世纪以前,微粒说比较盛行。但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如乾涉、绕射等,用光的波动性就很容易解释。於是光学的波动说又占了上风。两种学说的争论构成了光学发展史上的一根红线。 vzj lt   l8DZ2cw]  
[\0z2{_3   40;4=  
狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到 x射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。  # ;sx   9iK%@k  
$:sS!h -W   u>03l(X6f  
光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。 !q;_,N(   Pfg.'Bl  
cL%dfj   2J6(TrQ  
人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。 Qe*Z,.Y$   ?ieC>cr  
l3._EgV   cD<5~`l  
自《墨经)开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。 ! fPl s   _/}/1/y$Y  
7RL\}e   R6irL!akAd  
1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。 [ 7.mh0(   S1*xM  
Zdxum( ~   u5P2*  
牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。 @;Yy(Zq   E^Z?X2Z  
eqG6BXY2   F*,RDM'M  
牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。 PRGQ;$s7   @aWd0e]  
]T0kF0=S   Dgz^s^fxU  
惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。 xJ(\n6i.   /Nd`eUn  
+^UTgN ^   ;c#jO:A5  
19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝乾涉现象。菲涅耳于1818年以杨氏乾涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的乾涉和衍射现象,也能解释光的直线传播。 IwvAK}CE   e6'y S81  
N+! 1|   '!XVz$C  
在进一步的研究中,观察到了光的偏振和偏振光的乾涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。 5E yXlIM   %Wg8dy|  
{\Jbc@fK   rn-CQ2{?  
1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。 g| v1o Pt   ^r 9  
g-a s T   ! X<dN..  
1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。 SFH:T7 !g   -j}zr yG-  
p*>_/d(KG2   AKUmh  
对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用乾涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。 qc++? 2   `R_;n#3F0  
,)%7aCNtk   89%#;C  
1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。 P&zRVY@i   /,^AG2]( f  
( p8XxCP=   +nQp_a1{9%  
量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。 !>)h|rT,v   {bO O?pp  
g+Fw|L   39Tlt~Psz  
1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。 [sR*Ib`fw   Au{J/G<W@  
rQR%V(;Q1   +(8Z8]Jf  
1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。 M qtK`^   T5+9#  
Sy =%YSM   8/ PS#dM\  
这样,在20世纪初,一方面从光的乾涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。 3uX jo   Q;eY]l8  
UD:ROfk<   2$yNryd  
1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。 fM #U   cFloaCz  
zFxkAur!   kuo!}QFL  
此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。 r_W>kz-|   ~>>^7oq  
x'Xg6   7E\k97#G  
爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。 LzllS9is;   / yTPb  
TSxu&:?c   lw_PQ4Hp  
光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。 i IHw   }9 I,p$  
O41PrD O-a   h=MEQ-3jg  
自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。再加上由于激光所提供的相乾光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。 Hq/(   X~ g9TUv8  
kFOW:Ln#   R b=q #  
在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。 c  {Y/sB   e4Q2$ Q@b  
?KM\yy   cP >[H:\Xc  
光学的研究内容 S* 2#XE4   Q-y`IPtA<  
N(f%%Am?5   C?t!Uvs  
我们通常把光学分成几何光学、物理光学和量子光学。  ArU q k   }]|e0 w:  
07$,UQ   A\)~y{9bQ  
几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。 ^N=2W   `-w;/A"MJ  
@>=I(~,A7   w'a3=_nW  
物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。 g2&@t= 8Np   LHd9q ^D  
~L=C|l:b   ^.@F1k  
波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。 g=/)>4x!``   U'0e<IcY  
i3f7Q%0px   EEj.Kch}4  
量子光学  1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。 ,` 2^S|a`J   @ 3,:G$,  
k.wFJ+   ..UA*#%1  
1905年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能。 iIYOvB=<   oR'u&\mB  
hX$ZB2(A    /J[s5{  
这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。 {l5!Y%   ]Yk)A.y  
h17[11 #{   b r\_  
光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。 s2t%?rt   -Rbv#Y  
gW/i,D   Gm-V/[29R  
应用光学  光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。例如,有关电磁辐射的物理量的测量的光度学、辐射度学;以正常平均人眼为接收器,来研究电磁辐射所引起的彩色视觉,及其心理物理量的测量的色度学;以及众多的技术光学:光学系统设计及光学仪器理论,光学制造和光学测试,干涉量度学、薄膜光学、纤维光学和集成光学等;还有与其他学科交叉的分支,如天文光学、海洋光学、遥感光学、大气光学、生理光学及兵器光学等。光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。17世纪,望辽镜和显微镜的应用大大促进了几何光学的发展。 <$b5Yx9   p|Nh:4iN  
zH"Y0;8   aBWA hn  
光的本性也是光学研究的重要课题。微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。19世纪以前,微粒说比较盛行。但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如乾涉、绕射等,用光的波动性就很容易解释。於是光学的波动说又占了上风。两种学说的争论构成了光学发展史上的一根红线。 vzj lt   w7b\?]}@  
[\0z2{_3   N%!{n7`N:  
狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到 x射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。  # ;sx   `zsooA Gt  
$:sS!h -W   kt7x}F(?<  
光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。 !q;_,N(   1EA#c>I$  
cL%dfj   k[{ ~ eN:  
人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。 Qe*Z,.Y$   t_jnp $1m  
l3._EgV   W}M 3z  
自《墨经)开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。 ! fPl s   'C) v?!19  
7RL\}e   `j!XWh*$  
1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。 [ 7.mh0(   /n1L},67h  
Zdxum( ~   s%^@@Dk  
牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。 @;Yy(Zq   q@vqhE4  
eqG6BXY2   eD!mR3Ai@D  
牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。 PRGQ;$s7   H7(D8.y )  
]T0kF0=S   h}4yz96WD  
惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。 xJ(\n6i.   4OFv#$[  
+^UTgN ^   jGe%'A N\  
19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝乾涉现象。菲涅耳于1818年以杨氏乾涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的乾涉和衍射现象,也能解释光的直线传播。 IwvAK}CE   z[' 2  
N+! 1|   I %|;M%B  
在进一步的研究中,观察到了光的偏振和偏振光的乾涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。 5E yXlIM   ]EqwDw4  
{\Jbc@fK   Tb\<e3Te_  
1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。 g| v1o Pt   F(|XJN  
g-a s T   2=uwGIF  
1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。 SFH:T7 !g   @;}vK=6L  
p*>_/d(KG2   P~s u]+  
对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用乾涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。 qc++? 2   _fS4a134R  
,)%7aCNtk   WaSZw0U}y  
1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。 P&zRVY@i   t8M\  
( p8XxCP=   *U +<Hv`C  
量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。 !>)h|rT,v   fGoJP[ae  
g+Fw|L   ox5WboL  
1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。 [sR*Ib`fw   ~bsdy2&/q  
rQR%V(;Q1   0X5b32  
1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。 M qtK`^   Z{x)v5yh2V  
Sy =%YSM   6B+?X5-6DH  
这样,在20世纪初,一方面从光的乾涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。 3uX jo   Vllxv6/_  
UD:ROfk<   EVP{7}K1  
1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。 fM #U   d'iSvd.  
zFxkAur!   <Yg6=e  
此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。 r_W>kz-|   ~ +h4i'  
x'Xg6   a[p$e?gka  
爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。 LzllS9is;   #n]K$k>  
TSxu&:?c   Q" r y@ (I  
光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。 i IHw   AG><5 }  
O41PrD O-a   5= T$h;O  
自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。再加上由于激光所提供的相乾光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。 Hq/(   5+yy:#J]  
kFOW:Ln#   88l1g,`**  
在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。 c  {Y/sB   snYeo?|b  
?KM\yy   =\G`g #  
光学的研究内容 S* 2#XE4   _qk yU)z  
N(f%%Am?5   2_}oOt?qiM  
我们通常把光学分成几何光学、物理光学和量子光学。  ArU q k   (I/ iD.A  
07$,UQ   uU%Z%O  
几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。 ^N=2W   L7R!,  
@>=I(~,A7   r+k&W  
物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。 g2&@t= 8Np   ubRhJ~XB  
~L=C|l:b   BS(jC  
波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。 g=/)>4x!``   q;*'V9#  
i3f7Q%0px   Kg`P@  
量子光学  1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。 ,` 2^S|a`J   uIBN !\j  
k.wFJ+   rgDl%X2B  
1905年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能。 iIYOvB=<   *,t/IA|  
hX$ZB2(A   p=3t!3  
这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。 {l5!Y%   wY ??#pS  
h17[11 #{   O p1TsRm5L  
光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。 s2t%?rt   ;" Aj80  
gW/i,D   <@[;IX`YN  
应用光学  光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。例如,有关电磁辐射的物理量的测量的光度学、辐射度学;以正常平均人眼为接收器,来研究电磁辐射所引起的彩色视觉,及其心理物理量的测量的色度学;以及众多的技术光学:光学系统设计及光学仪器理论,光学制造和光学测试,干涉量度学、薄膜光学、纤维光学和集成光学等;还有与其他学科交叉的分支,如天文光学、海洋光学、遥感光学、大气光学、生理光学及兵器光学等。光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。17世纪,望辽镜和显微镜的应用大大促进了几何光学的发展。 <$b5Yx9   T?RN} @D  
zH"Y0;8   oY0*2~sg  
光的本性也是光学研究的重要课题。微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。19世纪以前,微粒说比较盛行。但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如乾涉、绕射等,用光的波动性就很容易解释。於是光学的波动说又占了上风。两种学说的争论构成了光学发展史上的一根红线。 vzj lt   eK5~YM:o  
[\0z2{_3   *6eJmbFG  
狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到 x射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。  # ;sx   "?<(-,T  
$:sS!h -W   :W6'G@ p  
光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。 !q;_,N(   l(Dr@LB~  
cL%dfj   (E7"GJ  
人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。 Qe*Z,.Y$   w}#3 pU<<  
l3._EgV   QUaV;6 4  
自《墨经)开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。 ! fPl s    P_'{|M<?  
7RL\}e   V'tR \b  
1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。 [ 7.mh0(   OQ4Pk/-'  
Zdxum( ~   P j,H]  
牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。 @;Yy(Zq   RN|Bk  
eqG6BXY2   Ghc U ~  
牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。 PRGQ;$s7   p(nO~I2E  
]T0kF0=S   fj/L)i  
惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。 xJ(\n6i.   E)`0(Z:E  
+^UTgN ^   q*5L",  
19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝乾涉现象。菲涅耳于1818年以杨氏乾涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的乾涉和衍射现象,也能解释光的直线传播。 IwvAK}CE   'CSjj@3X  
N+! 1|   d3 i(UN]  
在进一步的研究中,观察到了光的偏振和偏振光的乾涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。 5E yXlIM   Wp+lI1t  
{\Jbc@fK   %hN(79:g  
1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。 g| v1o Pt   mZc;n.$U  
g-a s T   63J3NwFt  
1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。 SFH:T7 !g   ID`Ot{ y  
p*>_/d(KG2   IZm6.F  
对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用乾涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。 qc++? 2   tQRbNY#}Z  
,)%7aCNtk   )+|wrK:*v  
1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。 P&zRVY@i   +nHr+7}  
( p8XxCP=   F(zCvT   
量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。 !>)h|rT,v   wN10Drc   
g+Fw|L   }h1LH4  
1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。 [sR*Ib`fw   q,<l3rIn  
rQR%V(;Q1   d}tmZ*q  
1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。 M qtK`^   ]n>9(Mp!M  
Sy =%YSM   6P}?+ Gc  
这样,在20世纪初,一方面从光的乾涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。 3uX jo   GF9[|). T  
UD:ROfk<   0^\H$An*k  
1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。 fM #U   #pgD-0_  
zFxkAur!   'jMs&  
此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。 r_W>kz-|   AZE%fOG<i  
x'Xg6   $] xH"Z%"  
爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。 LzllS9is;   EC0B6!C&7  
TSxu&:?c   $GU  s\  
光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。 i IHw   R+0gn/a[G  
O41PrD O-a   ky]^N)  
自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。再加上由于激光所提供的相乾光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。 Hq/(   Pv,PS.,-  
kFOW:Ln#   N\&VJc  
在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。 c  {Y/sB   `7y3C\zyQ  
?KM\yy   ks("( nU  
光学的研究内容 S* 2#XE4   )m3emMO2  
N(f%%Am?5   \p( 0H6  
我们通常把光学分成几何光学、物理光学和量子光学。  ArU q k   ,r~^<m  
07$,UQ   ?Fa$lE4  
几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。 ^N=2W   W`JI/  
@>=I(~,A7   D</?|;J#/  
物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。 g2&@t= 8Np   R!7--]Wcg  
~L=C|l:b   !KJ X$?  
波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。 g=/)>4x!``   xi.?@Lff  
i3f7Q%0px   K3h];F! ^  
量子光学  1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。 ,` 2^S|a`J   c(vi,U-hC  
k.wFJ+   Lg,ObVt!  
1905年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能。 iIYOvB=<   E$4H;SN \  
hX$ZB2(A   RA!m,"RM  
这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。 {l5!Y%   I4w``""c  
h17[11 #{   lul  
光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。 s2t%?rt   Iurz?dt4w  
gW/i,D   ) ?kbHm  
应用光学  光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。例如,有关电磁辐射的物理量的测量的光度学、辐射度学;以正常平均人眼为接收器,来研究电磁辐射所引起的彩色视觉,及其心理物理量的测量的色度学;以及众多的技术光学:光学系统设计及光学仪器理论,光学制造和光学测试,干涉量度学、薄膜光学、纤维光学和集成光学等;还有与其他学科交叉的分支,如天文光学、海洋光学、遥感光学、大气光学、生理光学及兵器光学等。
canon62 2008-09-10 12:02
我想看一下这份资料
lianhedexi 2008-09-12 15:21
看看!!
mq120805 2008-09-12 15:24
所见即所得
hoyacumt 2008-09-13 10:29
看看我们公司也镀膜,不过最多才7层镀膜!
wt5188 2008-09-16 17:16
hao kankan
亚特 2008-09-17 09:07
下载下来看看 谢谢了
bamboosong 2008-09-20 21:58
thank you for sharing it with us
bt12 2008-09-21 01:22
下载 UHi^7jQ  
谢谢
changjin 2008-09-21 09:58
谢谢共享了。
好来好往 2008-09-21 13:27
好的帖子啊!好
lanyuchen 2008-09-25 20:44
好东西吗?做镜片膜的有用?
xiaobin202 2008-09-26 22:16
知识缺乏,需要看看
hnx1144521 2008-09-27 19:30
谢谢。
cgn94805 2008-09-27 21:42
Thank you :)
rubpy 2008-09-28 11:49
谢谢了,good!
nhcboy 2008-09-29 19:40
很想知道是什么,下来看看
nhcboy 2008-09-29 19:45
很想知道是什么。
beyondniu 2008-09-29 23:40
收了,谢谢
shaojun 2008-09-30 23:09
下载下来看看 谢谢了
eddy2work 2008-09-30 23:54
Thanks a lot for your knowledge sharing
wzxwzx1104 2008-10-06 18:10
学习学习
hwjvv 2008-10-09 14:03
就看看
mr.boomba 2008-10-09 15:57
看下来哦
jimmy58 2008-10-09 16:17
感謝你的分享
jimmy58 2008-10-09 16:18
還是下不來耶
hawk1021 2008-10-09 21:41
我也下载看看
nierong012 2008-10-10 08:28
xiexie
brightstee 2008-10-12 19:43
谢谢楼主。
zzpmmm 2008-10-12 22:51
o ,真好
fashi1983 2008-10-13 09:00
thank you
pywsw 2008-10-13 10:02
顶顶顶!!!
laoris 2008-10-13 12:18
好啊,谢谢
lianjuan 2008-10-13 13:20
看看,先谢谢楼主
wanghong74 2008-10-17 15:05
下载下来看看吧
xiaomiaoer 2008-10-18 13:55
43543445
szyrsj 2008-10-18 22:51
赌东道赌东道赌东道的          
dengmc 2008-10-21 11:08
好东西,下来看看
lsfeng2008 2008-10-21 12:21
确实是非常好的东西啊!
robyn1986 2008-10-21 16:20
谢谢楼主的分享 看看
zsszjh666 2008-10-22 15:31
学习,学习
fengsheng 2008-10-23 18:54
任何一种光学仪器的用途和使用条件必然会对它的光学系统提出一定的要求,因此,在我们进行光学设计之前一定要了解对光学系统的要求。这些要求概括起来有以下几个方面。 O~=|6#c   KiNluGNt  
* M,'F^E2   VK4"  
一、 光学系统的基本特性 QXg9ah~   P(zquKm  
VGtKW kVH   O}Do4>02  
光学系统的基本特性有:数值孔径或相对孔径;线视场或视场角;系统的放大率或焦距。此外还有与这些基本特性有关的一些特性参数,如光瞳的大小和位置、后工作距离、共轭距等。 l S m7i   N_.`5I;e  
-D-]tL6w   r3Ih]|FK#  
二、 系统的外形尺寸 '<eeCe-   GlXzH1wZ  
rW<sQ0   FC8= ru  
系统的外形尺寸,即系统的横向尺寸和纵向尺寸。在设计多光组的复杂光学系统时,外形尺寸计算以及各光组之间光瞳的衔接都是很重要的。 O!=ae|   UFa00t^5  
^N`bA8   BQ~&gy{  
三、 成象质量 r|W 2I,P   gi\UNT9x  
Pk 6l*+"r<   j%*<W> O  
成象质量的要求和光学系统的用途有关。不同的光学系统按其用途可提出不同的成象质量要求。对于望远系统和一般的显微镜只要求中心视场有较好的成象质量;对于照相物镜要求整个视场都要有较好的成象质量。 3+` <2TP   l)1ySX&BU  
z/&2Se:   ,rQPs  
四、 仪器的使用条件 \vR&-+8dk   v[?eL0Z  
v2tKk^6`(i   B;L^!sLP  
在对光学系统提出使用要求时,一定要考虑在技术上和物理上实现的可能性。如生物显微镜的放大率Г要满足500NA≤Г≤1000NA 条件,望远镜的视觉放大率一定要把望远系统的极限分辨率和眼睛的极限分辨率一起来考虑。 (&y~\t] H   Aa%ks+1  
}VUrn2@-4   SRk-3:  
光学系统设计过程 ; Fi(zl   `qbsDfq@  
?%Pd:~4D   MXpj_+@  
所谓光学系统设计就是根据使用条件,来决定满足使用要求的各种数据,即决定光学系统的性能参数、外形尺寸和各光组的结构等。因此我们可以把光学设计过程分为4 个阶段:外形尺寸计算、初始结构计算、象差校正和平衡以及象质评价。 .7"]/9oB   ( e(<4-&  
$<[Q8V-   IAn/?3a~  
一、外形尺寸计算 A_mVe\(*M   nHL(v  
9ne13 qVm+   af7\2 g3*  
在这个阶段里要设计拟定出光学系统原理图,确定基本光学特性,使满足给定的技术要求,即确定放大倍率或焦距、线视场或角视视场、数值孔径或相对孔径、共轭距、后工作距离光阑位置和外形尺寸等。因此,常把这个阶段称为外形尺寸计算。一般都按理想光学系统的理论和计算公式进行外形尺寸计算。在计算时一定要考虑机械结构和电气系统,以防止在机构结构上无法实现。每项性能的确定一定要合理,过高要求会使设计结果复杂造成浪费,过低要求会使设计不符合要求,因此这一步骤慎重行事。 fA k]]PU   (KG>lTdN  
{M.OOEcIp   "{(4  
二、初始结构的计算和选择、 BcfW94   .J|" bs9  
P&s- U6   }Rq-IRa'  
初始结构的确定常用以下两种方法: *QIlh" "6   JSiLG0  
nSM8o<)H   P}Ule|&LK  
1.根据初级象差理论求解初始结构这种求解初始结构的方法就是根据外形尺寸计算得到的基本特性,利用初级象差理论来求解满足成象质量要求的初始结构。 zB?} {@   1hgmlY`  
m4<5jC`-M   K<tkNWasQ  
2.从已有的资料中选择初始结构 !\Dl X |   @AkD-}^[  
@]rl2Qqe   30/(  
这是一种比较实用又容易获得成功的方法。因此它被很多光学设计者广泛采用。但其要求设计者对光学理论有深刻了解,并有丰富的设计经验,只有这样才能从类型繁多的结构中挑选出简单而又合乎要求的初始结构。 ZJ$nHS?ra   NvlG@^&S  
&RzkM4"   rB%acTCz=[  
初始结构的选择是透镜设计的基础,选型是否合适关系到以后的设计是否成功。一个不好的初始结构,再好的自动设计程序和有经验的设计者也无法使设计获得成功。 TspuZR@2   }+f@$L  
5-3.7CO$   Fop "m/  
三、象差校正和平衡 X#|B*t34   Y3I+TI>x  
)tq&l>0h   PfVjfrI[  
初始结构选好后,要在计算机上用光学计算程序进行光路计算,算出全部象差及各种象差曲线。从象差数据分析就可以找出主要是哪些象差影响光学系统的成象质量,从而找出改进的办法,开始进行象差校正。象差分析及平衡是一个反复进行的过程,直到满足成象质量要求为止。 eVXlQO   =Wk!mGc  
Xiy9Oeq2uh   >U$,/_uMNW  
四、象质评价 Aa.eu=@I   TXQ Y&7  
5a`f % h%   v0}.!u>Ww  
光学系统的成象质量与象差的大小有关,光学设计的目的就是要对光学系统的象差给予校正。但是任何光学系统都不可能也没有必要把所有象差都校正到零,必然有剩余象差的存在,剩余象差大小不同,成象质量也就不同。因此光学设计者必须对各种光学系统的剩余象差的允许值和象差公差有所了解,以便根据剩余象差的大小判断光学系统的成象质量。评价光学系统的成象质量的方法很多,下面简单介绍一下象质评价的方法。 V>$A\AWw   EGyQ hZ mO  
n0ZrgTVJ   #| Et9  
1.瑞利判断 8l?mNapy   *tT }y(M  
4 Wb^$i!   a|@^ N  
实际波面与理想波面之间的最大波象差不超过1/4 波长。其是一种较为严格的象质评价方法,适用于小象差系统如:望远镜、显微物镜等。 z154lY}K   N5[fw z w  
uPmK:9]3R   nPUq+cXy]C  
2.分辨率 @PaOQ @   Lw.N3!e[  
=T?:b8yV    G l*C"V  
分辨率是反映光学系统分辨物体细节的能力。当一个点的衍射图中心与另一个点的衍射图的第一暗环重合时,正好是这两个点刚能分开的界限。 1 +0-VRl   t=ry\h{Pc  
1?oX"   e]{X62]  
3.点列图  y[C++Q   Fu(I<o+T-  
=o!1}'1}}    p68) 0  
由一点发出的许多光线经光学系统以后,由于象差,使其与象面的交点不现集中于同一点,而形成一个分布在一定范围内的弥散图形,称之为点列图。通常用集中30%以上的点或光线的圆形区域为其实际有效的弥散斑,它的直径的倒数,为系统能分辨的条数。其一般用于评价大象差系统。 mBrH`!   RyxIJJui  
I<``d Ne9Q   `+QrgtcEy4  
4.光学传递函数 C'wRF90   k^.9;FmQ  
}%T8?d]   u]ZCYJ>  
此方法是基于把物体看作是由各种频率的谱组成的,也就是将物的亮度分布函数展开为傅里叶级数或傅里叶积分。把光学系统看作是线性不变系统,这样,物体经光学系统成象,可视为不同频率的一系列正弦分布线性系统的传递。传递的特点是频率不变,但对比度下有所下降,相位发生推移,并截止于某一频率。对比度的降低和位相的推移随频率而异,它们之间的函数关系称为光学传递函数。由于光学传递函数与象差有关,故可用来评价光学系统成象质量。它具有客观、可靠的优点,并且便于计算和测量,它不仅能用于光学设计结果的评价,还能控制光学系统设计的过程、镜头检验、光学总体设计等各方面。 P,eP>55'K   l$Y7CIH  
'#oNOU   '%R Yo#  
各类镜头的设计差别 UGb<&)   _, ;c2  
R/O>^s!Co   d+fi g{<b  
一、照相镜头 L,+m5wKj[   %zB `Sd<  
rP7[{'%r   #s Ebu^  
照相镜头的光学特性可由三个参数来表示,即照相镜头的焦距f'、相对孔径D/f'和视场角2ω'。其实就135 照相机而言,其标准画幅已确定为24mm X 36mm,则其对角线长度为2D=43.266。从下表我们可以得出照相机镜头的焦距f'和视场角ω'之间存在着以下关系: tgω'=D/f' n9w(Z=D\   p_ QL{gn  
jR_o!n~5   MqI!i>  
式中:2D——画幅的对角线长度; }<9IH%sgF   #f@sq5pTO  
[gybdI5wur   3&-BO%i  
f'——镜头的焦距。 &*nq.l76X`   h^bbU.  
F*, e,s   /cDla5eej  
照相机镜头的另一个最重要的光学特征指标是相对孔径。它表示镜头通过光线的能力,用D/f'表示。它定义为镜头的光孔直径(也称入瞳直径)D 与镜头焦距f'之比相对孔径的倒数称为镜头的光圈系数或光圈数,又称F 数,即F=f'/D。当焦距f'固定时,F 数与入瞳直径D 成反比。由于通光面积与D 的平方成正比,通光面积越大则镜头所能通过的光通量越大。因此当光圈数在最小数时,光孔最大,光通量也最大。随着光圈数的加大,光孔变小,光通量也随之减少。如果不考虑各种镜头透过率差异的影响,不管是多长焦距的镜头,也不管镜头的光孔直径有多大,只要光圈数值相同,它们的光通量都是一样的。对照相机镜头而言,F 数是个特别重要的参数,F 数越小,镜头的适用范围越广。与目视光学系统相比,照相物镜同时具有大相对孔径和大视场,因此,为了使整个象面都能看到清晰的并与物平面相似的象,差不多要校正所有七种象差。照相物镜的分辨率是相对孔径和象差残余量的综合反映。在相对孔径确定后,制定一个既满足使用要求,又易于实现的象差最佳校正方案。为方便起见,往往采用“弥散圆半径”来衡量象差的大小,最终则以光学传递函数对成象质量作出评价。 yW)&jZb"(   DP*[t8  
)s~szmJoVD   W$P)fPU'  
近年来兴起的数位相机镜头同上述的传统相机镜头的特性和设计评价上大同不异,其主要差别有: tZL {;@   nK6{_Y>  
gy*c$[NS$   j4Cad  
1.相对孔径较传统相机大。 Q{:=z6&   -$4PY,  
(~ `?_   f?_H02j`/E  
2.较短的焦距,使得景深范围增大。可根据视场角的大小算出相当传统相机镜头的焦距值F’=43.266/(2*tgω)。 ]I[\Io1   qGgT<Rd~1  
3Ow bU   3%xj-7z W  
3.较高的分辨率,根据光电器件的PIXEL 的大小,一般数位镜头光学设计要达到1/(2*PIXEL)线对。 dI?x&#(vw   [3rvRJ.  
0Lx,qZ'   w.Ft-RXA W  
二、投影镜头 h3rVa6cxM   H5=-b@(  
cfC}"As   <$HP"f+<S5  
投影物镜是将被照明的物成一明亮清晰的实像在屏幕上,一般讲,像距比焦距大的多,所以物平面在投影物镜物方焦平面外侧附近。 P\ia ?9   KaHjL&!  
;-Ki `x.oJ   :NO'[iE  
投影物镜的放大率是测量精度、孔径大小、观测范围和结构尺寸的的重要参数。 VD~ %6AjyN   ;e_n7>'#%  
w'6sJ#ba(   B}YB%P_CWs  
放大率愈大,测量精度愈高,物镜孔径愈大。当工作距离一定时,放大率愈大,共轭距愈大,投影系统结构尺寸越大。由于其是起放大作用,自光学知识可知,像面中心照度与相对孔径平方成正比,可用增大相对孔径的方法来增加象面照度。 @gnLY   $} 7/mS@c  
):]5WHYg   X'WbS  
液晶式投影机上所用的投影镜头同传统的投影物镜的区别: qs>&Xn   4S@^ym  
D!V~g72j   +X0?bVT  
1.相对孔径较大。 jct'B}@X(   zrG&p Z  
GmH`ip i   {cKKTDN  
2.出瞳距长,即需要设计成近远心光路。 NpH9}, 1i   !5Kv9P79  
B:VGa<lx5   o|AV2FM)  
3.工作距离长。 #wZbG|%   Z@ * ^4Ve  
QIfP%,LT   a%sr*`  
4.解像力高. }.D adV   W)?B{\  
N%S|Ey@f   S!k cC-7  
5.畸变要求高. n-{.7   NS;,(v{*N  
6OR)97   SV}I+O_w  
以上几点,皆使得用于LCD 投影机上的投影物镜较传统的要复杂的多,一般要 ; o(:}d   5R/!e`(m  
CIVV"p`}   .T/\5_Bx  
10 个镜片左右,而传统的一般只要3 个镜片就能达到。 <Y"HC a{   F%t`dz!L  
"jf_xZ$H-   sC48o'8(  
三、扫描镜头 4n*`%V   InMF$pw  
+U iJWO   4E}/{1  
扫描物镜可用三个光学特性来表示,即相对孔径、放大率和共轭距。放大率是扫描物镜的一个重要指标,由于一般物体大小是固定的,故放大率愈小,意味着镜头的像面愈小,焦距也就愈短,相对来讲扫描系统结构可以做的更小,但同时要求镜头的解像力也愈高。共轭距是指物像之间的长度,对镜头来讲,一般希望其愈长愈好,共轭距愈短,意味着镜头愈难设计(视场角增大)。其原理图同照相物镜一样,是一个缩小的过程。 `Ue5;<K-/   {d(@o!;Fi  
8@ f+?g*i   Uo<d]4p $  
扫描物镜的设计特点: @+a}O   &hEtVkK  
Fzt7@VNxc   %<DXM`Y  
1.扫描物镜属于小孔径小象差系统,要求的光学解像力较高。 Gz4LjMQ &   _JiB=<Fkr  
D~M*]&   `\P#TBM  
2.由于光电器件的原因,不仅要校正白光(混合光)的象差,同时需要考虑R、 wYDdy gS   E=3<F_3W  
Oc-ia)v1G   :a R&t#<"E  
G、B 三种独立波长的象差。 NErvX/qK   J"L+`i  
-J0OtrZ   iZB?5|*  
3.严格校正畸变象差。 .KtK<Ps[S   34Q l7LQp[  
}h* j{b,
relo 2008-10-23 21:19
讚唷~~~~
fytx 2008-10-23 23:21
下载看看,谢谢
zzxxjj06 2008-10-24 21:27
3q3q3q
dzhtryq 2008-10-25 14:52
第一次来!!撑你
jfy2008 2008-10-26 11:42
了解一下也可以!!
bamboosong 2008-10-26 14:23
多谢多谢,很好的知识呀
chongchong 2008-10-30 16:57
好好東西趕快下載
查看本帖完整版本: [-- 光学知识共享(回帖就可下载) --] [-- top --]

Copyright © 2005-2024 光行天下 蜀ICP备06003254号-1 网站统计