新型显微技术突破快速3D成像极限
日前,美国加州大学圣克鲁斯分校团队开发出一种新型显微技术,突破了快速3D成像的极限。他们利用25台相机组成高速显微镜,能一次性捕捉整个小型生物体内部的实时细胞动态过程。该技术为发育生物学、神经科学和运动研究等领域提供了前所未有的观察手段,将推动生物医学研究向更高维度和智能化方向发展。相关研究成果以“High-speed 3D imaging with a 25-camera multifocus microscope”为题,发表在最新一期《OPTICA》期刊上。 @O7hY8",
[attachment=133119] pq 4/>WzE 新型显微镜将衍射光学器件与25个微型相机(如图)相结合,可同时在多个深度进行成像。 fZqMznF 传统显微镜在获取3D图像时,通常依赖机械聚焦或逐层扫描不同深度,这一过程速度较慢,无法捕捉快速发生的生物动态,还容易造成图像畸变或信息丢失。为解决这一问题,团队开发了名为M25的新型显微镜系统。该系统基于多焦点显微镜技术进行扩展,利用25个同步工作的相机,同时记录来自不同焦平面的图像,从而实现无需扫描的高速3D成像。 3x=f}SO&
[attachment=133121] u? a*bW 使用 25 平面相机阵列进行像差校正重新聚焦 s3+^q 研究表明,新显微镜可在高达180×180×50微米的3D空间内,以每秒超过100个体积帧率采集25个焦平面的数据,达到实时成像水平。系统核心是一块特制的衍射光学元件,它能将入射光分割并引导至25个相机,每个相机对应一个独立且精确控制的焦平面。为了克服传统色散校正组件体积大、难以扩展的问题,团队设计了集成在各相机镜头前的定制闪耀光栅,有效校正了多焦点光栅引起的色散效应。 Oy:;v7
[attachment=133120] Pg]&^d& |