首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2024-11-19 07:54

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 Wr+?ul*_  
IG@.WsM_  

成像示意图
dx['7l;I  
首先我们建立十字元件命名为Target XBQ]A89G  
3LXS}~&  
创建方法: o.Ld.I)  
DyeV uB  
面1 : &w\E*$  
面型:plane !V|i\O|Q2  
材料:Air UeNa  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box JU^ {!u  
 c(Liwuj  
}{"a}zOl  
辅助数据: -I."= c%  
首先在第一行输入temperature :300K, (!kd9uV  
emissivity:0.1; S[!sJ-rG  
\-(.cj)?  
5!WQ  
面2 : p H&Tb4  
面型:plane GFM $1}  
材料:Air xj 6ht/qq  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box G#{ Xd6L  
f-6hcd@Ca  
D)C^'/8q  
位置坐标:绕Z轴旋转90度, yZ7aH|Q81B  
! 63>II  
uJ:'<dJ  
辅助数据: aju!Aq54G  
JP$@*F@t  
首先在第一行输入temperature :300K,emissivity: 0.1; 6ww4ZH?j  
.iK{=L/(y  
j ys1Ki  
Target 元件距离坐标原点-161mm; 1rs`|iX5  
8yr_A[S8.  
9+'QH  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 z"4UObVs  
W)WL1@!Z  
"[ f"h  
探测器参数设定: 32DT]{-N!  
29:1crzx~  
在菜单栏中选择Create/Element Primitive /plane *>otz5]  
?xTM mm  
 ByP  
K9JW&5Q  
X$"=\p>X  
jKFypIZ4  
元件半径为20mm*20,mm,距离坐标原点200mm。 x13t@b  
S`,(10Y  
光源创建: 4 VtI8f!  
?6h65GO{  
光源类型选择为任意平面,光源半角设定为15度。 foh>8/AL/  
sW/^82(dM  
F$TNYZ  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 Pba 6Ay6B  
;CbQ}k  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 PnB%vS  
'FB?#C%U  
-{z.8p}IW  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 pJM~'tlHV  
p-]vf$u  
创建分析面: ]"'$i4I{R  
lq2Ah=FuN  
dP8b\H  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 QR'yZ45n4  
;; z4EGr  
-Y]ue*k{  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ;{Cr+lqTJ  
:f^ =~#!  
FRED在探测器上穿过多个像素点迭代来创建热图 1mT3$Z  
#:rywz+  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 anwMG0  
将如下的代码放置在树形文件夹 Embedded Scripts, Uloa]X=Im8  
%'2DEt??  
ZA4NVt.yN  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 I@ dS/  
uyr56  
绿色字体为说明文字, \A gPkW  
asT*Z"/Q!  
'#Language "WWB-COM" ImJ2tz6  
'script for calculating thermal image map I[|5 DQ  
'edited rnp 4 november 2005 x1['+!01  
e1'<;;; L  
'declarations 7P}&<;5zD  
Dim op As T_OPERATION B+:'Ld](  
Dim trm As T_TRIMVOLUME  /[f9Z:>V  
Dim irrad(32,32) As Double 'make consistent with sampling c(@V t&gE  
Dim temp As Double B j!{JcM-^  
Dim emiss As Double H38ODWO3  
Dim fname As String, fullfilepath As String Ktrqrl^IJ  
E. @n Rj#  
'Option Explicit _jmkAmeu  
[}snKogp  
Sub Main X}?`G?'  
    'USER INPUTS ^8S'=Bk  
    nx = 31 98u$5=Z' /  
    ny = 31 l4c9.'6  
    numRays = 1000 CBC0X}_`  
    minWave = 7    'microns STMc@MeZU_  
    maxWave = 11   'microns c`]_Q1'30w  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 ?#|Y'%a"  
    fname = "teapotimage.dat" }K\] M@  
_F|oL|  
    Print "" BbA7X  
    Print "THERMAL IMAGE CALCULATION" h WvQh  
Obd@#uab  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 #biI=S  
cPcp@Dp  
    Print "found detector array at node " & detnode T_}9b  
%u"3&kOV  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 w}="}Cb  
@y,pf Wh`  
    Print "found differential detector area at node " & srcnode $ZSjq  
Q[t|+RNKv2  
    GetTrimVolume detnode, trm D/1{v  
    detx = trm.xSemiApe *g =ey?1S  
    dety = trm.ySemiApe {[V<mT2/  
    area = 4 * detx * dety ?LU]O\p  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety g9 .b6}w!  
    Print "sampling is " & nx & " by " & ny XW]'by  
Ogp Zwwk  
    'reset differential detector area dimensions to be consistent with sampling  Dh=?Hzw  
    pixelx = 2 * detx / nx +{ Q]$b  
    pixely = 2 * dety / ny ~>:uMXyV2t  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 1-`Il]@?8  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 m22FOjk\  
,Y|WSKY*  
    'reset the source power dTN[E6#R  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) $@t]0  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" }Gmwm|`*  
tz #Fy?pe  
    'zero out irradiance array 9sQ7wlK  
    For i = 0 To ny - 1 E! '|FJ  
        For j = 0 To nx - 1 dQSX&.<c,  
            irrad(i,j) = 0.0 ZzZy2.7  
        Next j xVOoYr>O  
    Next i }GV5':W@WG  
@VlDi1  
    'main loop R-Y07A  
    EnableTextPrinting( False ) S>AM?  
Z(F`M;1>xI  
    ypos =  dety + pixely / 2 ygiZ~v4P/  
    For i = 0 To ny - 1 B}n tD  
        xpos = -detx - pixelx / 2 7[=MgnmuC  
        ypos = ypos - pixely QDO.&G2  
wxy. &a]  
        EnableTextPrinting( True ) Bp #:sAG  
        Print i *&7F(  
        EnableTextPrinting( False ) >K<n~;ON|  
hfUN~89;  
mQ# 0c_  
        For j = 0 To nx - 1 J9+< 9g4-t  
~?l>QP|o  
            xpos = xpos + pixelx WCf?_\cG  
''Lf6S`4X~  
            'shift source Tf [o'=2  
            LockOperationUpdates srcnode, True )YSS>V  
            GetOperation srcnode, 1, op @)"= b!q=  
            op.val1 = xpos o Ho@rGU  
            op.val2 = ypos v?\Z4Z|f  
            SetOperation srcnode, 1, op CKoRq|QG_  
            LockOperationUpdates srcnode, False qX,T X 3  
5,H,OZ}  
2y"]rUS`  
Qq,w6ekr  
            'raytrace $CT 2E  
            DeleteRays oT=XCa5  
            CreateSource srcnode ){~]-VK  
            TraceExisting 'draw >x /;'Y.  
Q]n a_'_  
            'radiometry E'_3U5U  
            For k = 0 To GetEntityCount()-1 {,kA'Px)  
                If IsSurface( k ) Then zTP|H5HyK  
                    temp = AuxDataGetData( k, "temperature" ) gaBVD*>  
                    emiss = AuxDataGetData( k, "emissivity" ) ~yrEB:w`_  
                    If ( temp <> 0 And emiss <> 0 ) Then h!>K[*  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) X:3W9`s )*  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) -SF *DZ  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi WoYXXYP/E  
                    End If g!<=NVhYt  
rV *`0hA1  
                End If > St]MS  
#`kLU:  
            Next k MlbQLtw  
Zt3Y<3o  
        Next j c-?2>%;(V  
eaNMcC1  
    Next i f9ziSD#  
    EnableTextPrinting( True ) g#??Mz   
CAs8=N#H%  
    'write out file T~&9/%$F  
    fullfilepath = CurDir() & "\" & fname oQsls9t  
    Open fullfilepath For Output As #1 Q^p> hda  
    Print #1, "GRID " & nx & " " & ny fWutB5?P  
    Print #1, "1e+308" 5(+9( \x  
    Print #1, pixelx & " " & pixely Py}] {?  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Ug2^cgL  
f_{O U E  
    maxRow = nx - 1 *_Sx^`"X`l  
    maxCol = ny - 1 mmf}6ABYT  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) L("zS%qr  
            row = "" sTmY'5ry  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) ?WD JWp%  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string # Vq"Cf  
        Next colNum                     ' end loop over columns KMU2Po qD  
T?!D?YV  
            Print #1, row 4/_@F>I_  
@_:Jm tH<  
    Next rowNum                         ' end loop over rows Vm_<eyI2  
    Close #1 >I*Qc<X91  
,.Sd)JB'  
    Print "File written: " & fullfilepath ..Dr?#Cr  
    Print "All done!!" K1*oYHB  
End Sub q-k~L\Ys  
ug?])nO.C  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: \os iY ^  
4fuK pLA  
[UW%(N  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 Pl9Ky(Q`V  
  
z]\CI:  
=o<iBbK#|  
打开后,选择二维平面图: ytsPk2@WR  
`8D)j>Yh~  
Bkq3-rX\  

春头 2024-11-19 21:56
这是什么光学软件模拟的呢?
infotek 2024-11-20 09:31
春头:这是什么光学软件模拟的呢? (2024-11-19 21:56)  Zd Li<1P*d  
<"SOH; w  
是Virtuallab Fusion物理仿真软件,感兴趣可以加微18001704725
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计