首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2024-11-19 07:54

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 ).}k6v[4)  
Y3$PQwn .P  

成像示意图
/witDu7  
首先我们建立十字元件命名为Target 'uf2 nUo  
c Z6p^  
创建方法: Sm$j:xw <  
3P#+) F~  
面1 : vDW&pF_eI>  
面型:plane W `u$7k]$  
材料:Air AX!>l;  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box r=DHt&x=  
<L/M`(:=k  
}WO9!E(  
辅助数据: 9R@abm,I  
首先在第一行输入temperature :300K, 5B>Q 6  
emissivity:0.1; oB0 8  
!jAWNK6  
UOu6LD/|h  
面2 : &*aer5?`  
面型:plane dF{6>8D=5B  
材料:Air p584)"[*t  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box Qb?y@>-[  
kQwm"Z  
?UZ$bz  
位置坐标:绕Z轴旋转90度, V9zywM  
2~M;L&9-  
]M~8 @K  
辅助数据: mNx,L+ 3  
}0BL0N`_  
首先在第一行输入temperature :300K,emissivity: 0.1; i$[,-4 v  
3q#"i&  
#juGD9e  
Target 元件距离坐标原点-161mm; dv^e 9b|  
t&R!5^R  
+MNSZLP]  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 5 6Sh  
p*pn@z  
J[}gku?C;  
探测器参数设定: ^V<J69ny|9  
O1?B{F/ e  
在菜单栏中选择Create/Element Primitive /plane  n5bXQ  
e(}oq"'z  
wTTTrk  
e86Aqehle  
UsLh)#}h  
/B,B4JI)/  
元件半径为20mm*20,mm,距离坐标原点200mm。 vIVw'Z(g}  
2q"_^deI5*  
光源创建: 4ef*9|^x#  
w~<FG4@LU  
光源类型选择为任意平面,光源半角设定为15度。 Job/@> ;  
"H5&3sF2  
xw4ey<"I  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ElQJ\%  
/:#j ?c  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 *he7BUO  
EkRdpiLB  
\ |4 Ca't  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 _qY`KP "  
tCZpfZ@+=  
创建分析面: B;eW/#`  
rGTWcJ   
cwu$TP A>  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 [zY!'cz?  
}  c{Fa&  
Z,0O/RFJ.q  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 HG3.~ 6X  
3%XG@OgP  
FRED在探测器上穿过多个像素点迭代来创建热图 d4d\0[  
shM{Y9~O9&  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 $!a?i@  
将如下的代码放置在树形文件夹 Embedded Scripts, 'oC$6l'rQ  
C0zrXhY_v  
dKU5;  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 >4Iv[ D1  
iH[E= 6*  
绿色字体为说明文字, d2ohW|  
dO+kPC  
'#Language "WWB-COM" >RM 0=bO  
'script for calculating thermal image map DXKyRkn6e  
'edited rnp 4 november 2005 4w@v#H@  
?Rlgv5P!  
'declarations ;)gLjF/F7  
Dim op As T_OPERATION  q4_**  
Dim trm As T_TRIMVOLUME ?#4+r_dP  
Dim irrad(32,32) As Double 'make consistent with sampling = Q@6c   
Dim temp As Double `Gf{z%/  
Dim emiss As Double * !X4&#xP  
Dim fname As String, fullfilepath As String !0b%Jh  
9QX4R<"wUg  
'Option Explicit >5c]aNcv  
fzl=d_  
Sub Main K~USK?Q%  
    'USER INPUTS N vcHv7,  
    nx = 31 6!Qknk$  
    ny = 31 =Qyqfy*@D?  
    numRays = 1000 60'6/3  
    minWave = 7    'microns #`vVg GZ&  
    maxWave = 11   'microns  ?J<T  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 mLJDxh'B  
    fname = "teapotimage.dat" }bp.OV-+  
<p09oZ{6  
    Print "" 3Mw}R6g@#  
    Print "THERMAL IMAGE CALCULATION" Im6U_JsNZh  
&1=g A.ZR  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 ^ZR8s^X  
HQl~Dh0DJ  
    Print "found detector array at node " & detnode iNXFk4  
)]wuF`  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 pOKeEW<q  
.`Sw,XL5  
    Print "found differential detector area at node " & srcnode V+46R ]  
wajZqC2yg  
    GetTrimVolume detnode, trm ~*,Wj?~+7  
    detx = trm.xSemiApe PzLJ/QER  
    dety = trm.ySemiApe b]w[*<f?  
    area = 4 * detx * dety wsq LXZI  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety $}db /hY*  
    Print "sampling is " & nx & " by " & ny Gh'X.?3   
~ibF M5m  
    'reset differential detector area dimensions to be consistent with sampling VxkEez'|  
    pixelx = 2 * detx / nx zMr&1*CDX  
    pixely = 2 * dety / ny @O'I)(To  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False kB V/rw  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 9Yn)t#G'`F  
} #qQ2NCH  
    'reset the source power 4b=Gg  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 2Q}7fht  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" bfhz?,b  
AxEc^Cof  
    'zero out irradiance array {d,?bs)  
    For i = 0 To ny - 1 w]}f6VlEl  
        For j = 0 To nx - 1 $D}"k!H  
            irrad(i,j) = 0.0 rfc|`*m}0  
        Next j $7Cgo&J  
    Next i l77'Lne  
IhfZLE.,  
    'main loop fQO ""qh  
    EnableTextPrinting( False ) a5)JkC  
V,m3-=q  
    ypos =  dety + pixely / 2 W/=7jM   
    For i = 0 To ny - 1 lA]N04 d  
        xpos = -detx - pixelx / 2 "Vx6 #u@}  
        ypos = ypos - pixely a(f(R&-:$Y  
tJAnuhX  
        EnableTextPrinting( True ) Bh,Q8%\6  
        Print i n7S; Xve#  
        EnableTextPrinting( False ) (Igu:=  
z>p]/Sa  
*x!LKIpv  
        For j = 0 To nx - 1 ZL,8,;]  
&}E:jt}  
            xpos = xpos + pixelx Fo(y7$33*  
DL1 +c`d  
            'shift source ` .$&T7  
            LockOperationUpdates srcnode, True 9$wAm89  
            GetOperation srcnode, 1, op %i595Ij-]  
            op.val1 = xpos Sk$KqHX(  
            op.val2 = ypos vzG ABP  
            SetOperation srcnode, 1, op ly=a>}F_  
            LockOperationUpdates srcnode, False #"<?_fao~  
t H,sql)  
hX3@f;[B2  
1fRP1  
            'raytrace ,\x$q'  
            DeleteRays ntZ~m  
            CreateSource srcnode x9D/s`!  
            TraceExisting 'draw _@K YF)  
qX?[mdCHZ  
            'radiometry -"tY{}z  
            For k = 0 To GetEntityCount()-1 X.eB ;w/}  
                If IsSurface( k ) Then QXY}STs  
                    temp = AuxDataGetData( k, "temperature" ) @k9Pz<ub  
                    emiss = AuxDataGetData( k, "emissivity" ) -K^41W71  
                    If ( temp <> 0 And emiss <> 0 ) Then t#~XLCE  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) Si R\a!,C  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) *uU4^E(  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi [8z&-'J=  
                    End If s [T{c.F  
sG1BNb_  
                End If c=aO5(i0  
U6c@Et,  
            Next k | k}e&Q_/G  
JqSr[q  
        Next j A_F0\ EN*  
?BsH{Q RYQ  
    Next i K_&_z  
    EnableTextPrinting( True ) U(Z!J6{c  
2vvh|?M  
    'write out file 61>f(?s  
    fullfilepath = CurDir() & "\" & fname }LQ\a8]<  
    Open fullfilepath For Output As #1 MQ9vPgh  
    Print #1, "GRID " & nx & " " & ny ]5)"gL%H`  
    Print #1, "1e+308" `M0YAiG  
    Print #1, pixelx & " " & pixely dN0mYlu1|  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 s`1^*Dl%+  
>f%,`r  
    maxRow = nx - 1 9 rS, ?  
    maxCol = ny - 1 &?r*p0MQC  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) 1daL y  
            row = "" ~#4~_d.=L  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) rKT)!o'  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string O4!9{  
        Next colNum                     ' end loop over columns 3a^)u-9,x  
1a*6ZGk.  
            Print #1, row Xb0!( (A  
dQK`sLChv  
    Next rowNum                         ' end loop over rows &~ y{'zoL  
    Close #1 B j=@&;  
1!1DuQ  
    Print "File written: " & fullfilepath +`Fb_m)f  
    Print "All done!!" tvT4S  
End Sub k}s+ca!B  
BjvdnbJg  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: XR+rT  
"/!'9na{QL  
03F3q4"  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 ~b#OFnyG  
  
wonYm27f  
,(;5%+#n  
打开后,选择二维平面图: 1OP" 5f  
yf?W^{^|  
0-GKu d  

春头 2024-11-19 21:56
这是什么光学软件模拟的呢?
infotek 2024-11-20 09:31
春头:这是什么光学软件模拟的呢? (2024-11-19 21:56)  tpE3|5dZF  
-: C[P  
是Virtuallab Fusion物理仿真软件,感兴趣可以加微18001704725
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计