首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2024-11-19 07:54

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 4Un%p7Y~  
Ap!Y 3C  

成像示意图
FvVM}l'  
首先我们建立十字元件命名为Target $H"(]>~  
$q g/8G  
创建方法: ;:aCZ8e  
.$zo_~ mR  
面1 : m`xzvg  
面型:plane <KrfM  
材料:Air zRFvWOxC\  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box z4rg.ai  
/3o@I5  
&5n0J  
辅助数据: O~c\+~5M*  
首先在第一行输入temperature :300K, 8B;HMD  
emissivity:0.1; ; mwU>l,4  
~y>NJM>1  
\*\)zj*r  
面2 : l {t! LTf;  
面型:plane fBnlB_}e  
材料:Air !h>aP4ofT  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box C%Fc%}[  
6Gh3r  
_$m1?DZ  
位置坐标:绕Z轴旋转90度, +&.wc;mi  
%<h+_(\h  
c52S2f7  
辅助数据: c;7`]}fGu  
94xWMX2  
首先在第一行输入temperature :300K,emissivity: 0.1; A;7At!kK  
^ ^k]2oG  
&5Huv?^a'  
Target 元件距离坐标原点-161mm; .iZo/_  
V?N8 ,)j  
?U(`x6\:  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 F~x>\?iN  
JQH>{OB  
qx`)M3Mu|<  
探测器参数设定: LIfYpn6  
2Z7r ZjXW  
在菜单栏中选择Create/Element Primitive /plane UJk/Lxv  
!c;BOCqa  
h5}:>yc  
Kq;s${ |G  
Bb*P);#.K  
NH;.!x q:  
元件半径为20mm*20,mm,距离坐标原点200mm。 ':DLv{R  
qORRpWyx&  
光源创建: X*e<g=  
|6!L\/}M%  
光源类型选择为任意平面,光源半角设定为15度。 Gk]6WLi  
!EB[Lut m  
>M^4p   
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 [6f(3|"  
p #Y2v  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 l@`Do[  
@q+X:K5b  
lFbf9s:$B  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 s> JWNP  
#GOL%2X  
创建分析面: evGUl~</~  
nP#|JRn=  
% jSB9  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 #T$yQ;eQ  
mH /9J  
$n* wS,  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 y-lBaTE9  
t>JPK_b0  
FRED在探测器上穿过多个像素点迭代来创建热图 ]B3f$;W  
?V' zG&n@  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 UB,:won  
将如下的代码放置在树形文件夹 Embedded Scripts, pd}Cg'}X  
WnL7 A:sZ  
N^%7  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 B;c2gu  
`XrF ,  
绿色字体为说明文字, +\U#:gmw  
z~Is E8  
'#Language "WWB-COM" JXq l=/%  
'script for calculating thermal image map 6D/K=-   
'edited rnp 4 november 2005 M6XpauR-  
c|<E~_ .w@  
'declarations =H;F{J "  
Dim op As T_OPERATION % 9} ?*U  
Dim trm As T_TRIMVOLUME >o )v  
Dim irrad(32,32) As Double 'make consistent with sampling >*Ctp +X@  
Dim temp As Double ~TYpq;rq  
Dim emiss As Double T&+y~c[au  
Dim fname As String, fullfilepath As String 4x|\xg( l  
si#1sdR  
'Option Explicit b E6bx6=u  
Sc9}W U  
Sub Main ZK5 wZU  
    'USER INPUTS ?g9oiOhnG  
    nx = 31 PauF)p  
    ny = 31 'nN'bVl/  
    numRays = 1000 )Y:C'*.r  
    minWave = 7    'microns \k.W F|~  
    maxWave = 11   'microns hj,yl&  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 1C+d&U  
    fname = "teapotimage.dat" >>%E?'9A  
|syvtS{  
    Print "" |vtj0 ,[  
    Print "THERMAL IMAGE CALCULATION" p mUG`8SY  
[Zne19/  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 *9tRh Rc  
)8%m|v#W  
    Print "found detector array at node " & detnode +*Zjo&pc  
Iad&Z8E  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 X=jHH=</  
{<Y\flj{@m  
    Print "found differential detector area at node " & srcnode r<5i  
p(. z#o#  
    GetTrimVolume detnode, trm dfT  
    detx = trm.xSemiApe om2)Cd9~7  
    dety = trm.ySemiApe w5;d/r<q  
    area = 4 * detx * dety !OV+=Rwdx  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety YK>?;U+|  
    Print "sampling is " & nx & " by " & ny ..Bf-)w  
AmB*4p5b  
    'reset differential detector area dimensions to be consistent with sampling cYz|Ux  
    pixelx = 2 * detx / nx t6Nkv;)>@  
    pixely = 2 * dety / ny }U@(S>,%  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 6e%ZNw{#=  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 [F+*e=wjN>  
-{E S 36  
    'reset the source power _b9>ZF~  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) b<j*;n.  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" 6 #k mV  
ZuT5}XxF  
    'zero out irradiance array LwcAF g|  
    For i = 0 To ny - 1 &M7AM"9  
        For j = 0 To nx - 1 M\9+?  
            irrad(i,j) = 0.0 0t%`jY~%  
        Next j *g"X hk  
    Next i soh9Oedml-  
`t>:i!s/  
    'main loop <xUX&J=;  
    EnableTextPrinting( False ) HL%|DCo  
^00C"58A  
    ypos =  dety + pixely / 2 10CRgrZ  
    For i = 0 To ny - 1 o]<J&<WM  
        xpos = -detx - pixelx / 2 \m#{ {SGm  
        ypos = ypos - pixely m8Rt>DY  
S3^(L   
        EnableTextPrinting( True ) *iJ>@ vew  
        Print i 6*:U1{Gl)  
        EnableTextPrinting( False ) :kvQ3E0  
NUh+ &M  
9\>{1"a  
        For j = 0 To nx - 1 Rbcu5.6  
A().1h1_k  
            xpos = xpos + pixelx ?u>A2Vc!  
{bNVNG^  
            'shift source Mp06A.j[  
            LockOperationUpdates srcnode, True 2E0oLl[  
            GetOperation srcnode, 1, op EZ[e  a<  
            op.val1 = xpos ''}2JJU{  
            op.val2 = ypos ,8o Y(h  
            SetOperation srcnode, 1, op !-4VGt&c,  
            LockOperationUpdates srcnode, False o,'Fz?[T%  
|a=7P  
dst!VO: M  
 Y+Cv9U0  
            'raytrace M/kBAxNIC|  
            DeleteRays QObHW[:F  
            CreateSource srcnode M=4`^.Ocm  
            TraceExisting 'draw uP.dCs9-  
}$#PIyz  
            'radiometry \"b'Z2g  
            For k = 0 To GetEntityCount()-1 %v[KLMo'(  
                If IsSurface( k ) Then ] -%B4lT  
                    temp = AuxDataGetData( k, "temperature" ) 6Oy6r  
                    emiss = AuxDataGetData( k, "emissivity" ) 36}&{A  
                    If ( temp <> 0 And emiss <> 0 ) Then 's$/-AV  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) *RFBLCt  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) =nv/ r  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi rW+}3] !D/  
                    End If =d/$B!t{  
_% i!LyG  
                End If 0a:@DOzT  
TPmb]j  
            Next k p5J!j I=  
c| X }[  
        Next j l_pf9 !z  
YwZ ]J  
    Next i 6 2t 9SY  
    EnableTextPrinting( True ) 4jC7>mE  
8d(l)[GZt  
    'write out file oE)xL%*  
    fullfilepath = CurDir() & "\" & fname S7b7zJ8A  
    Open fullfilepath For Output As #1 Y)7\h:LIg  
    Print #1, "GRID " & nx & " " & ny sU/vXweky"  
    Print #1, "1e+308" &U\//   
    Print #1, pixelx & " " & pixely ie7P^:T|+  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 dg&GMo  
G)&!f)6  
    maxRow = nx - 1 nI/kX^Pd  
    maxCol = ny - 1 Rg3g:TV9c  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) PoD/i@  
            row = "" K;]Dh?  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) s1p<F,  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ?=b#H6vs  
        Next colNum                     ' end loop over columns h$p}/A  
ON"p^o>/_?  
            Print #1, row 4GS:kfti  
b^"mQ   
    Next rowNum                         ' end loop over rows 0@&/W-VXg  
    Close #1 ,_ @) IN  
j|@8VxZ  
    Print "File written: " & fullfilepath )lP(is FP  
    Print "All done!!" NT{ 'BJ  
End Sub GN+!o($  
MHS|gR.c  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: Nzb=h/;  
2Hk21y\  
vd/BO  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 M-(,*6Q  
  
bVr`a*EM  
$g\p)- aU  
打开后,选择二维平面图: Eo@rrM:  
K6,d{n  
I_|W'%N]  

春头 2024-11-19 21:56
这是什么光学软件模拟的呢?
infotek 2024-11-20 09:31
春头:这是什么光学软件模拟的呢? (2024-11-19 21:56)  6UU<:KH  
W)L*zVj~  
是Virtuallab Fusion物理仿真软件,感兴趣可以加微18001704725
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计