首页
->
登录
->
注册
->
回复主题
->
发表主题
光行天下
->
讯技光电&黉论教育
->
Savitzky-Golay滤波函数
[点此返回论坛查看本帖完整版本]
[打印本页]
infotek
2024-06-05 08:13
Savitzky-Golay滤波函数
1.摘要
mJ<rzX
N+\#k*n?
在测量信号或数据的情况下,很难(如果不是不可能的话)完全避免所有可能的噪声源,因为这些噪声源会干扰任何实验测量。但是,噪声的存在会干扰数据的重要特征(例如,测量光谱的半宽谱)。
oh%T4$
因此,有一些后期处理技巧可能会有所帮助。这里我们只讨论一个这样的工具:Savitzky-Golay滤波器,它通过对一组采样点执行回归算法来平滑局部噪声。在这个例子中,我们讨论了VirtualLab Fusion中这个特性的选项和效果,并以一个绿色LED灯在60 nm带宽下发射的光谱为例进行了测试。
T,Cq;|g5E
U }MU>kzb
f[.RAHjk
6g29!F`y
2.如何进入Savitzky-Golay过滤器
sn2SDHY
pK1P-!c
对于每个实值数据数组,都可以在下面找到Savitzky-Golay滤波器
)NRY9\H
操作→
G%;XJsFGp
杂项→
@jN!j*Y H
Savitzky-Golay过滤器
X&MO}
g$ZgR)q
^=bJ _'
$%`OJf*k
3.可视化的过滤函数
r.xGvo{iY
<tuh%k
pnca+d
y&t&'l/m
4.影响过滤器-窗口大小
\r^=W=
P9:7_Vc
更大的窗口大小导致在拟合过程中考虑更多的采样点,因此曲线更平滑。
hUSr1jlA
rl'YyO}2
*W y0hnr;]
T5B~CC'6
更高的阶数允许更详细的曲线,但反过来也可以保留局部噪声。
:RzcK>Gub=
yx3M0Qo
j7<`^OG
<d#9d.<
5.局部噪声过滤
^TVy:5Ag
SEr\ u#
{F6hx9?
J [2;&-@
6.FWHM 检测
I"#jSazk
W:4]-i?2
$n(?oyf
~bL(mq
7.等距的重采样
=R:3J"ly0
7XT2d=)"
查看本帖完整版本: [--
Savitzky-Golay滤波函数
--] [--
top
--]
Copyright © 2005-2026
光行天下
蜀ICP备06003254号-1
网站统计