qyzyq37jason618 |
2023-12-27 09:02 |
近日,中国科学院理化技术研究所林哲帅团队发展了基于机器学习的中红外非线性光学材料筛选新策略,并利用该方法在硫属化合物这一中红外非线性光学材料的常见候选体系中筛选出若干种潜在的具有平衡的热输运和光学性能的中红外非线性光学材料。研究结合低精度的热导率半经验方法计算数据和高精度的实验测量数据,利用迁移学习(Transfer Learning,TL)手段,建立了基于晶体图神经网络(Crystal Graph Convolutional Neural Network,CGCNN)算法的晶格热导率回归预测模型,在测试集上获得了与半经验计算方法相当的预测精度,减少了粗略评估晶格热输运性能所需的计算资源和时间。研究对Materials Project数据库收录的6000余种非中心对称硫属化合物进行晶格热导率预测,根据热导率预测值、带隙和总能等标准筛选出78种材料(其中39种被报道为非线性光学材料)。研究通过进一步对未报道的材料进行第一性原理计算发现,2种兼具大倍频效应、高晶格热导率、宽带隙和适宜双折射率的潜在中红外非线性光学材料Li2SiS3和AlZnGaS4被筛选出,同时第一性原理计算获得的高晶格热导率数值与机器学习预测值相接近,证实了预测工具的可靠性。 90Rz#qrI* #8xP,2&zf 研究进而对机器学习模型产生的晶格热导率数据、文献报道的非线性光学性能数据进行数据分析,发现硫属化合物中由4配位基团组成,其中心阳离子键价和为+2~+3且来自IIIA、IVA、VA和IIB族元素的材料,如类金刚石硫属化合物,是具有大的倍频系数和热导率的中红外非线性光学材料的有力候选者。 jL^3/0"o -8Z;s8ACo 本工作将机器学习与第一性原理计算、高通量筛选相结合,提出了一套中红外非线性光学材料性能预测和筛选的完整工作流程,揭示了产生大的热导率和倍频系数的结构化学规律。该研究不仅为非线性光学晶体的筛选提供了有效策略,而且为寻找具有平衡的非线性光学性能和抗激光损伤性能的晶体提供了可解释的研究方向。 6uNWL `v
|
|