ueotek |
2023-11-06 09:41 |
Ansys Zemax | 如何建立LCD背光源模型
本文建立了楔形LCD背光源模型,并对其进行分析,并按照照明输出标准对其进行优化。 ^T*'B-`C7X /@Ec[4^=!. 简介 $[V-M\q 液晶显示器 (LCDs) 作为一种显示技术,在当今社会中已经得到了广泛的应用。在商业领域中最突出的应用包括计算机显示器、移动电话、电视和手持数字设备。 f"R'Q|7D yR1v3D4E 当环境光照条件不足时,大多数LCD都是接收后方照明以提供光照的。采用的两种照明方案为:底部照明和边缘照明,OpticStudio能够对这两种照明方案进行建模,且边缘照明方案中存在更复杂的设计问题,本文将重点对此进行介绍。 A5go)~x\ *AJYSa,z LCD 照明方案 "P a y2 )`K!XX$% LCD底部照明方案使用阵列光源,如发光二极管,或均匀光源(如放置在LCD后面的电致发光面板)。此方案具有良好的均匀性和亮度,但需要更多的能量和更厚的保护壳。 ?,w9e| 97vQM
[attachment=122112] Ru@ { b` 本文的重点内容是边缘照明设计,使用楔形导光板对放置于LCD显示器旁边的光源发出的光进行分布。与底部照明方案相比,此方案消耗的能量更少,且封装更薄,但是均匀性和亮度较差。 "Z)zKg J*4T|#0
[attachment=122113] 0DX)%s,KO 本文中忽略实际的液晶层,只考虑背光源设计。 Ynl Zyw! n;e.N:p 建立背光源模型 th%T(D5n sB wzb 边缘照明LCD的详细布局图如下图所示: 9k;%R5( =0mn6b9-=
[attachment=122114]
=@!s[ 光源通常是冷阴极荧光灯管 (CCFL) 或一系列发光二极管 (LED) ,且在光源的后面放置反射器可以提高系统的效率。楔形光波导利用全内反射 (TIR) 使光更均匀地分布在显示区域。用反射镜围绕光波导,也可以提高系统效率。使用不同增亮膜 (BEF) 的阵列模式,可用于控制发射光的发光强度和偏振特性。 }#2I/dn Q!{,^Qb 在此设计案例中假设一些约束条件:将基于标准的移动电话选择显示屏的面积,并根据整体封装高度的限制选择光波导厚度。 5M\bH'1 `]F#j ]" 显示区域面积:75 mm x 75 mm EbnV"]1 ),XDY_9K 楔形板厚度:输入面 4 mm ,端面 1 mm BHt9$$Z| 3|BB#; BEF:Vikuiti™ T-BEF 90/24 (BGflb <Aqo['] 下载本文附件,将玻璃库放在{Zemax}\Glasscat目录中。这个材料库包含了改性丙烯酸和PMMA,可用来模拟这些塑料的内部近似传输值 (93%超过25毫米) 。基本设计和参数在“Starting Point.zmx” 文件中定义。请留意非序列元件编辑器 (Non-Sequential Component Editor,NSCE) 中用于建模不同背光元件的光源/物体类型。 Bdm05}c@u O% 8>siU
[attachment=122115] kL"Y>@H 当被激发的电子撞击阴极管表面的涂层材料时,冷阴极荧光灯管发光。使用“管光源”对此类光源发射方式而言是非常理想。可以通过交替使用“二极管光源”来模拟一维二极管阵列作为光源。 NIG*
}[}P G
UK%RC8 使用由丙烯酸材料制成的矩形体物体建立楔形光波导模型。该物体可以存在不同的端面尺寸和倾斜。请注意,只有倾斜物体才能保持光波导的上表面与X-Z平面平行。由于物体是围绕光波导输入面的中心旋转,而不是顶部边缘,所以Y的位置也需要略做改变。在物体倾斜的前后表面上都设置拾取 (Pickup) 求解以确保他们与Y-Z平面保持平行。 {_ {zs!r H18pVh
[attachment=122116] :{%~L4$HI BEF是系统中最复杂的元件。手动复制父棱镜将非常耗时,且在光线追迹时需要大量内存。可以用阵列物体来替代复制棱镜,因为它只需要与父物体相同的内存,并且可以通过调整父物体的参数来改变整个阵列。同时,请注意存在阵列时的光线追迹速度,即使它内部仅仅含有几何物体。 28>/#I9/] $Y[C A.F 确定初始性能 |LirjC4 Cy6%f? j 现在已经搭建了基本系统,接下来查看其初始性能。通常用于确定设计优劣的标准是能量传递效率和均匀性(照度和发光强度)。能量传递效率的定义是显示器发出的能量与光源发出的能量之比。在空间位置中,期望整个显示器上的输出是均匀一致的(每像素最小通量的偏差)。在角度空间中,输出在(~30度)半锥角内应该均匀。请注意,此系统是为小型数字设备所设计的。如果此设计要用于电视或电脑显示器,则需要更大的半锥角(~90度)。 ufJHC06 (w` j?c1 使用下图所示的光线追迹控件 (Ray Trace Control) 进行光线追迹的相关设置,并注意阈值造成的能量损失。 \: R Akf< Sb^o`~ Eh
[attachment=122117] GYtp%<<9; 查看探测器查看器,可以看到大约40%的光源能量到达探测器;由于蒙特卡罗 (Monte Carlo) 光线追迹的随机性,这个值可能会变化几个百分点。光线错误会导致一些能量损失,但在此应用场景中这是无关紧要的。大部分的能量损失是由于光波导中的体吸收造成的,且近10%的能量损失是由于阈值,这在光线要经过多次反射的系统中很常见。如果能量损失很大,可以通过将最小相对光线强度降低几个数量级来消除这种能量损失,但它会明显地减慢光线追迹的速度。将阈值降低到1E-6可以将能量损失降低到1%,并将效率提高到46%左右。 >cH}sNHy )!Zm*(
[attachment=122118] =g$%jM>35 查看照度和发光强度的分布。光源对面的显示屏照度最高,这是由于光波导造成入射角变大,使TIR更接近光源造成的。发光强度图上显示了几个峰值,而不是在较小角度内具有理想的均匀分布。可以看出,这种强度分布是楔形光波导和BEF的特点。 H^+Znmo |eqp3@Y1E
[attachment=122119] ?8YbTn1f) 根据目前的定义,系统中几乎没有几何参数可以修正这些分布。最有效的方法是在楔形光波导中引入散射特性。并且,输入面、顶面和底面对照度和发光强度分布的影响最大。 \5fvD8>H yC[Q-P *rG 使用以下设置将朗伯散射配置文件应用于光波导的输入面。 NXOcsdcZu T:g%b @
[attachment=122120] bJ]blnH 进行光线追迹并观察输出特性的差异。确保在光线追迹控件对话框选中“散射光线 (Scatter Rays)”! ~7:Q+ 0,, VBz
G`&NG
[attachment=122121] 6t3Zi:=I 该系统的效率提高了几个百分点,照明均匀性得到了很大的改善。发光强度略有改善,但仍存在一些重要问题有待解决。 ; jrmr`l= aX?
tnDv 现在,从光波导的前表面移除散射配置文件,并应用到顶面。默认情况下,使用三个面组定义矩形体,因此不能仅将顶面或底面设置为漫反射板。取而代之,将放置与顶面一致的散射矩形体并为该表面添加散射配置文件。如果该物体与非序列元件编辑器中的矩形体相同,则嵌套规则将使界面中的新物体处于优先地位。在物体7处插入矩形体物体,该矩形体的参数如下: `!<#'PR ~YXkAS: Y-坐标 = 2 1ezBnZJg e?:1wU Z-坐标 = 38.5 's$/-AV *RFBLCt X-倾斜 = -90 jXIVR'n( rW+}3] !D/ 材料:空白(空气) c"P:p%\m&u _% i!LyG X1、 X2、Y1、 Y2 半宽 = 37.5 rN'}IS@5 |d=GAW
v Z 长度 = 0.01 >^D5D%" ~R~eQ=8 朗伯散射配置文件:只用于前表面 '?T<o WTu!/J<\ 保留其他参数的默认值。运行光线追迹并记录输出的变化。 L&&AK`Ur3l 1V-si bE
[attachment=122122] IEY\l{s 照度均匀性下降,但是影响光照强度的重点问题得到解决,效率也大大提高了。从结果中发现:需要在输出的空间分布和角分布的均匀性之间做出权衡;如果在底面使用相似的散射函数会使效率降低。 K+`deH_d 4c<\_\\ck 根据结果显示,理想的散射配置文件应该用于光波导的顶面上,使得在光源附近的光线散射较少,而在相反方向的光散射较多。阵列物体能够对非线性图样进行建模。 ^(KDtc Nb)Mh 优化背光源 1i;Cw/mr }O2P>Z?V 目前在楔形光波导中最常用的微观结构制造方式是模压拉伸/挤出,其优点是不需要额外的处理步骤,比如在光波导上打印散射点。本设计将每个微观结构都做成球形,尽管其他任何物体(本地、导入、布尔等物体)也都可以使用。这是通过将球体阵列放置在光波导的上表面上实现的。通过在非序列元件编辑器中将这些物体放置在光波导之后,并将它们的材料定义为空气,其效果是在光波导上浮雕出球体(注意嵌套规则)。将父球体和阵列物体添加到“ Mid Point..zmx ”中(此文件在本文的附件中)。 bSa]={}L( GjbOc 打开文件时,注意阵列物体12的画图极限参数设置得非常低,是因为阵列中有大量的元素,绘制所有元素需要大量时间。取而代之的是OpticStudio在整个阵列周围绘制了包围框。 nI/kX^Pd 2yVQqwQm 通过优化阵列参数以达到上述的最佳性能标准。所需的优化函数已经在当前文件中定义,打开评价函数编辑器如下图所示: [ ^gb6W9Y K;]Dh?
[attachment=122123] s1p<F, 用操作数5和8分别用于最大化空间均匀性和总光通量,用操作数10和11来控制光强分布的质心,用操作数13用来控制光强分布的均方根半径。希望输出光线不是完全平行的,而是限制在一定的视角范围内,因此,指定了30°作为目标视角。最后一组操作数 (15-18) 是边界约束,以防止阵列变得太大或太小,当无边界约束时,优化会有产生极限解的趋势。注意这些操作数的负数权重,它们就像拉格朗日乘数一样工作,迫使目标得以实现。 ?=b#H6vs py6O\` \ 优化分配的变量如下: 5m\)82s VP*B<u 球面物体:半径 ps33& G$2Pny<! 阵列物体:Number X’ & Y’, Delta1 X’ & Y’, Delta2 Y’ l=C|4@ ,m M7g 由于对称性的考虑,阵列只需要在y方向上是非线性的。因此只在X方向上分配线性阵列的间距 (Delta1 X ') 。此外,优化时很可能不需要阵列的三阶和四阶参数可变,所以不将其设为变量。 a\KM^jrCD #wJ^:r-c` 如果给变量一个有限初始值,而不是从零开始,通常会使优化更有效。为了确定二阶y方向的起始点,查看通用绘图并与评价函数中的值进行对比。打开一维通用图(分析 (Analysis) >通用绘图 (Universal Plot))并应用以下设置。 7Ac.^rv5 r|y\FL
[attachment=122124] A-u!{F 点击OK键,并进行绘图更新;这个过程可能需要几分钟,具体所需时长取决于电脑的速度。根据下图,将阵列物体上的“ Delta2 Y ”参数设置为5E-3。 'N`x@( =)J)xH!N
[attachment=122125] G`f|#-} 背光源设计形式是固定的,只需要优化阵列参数。考虑到这一事实,使用正交下降 (OD) 算法进行锤形优化对于达到目标非常有效。锤形优化在长时间运行时性能最好,完成之后可以确定没有与起点相似的更好的设计。在运行锤形优化约20小时后,OpticStudio得出了具有良好空间均匀性和可接受的发光强度的解。请注意,此种发光强度是此类光波导的特性,不可能在不大幅度改变设计参数的情况下产生显著变化。优化后的系统见附件:“End Point.zmx”。 #4V->I %yK- Q,'O
[attachment=122126] |(uo@-U 还要注意,系统效率已经上升到大约60%。如果降低最小相对光线强度阈值,得到的效率接近62%。有可能可以通过在系统中再添加散射和/或膜层属性进一步提升其性能。
|
|