ueotek |
2023-06-08 12:18 |
Ansys Lumerical | 光纤布拉格光栅温度传感器的仿真模拟
说明 o_ixdnc q^QLNKOH" 该示例演示了一种基于光纤布拉格光栅(FBG)的温度传感器,因为光纤折射率会随温度而变化,导致其布拉格波长发生偏移,所以可以被用作温度的测量。(联系我们获取文章附件) z}*L*Sk /
=v1.9( [attachment=118385] c.>OpsF /$FpceB!W 综述 ; H]]H! 5fp&!HnG 在本示例中要考虑的光纤布拉格光栅(FBG)由具有交替折射率和恒定周期性的纤芯制成。众所周知,沿着光纤主轴的折射率变化可以在布拉格波长(λ_Bragg)下引起反向传播模式的耦合,由以下方程给出: wc}4:~ 1=~ ##/at [attachment=118386] )Q|sW+AF Rp}Sm,w( 其中n_eff是布拉格波长下光纤基模的有效折射率,Λ是光栅的周期。均匀的FBG在布拉格波长下起到波长选择镜的作用。在沿着光纤轴的每个折射率不连续处,都会发生微弱的菲涅耳反射。当来自界面的所有反射累积时,光栅在布拉格波长周围产生一个明显由旁瓣包围的反射带。 :<1PCX2 K2tOt7M! 上述方程可以扩展为包括温度(T)对折射率的影响,从而包括布拉格波长: Ik=bgEF sX`by\s, [attachment=118387] j<w5xY
;M*G [attachment=118388] WtMDHfwqu\ WOYN%
0# [attachment=118389] 9;
aOUs:< ^Uik{x 运行和结果 1{h,LR v.Q+4
k 步骤1:FDE-计算光栅所需的周期和温度相关有效折射率neff @4]dv> Z LD}<| 我们首先使用FDE求解器获得目标波长下光栅的有效折射率,并计算光栅的所需周期(Λ)。我们计算高折射率区域和低折射率区域的 neff,并将其的平均值作为设计的起点。 ^VjF W
`EVy 此案例中光纤由n=1.4725/1.4728(L/H)和R=4.8μm的纤芯和n=1.466和R=62μm的包层组成。使用脚本添加 FDE求解器,并在室温下为光栅中的两个不同位置(高折射率区域和低折射率区域)运行模拟。有效折射率的平均值用于表示光栅的总折射率,并用于估计所需的光栅周期。本例中所考虑的基模的场分布如下所示。正如预期的那样,该模式被很好地限制在光纤的核心区域。 bp P3#~
K j[fY.>yt& [attachment=118390] AUr~b3< 6 3rx8" 步骤2:EME-计算光栅的温度相关透射/反射响应 <bh!wf6; 我们分析了光栅在多个周期内的透射/反射值,模拟区域中只包括光栅的单个周期,但通过使用“周期性”和“波长扫描”特征可以获得长光栅的宽带响应。然后,我们扫描温度,并将传输/反射响应导出为S参数,S参数可用于随后的电路模拟。 g6.Tx]?b$ /@LUD= [attachment=118391] MQo/R,F } h)X"<a++N [attachment=118392] N[xa= K|rGJ [attachment=118393] a0&R! E; l -6W]\v Z 布拉格波长与温度的关系如图显示,相对于室温下的值,其在1.000摄氏度时偏移15.6纳米。 XhJYs q]]J V_=7q=9mV [attachment=118394] f;,^
]mw :b(Nrj&TQ[ [attachment=118395] l3YS_WBSn ;2,Q:&`
还可以得到光栅在给定温度范围内的灵敏度。灵敏度定义如下: 5?Rzyfwk| Q::_i"?c [attachment=118396] b./MVz [attachment=118397] +J2;6t CVGQ<,KVW 考虑到参考文献中缺乏有关材料的信息,模拟的灵敏度(9.4 pm/℃)与公布的结果(7.2 pm/℃)存在差异。这种差异可能主要来自材料参数的差异,而参考文献中并未完全提供这些参数。 e>b|13X F{
sPQf' 该脚本还提取与温度相关的S参数,并将其保存为S参数文件格式(fbg_S_param_T.dat),以便在下一步进行 interconnect 电路模拟。 2U'Vq 5uL!Ae 步骤3:INTERCONNECT-光子电路模拟 j55OG~) 使用光学时间调制 S 参数元件将与温度相关的S参数导入 INTERCONNECT,用于模拟 FBG 温度传感器。我们扫描温度并测量传感器在不同温度下的反射光谱。当需要附加 PIC 元件对 FBG 的整体性能的影响时,该电路模型仿真是有用的。 &MP + [R{%r^"2p FBG 温度的电路模拟需要三个要素: |@pn=wW 1、光网络分析仪(ONA),既可作为光源又可作为检测器。 RJ$x{$r[ 2、代表 FBG 温度传感器的光学时变 S 参数元件。 K,f-
w2! 3、用作温度控制器并连接到 FBG 温度传感器元件的直流电源。 H>|*D~RdT *nV*WUS3 下图为电路仿真的原理图设计。按下运行按钮,模拟将计算温度传感器在25°C室温下的反射光谱。右图显示了反射率光谱,右键单击 ONA,然后显示结果即可获得反射率光谱。 4inMd![ t ;bU#THM [attachment=118398] Rj])c^ZA'* 70T{tB [attachment=118399] PsyXt5Dk ?0'db 接下来,在优化和扫描选项卡中运行“Gain_vs_Temperature”扫描,以计算一系列温度的反射光谱。使用扫描参数生成可编辑温度系列的反射光谱。 aQL$?, $/$ 5{< [attachment=118400] CdTE~O<) O|Y~^:ny 下图显示了25℃至1000℃温度范围内的光谱。根据文献显示,在100℃至500℃的温度范围内,布拉格波长偏移为4nm。我们的模拟结果显示,在相同的温度范围内,4.5nm的数值相似。 L~&r.81 G!5~`v [attachment=118401] xtX`3=s 0GMov]W?i 参考文献: [>LL 1.Damien Kinet, Patrice Mégret, Keith W. Goossen, Liang Qiu, Dirk Heider and Christophe Caucheteur, “Fiber Bragg Grating Sensors toward Structural Health Monitoring in Composite Materials: Challenges and Solutions”,Sensors 2014, 14, 7394-7419, doi:10.3390/s140407394 >vfbXnN 2.Wenyuan Wang, Yongqin Yu, Youfu Geng, and Xuejin Li “Measurements of thermo-optic coefficient of standard single mode fiber in large temperature range”, Proc. SPIE 9620, 2015 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, 96200Y (10 August 2015); https://doi.org/10.1117/12.2193091 qnTW?c9Z5 .Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” in Journal of Lightwave Technology, vol. 15, no. 8, pp. 1263-1276, Aug. 1997, doi: 10.1109/50.618320. ]"VxEpqhM 3.Hsieh TS, Chen YC, Chiang CC. “Analysis and Optimization of Thermodiffusion of an FBG Sensor in the Gas Nitriding Process.” Micromachines (Basel). 2016 Dec 12;7(12):227. doi: 10.3390/mi7120227. PMID: 30404399; PMCID: PMC6190027. ac#I$V- 4.Du Yanliang, Li Jianzhi, Liu Chenxi, “A Novel Fiber Bragg Grating Temperature Compensated Strain Sensor”, 2008 First International Conference on Intelligent Networks and Intelligent Systems, DOI 10.1109/ICINIS.2008.27 E6s)J -a 5.“The Effect of Temperature and Pressure on the Refractive index of Some Oxide Glasses”, Roy M. Waxler, G.W.Cleek, Journal of Research of the National Bureau of Standards – A.Physics and Chemistry, Vol 77A, No.6, November-December 1973.
|
|