首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2023-04-06 08:38

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 \^!;r9z=A  
V8^la'_j  
成像示意图
+A| Bc~2!  
首先我们建立十字元件命名为Target *w+'I*QSt~  
5h5izA'0'  
创建方法: aLa<z Essz  
)1s5vNVa  
面1 : ,md_eGF  
面型:plane , >LJpv  
材料:Air 4p:d#,?r  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box PkvW6,lS  
5\Q Tm;  
%HUex 6!  
辅助数据: `i.BB jx`  
首先在第一行输入temperature :300K, i,6OMB $  
emissivity:0.1; $}9jv3>)  
GX>8B:]o|  
nK>CPqB^(  
面2 : ,!#Am13  
面型:plane f3K-X1`]'U  
材料:Air B=|R?t (*  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box V]7/hN-Y}  
Ku(YTXtK  
d GUP|O  
位置坐标:绕Z轴旋转90度, G+zhL6]F  
EF0v!XW  
`3;EJDEdbi  
辅助数据: )UzJ2Pa<+_  
F&d!fEHU  
首先在第一行输入temperature :300K,emissivity: 0.1; w!F>fcm  
=:H-9  
PLCm\Oh$l  
Target 元件距离坐标原点-161mm; 8 v/H;65  
B)0/kY7c  
TRhMxH  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 ;uBGB h<  
(i~UH04r>s  
Z)@vJZ*7(  
探测器参数设定:  6}"%>9  
I dK*IA4  
在菜单栏中选择Create/Element Primitive /plane nBy-/BU&  
k2}DBVu1  
&*`dRIQ]  
j~q 7v `":  
Q]WBH_j  
)z[C=  
元件半径为20mm*20,mm,距离坐标原点200mm。 _2fW/U54_  
btW#ebm  
光源创建: Nq8ON!<<  
cMT7Bd  
光源类型选择为任意平面,光源半角设定为15度。 zL"e.  
4.O)/0sU  
)N.3Q1g-  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 s)-An( Uw  
"wcaJ;Os  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 +( LH!\{^  
h FU8iB`Q  
]IuZT  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 f"Sp.'@  
@Jd&[T27Lr  
创建分析面: %\JGDM*m  
E !kN h  
|` T7}U  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 9z(SOzZn  
a\P:jgF  
" MnWd BS  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 72nZ`u  
9qap#A  
FRED在探测器上穿过多个像素点迭代来创建热图 [2@:jLth=  
"6U0 !.ro@  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 7KgaXi3r  
将如下的代码放置在树形文件夹 Embedded Scripts, E@ea ?Sx  
Gu$/rb?  
U$y 9f  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 bxE~tsM"@Y  
c.>f,vtcn  
绿色字体为说明文字, o/-RGLzAo  
O=%Ht-kOc  
'#Language "WWB-COM" $0V+<  
'script for calculating thermal image map =M1}HF,7>l  
'edited rnp 4 november 2005 P'KA-4!  
tA1?8`bQ  
'declarations 3zsp 6kV  
Dim op As T_OPERATION @`[e1KQ  
Dim trm As T_TRIMVOLUME [RBSUOF  
Dim irrad(32,32) As Double 'make consistent with sampling <X*oW".  
Dim temp As Double T@1;Nbz]  
Dim emiss As Double DuC#tDP  
Dim fname As String, fullfilepath As String h1~h& F?  
"`M~=RiI  
'Option Explicit c/ Pql!h+  
`:&RB4Z  
Sub Main U$2Em0HO}  
    'USER INPUTS "M/c0`>C!i  
    nx = 31 "L.k m  
    ny = 31 C@a I*+@-"  
    numRays = 1000 x-i,v"8  
    minWave = 7    'microns Sh#N5kgD  
    maxWave = 11   'microns HzM\<YD  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 #M!u';bZ  
    fname = "teapotimage.dat" jU-LT8y:  
d>[i*u,]/  
    Print "" 3P!OP{`  
    Print "THERMAL IMAGE CALCULATION" X3sAy(q  
A.b^?k%I  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 !SuflGx,q  
k[*9b:~  
    Print "found detector array at node " & detnode dOv\]  
|47t+[b   
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 7 7bwYKIn  
(?Ko:0+*  
    Print "found differential detector area at node " & srcnode -W!M:8  
_#\Nw0{  
    GetTrimVolume detnode, trm U-DQ?OtmC@  
    detx = trm.xSemiApe 0_qr7Ui8(  
    dety = trm.ySemiApe ;BuMzG:tmZ  
    area = 4 * detx * dety e!J5h <:  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety B-g-T>8  
    Print "sampling is " & nx & " by " & ny g7323m1=  
6"iNh)  
    'reset differential detector area dimensions to be consistent with sampling C9+rrc@4  
    pixelx = 2 * detx / nx +788aK,{#  
    pixely = 2 * dety / ny YC;@^  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False tD`^qMua  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 Xr^ 5Th\  
aNry> 2:  
    'reset the source power L{~ ]lUo  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) G-i2#S   
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" !{ *yWpZ:  
:.=:N%3[  
    'zero out irradiance array `XF[A8@h  
    For i = 0 To ny - 1 H, 3Bf  
        For j = 0 To nx - 1 ([<{RjPb  
            irrad(i,j) = 0.0 MgP|'H3\  
        Next j 6<@ mB Z  
    Next i Mx w-f4j  
+6>2= ,?Z  
    'main loop p p0356  
    EnableTextPrinting( False ) Lea4-Gc  
>!Gq[i0  
    ypos =  dety + pixely / 2 <Z t]V`-  
    For i = 0 To ny - 1 @F8NN\  
        xpos = -detx - pixelx / 2 #}fvjJ{  
        ypos = ypos - pixely CnuM=S:  
Ur 1k3  
        EnableTextPrinting( True ) }WJX Q@  
        Print i 1/1oT  
        EnableTextPrinting( False ) 8p829  
*CGHp8  
#IGcQY  
        For j = 0 To nx - 1 *0oa2fz%  
V|A.M-XLv4  
            xpos = xpos + pixelx 8Y%  
`6-flc0r  
            'shift source b&A/S$*  
            LockOperationUpdates srcnode, True \RDqW+,  
            GetOperation srcnode, 1, op t,TlW^-  
            op.val1 = xpos rhzI*nwOT  
            op.val2 = ypos 5Bq;Vb  
            SetOperation srcnode, 1, op ug{sQyLN  
            LockOperationUpdates srcnode, False ~tTa[_a!  
dH0>lV  
'raytrace  e+#Oj  
            DeleteRays &:C[ nq  
            CreateSource srcnode ?0u"No52m  
            TraceExisting 'draw >r)UDa+  
z1tD2jL_  
            'radiometry ~BTm6*'h  
            For k = 0 To GetEntityCount()-1 p\I3fI0i  
                If IsSurface( k ) Then \8*j"@ !H  
                    temp = AuxDataGetData( k, "temperature" ) [ s/j?/9  
                    emiss = AuxDataGetData( k, "emissivity" ) OWfB8*4@  
                    If ( temp <> 0 And emiss <> 0 ) Then sMAH;'`!Eu  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) x!85P\sm  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) L})fYVX  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi P{s1NorKDh  
                    End If L4+R8ojG  
k^JgCC+  
                End If `6Q+N=k~Z  
.@r{Tq,%q8  
            Next k ,F!-17_vt  
1IgTJ" \  
        Next j b+RU <qR  
U4a8z<l$  
    Next i #6y fIvap  
    EnableTextPrinting( True ) Ac*)z#H  
J#w=Z>oz<  
    'write out file u<n['Ur}|  
    fullfilepath = CurDir() & "\" & fname / E!6]b/  
    Open fullfilepath For Output As #1 \\Zsxya1  
    Print #1, "GRID " & nx & " " & ny u ?F},VL;  
    Print #1, "1e+308" \2f?)id~  
    Print #1, pixelx & " " & pixely oN83`Z  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 [N*S5^>1  
$D^27q:H  
    maxRow = nx - 1 =JTwH>fD  
    maxCol = ny - 1 mWoN\Rwj  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) BVv-1$ U^  
            row = "" ^eV  K.  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 5^qs>k[mN  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string M_?B*QZJI  
        Next colNum                     ' end loop over columns ~y 2joStx  
&RS)U72  
            Print #1, row <|3F('Q"  
KB\ri&bF  
    Next rowNum                         ' end loop over rows fP;I{AiN~  
    Close #1 Q^Vch(`&P  
=L"I[  
    Print "File written: " & fullfilepath FAGi`X<L  
    Print "All done!!" Mu" vj*F  
End Sub H11@ DQ6  
+5GC?cW  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: |e+r~).4B  
tOj5b 7'ui  
1?TgI0HS  
找到Tools工具,点击Open plot files in 3D chart并找到该文件  )DW".c  
  
NP.qh1{NP  
/byF:iYI  
打开后,选择二维平面图: z`J-J*R>d  
tnX W7ej^  
谭健 2023-04-07 08:20
感谢分享 '7]9q#{su  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计