首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2023-04-06 08:38

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 CqF= 5z:A  
a?^xEye  
成像示意图
_6Ex}`fyJ  
首先我们建立十字元件命名为Target IdY\_@$ v  
.tFMa:   
创建方法: ]t4 9Efw  
jGp|:!'w  
面1 : S`N_},  
面型:plane PP+-D~r`}  
材料:Air Ds}ctL{6"  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box V={`k$p  
d-cK`pSB  
,F4 _ps?(  
辅助数据: gWqO5C~h  
首先在第一行输入temperature :300K, ]7#@lL;'0  
emissivity:0.1; ZD)pdNX  
X?B9Z8  
=CCxY7)M+.  
面2 : rSGt`#E-s.  
面型:plane jsXj9:X I  
材料:Air 4nIs+  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box $}9.4` F>  
wK0= I\WN9  
E`^?2dv+/  
位置坐标:绕Z轴旋转90度, R^nkcLFb/q  
8ec6J*b  
#fF~6wopV  
辅助数据: ^5"2s:vP  
k!%[W,*  
首先在第一行输入temperature :300K,emissivity: 0.1; <%@S-+D`]  
{nl]F  
yUZ;keQ_Tw  
Target 元件距离坐标原点-161mm; '[XtARtY`  
'Z<V(;W  
 :RYh@.  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 %Q)3*L  
- %ul9}.  
#D{jNSB  
探测器参数设定: 3jH8pO^  
d#?.G3YmK  
在菜单栏中选择Create/Element Primitive /plane 0cd`. ZF  
)^G&p[G  
)\iO wA  
>o#5tNm  
v|VfSLZTb  
`ViFY   
元件半径为20mm*20,mm,距离坐标原点200mm。 GMY"*J<E  
8T}Ycm5}  
光源创建: ,mu=#}a@}  
~|LlT^C  
光源类型选择为任意平面,光源半角设定为15度。 =bVaB<!  
ciq'fy  
?1r>t"e5  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ( TQx3DGq  
8z?q4  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 $@[`/Uh   
tkN5 |95  
:d&^//9  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 B&tU~  
0a#2 Lo  
创建分析面: ;NyX9&@  
{V> >a  
`%8byy@$  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 R\L0   
Cst:5m0!  
AfzE0mBW  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 Zcaec#  
b*-g@S  
FRED在探测器上穿过多个像素点迭代来创建热图 sC8C><y  
Z3ucJH/)V  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 '?q \mi  
将如下的代码放置在树形文件夹 Embedded Scripts, \]uo^@$bm  
yv.UNcP?  
jIZpv|t)  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 JN{.-k4Ha  
}CR@XD}[  
绿色字体为说明文字, 6LGy0dWpG  
[Rz9Di ;  
'#Language "WWB-COM" 3Mvm'T:[  
'script for calculating thermal image map -y8?"WB(b  
'edited rnp 4 november 2005 =:T pH>f*  
$6BD6\@  
'declarations B&l5yI b  
Dim op As T_OPERATION y4aW8J#  
Dim trm As T_TRIMVOLUME !nQ!J+ g  
Dim irrad(32,32) As Double 'make consistent with sampling 67Z.aaXD1  
Dim temp As Double *x^W`i   
Dim emiss As Double `@8QQB  
Dim fname As String, fullfilepath As String ";jj`  
;QT.|.t6  
'Option Explicit 3SRz14/W_R  
29]T:I1d[  
Sub Main l;4},N  
    'USER INPUTS ,tdV-9N[O  
    nx = 31 0]tr&BLl*  
    ny = 31 <&n\)R4C1  
    numRays = 1000 gNon*\a,-B  
    minWave = 7    'microns xWY%-CWY.  
    maxWave = 11   'microns [L.+N@M  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 YlI/~J  
    fname = "teapotimage.dat" 5*.JXx E;U  
NaeG2>1  
    Print "" ar-N4+!@  
    Print "THERMAL IMAGE CALCULATION" S#IlWU  
$^ \8-k "  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 ?a ~59!u  
ac8+?FpK #  
    Print "found detector array at node " & detnode `lAe2l^  
[:cy.K!Uo%  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 <ID/\Qx`q  
0w'%10"&U+  
    Print "found differential detector area at node " & srcnode t5r,3x!E  
jB+K)NXHL  
    GetTrimVolume detnode, trm ))y`q@  
    detx = trm.xSemiApe  .;ptgX  
    dety = trm.ySemiApe LvlVZjT  
    area = 4 * detx * dety -YF]k}|  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety idWYpU>gC  
    Print "sampling is " & nx & " by " & ny {+CW_ce  
\'z&7;px  
    'reset differential detector area dimensions to be consistent with sampling ('H[[YODh  
    pixelx = 2 * detx / nx jV83%%e  
    pixely = 2 * dety / ny 7 &y'\  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False B d#D*"gx  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 vrr&Ve  
\-X Qo  
    'reset the source power W_ w^"'  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) g_<^kg"  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" 8UH c,np  
E-P;3lS~  
    'zero out irradiance array _J'V5]=4  
    For i = 0 To ny - 1 F` /mcyf  
        For j = 0 To nx - 1 JmHEYPt0  
            irrad(i,j) = 0.0 PL;PId<9w  
        Next j Ce: 2Tw  
    Next i 6Fp}U  
JQ-O=8]  
    'main loop TvV_Tz4e  
    EnableTextPrinting( False ) mB.ybrig  
5](-(?k}~  
    ypos =  dety + pixely / 2 74Fv9  
    For i = 0 To ny - 1 du,mbTQib  
        xpos = -detx - pixelx / 2 dMo456L  
        ypos = ypos - pixely uBdS}U  
uc>u=kEue  
        EnableTextPrinting( True ) R07 7eX  
        Print i X~m*`UH  
        EnableTextPrinting( False ) azEN_oUV  
!bf8 r  
;ps 0wswX  
        For j = 0 To nx - 1 x4b.^5"`:  
qnFi./  
            xpos = xpos + pixelx Wq5Nc  
ccUI\!TD{/  
            'shift source x~!gGfP  
            LockOperationUpdates srcnode, True ^0 zWiX  
            GetOperation srcnode, 1, op <4l;I*:2&  
            op.val1 = xpos WA~PE` U  
            op.val2 = ypos 2P&KU%D)0s  
            SetOperation srcnode, 1, op ,CGq_>Z  
            LockOperationUpdates srcnode, False l"T{!Oq  
m%?+;V  
'raytrace 8eAc 5by  
            DeleteRays o@o0V  
            CreateSource srcnode @ V_@r@A  
            TraceExisting 'draw m+jW+  
|sG@Ku7~4  
            'radiometry y{Fq'w!ap  
            For k = 0 To GetEntityCount()-1 ,WvCslZ  
                If IsSurface( k ) Then *hm;C+<~  
                    temp = AuxDataGetData( k, "temperature" ) f( %r)%  
                    emiss = AuxDataGetData( k, "emissivity" ) 7v{X?86&  
                    If ( temp <> 0 And emiss <> 0 ) Then ~~8?|@V  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) 1Tb'f^M$  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) Qp]-:b  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 0$saDmED  
                    End If Ym]Dlz,o  
y2_^lW%  
                End If <@+>A$~0  
Cp`>dtCd  
            Next k /o/0 9K  
;usv/8  
        Next j 4>JDo,AWy  
('9LUFw\  
    Next i qGAb h  
    EnableTextPrinting( True ) RV%aFI )  
2D?V0>/  
    'write out file r[u@ [  
    fullfilepath = CurDir() & "\" & fname S yf0dp3  
    Open fullfilepath For Output As #1 H#Aar  
    Print #1, "GRID " & nx & " " & ny -5&|"YYjr{  
    Print #1, "1e+308" RyAss0Sm^  
    Print #1, pixelx & " " & pixely eD#R4  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 z~Ec*  
=Wgz\uGJ  
    maxRow = nx - 1 ?E6*Ef  
    maxCol = ny - 1 6+Y^A})(F-  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) WNE=|z#|  
            row = "" Za5bx,^  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) CH`_4UAX%  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string w^rINPAS  
        Next colNum                     ' end loop over columns );m7;}gE  
kS\A_"bc  
            Print #1, row ljS~>&  
2O*(F>>dT  
    Next rowNum                         ' end loop over rows {I]X-+D|_  
    Close #1 *.+Eg$'~V  
@D'NoA@1A  
    Print "File written: " & fullfilepath N~Kl{" >`  
    Print "All done!!" t9Sog~:'  
End Sub G"xa"hGF  
L_k'r\L  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: \nX5 $[  
?6m6 4{M  
*j`{ K  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 Fq-A vU  
  
ne~=^IRB  
_Di";fe?  
打开后,选择二维平面图: szDd!(&pv  
Cq<a|t  
谭健 2023-04-07 08:20
感谢分享 O< \i{4}}  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计