infotek |
2023-04-06 08:38 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 PWk?8dL- (OyY_`
成像示意图 f;Bfh3 首先我们建立十字元件命名为Target uH&,%k9GVK HA9Nr.NqC@ 创建方法: B3>Uba*-)} Z&]+A, 面1 : <duBwkiG 面型:plane a()6bRc~T 材料:Air qHR^0& 孔径:X=1.5, Y=6,Z=0.075,形状选择Box _(6B. :q>oD-b$}
.:Bwa 辅助数据: S#h'\/S 首先在第一行输入temperature :300K, xQ#Akd= emissivity:0.1; gR;8ht(pd( WS1&3mOd 5fegWCJ 面2 : OY^n0Zof, 面型:plane Oj"pj:fB 材料:Air UbY~xs7_ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box +f
X}O9 K$<`4#i Ld\LKwo 位置坐标:绕Z轴旋转90度, 5y%un \[[TlB>
c?.r"5# 辅助数据: aYaG]&hb
@ .Z[M 首先在第一行输入temperature :300K,emissivity: 0.1; <V$Y6(uMs {=bg5I0|a obAs<nk Target 元件距离坐标原点-161mm; HJfQ]p'nK2 GUu\dl9WA'
pcI& 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 8h&oSOkQk, &G-#*OG lh,ylh 探测器参数设定: &RKH2R c~gNH%1XN 在菜单栏中选择Create/Element Primitive /plane #Mj$o;SX V3>f*Z)xn
xvwD3.1 L_THU4^j
{cR_?Y@ SY%A"bC 元件半径为20mm*20,mm,距离坐标原点200mm。 +cz"`T`X 2 r6d0x 光源创建: J3/\<=Qh xm<v">< 光源类型选择为任意平面,光源半角设定为15度。 :3KO6/+ 2{A;du%& Q`.'-iq 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 <i\UMrD]`: J)9 AnGWe 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 1YOg1 n+k +1otn~(E >I$B= 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 Pm$F2YrO3 &$mZ?%^C 创建分析面: z.eJEK F&=I7i 8weSrm 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 UWQtvQ
f y;Qy"-)qb
)R jb/3*! 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 E]?)FH<oP kCj`V2go FRED在探测器上穿过多个像素点迭代来创建热图 3p:=xL v1LKU FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 iI3v[S 将如下的代码放置在树形文件夹 Embedded Scripts, L +L9Y} %lN2n,AK
:W~6F*A 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 U
z"sdi s(Z(e % 绿色字体为说明文字, J!rY
6[t \ jECSV| '#Language "WWB-COM" DhZ:#mM{ 'script for calculating thermal image map "[k1D_PZ 'edited rnp 4 november 2005 G 0hYFc u J0=7'@(p 'declarations Kl{-z X Dim op As T_OPERATION N1%p"( Dim trm As T_TRIMVOLUME yH^f\u0 Dim irrad(32,32) As Double 'make consistent with sampling [!EXMpq' Dim temp As Double UVrQV$g! Dim emiss As Double k}GjD2m Dim fname As String, fullfilepath As String </= CZy5w _pW_G1U 'Option Explicit Wbe0ZnM] qe?Qeh(!X Sub Main n#4Gv|{XMD 'USER INPUTS /prYSRn8 nx = 31 iwU[6A ny = 31 ~O{W;Cyh numRays = 1000 ?n.)&ZIx0 minWave = 7 'microns `N}d}O8
maxWave = 11 'microns A?8\Y{FQ sigma = 5.67e-14 'watts/mm^2/deg k^4 eZH~je{1 fname = "teapotimage.dat" 9C/MRmv` RP!
X8~8 Print "" *nRNg.i3D Print "THERMAL IMAGE CALCULATION" !77NG4B hJf2o detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 0}]SUe^ RF?DtNuq Print "found detector array at node " & detnode o_f-GO OX\$ nQ\o srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 (?>cn_m l+[czb~ Print "found differential detector area at node " & srcnode r8[T&z@_ SJk>Jt= GetTrimVolume detnode, trm t>xd]ti detx = trm.xSemiApe ut_pHj@ dety = trm.ySemiApe Qs9OC9X1 area = 4 * detx * dety \S ."?!U Print "detector array semiaperture dimensions are " & detx & " by " & dety MzkkcQLK Print "sampling is " & nx & " by " & ny gmP9j)V6 [/|zH'j: 'reset differential detector area dimensions to be consistent with sampling })Yv9],6 pixelx = 2 * detx / nx rjk ( X|R* pixely = 2 * dety / ny fDh]tua SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False X(*!2uS Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 vWjnI*6T#
%w
) +V 'reset the source power V5p0h~PK SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) |^a;77nE_^ Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Fky?\ec (=u'sn:s 'zero out irradiance array ,SUT~oETP For i = 0 To ny - 1 ZVih =Y-w For j = 0 To nx - 1 @?kJ). irrad(i,j) = 0.0 [
MyE2^ Next j s{}]D{bc Next i O
)d[8jw" !%)]56( 'main loop =qu(~]2( EnableTextPrinting( False ) b5a.go FX}Gt= ypos = dety + pixely / 2 8b(!k FxD For i = 0 To ny - 1 8sOQ9 xpos = -detx - pixelx / 2 *O~e
T ypos = ypos - pixely =9wy/c$ vB0RKk}d5 EnableTextPrinting( True ) [?0d~Q(R# Print i !t#F/C EnableTextPrinting( False ) vB'>[jvA| <vV_%uoM ;i<jhNA For j = 0 To nx - 1 kz}R[7
7[pBUDA xpos = xpos + pixelx >ut" OL9J lLhL`C! 'shift source <0P5 o| LockOperationUpdates srcnode, True `G9 l GetOperation srcnode, 1, op EgjR^A1W2 op.val1 = xpos nh+l78 op.val2 = ypos yx38g
ca SetOperation srcnode, 1, op zUJZ`seF LockOperationUpdates srcnode, False h^UKT`9vt _}xd}QW 'raytrace ULJ mSe DeleteRays ^D%Za' CreateSource srcnode u\yVR$pQ TraceExisting 'draw )!:sFa
1 avQJPB)}Sb 'radiometry g4p For k = 0 To GetEntityCount()-1 )kXhtjOl| If IsSurface( k ) Then $;N* c H~ temp = AuxDataGetData( k, "temperature" ) ^TY;Zp emiss = AuxDataGetData( k, "emissivity" ) H,unpZ( If ( temp <> 0 And emiss <> 0 ) Then \y`+B*\i ProjSolidAngleByPi = GetSurfIncidentPower( k ) W,5Hx1z R frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) 8,P-
7^ irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi l7H
qo) End If b?X.U}62_ \JEXX4% End If q[q?hQ/b RGKYW>$0RR Next k nAIo{
F f5AjJYq1 Next j *a;@* c/N@zum,{ Next i Mips.Bx EnableTextPrinting( True ) )L{ghy q;g>t5]a 'write out file y;wx?1) fullfilepath = CurDir() & "\" & fname XR2~Q)@ Open fullfilepath For Output As #1 MTg:dR_ Print #1, "GRID " & nx & " " & ny gxz-R?. Print #1, "1e+308" M5nWVK7c Print #1, pixelx & " " & pixely o8/;;* Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 f"7O "6 >(uZtYM\j maxRow = nx - 1 vE@!{* maxCol = ny - 1 0.T4{JS# For rowNum = 0 To maxRow ' begin loop over rows (constant X) * _a@z1 row = "" C2LL|jp* For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) $vC1 K5sLk row = row & irrad(colNum,rowNum) & " " ' append column data to row string wO ?+Nh Next colNum ' end loop over columns @SZM82qU2z F<>!kK/c Print #1, row aRG2@5 fkf1m:Ckh Next rowNum ' end loop over rows \^ghdU Close #1 *.L81er5~ 1)
ta Print "File written: " & fullfilepath -F'b8:m Print "All done!!" 4wC+S9I#E^ End Sub ?]D"k4 \fA{1 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: d>;&9;)H I}Nd$P)> L}@c6fHG 找到Tools工具,点击Open plot files in 3D chart并找到该文件 u[nyW3MZ |D, +P nKW*Y}VO 打开后,选择二维平面图: >:D
j\"o
NR;1z
|
|