首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2023-04-06 08:38

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。  `)`J  
7q>WO  
成像示意图
:yN;_bC!b%  
首先我们建立十字元件命名为Target p/|]])2  
o +sb2:x  
创建方法: )~1QOl "~  
58"Cn ||tF  
面1 : acgtXfHR  
面型:plane \IL/?J 5d  
材料:Air xEN""*Q  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box 5Z]zul@+*  
P9~7GFas|  
3fJ GJW!zu  
辅助数据: 7mipj]  
首先在第一行输入temperature :300K, ,E{z+:Es  
emissivity:0.1; xS%Z   
H#IJ&w|  
bmT_tNz  
面2 : Hi$J@xU  
面型:plane q@K;u[zFK  
材料:Air "oZ-W?IKE  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box `mTpL^f  
Q}GsCmt=)O  
fZK&h.  
位置坐标:绕Z轴旋转90度, }D_h*9  
p._BG80  
w%jc' ;|  
辅助数据: @= f2\hU  
t#tAvwFM8  
首先在第一行输入temperature :300K,emissivity: 0.1; M>+FIb(  
}J27Y ;Zp9  
zr~hGhfq  
Target 元件距离坐标原点-161mm; %~`8F\Hiu  
q_eGY&M  
~1xln?Q  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 C8qA+dri  
BdcTKC  
_5'OQ'P2  
探测器参数设定: J;|r00M  
$\kqh$")  
在菜单栏中选择Create/Element Primitive /plane U4]>8L  
*-~B{2b<  
".jY3<bQg  
>S4klW=*I  
x/*ndH  
gqR?hZD  
元件半径为20mm*20,mm,距离坐标原点200mm。 &z[39Q{~  
l:v:f@M&  
光源创建: t(69gF\"  
%[(DFutJY+  
光源类型选择为任意平面,光源半角设定为15度。 OQ&?^S`8',  
c,%9Fh?(  
r|t ;#  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 aa:Oh^AJy  
Jolr"F?  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 Ws'OJ1  
RD_IGV   
Ei!5Qya>  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 r8\"'4B1  
Lc ,te1  
创建分析面: j+0=)Q%I=  
bl. y4  
8&FnXhZg4  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 rb_ cm  
RUHQ]@d#T  
S2nF13u  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 bp G`,[  
4naL2 Y!  
FRED在探测器上穿过多个像素点迭代来创建热图 Sc Uh -y_  
iHy=92/Ww  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 a1]@&D r  
将如下的代码放置在树形文件夹 Embedded Scripts, ld58R  
-QR&]U+  
MONfA;64/  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 W =YFe<Q  
n(^{s5 Rr  
绿色字体为说明文字, PM3kI\:)m  
nbM[?=WS  
'#Language "WWB-COM" jt|e?1:vF  
'script for calculating thermal image map EVc Ees  
'edited rnp 4 november 2005 bqEQP3t^  
uJ jm50R<  
'declarations 7FL!([S5i  
Dim op As T_OPERATION 'PW~4f/m  
Dim trm As T_TRIMVOLUME PLDg'4DMg  
Dim irrad(32,32) As Double 'make consistent with sampling j:'sbU  
Dim temp As Double SP][xdN7  
Dim emiss As Double f\CJ |tKX  
Dim fname As String, fullfilepath As String F9rxm  
rlSar$  
'Option Explicit ^Glmg}>q  
((i%h^tGa;  
Sub Main le%&r  
    'USER INPUTS X`kTbIZ|  
    nx = 31 %00KOM:  
    ny = 31 \T)2J|mW  
    numRays = 1000 _[ml<HW]  
    minWave = 7    'microns 1fBj21zG  
    maxWave = 11   'microns d?dZ=]~C  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 7J@iJW],,  
    fname = "teapotimage.dat" hwkm'$}  
94bmK V_  
    Print "" >Micc   
    Print "THERMAL IMAGE CALCULATION" 'TWZ@8h~  
k}T#-Gb  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 0k"n;:KM8  
&2-dZK  
    Print "found detector array at node " & detnode 7x8/Vz@\  
!1 :%!7  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 G'b*.\=  
,CiN@T \&  
    Print "found differential detector area at node " & srcnode $10"lM[  
(]* Ro 8  
    GetTrimVolume detnode, trm &AR@5M u  
    detx = trm.xSemiApe 0mcZe5RS  
    dety = trm.ySemiApe Jq0aDf f  
    area = 4 * detx * dety 13 `Or(>U  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety *o<zo `  
    Print "sampling is " & nx & " by " & ny _*\:UBZx6  
M*M,Z  
    'reset differential detector area dimensions to be consistent with sampling i("ok  
    pixelx = 2 * detx / nx ' S%?&4  
    pixely = 2 * dety / ny W Z'UVUi8  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False VF8pH <  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 A")F7F31c  
W"j&':xD  
    'reset the source power m x`QBJ  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) xUT]6T0dB  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" b CWSh~  
a,<l_#'  
    'zero out irradiance array 9H^$cM9C  
    For i = 0 To ny - 1 ^0oOiZs  
        For j = 0 To nx - 1 #mhR^60,  
            irrad(i,j) = 0.0 \@")2o+  
        Next j }HdibCAOf  
    Next i }>`rf{T  
"^/3?W>  
    'main loop )fPN6x/e  
    EnableTextPrinting( False ) (^h2 'uB  
-U&k%X   
    ypos =  dety + pixely / 2 nPlg5&E  
    For i = 0 To ny - 1 Y3%_IwSJ|  
        xpos = -detx - pixelx / 2 mn5y]:;`  
        ypos = ypos - pixely TsiI5'tx  
!vd(WKq  
        EnableTextPrinting( True ) }Xa1K;KM{  
        Print i {'O,G$Ldkr  
        EnableTextPrinting( False ) Y.>F fL  
|HT5G=dw  
o:oQF[TcFO  
        For j = 0 To nx - 1 HLYog+?  
~`Uil=  
            xpos = xpos + pixelx <L!9as]w  
P_(QG 6  
            'shift source } O:Y?Wq^  
            LockOperationUpdates srcnode, True EV=/'f[++  
            GetOperation srcnode, 1, op xWC*DKV  
            op.val1 = xpos l~",<bTc  
            op.val2 = ypos MS7rD%(,'  
            SetOperation srcnode, 1, op "pRi1Y5)l  
            LockOperationUpdates srcnode, False =}F}XSvXH  
c&> S  
'raytrace _!qi`A  
            DeleteRays )4O>V?B  
            CreateSource srcnode T?lp:~d  
            TraceExisting 'draw E\/J& .  
fYxdG|>{u  
            'radiometry t=(d, kf  
            For k = 0 To GetEntityCount()-1 B>]4NF\)H9  
                If IsSurface( k ) Then ]LbFh5;s  
                    temp = AuxDataGetData( k, "temperature" ) 8uh^%La8b.  
                    emiss = AuxDataGetData( k, "emissivity" ) h#:_GNuF  
                    If ( temp <> 0 And emiss <> 0 ) Then lf`" (:./  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) NuEcTww  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) S {d]0  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi K;L6<a A#  
                    End If bukdyo;l  
uO^,N**R#  
                End If lVptA3F  
]H {g/C{j  
            Next k  Iz_#wO  
.]XBJc  
        Next j ^n%9Tu  
S UB rFsA  
    Next i TxA%{0  
    EnableTextPrinting( True ) /#Gm`BT  
As>-9p>v  
    'write out file tO}Y=kZa{  
    fullfilepath = CurDir() & "\" & fname ']C" 'b  
    Open fullfilepath For Output As #1 P*!~Z *"  
    Print #1, "GRID " & nx & " " & ny q9gk:Jt  
    Print #1, "1e+308" +~n"@ /  
    Print #1, pixelx & " " & pixely KFhnv`a.0  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 nN'>>'@>  
4R}$P1 E  
    maxRow = nx - 1 7X{@$>+S  
    maxCol = ny - 1 =Sjf-o1V  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) hd>_K*oH  
            row = "" 49!(Sa_]j  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 8+mu'RZ X  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string wl N l|+ K  
        Next colNum                     ' end loop over columns $aC%&&+wG  
=a $7^d  
            Print #1, row v"x'rx#  
1$n!Lj=5  
    Next rowNum                         ' end loop over rows *r/o \pyH  
    Close #1 Ha/Gn !l  
<Kk[^.7C;  
    Print "File written: " & fullfilepath BK 9+fO  
    Print "All done!!" &Db'}Y?x]  
End Sub \R.Fmeko  
GswV/V+u  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: LL%s$>c65A  
M?v`C>j  
'>Uip+'  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 [P3 Z"&  
  
@$7l  
7<zI'^l  
打开后,选择二维平面图: y{9<>28  
,R*YI  
谭健 2023-04-07 08:20
感谢分享 A3A"^f$$  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计