| infotek |
2023-04-06 08:38 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 zq'KX/o M nnVk=
成像示意图 ._[uSBR' 首先我们建立十字元件命名为Target {O!B8a
5hl!zA? 创建方法: B'-n
^'; SUb:0GUa 面1 : S[e> 8 面型:plane -4v2] 材料:Air q\G7T{t$. 孔径:X=1.5, Y=6,Z=0.075,形状选择Box Q"s]<MtdS @M*oq2U;
>aAsUL5W 辅助数据: XI>HC'.0 首先在第一行输入temperature :300K, P]0/ S emissivity:0.1; %$&_! Ys>Z=Eky /^9=2~b 面2 : >ra)4huZ 面型:plane fD*jzj7o, 材料:Air wz{&0-md*' 孔径:X=1.5, Y=6,Z=0.075,形状选择Box &9EcgazV Hyb_>n Y?V.O 位置坐标:绕Z轴旋转90度, r-AD*h@QZ VQI[J
.naSK`J,` 辅助数据: UmL Boy&* +yxL}=4s 首先在第一行输入temperature :300K,emissivity: 0.1; X`A+/{ H hz+c]K M Al4g+es Target 元件距离坐标原点-161mm; !>:]k?$b E/2_@&U:}
-
WQ)rz 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 c6cB
{/g pB0 SCS* 32p9(HQ 探测器参数设定: |`' WEe2 1 fTf+P 在菜单栏中选择Create/Element Primitive /plane ,7)zavA UHS"{%
`(xzCRX m U= 3w ))6YOc $U"pdf 元件半径为20mm*20,mm,距离坐标原点200mm。 8M,$|\U <=!FB8 . 光源创建: -Np}<O`./ w&*oWI$i 光源类型选择为任意平面,光源半角设定为15度。 A&{eC
C 'u9y\vUy Y/f8rN 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 N j:W6? A |<JBoE]3B 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 a28`)17z %zN~%mJG lL,0IfC, 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 aWY#gI{ $XcuU
sG 创建分析面: Y+gNi_dE _e " /}k?Tg/ 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 h7PIF*7m
e q!WiX|P
B.}j1Bb 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 4MoxP _opB,,G FRED在探测器上穿过多个像素点迭代来创建热图 19i=kdH 71Y3.1+ FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 Bqw/\Lxwlf 将如下的代码放置在树形文件夹 Embedded Scripts, aZmac'cz{ 4JL]?75
X$=/H 6R5Z 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。
|P-kyY34 .SDE6nvbW 绿色字体为说明文字, ZQyX zERp :Aj[#4-= '#Language "WWB-COM" ~BgNMO;| 'script for calculating thermal image map n`D-?]* 'edited rnp 4 november 2005 $\L=RU!c} >0cg 'declarations ^xq)Q?[{ Dim op As T_OPERATION L$?YbQo7 Dim trm As T_TRIMVOLUME }^`5$HEi Dim irrad(32,32) As Double 'make consistent with sampling 26MoYO!k Dim temp As Double Ki(0s Dim emiss As Double /}S1e P6 Dim fname As String, fullfilepath As String 10tt' : k)agbx 'Option Explicit pwl7aC+6d cRSgP{hy Sub Main ~n%]u! 6 'USER INPUTS eIbz`|%3 nx = 31 %Lom#:L' ny = 31 Vg7BK% numRays = 1000 ,D' bIk minWave = 7 'microns HG3iK maxWave = 11 'microns # (-?i\i sigma = 5.67e-14 'watts/mm^2/deg k^4 JTTI`b2l_ fname = "teapotimage.dat" UW&K\P Bpv"qU7 Print "" Er|j\(jM Print "THERMAL IMAGE CALCULATION" 7TA&u' mzcxq:uZ5 detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 Y r8gKhv W yS4nB04`= Print "found detector array at node " & detnode T!|-dYYI ygxaT"3"= srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Q7_#k66gb7 70Ei< Print "found differential detector area at node " & srcnode 33NzQb u+ 8wBb5! GetTrimVolume detnode, trm 72dd% detx = trm.xSemiApe jsq|K=x, dety = trm.ySemiApe wpOM~!9R area = 4 * detx * dety |al'_s}I Print "detector array semiaperture dimensions are " & detx & " by " & dety B]PG Print "sampling is " & nx & " by " & ny "Jg*
/F l?KP/0` 'reset differential detector area dimensions to be consistent with sampling z=TuUl@ pixelx = 2 * detx / nx JR|P]} pixely = 2 * dety / ny Agwl2AM5k SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False L/,M@1@R Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 <H|]^An!H >t4<2|!(M 'reset the source power D;Y2yc[v SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) o3.b='HAm Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" H4BuxM_r sd
|c/ayh~ 'zero out irradiance array 1Ch0O__2L For i = 0 To ny - 1 [L?WM>]% For j = 0 To nx - 1 *!,k`=.([# irrad(i,j) = 0.0 !~]'&9 Next j .FvIT]k- Next i Olr'n% } S>R40T=e 'main loop Cil1wFBb EnableTextPrinting( False ) >"D0vj Jg@eGs\* ypos = dety + pixely / 2 6W)#FO` For i = 0 To ny - 1 kj`h{Wc[) xpos = -detx - pixelx / 2 wfM|3GS+. ypos = ypos - pixely .WlZT- <'O|7.
^^ EnableTextPrinting( True ) / 16 r_l Print i f4^\iZ{`G EnableTextPrinting( False ) <KZ J \m+;^_;5GW 4x" je For j = 0 To nx - 1 xUIH,Fp-9 _x<7^^VT xpos = xpos + pixelx sDXQ{*6a jo"zdb 'shift source =]-D_$S~ LockOperationUpdates srcnode, True }Q_ }c9? GetOperation srcnode, 1, op {Yv5Z.L&( op.val1 = xpos O_Z op.val2 = ypos q` @8 SetOperation srcnode, 1, op ExSy/^4f LockOperationUpdates srcnode, False l8d }g hJ(S]1B~G 'raytrace -aIB_ DeleteRays ,h'omU7 CreateSource srcnode `YK#m4gc TraceExisting 'draw O_&Km[ ]dnB, 'radiometry BtKbX)R$J For k = 0 To GetEntityCount()-1 ^%/d]Zwb If IsSurface( k ) Then g#[,4o; temp = AuxDataGetData( k, "temperature" ) - s0QEQ emiss = AuxDataGetData( k, "emissivity" ) "=* If ( temp <> 0 And emiss <> 0 ) Then Wq*W+7=. ProjSolidAngleByPi = GetSurfIncidentPower( k ) :SVWi}:Co1 frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) UvVq# <- irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 0zXF{5Up End If &(A'uX.>pr LS4E.Xdn End If CDWchY jNP%BNd1f Next k <*DP G\6Ma ~tqDh( Next j $~:|Vj5iZ\ O+o_{t\R Next i C8
"FTH' EnableTextPrinting( True ) =%9j8wHX i}Cy q 'write out file rTM0[2N fullfilepath = CurDir() & "\" & fname usI$ Open fullfilepath For Output As #1 ]f3R;d Print #1, "GRID " & nx & " " & ny A]OVmw Print #1, "1e+308" X8(WsN Print #1, pixelx & " " & pixely /` 4B-Y4M4 Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 (W_U<~`t Nrk/_0^ maxRow = nx - 1 aTPmW]w6 maxCol = ny - 1 Iqb|.v LG For rowNum = 0 To maxRow ' begin loop over rows (constant X) Z;J{&OJ3qM row = "" "9!CsloWhz For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) ^I6GH?19>e row = row & irrad(colNum,rowNum) & " " ' append column data to row string Ozs&YZ Next colNum ' end loop over columns TS;?>J- jW_FaPW(p Print #1, row L@8C t |%5nV=&\ Next rowNum ' end loop over rows firiYL"=44 Close #1 `i3fC&?C 5gY9D!;:0D Print "File written: " & fullfilepath VHTr;(]hk Print "All done!!" 'A9U[| End Sub is}Y+^j. =j
S 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 2?\L#=<F C\;
$RH N!^5<2z@eT 找到Tools工具,点击Open plot files in 3D chart并找到该文件 g+M& _n F9C3i ]$?\,` 打开后,选择二维平面图: LkIbvJCV D``>1IA]
|
|