infotek |
2023-04-06 08:38 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 CqF=5z:A a?^xEye
成像示意图 _6Ex}`fyJ
首先我们建立十字元件命名为Target IdY\_@$ v .tFMa: 创建方法: ]t4 9Efw jGp|:!'w 面1 : S`N_}, 面型:plane PP+-D~r`} 材料:Air Ds}ctL{6" 孔径:X=1.5, Y=6,Z=0.075,形状选择Box V={`k$p d-cK`pSB
,F4_ps?( 辅助数据: gWqO5C~h 首先在第一行输入temperature :300K, ]7#@lL;'0 emissivity:0.1; ZD)pdNX X?B9Z8 =CCxY7)M+. 面2 : rSGt`#E-s. 面型:plane jsXj9:X I 材料:Air 4 nIs+ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box $}9.4`F> wK0= I\WN9 E`^?2dv+/ 位置坐标:绕Z轴旋转90度, R^nkcLFb/q 8ec6J*b
#fF~6wopV 辅助数据: ^5"2s:vP k!%[W,* 首先在第一行输入temperature :300K,emissivity: 0.1; <%@S-+D`] {nl]F yUZ;keQ_Tw Target 元件距离坐标原点-161mm; '[XtARtY` 'Z<V(;W
:RYh@. 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 %Q)3*L - %ul9} . #D{jNSB 探测器参数设定: 3jH8pO^ d#?.G3YmK 在菜单栏中选择Create/Element Primitive /plane 0cd`. ZF )^G&p[G
) \iOwA >o#5tNm v|VfSLZTb `ViFY
元件半径为20mm*20,mm,距离坐标原点200mm。 GMY"*J<E 8T}Ycm5} 光源创建: ,mu=#}a@} ~|LlT^C 光源类型选择为任意平面,光源半角设定为15度。 =bVaB<! ciq'fy ?1r>t"e5 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 (TQx3DGq 8z?q4 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 $@[`/Uh tkN5|95 :d&^//9 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 B&tU~ 0a#2 Lo 创建分析面: ;NyX9&@ {V> >a `%8by y@$ 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 R\L0 Cst:5m0!
Af zE0mBW 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 Zcaec# b*-g@S FRED在探测器上穿过多个像素点迭代来创建热图 sC8C><y
Z3ucJH/)V FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 '?q \mi 将如下的代码放置在树形文件夹 Embedded Scripts, \]uo^@$bm yv.UNcP?
jIZpv|t) 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 JN{.-k4Ha }CR@XD}[ 绿色字体为说明文字, 6LGy0dWpG [Rz9Di ; '#Language "WWB-COM" 3Mvm'T:[ 'script for calculating thermal image map -y8?"WB(b 'edited rnp 4 november 2005 =:T pH>f* $6BD6\@ 'declarations B&l5yI
b Dim op As T_OPERATION y4aW8J# Dim trm As T_TRIMVOLUME !nQ!J+ g Dim irrad(32,32) As Double 'make consistent with sampling 67Z.aaXD1 Dim temp As Double *x^W`i
Dim emiss As Double `@8QQB Dim fname As String, fullfilepath As String ";jj` ;QT.|.t6 'Option Explicit 3SRz14/W_R 29]T:I1d[ Sub Main l;4},N 'USER INPUTS ,tdV-9N[O nx = 31 0]tr&BLl* ny = 31 <&n\)R4C1 numRays = 1000 gNon*\a,-B minWave = 7 'microns xWY%-CWY. maxWave = 11 'microns [L.+N@M sigma = 5.67e-14 'watts/mm^2/deg k^4 Y lI/~J fname = "teapotimage.dat" 5*.JXxE;U NaeG2>1 Print "" ar-N4+!@ Print "THERMAL IMAGE CALCULATION" S#IlWU $^ \8-k " detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 ?a~59!u ac8+?FpK # Print "found detector array at node " & detnode `lAe2l^ [:cy.K!Uo% srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 <ID/\Qx`q 0w'%10"&U+ Print "found differential detector area at node " & srcnode t5r,3x!E jB+K)NXHL GetTrimVolume detnode, trm ))y`q@ detx = trm.xSemiApe
.;ptgX dety = trm.ySemiApe LvlVZjT area = 4 * detx * dety -YF]k}| Print "detector array semiaperture dimensions are " & detx & " by " & dety idWYpU>gC Print "sampling is " & nx & " by " & ny {+CW_ce \'z&7;px 'reset differential detector area dimensions to be consistent with sampling ('H[[YODh pixelx = 2 * detx / nx jV83%%e pixely = 2 * dety / ny 7 &y'\ SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False B d#D*"gx Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 vrr&Ve \-XQo 'reset the source power W_w^"' SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) g_<^kg" Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" 8UH
c,np E-P;3lS~ 'zero out irradiance array _J'V5]=4 For i = 0 To ny - 1 F` /mcyf For j = 0 To nx - 1 JmHEYPt0 irrad(i,j) = 0.0 PL;PId<9w Next j Ce:2Tw Next i 6Fp}U JQ-O=8] 'main loop TvV_Tz4e EnableTextPrinting( False ) mB.ybrig 5](-(?k}~ ypos = dety + pixely / 2 74Fv9 For i = 0 To ny - 1 du,mbTQib xpos = -detx - pixelx / 2 dMo456L ypos = ypos - pixely uBdS}U uc>u=kEue EnableTextPrinting( True ) R07 7eX Print i X~m*` UH EnableTextPrinting( False ) azEN_oUV !bf8
r ;ps0wswX For j = 0 To nx - 1 x4b.^5"`: qnFi./ xpos = xpos + pixelx Wq5 Nc ccUI\!TD{/ 'shift source x~!gGfP LockOperationUpdates srcnode, True ^0 zWiX GetOperation srcnode, 1, op <4l;I*:2& op.val1 = xpos WA~PE` U op.val2 = ypos 2P&KU%D)0s SetOperation srcnode, 1, op ,CGq_>Z LockOperationUpdates srcnode, False l"T{!Oq m%?+;V 'raytrace 8eAc 5by DeleteRays o@o0V CreateSource srcnode @ V_@r@A TraceExisting 'draw m+jW+ |sG@Ku7~4 'radiometry y{Fq'w!ap For k = 0 To GetEntityCount()-1 ,WvCslZ If IsSurface( k ) Then *hm;C+<~ temp = AuxDataGetData( k, "temperature" ) f( %r)% emiss = AuxDataGetData( k, "emissivity" ) 7v{X?86& If ( temp <> 0 And emiss <> 0 ) Then ~~8?|@V ProjSolidAngleByPi = GetSurfIncidentPower( k ) 1Tb'f^M$ frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) Qp]-:b irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 0$saDmED End If Ym]Dlz,o y2_^lW% End If <@+>A$~0 Cp`>dtCd Next k /o/0 9K ;usv/8 Next j 4>JDo,AWy ('9LUFw\ Next i qG Abh EnableTextPrinting( True ) RV%aFI ) 2D?V0>/ 'write out file r[u@[ fullfilepath = CurDir() & "\" & fname Syf0dp3 Open fullfilepath For Output As #1 H#Aar Print #1, "GRID " & nx & " " & ny -5&|"YYjr{ Print #1, "1e+308" RyAss0Sm^ Print #1, pixelx & " " & pixely eD#R4 Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 z~Ec * =Wgz\uGJ maxRow = nx - 1 ?E6*Ef maxCol = ny - 1 6+Y^A})(F- For rowNum = 0 To maxRow ' begin loop over rows (constant X) WNE=|z#| row = "" Za5bx,^ For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) CH`_4UAX% row = row & irrad(colNum,rowNum) & " " ' append column data to row string w^rINPAS Next colNum ' end loop over columns );m7;}gE kS\A_"bc Print #1, row ljS~>& 2O*(F>>dT Next rowNum ' end loop over rows {I]X-+D|_ Close #1 *.+Eg$'~V @D'NoA@1A Print "File written: " & fullfilepath N~Kl{">` Print "All done!!" t9Sog~:' End Sub G"xa"hGF L_k'r\L 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: \nX5$[ ?6m6 4{M *j`{ K 找到Tools工具,点击Open plot files in 3D chart并找到该文件 Fq-AvU ne~=^IRB _Di";fe? 打开后,选择二维平面图: szDd!(&pv Cq<a|t
|
|