首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2023-04-06 08:38

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 x9XGCr  
: L6-{9$  
成像示意图
= y,yQO  
首先我们建立十字元件命名为Target 4fU5RB7%  
a=}">=]7  
创建方法: t<KEx^gb  
D7Rbho<  
面1 : 2i4Dal  
面型:plane %k1q4qOG]^  
材料:Air h0y\,iWXb  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box 9M-NItFos  
NO0[`jy(  
37ri b  
辅助数据: `9G$p|6  
首先在第一行输入temperature :300K, OTy 4"%  
emissivity:0.1; h!JjN$  
CwCo"%E8}  
5sf fDEU]A  
面2 : hg86#jq%  
面型:plane 3'gd'`Hn/  
材料:Air o/i5e=9[y  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box '3Lx!pMhN  
RmCn&-i  
}E)8soQR  
位置坐标:绕Z轴旋转90度, 'nmYB:&!  
$[^ KCNB  
q4IjCu+  
辅助数据: <R]Wy}2-  
[{.\UkV@  
首先在第一行输入temperature :300K,emissivity: 0.1; se*pkgWbz  
JzS^9) &  
"_% 0|;  
Target 元件距离坐标原点-161mm; RIVN>G[;L  
DrVbx  
XN0RT>@  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 ve_4@J)  
P[|B WNei  
[/2@=Uh-  
探测器参数设定: tg m{gR  
}O-%kl  
在菜单栏中选择Create/Element Primitive /plane iM-hWhU  
>f9]Nj  
G){1`gAhNJ  
\)6?u_(u  
5xn0U5U  
qz_TcU'  
元件半径为20mm*20,mm,距离坐标原点200mm。 Q:xI} ]FM  
f*R_\  
光源创建: ^!s}2GcS`  
|H|eH~.yg&  
光源类型选择为任意平面,光源半角设定为15度。 a1Y_0  
\Jj'60L^  
<pa];k(IQL  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 )F9%^a(  
V1+o3g{}  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 f~(^|~ZT  
I$P7%}  
mm9S#Ya  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 TlZlE^EE<  
'5+, lRu  
创建分析面: ;{)@ghD  
0z2R`=)  
u+i/CE#w  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Yv`1ySR  
9?mOLDu}Q0  
$EHn ;~w T  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 Jv$2wH  
z%-"' Y]  
FRED在探测器上穿过多个像素点迭代来创建热图 ovRCF(Og,  
'1T v1  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 N 7|W.(  
将如下的代码放置在树形文件夹 Embedded Scripts, 74!JPOpQH  
sT8kVN|Uv  
FU3IK3}  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 9~ .BH;ku  
B 0fo[Ev  
绿色字体为说明文字, <zWQ[^  
}lbx  
'#Language "WWB-COM" *g_>eNpXD  
'script for calculating thermal image map !P3tTL!*L  
'edited rnp 4 november 2005 IaZAP  
Boz_*l|  
'declarations ^rZ+H@p:6  
Dim op As T_OPERATION `1}yB  
Dim trm As T_TRIMVOLUME <@2?2l+`X  
Dim irrad(32,32) As Double 'make consistent with sampling oFA$X Y  
Dim temp As Double |@4h z9~3  
Dim emiss As Double a\.?{/  
Dim fname As String, fullfilepath As String +/^q"/f F  
X!'Xx8  
'Option Explicit p{_ O*bo  
H  "/e%  
Sub Main R~ u7;Wv  
    'USER INPUTS bJu,R-f  
    nx = 31 RB 0j!H:  
    ny = 31 (>% Vj  
    numRays = 1000 p5 PON0dS  
    minWave = 7    'microns Ki 6BPi^  
    maxWave = 11   'microns a*@Z^5f  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 +mel0ZStS  
    fname = "teapotimage.dat" vTa23YDW  
CKK5+  
    Print "" e5y`CXX  
    Print "THERMAL IMAGE CALCULATION" #k]0[;1os  
B,qZwc|  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 S`PSFetC  
}C1}T}U  
    Print "found detector array at node " & detnode HCZ%DBU96  
;:YjgZ:+Q]  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 {;gWn' aq  
`9)2nkJk'z  
    Print "found differential detector area at node " & srcnode 0md{e`'q:  
*8HxJ+[,[  
    GetTrimVolume detnode, trm w9}IM149  
    detx = trm.xSemiApe F}mwQ%M  
    dety = trm.ySemiApe @)Y7GM+^  
    area = 4 * detx * dety k0=y_7 =(5  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety "s^@PzQpN  
    Print "sampling is " & nx & " by " & ny / S^m!{  
xL#oP0d<e  
    'reset differential detector area dimensions to be consistent with sampling LA3,e (e  
    pixelx = 2 * detx / nx eJdQ7g[>  
    pixely = 2 * dety / ny ^OsUWhkV  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False l"g%vS,;`  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 u01^ABn  
atnbM:t  
    'reset the source power `qEm5+`  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 2Nzcej  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" LxGh *7K-  
T+( A7Qrx%  
    'zero out irradiance array '\qr=0aW  
    For i = 0 To ny - 1 3hjwwLKG$  
        For j = 0 To nx - 1 4IpFT;`q  
            irrad(i,j) = 0.0 vIv3rN=5vB  
        Next j CawVC*b3  
    Next i !0_Y@>2  
K~N[^pF  
    'main loop W u{nC  
    EnableTextPrinting( False ) kKO]q#9sO  
+#9 (T  
    ypos =  dety + pixely / 2 G7xjW6^T  
    For i = 0 To ny - 1 !y0 O['7  
        xpos = -detx - pixelx / 2 G*V 7*KC  
        ypos = ypos - pixely dRC+|^ rSC  
<\NXCUqDpo  
        EnableTextPrinting( True ) <<6#Uz.1  
        Print i x$4'a~E  
        EnableTextPrinting( False ) p8bTR!rvz  
S}yb~uc,  
W{2y*yqY  
        For j = 0 To nx - 1 ,\"gN5[$(  
s_Gp +-  
            xpos = xpos + pixelx I<f M8t.Y>  
z81!F'x;  
            'shift source 81 C?U5  
            LockOperationUpdates srcnode, True D7wWk ,B  
            GetOperation srcnode, 1, op cFo-NI2  
            op.val1 = xpos '!GI:U+g  
            op.val2 = ypos :a`m9s 4  
            SetOperation srcnode, 1, op }3e+D  
            LockOperationUpdates srcnode, False R'U(]&e.j  
4Yk (ldR~  
'raytrace *8+YR  
            DeleteRays w?"l4.E%  
            CreateSource srcnode h<q``hn>  
            TraceExisting 'draw AG%aH=TKp  
$'wl{D"  
            'radiometry G3n7x?4m  
            For k = 0 To GetEntityCount()-1 ggWfk  
                If IsSurface( k ) Then ;anG F0x  
                    temp = AuxDataGetData( k, "temperature" ) m5*RB1  
                    emiss = AuxDataGetData( k, "emissivity" )  }P#gXG  
                    If ( temp <> 0 And emiss <> 0 ) Then ?U[AE -*  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) 9wzYDKN}  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) '-_PO|}  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi [0emOS  
                    End If nXjUTSGa)  
ujedvw;sO  
                End If X88Zd M'  
YFY)Z7fK  
            Next k W1z5|-T  
8 B5%IgA  
        Next j 7085&\9  
h !1c(UR  
    Next i XhiC'.B_  
    EnableTextPrinting( True ) I._=q  
|ouk;r24V  
    'write out file TM;)[R@  
    fullfilepath = CurDir() & "\" & fname -mF9Skj  
    Open fullfilepath For Output As #1 J\BdC];  
    Print #1, "GRID " & nx & " " & ny ?CC6/bE-{  
    Print #1, "1e+308" # ,Y}  
    Print #1, pixelx & " " & pixely Z:{Z&HQC  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 qZ.\GHS  
L $~Id  
    maxRow = nx - 1 [%pZM.jFO  
    maxCol = ny - 1 ]SI`fja/  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) g`1i[Iu2  
            row = "" [iD!!{6+  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) M vCBgLN  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string s.U p<Rw  
        Next colNum                     ' end loop over columns j(rFORT  
OR O~(%-(e  
            Print #1, row 3ba"[C|  
Wil +"[Ge  
    Next rowNum                         ' end loop over rows n9%rjS$  
    Close #1 rBL)ct  
~H.;pJ{ 8  
    Print "File written: " & fullfilepath h ? M0@Z  
    Print "All done!!" u|C9[(  
End Sub 7%tn+  
]KmYPrCl0  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: DbDpdC;  
z{ 8!3>:E  
Kt-@a%O0  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 `'/8ifKz  
  
b#F3,T__`Y  
?$?Ni)Z  
打开后,选择二维平面图: @AwH?7(b  
86i =N _  
谭健 2023-04-07 08:20
感谢分享 TS;MGi0`}  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计