首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2023-04-06 08:38

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 /LSq%~UF  
PQQgDtiH  
成像示意图
Dn: Yi8=  
首先我们建立十字元件命名为Target VBhE{4J  
@ljZw(  
创建方法: Re7{[*Q4  
^?#@[4?"  
面1 : 1RURZoL  
面型:plane %odw+PhO  
材料:Air l#mtND3  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box ADTU{6UPS  
=SA 4\/  
?Z5$0-g'hU  
辅助数据: "[Yip5  
首先在第一行输入temperature :300K, zkH<aLRB  
emissivity:0.1; ;U8dm"  
d"z *Nb  
o:h)~[n|  
面2 : XL=2wh  
面型:plane < JGYr 4V  
材料:Air K~P76jAe$  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box UnJi& ~O  
)x y9X0  
UzXDi#Ky  
位置坐标:绕Z轴旋转90度, HW^{;'kH~  
{c.}fyN  
5/*)+  
辅助数据: [''=><  
GcPB'`!M  
首先在第一行输入temperature :300K,emissivity: 0.1; \XZU'JIO  
:Xb*m85y  
v\J!yz  
Target 元件距离坐标原点-161mm; ytg7p5{!i  
>6n@\n  
77)OW $G  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 +SP! R[a  
SZNFE  
>eTf}#s?S  
探测器参数设定: }S Y`KoC1  
AEBw#v!,o  
在菜单栏中选择Create/Element Primitive /plane h;&&@5@lM  
hj%}GP{{  
LPtx|Sx![  
3 ATN?V@  
:DF`A(  
g`y/ _  
元件半径为20mm*20,mm,距离坐标原点200mm。 G:H(IA7Z  
Z?.:5#  
光源创建: J$o[$G_Z  
,Gf+U7'K  
光源类型选择为任意平面,光源半角设定为15度。 $u/8Rp  
VKl~oFKXJ  
hg)!m\g  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 XyN`BDFi  
_Eet2;9  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 p]atH<^;K  
p8 E;[  
-Hl\j (D7  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 ?etj.\q6  
LGdf_M-f  
创建分析面: \J#I}-a&j  
F!DrZd>\  
c/,|[ t  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 ,58kjTM  
*R1d4|/G  
#CBo  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 *GY,h$Ul  
@DjG? yLK$  
FRED在探测器上穿过多个像素点迭代来创建热图 KV3+}k  
mo97GW  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 `0/gs  
将如下的代码放置在树形文件夹 Embedded Scripts, QZeb+r  
&QHA_+88W  
&AkzSgP  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 y2d_b/  
#oS  
绿色字体为说明文字, f]^J,L9qz  
cfF-e93T  
'#Language "WWB-COM" 'JXN*YO  
'script for calculating thermal image map e3bAT.P  
'edited rnp 4 november 2005 JN9HT0  
cc#_acR  
'declarations *HfW(C$  
Dim op As T_OPERATION xfZ9&g  
Dim trm As T_TRIMVOLUME \p_8YC  
Dim irrad(32,32) As Double 'make consistent with sampling ~=aI2(b  
Dim temp As Double )@};lmPR  
Dim emiss As Double $(!D/bvJ  
Dim fname As String, fullfilepath As String wHDF TIDI  
e=NQY8?  
'Option Explicit Z2Y583D  
ff2.| 20  
Sub Main YQw/[  
    'USER INPUTS E,nYtn|B  
    nx = 31 xHR+((  
    ny = 31 VA*79I#_q  
    numRays = 1000 =Am*$wGI  
    minWave = 7    'microns }G0.Lq+a  
    maxWave = 11   'microns gEe W1:AB  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 pR^Y|NG!  
    fname = "teapotimage.dat" Hr64M0V3B  
TPmZ/c^  
    Print "" AF{7<v>/P  
    Print "THERMAL IMAGE CALCULATION" e&VR>VJEA  
_s#/f5<:B  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 znDtM1sLeV  
Tef3 Z6  
    Print "found detector array at node " & detnode gx{~5&1  
3C5D~9v  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 t.i9!'Y ]  
QK/+*hr;  
    Print "found differential detector area at node " & srcnode `W;cft4  
z]4g`K+  
    GetTrimVolume detnode, trm "Y J;-$rb  
    detx = trm.xSemiApe !n?*vN=S  
    dety = trm.ySemiApe 5 <>agK]  
    area = 4 * detx * dety $9u  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety ;),O*Z|"v  
    Print "sampling is " & nx & " by " & ny %0M^  
X;[zfEB  
    'reset differential detector area dimensions to be consistent with sampling 28L'7  
    pixelx = 2 * detx / nx {83He@  
    pixely = 2 * dety / ny P+cFp7nC  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False h[v3G<C~r  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 jnLo[Cf,H8  
m"> =QP  
    'reset the source power OgpH{"  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) yqc(32rF!  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" EG:WE^4  
WoT z'  
    'zero out irradiance array l+kg4y  
    For i = 0 To ny - 1 ;<ma K*f\S  
        For j = 0 To nx - 1 ur quVb  
            irrad(i,j) = 0.0 :FgRe,D  
        Next j _nCs$ U  
    Next i g(F*Y> hk  
E;Ftop  
    'main loop H\>I&gC'  
    EnableTextPrinting( False ) B0SmE_u_N  
8$xKg3-3M  
    ypos =  dety + pixely / 2 <$Kv^Y*  
    For i = 0 To ny - 1 ZN]c>w[ )I  
        xpos = -detx - pixelx / 2 8@*|T?r  
        ypos = ypos - pixely ?01""Om   
Y8xnvK*  
        EnableTextPrinting( True ) B*?PB]  
        Print i g.sV$.T2K  
        EnableTextPrinting( False ) ,$(v#Tz  
:^L]Da3  
#$^i x  
        For j = 0 To nx - 1 ~oR&0et  
')cgx9   
            xpos = xpos + pixelx 0\<-R  
 s !vROJ  
            'shift source l,2z5p  
            LockOperationUpdates srcnode, True ]O ` [v  
            GetOperation srcnode, 1, op ;GE u.PdxB  
            op.val1 = xpos s5 'nWMo  
            op.val2 = ypos !>);}J!e]  
            SetOperation srcnode, 1, op (#"s!!b  
            LockOperationUpdates srcnode, False NKh {iSLm  
g>-[-z$E3  
'raytrace |dzF>8< )  
            DeleteRays ~0{Kga  
            CreateSource srcnode "8 mulE,  
            TraceExisting 'draw >^ar$T;Ys  
nY0UnlB`  
            'radiometry "{xv|C<*n  
            For k = 0 To GetEntityCount()-1 [$Bb'],k  
                If IsSurface( k ) Then aM}"DY-_ h  
                    temp = AuxDataGetData( k, "temperature" ) k0uwG'(z9  
                    emiss = AuxDataGetData( k, "emissivity" ) TRok4uc  
                    If ( temp <> 0 And emiss <> 0 ) Then XFe7qt;%  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) )t=u(:u]  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) =eLb"7C#0  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi Y-{BY5E.  
                    End If ,#O8:s  
E\N=p&g$  
                End If EZfa0jJD  
'vIkA=  
            Next k X&8,.=kt"  
Y6PA\7Y\  
        Next j )eMh,r  
W A}@n  
    Next i <BA&S _=4  
    EnableTextPrinting( True ) S:\hcW6  
1y;zPJ<ntm  
    'write out file wKbymmG  
    fullfilepath = CurDir() & "\" & fname e !Okc*,  
    Open fullfilepath For Output As #1 u.FDe2|[)  
    Print #1, "GRID " & nx & " " & ny ]<LU NxBR  
    Print #1, "1e+308" ,RO(k4  
    Print #1, pixelx & " " & pixely ljON_*  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 v |2j~  
<~+  
    maxRow = nx - 1 ZHasDZ8  
    maxCol = ny - 1 ~=ys~em e  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) y]9U FL"  
            row = "" e_-/p`9  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) mK4|=Q  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string jtY~- @*  
        Next colNum                     ' end loop over columns 9-6_:N>  
"6QMa,)D  
            Print #1, row 1z:N$O _v  
H\bIO!vb  
    Next rowNum                         ' end loop over rows Q>yt O'v1  
    Close #1 aB'@8[]z  
4pT|r6!<  
    Print "File written: " & fullfilepath N Z`hy>LF^  
    Print "All done!!" IBh~(6  
End Sub A,)ELVk1F  
?Fpl.t~  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: $SR]7GZ  
hspg-|R  
,2bAKa  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 %Ege^4PE  
  
NM.B=<Aw*  
,&G M\FTeb  
打开后,选择二维平面图: qKC*j DW  
ZRfa!9vl  
谭健 2023-04-07 08:20
感谢分享 $uhDBmb  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计