| infotek |
2023-04-06 08:38 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 Q{>9Dg iW*0V3
成像示意图 XKks j!'B 首先我们建立十字元件命名为Target YH<@->Ip -[^wYr= 创建方法: H{yPi7 P |7|mnOBdDf 面1 : gMHH3^\VH) 面型:plane <@JU0Z"a= 材料:Air S1$\D!|1 孔径:X=1.5, Y=6,Z=0.075,形状选择Box FAPgXmFzx $?*+P``
ZJR{c 5TE 辅助数据: nr s!e 首先在第一行输入temperature :300K, HL 88 emissivity:0.1; T0tG1/O\ Z>CFH9 ;uba 面2 : laFkOQI 面型:plane !u7WCw.D m 材料:Air /f0_mi,bD 孔径:X=1.5, Y=6,Z=0.075,形状选择Box >vP^l
{SD N3x}YHFF 0&5}[9?V' 位置坐标:绕Z轴旋转90度, l#Qf8*0 i>!f|<
i"_f46rP 辅助数据: q!O~* K32eZv`T7 首先在第一行输入temperature :300K,emissivity: 0.1; 72v 9S T Y~Jq ! ?d_<S0j-) Target 元件距离坐标原点-161mm; 4pc=MR 8,B9y D
Y61E|:fV! 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 Crww\#E; mtTJm4 x6$P(eN 探测器参数设定: #p_ ~L4iW i uN8gHx 在菜单栏中选择Create/Element Primitive /plane 2V~Yb1P ):.]4n{L
$"_D"/* + x4o# N '4O1Y0K V}aXS;(r% 元件半径为20mm*20,mm,距离坐标原点200mm。 i<@|+*>M =)y=M!T2 光源创建: =Wl
CE_ z6Mf>q 光源类型选择为任意平面,光源半角设定为15度。 JFZZ-t;* M
rVtxzH ?[T&y
,ln 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 <X;y
4lPZ M)|}Vn;! 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 ^KlMBKWyB 3UH=wmG0w q@^=im 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 Ymn0?$,D1= W=G[hT5L{ 创建分析面: hd^?svID .c BJA&/ 3S <5s} 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 8{h:z
9]J {@C+Js5
yfaXScbE 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ~rKo5#D ? ZN8Ku FRED在探测器上穿过多个像素点迭代来创建热图 ,AM6E63 w"aD"}3 FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 _#-(XQ a 将如下的代码放置在树形文件夹 Embedded Scripts, &&t4G }* 0iHK1Pt}
[81k4kU 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 %,)[%>#{ r,0> 40^ 绿色字体为说明文字, #V~r@, 9i9VDk{ '#Language "WWB-COM" '2#O{ 'script for calculating thermal image map :~`E@`/ 'edited rnp 4 november 2005 .|_+>){$w 9C`Fd S 'declarations .YLg^JfZ Dim op As T_OPERATION YK_a37E{F Dim trm As T_TRIMVOLUME \|wVIi Dim irrad(32,32) As Double 'make consistent with sampling PUucYc Dim temp As Double *6=[Hmygi Dim emiss As Double ~KrzJp=5F Dim fname As String, fullfilepath As String T!J\Dm- jaNkWTm: 'Option Explicit LN_6>u D'A)H Sub Main I`FH^= 'USER INPUTS V4xZC\)Gk nx = 31 8=<d2u' ny = 31 [j-]n#E=9y numRays = 1000 8Zwq:lV Q minWave = 7 'microns HnU}Lhjzj maxWave = 11 'microns $|sRj!F sigma = 5.67e-14 'watts/mm^2/deg k^4 ZW*"Kok fname = "teapotimage.dat" .D>%- +
PGfQN Print "" VNA VdP Print "THERMAL IMAGE CALCULATION" [x,_0-_ 7GE.>h5 detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 d}IVYI Xc`'i@FX Print "found detector array at node " & detnode V#5BZU- ^d4# srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 z<s]Z ?%;)> :3N Print "found differential detector area at node " & srcnode gdHPi; ?hsOhUs(5 GetTrimVolume detnode, trm epz2d~; detx = trm.xSemiApe vek9. 4! ] dety = trm.ySemiApe Fi1gM}>py area = 4 * detx * dety /__we[$E Print "detector array semiaperture dimensions are " & detx & " by " & dety V,{ydxfB Print "sampling is " & nx & " by " & ny QH#|R92: D4;V8(w=# 'reset differential detector area dimensions to be consistent with sampling [;#}BlbN pixelx = 2 * detx / nx &LHQ)? pixely = 2 * dety / ny NDCZc_ SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False >qCUs3}C{* Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 h6la+l?x t\u0\l> 'reset the source power wrw~J SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) }B}?q V Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" z8jQaI]j k}Ahvlq) 'zero out irradiance array LlX 7g_! For i = 0 To ny - 1 lhJT& For j = 0 To nx - 1 9cX
~ irrad(i,j) = 0.0 VO[s:e9L Next j uu]<R@!J Next i MQw{^6Z>1 _T8#36iR 'main loop ;lnh;0B EnableTextPrinting( False ) !,INrl[ ~vBmW_j ypos = dety + pixely / 2 $w#C;2k]N For i = 0 To ny - 1 D_(xhM xpos = -detx - pixelx / 2 fMI4'.Od ypos = ypos - pixely }3 RqaIY} vR-rCve$P EnableTextPrinting( True ) W}.;]x%1B Print i bgL`FW i3 EnableTextPrinting( False ) ;' YM@n B TgL: 97NF*-)N For j = 0 To nx - 1 mEr*n L:%;
Fx2 xpos = xpos + pixelx ``$At ,m ko$bCG% 'shift source Quc9lL LockOperationUpdates srcnode, True HE7JQP!q GetOperation srcnode, 1, op
lrU}_` op.val1 = xpos srO{Ci0 op.val2 = ypos F+v? 2|03 SetOperation srcnode, 1, op 2<
w/GX. LockOperationUpdates srcnode, False !7P 1%/ 03iO4yOu 'raytrace K({+3vK DeleteRays Iy6"2$%a CreateSource srcnode 3[pA:Z+xx TraceExisting 'draw 8L9xP'[^ Uw)?u$+
P 'radiometry /{\tkvv-Z For k = 0 To GetEntityCount()-1 srw5&s(3X If IsSurface( k ) Then +_3>T''_ temp = AuxDataGetData( k, "temperature" ) .~4%TsBaY emiss = AuxDataGetData( k, "emissivity" ) `6?r.;wj If ( temp <> 0 And emiss <> 0 ) Then Gdi1lYu6V ProjSolidAngleByPi = GetSurfIncidentPower( k ) u
B~/W frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) blk~r0.2 irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi ,AhQA End If fXS4&XU 7-nwfp&|$ End If 593D/^}D -A[iTI" Next k i:ZpAo+Z{ xoA\^AA Next j yOxJx7uD m%X~EwFc. Next i F'|D EnableTextPrinting( True ) GX4# IRq TWK(vEDM 'write out file "|gNNmr fullfilepath = CurDir() & "\" & fname .zAB)rNc
| Open fullfilepath For Output As #1 Z6
E-FuO Print #1, "GRID " & nx & " " & ny #E3Y;
b%v Print #1, "1e+308" A?06fo, Print #1, pixelx & " " & pixely Q
Bc\=} Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 aF;QSI {k-GWYFA maxRow = nx - 1 #f5-f maxCol = ny - 1 @f-0OX$* For rowNum = 0 To maxRow ' begin loop over rows (constant X) \Se>u4~L row = "" hp/}Z"A= For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) (@vu/yN row = row & irrad(colNum,rowNum) & " " ' append column data to row string AA:Ch? Next colNum ' end loop over columns ^PMP2\JQA ~T|?!zML Print #1, row sF:3|Yy0 '
^^]Or Next rowNum ' end loop over rows 7[[XNJP Close #1 M~t S
* Y? =+A4v Print "File written: " & fullfilepath BI?M/pIm Print "All done!!" M\BLuD End Sub Nc()$Nl8 iEux`CcJ. 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: we9R4*j 2_6x2Ia4 L5Rj;qhi 找到Tools工具,点击Open plot files in 3D chart并找到该文件 i:0~% X s(q\!\FS zHw[`"[ 打开后,选择二维平面图: J GnL[9P_ 2~AGOx
|
|