首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2023-04-06 08:38

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 ~E}kwF  
J+D|/^  
成像示意图
FvT&nb{  
首先我们建立十字元件命名为Target oZ{,IZ45  
q` S ~w  
创建方法: $v>q'8d  
5SFr E`  
面1 : rzY)vC+ZT  
面型:plane 'h$:~C  
材料:Air VH7t^fb  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box hB [bth  
]w*"KG!(  
Q  :kg  
辅助数据: TE`5i~R*  
首先在第一行输入temperature :300K, Lf_Y4a#  
emissivity:0.1; qI'pjTMDY  
7cc^n\c?Y  
rgy I:F.  
面2 : a)|y0w)vV  
面型:plane Y e0,0Fpw  
材料:Air q<AnWNheE  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box M)13'B.  
2EgvS!"  
V#G)w~   
位置坐标:绕Z轴旋转90度, QQ?t^ptv  
OvH:3 "Sdy  
&5 7c !)  
辅助数据: AKk=XAGW  
@Y0ZW't  
首先在第一行输入temperature :300K,emissivity: 0.1;  O_ _s~  
e'b*_Ps'  
~[=<O s  
Target 元件距离坐标原点-161mm; f )Lcs  
mG)5xD  
.!q_jl%U  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 3a:Hx| Yg  
la;*>  
w|dfl *  
探测器参数设定: j_C"O,WS  
%??v?M*  
在菜单栏中选择Create/Element Primitive /plane <F^9ML+'  
2n.HmS  
628iN%[-  
$:I{  
Z/,R{Jgt"  
[4?r0vO  
元件半径为20mm*20,mm,距离坐标原点200mm。 RUY7Y?  
[IHo ~   
光源创建: ,X!)zAmm  
P'wo+Tn*  
光源类型选择为任意平面,光源半角设定为15度。 =!-}q  
+'8a>K^  
&~2m@X(o  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 fXWy9 #M  
<T>s;b  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 "{8j!+]4i  
{.Qv1oOa  
D%+yp  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 !aSj1 2J  
0n:cmML )D  
创建分析面: k86TlQRh  
.B~}hjOZK  
4AN8Sx(  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 *zUK3&n~I  
<ll?rPio"  
wa<k%_# M  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 -] wEk%j  
3;buC|ky  
FRED在探测器上穿过多个像素点迭代来创建热图 _-BP?'lN  
^EiU>   
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 'v^Vg  
将如下的代码放置在树形文件夹 Embedded Scripts, R'sNMWM  
dC,C[7\  
NCh-BinK@  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 %%ouf06.|  
%Bw:6Y4LZ  
绿色字体为说明文字, W,EIBgR(R5  
j^=Eu r/  
'#Language "WWB-COM" umns*U%T;  
'script for calculating thermal image map GXxI=,L8F  
'edited rnp 4 november 2005 LxIGPC~  
%16Lo<DPm  
'declarations c5%}* "z  
Dim op As T_OPERATION ?L\"qz%gP  
Dim trm As T_TRIMVOLUME .K84"Gdx  
Dim irrad(32,32) As Double 'make consistent with sampling T1qbb*  
Dim temp As Double  dwk%!%  
Dim emiss As Double I;Mm+5A  
Dim fname As String, fullfilepath As String ~*bfS}F8I  
msxt'-$M  
'Option Explicit `Pc6 G*p  
W8S sv  
Sub Main _cvX$(Sg  
    'USER INPUTS \(Oc3+n6  
    nx = 31 +YZo-tE  
    ny = 31  >SQzE  
    numRays = 1000 tx7 zG.,  
    minWave = 7    'microns O|sk "YXF  
    maxWave = 11   'microns PwW$=M{\.  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 W:8MqVm34  
    fname = "teapotimage.dat" ]=t}8H  
,r*Kxy  
    Print "" n 6 pJ]Ce  
    Print "THERMAL IMAGE CALCULATION" q;bw }4  
Xr=BxBttp  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 #&T O(bk  
\t)va:y  
    Print "found detector array at node " & detnode 7)QZ<fme  
b 9rQQS  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ewd eC  
^7 \kvW  
    Print "found differential detector area at node " & srcnode 2`*w*  
{Z k^J  
    GetTrimVolume detnode, trm n4!RGq.}  
    detx = trm.xSemiApe j7ZxA*  
    dety = trm.ySemiApe HSysME1X:/  
    area = 4 * detx * dety }| MX=:@*  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety %IBT85{  
    Print "sampling is " & nx & " by " & ny 8<"g&+T  
rl 7up  
    'reset differential detector area dimensions to be consistent with sampling Vm<_e  
    pixelx = 2 * detx / nx msgR"T3'  
    pixely = 2 * dety / ny V K6D  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False {,JO}Dmu5  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 QP.Lq }  
Y>w7%N  
    'reset the source power F$\Da)Y  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) ?'0!>EjY"  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" s1Acl\l-uF  
Fn .J tIu  
    'zero out irradiance array O Ol:  
    For i = 0 To ny - 1 :=y5713  
        For j = 0 To nx - 1 'y; Kj  
            irrad(i,j) = 0.0 1W'Ai"DLw  
        Next j d^A]]Xg  
    Next i ^O*-|ecA  
T+nID@"36  
    'main loop te( H6c#0  
    EnableTextPrinting( False ) FA*$ dwp  
#dae^UjM  
    ypos =  dety + pixely / 2 #?w07/~L  
    For i = 0 To ny - 1 9no<;1+j,  
        xpos = -detx - pixelx / 2 pM@8T25=  
        ypos = ypos - pixely N-QS/*C.~  
>fWGiFmlk  
        EnableTextPrinting( True ) '27$x&6>S  
        Print i qZ^ PC-  
        EnableTextPrinting( False ) =( |%%,3  
H9)n<r  
w"?Q0bhV9y  
        For j = 0 To nx - 1 Ur#jJR@%3  
 j5/pVXO  
            xpos = xpos + pixelx |&8XmexLb  
zEFS\nP}E  
            'shift source KbLSK  
            LockOperationUpdates srcnode, True ?d3K:|g  
            GetOperation srcnode, 1, op QUW`Yc  
            op.val1 = xpos } doAeTZ  
            op.val2 = ypos 12U]=  
            SetOperation srcnode, 1, op uQvTir*e  
            LockOperationUpdates srcnode, False ]6B9\C.2-_  
;Va(l$zD  
'raytrace pFY*Y>6ar  
            DeleteRays qm!cv;}c1  
            CreateSource srcnode C33Jzn's  
            TraceExisting 'draw Uap0O2n  
]]K?Q )9x  
            'radiometry Kj4BVs  
            For k = 0 To GetEntityCount()-1 t$nJmfzm  
                If IsSurface( k ) Then fE~KWLm  
                    temp = AuxDataGetData( k, "temperature" ) `{!A1xKZ  
                    emiss = AuxDataGetData( k, "emissivity" ) L@GICW~  
                    If ( temp <> 0 And emiss <> 0 ) Then YCiG~y/~  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) cEu_p2(7!B  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) yS~Y"#F!.  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi ]:Ep1DIMl  
                    End If #ae?#?/"  
\)/qCeiZ  
                End If }d}gb`Du  
qI9j=4s.  
            Next k ;S U<T^a  
IW!x!~e  
        Next j s 1M-(d Q  
Y^Buz<OiG  
    Next i !6-t_S  
    EnableTextPrinting( True ) w3,KqF  
P_3IFHe  
    'write out file $/"Ymm#"\Y  
    fullfilepath = CurDir() & "\" & fname #).^k-  
    Open fullfilepath For Output As #1 4j3_OUwWZx  
    Print #1, "GRID " & nx & " " & ny 5%2~/ "  
    Print #1, "1e+308" \;Q(o$5<  
    Print #1, pixelx & " " & pixely .t\J @?Z  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 r5s{t4 ;Ch  
B0b|+5WhR  
    maxRow = nx - 1 _m?i$5  
    maxCol = ny - 1 d~QKZ&jf  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) esTL3 l{[  
            row = "" Ne+Rs+~4  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) L-E &m*%  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string [!%5(Ro_  
        Next colNum                     ' end loop over columns Vwp>:'Pu  
h81giY]  
            Print #1, row *Hn=)q  
F.y_H#h  
    Next rowNum                         ' end loop over rows c\ZI 5&4jT  
    Close #1 JvXuN~fI{[  
R-zS7Jyox  
    Print "File written: " & fullfilepath h!dij^bD  
    Print "All done!!" n>u_>2Ikkj  
End Sub ltNI+G  
X$;x2mz nM  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: bJMsB|r  
HR?T  
Z#u{th  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 %TI3Eb  
  
'yH  
&,{ >b[  
打开后,选择二维平面图: r jn:E  
EFDmNud`Q  
谭健 2023-04-07 08:20
感谢分享 |s/Kb]t  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2026 光行天下 蜀ICP备06003254号-1 网站统计