infotek |
2023-04-06 08:38 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 5>+>=)* j]th6
成像示意图 o&}!bq] 首先我们建立十字元件命名为Target _V\rs{
5 ))f%3_H 创建方法: 1M+o7HO.mG %&m/e?@%I 面1 : C5oslP/@ 面型:plane nI4Kuz`dF 材料:Air @b[{.mU 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 1%~yb Q ) *Mr{`
"]h4L 辅助数据: 0gdFXh$!e 首先在第一行输入temperature :300K, l",JN.w emissivity:0.1; fa7Z=:aG 3\_ae2GW [iVCorU 面2 : \; ! oG 面型:plane %xZYIYKf 材料:Air 6UK{0\0 孔径:X=1.5, Y=6,Z=0.075,形状选择Box Y+5nn h8@8Qw qW*JB4`?a 位置坐标:绕Z轴旋转90度, ^uB9EP*P XFpII45
c'M#va 辅助数据: I3 /^{-n KwGk8$ U 首先在第一行输入temperature :300K,emissivity: 0.1; w#]> Nf cQ(zBf I&JVY8' Target 元件距离坐标原点-161mm; A9Cq(L_H }
IJ
^Ud1 ag!- 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 }uWIF|h~ zbQ-l1E AX6z4G 探测器参数设定: 7|4t;F! J2A+x\{< 在菜单栏中选择Create/Element Primitive /plane {
FVLH:{U^ >YP6/w,e
Hy4c{Ij _dOR-< K_/-mwA v vv='.R, D 元件半径为20mm*20,mm,距离坐标原点200mm。 VB
53n' hP1}Do 光源创建: 'Cw&9cL9w {OFbU 光源类型选择为任意平面,光源半角设定为15度。 1Rrp#E} (-k`|X" X!=E1TL 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 "rhU2jT=c b(^g v 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 <1")JDW 0\fV'JDOR G@s]HJ: 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 /S4$qr cM hf5yTs 创建分析面: `qP <S
Xvy3D@o c6 O1Z\M@\ 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 b|
e7mis@ T NwBnMe
M0Eq
7:Ba 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 E?$|`<o{|` DH7B4P FRED在探测器上穿过多个像素点迭代来创建热图 "S8JHHx Q[g>ee FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 F_28q15~: 将如下的代码放置在树形文件夹 Embedded Scripts, &8kc0Z@y 3&H#LGoV$
>%qk2h> 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 h7],/? s KDx~^OO 绿色字体为说明文字, oW0A8_|9 6yDc4AX '#Language "WWB-COM" 9 Vn
'script for calculating thermal image map )8BGN'jyi 'edited rnp 4 november 2005 %V40I{1 l,z#
:k 'declarations )-2sk@y Dim op As T_OPERATION k7o49Y(# Dim trm As T_TRIMVOLUME %}< e;t-O Dim irrad(32,32) As Double 'make consistent with sampling PwF
1Pr`r Dim temp As Double )SkJgzvC Dim emiss As Double 6??o(ziK$ Dim fname As String, fullfilepath As String Pv mmyF FG-v71!h# 'Option Explicit $!~R'N c j=raS Sub Main 'brt?oZ% 'USER INPUTS d!BQ%a nx = 31 1_AB;^ ny = 31 +I>u${sVx* numRays = 1000 tyEa5sy4 minWave = 7 'microns hxwo<wEg maxWave = 11 'microns 0F"W~OQ6 sigma = 5.67e-14 'watts/mm^2/deg k^4 yH\3*#+ fname = "teapotimage.dat" +[LG> ny(`An Print "" H2f!c{t$p Print "THERMAL IMAGE CALCULATION" 'hEvW nRP|Qt7> detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 S5Hb9m&& sj;n1t}$S Print "found detector array at node " & detnode O9+Dd%_KS# x,U'!F srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 _*tU.x|DP goE \C Print "found differential detector area at node " & srcnode {6_M$"e. GJu[af GetTrimVolume detnode, trm 7H$I9e detx = trm.xSemiApe i~};5j( dety = trm.ySemiApe M2pe*z area = 4 * detx * dety y4@zi "G Print "detector array semiaperture dimensions are " & detx & " by " & dety %anY'GK Print "sampling is " & nx & " by " & ny qocN:Of1 OouIV3 'reset differential detector area dimensions to be consistent with sampling 9.:]eL pixelx = 2 * detx / nx Yk;-]qi7 pixely = 2 * dety / ny =:w]EpH" SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False R6(sWN- Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 t2L} ?%|w?Fdx- 'reset the source power 0XcH SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) lx'^vK% F Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" wZ(H[be }?\8%hK"a7 'zero out irradiance array _/Sqw For i = 0 To ny - 1 h_( #U)z_3 For j = 0 To nx - 1 Mr0<b?I irrad(i,j) = 0.0 kFRl+,bi~ Next j YaBZ#$r Next i 2bs={p$}a qG6?k}\\ 'main loop F@%`(/^TA EnableTextPrinting( False ) '3p7ee& q&DM*!Jq ypos = dety + pixely / 2 vvTQ!Aa For i = 0 To ny - 1 }&*wJ]j`L xpos = -detx - pixelx / 2 [%0{7pz} ypos = ypos - pixely zu,F 0;De RXi/&'+H EnableTextPrinting( True ) #`HY"-7m_ Print i &'V1p4' EnableTextPrinting( False ) #VvU8"u eT'Z;ZO -MK9IO]i For j = 0 To nx - 1 {^T_m)|n O x),jc[/ xpos = xpos + pixelx !RXG{1: baO'FyCs9& 'shift source rjo1 LockOperationUpdates srcnode, True d:L|BkQ7* GetOperation srcnode, 1, op LmZ"_ op.val1 = xpos tP.jJC~ op.val2 = ypos lEYAq'= SetOperation srcnode, 1, op *U mWcFoF LockOperationUpdates srcnode, False 3J_BuMV 2.2G79U, 'raytrace iLbf:DXK( DeleteRays obz|*1M? CreateSource srcnode (M-Wea!q TraceExisting 'draw [S_qi, ?'IY0^ 'radiometry Q
H57[Yg For k = 0 To GetEntityCount()-1 fEB&)mM If IsSurface( k ) Then fZtuP1-4 temp = AuxDataGetData( k, "temperature" ) u85dG7 emiss = AuxDataGetData( k, "emissivity" ) 69?wZfj' If ( temp <> 0 And emiss <> 0 ) Then ;{Nc9d ProjSolidAngleByPi = GetSurfIncidentPower( k ) 1PUeU+ frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) 2X,`t%o irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 0@tN3u?dx End If 0,]m.)ws >X_5o^s2s End If [e`e bn[C #/0d Next k =v{Vl5&>? NiSH$MJ_ Next j >3?p 23|; };;k5z I% Next i J|aU}Z8m EnableTextPrinting( True ) l3:2f-H #oD; ?Mi 'write out file ku5vaP( fullfilepath = CurDir() & "\" & fname KQTv5|$? Open fullfilepath For Output As #1 Yv/T6z@ Print #1, "GRID " & nx & " " & ny E0)43 Print #1, "1e+308" +GvPJI Print #1, pixelx & " " & pixely 045_0+r"@ Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 &e\UlM22 'w8p[h
(, maxRow = nx - 1 '\% Kd+k maxCol = ny - 1 O^~Z-;FA For rowNum = 0 To maxRow ' begin loop over rows (constant X) ,92wW&2 row = "" _$P1N^}Zs For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) 1d 1
~`B row = row & irrad(colNum,rowNum) & " " ' append column data to row string *TgD{>s Next colNum ' end loop over columns tUk)S ECk*
H Print #1, row )m$MC25 3_ ZlZ_Tq Next rowNum ' end loop over rows hf\/2Vl Close #1 g`(3r dUH+7.\ Print "File written: " & fullfilepath R.KznJ Print "All done!!" uH |:gF^ End Sub 9/JBn b8LA|#]i 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: Kz"&:&R" Om(Ir&0 oTg
'N 找到Tools工具,点击Open plot files in 3D chart并找到该文件 z#B(1uI <~zPt&C]V 2j&0U!DX 打开后,选择二维平面图: OCELG~ @^.o8+Pp
|
|