| infotek |
2023-04-06 08:38 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 _5w?v~6 5 &:#8ol(n5b
成像示意图 7B!Qq/E?g 首先我们建立十字元件命名为Target D>e\OfTR: .l5 "X> 创建方法: ~+ wamX3 6CmFmc, 面1 : }a1Sfl@`3 面型:plane Su$ 1 t 材料:Air
Z:J.FI@ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box tB=D&L3 mh7sY;SvM
QU!'W&F6 辅助数据: ,wi=!KzX 首先在第一行输入temperature :300K, ~o'#AP#N~ emissivity:0.1; uEGPgYY ( sLi//P?:t hYXZ21(K# 面2 : |kNGpwpI 面型:plane &qP-x98E? 材料:Air L(n/uQ
: 孔径:X=1.5, Y=6,Z=0.075,形状选择Box eoe^t:5& u<shhb- &:I
+]G/W 位置坐标:绕Z轴旋转90度, k)K-mD``U n_n|^4w
V<V\0n!0 辅助数据: r82o[+$u0K TWR$D 首先在第一行输入temperature :300K,emissivity: 0.1; SslY]d] 7(~H77 Y0B1xL@ Target 元件距离坐标原点-161mm; 4<Sa,~4 0yC`9g)(
)|x%o(n 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 1H4Zgh
U C{hcK 1-K sK%Hx` 探测器参数设定: [x<6v}fRn AMD?LjY~ 在菜单栏中选择Create/Element Primitive /plane r%,H*DOu "c/s/$k//
+e8>?dkq 90qj6.SQ yD"0=\ Lkl|4L 元件半径为20mm*20,mm,距离坐标原点200mm。 d$_q=ywc fQ36Hd?(5 光源创建: DqzA U7 0)oN[ 光源类型选择为任意平面,光源半角设定为15度。 C. Ja;RFq -[pCP_`)u hiMyFvA4 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 %+xwk=%* mheU#&| 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 _+*/~E &oeN#5Es8C SCurO9RN 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 f' '{.L m@Ip^]9ry 创建分析面: /iUUM
t' r6n5 Jz (H8C\%g: 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 '8l yj&
v:"m
=F'M~3M 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ~y)bYG!G {,Bb"0 \ FRED在探测器上穿过多个像素点迭代来创建热图 )8$:DW; w*:GM8=6 FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 z9M.e. 将如下的代码放置在树形文件夹 Embedded Scripts, 0F+zG)G" %'"HGZn b
&]VQR2J}: 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 7?MB8tJ5r4 m4"N+_j 绿色字体为说明文字, feI./E
+mc[S '#Language "WWB-COM" "]T$\PJun 'script for calculating thermal image map qx2E-PDL;< 'edited rnp 4 november 2005 ~{4n}* D1X4|Q*SK 'declarations h`5YA89 Dim op As T_OPERATION [7gYd+s Dim trm As T_TRIMVOLUME jC%35bi Dim irrad(32,32) As Double 'make consistent with sampling *K(k Kph Dim temp As Double H|;*_ Dim emiss As Double 2e9jo,i Dim fname As String, fullfilepath As String Qz@IK:B} X(k{-|9] 'Option Explicit /2;dH]o0 OJP5k/U$ Sub Main i<T P: 'USER INPUTS PS=e\(6QC nx = 31 D<U
9m3 ny = 31 bVoU|`c numRays = 1000 >ZT& `E minWave = 7 'microns 9Uha2o maxWave = 11 'microns jzs.+dAg sigma = 5.67e-14 'watts/mm^2/deg k^4 NunV8atn: fname = "teapotimage.dat" >Mvka;T] <4bz/^ Print "" @Od^k# Print "THERMAL IMAGE CALCULATION" Wy<[(Pd B< |VeU detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 D~#Ei?aH t;8\fIW5 Print "found detector array at node " & detnode x\hWyY6J[ FR:d^mL srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 X^}A*4j }q% jO Print "found differential detector area at node " & srcnode 0"EoC |3}5:k GetTrimVolume detnode, trm mxQR4"]jY detx = trm.xSemiApe EgTFwEj dety = trm.ySemiApe Ji;SY{~kv area = 4 * detx * dety wV\%R,bZj Print "detector array semiaperture dimensions are " & detx & " by " & dety w*50ZS;N Print "sampling is " & nx & " by " & ny #s"851e zfhTc=(/ 'reset differential detector area dimensions to be consistent with sampling *>jjMy n pixelx = 2 * detx / nx ''IoC j pixely = 2 * dety / ny }N3V5cab SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 0$6*o}N% Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 1Cm~X$S. ^q
;Cx7T_p 'reset the source power #(C/Cx54 SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) pb#mg^8 Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" IU@_)I+6 9UwLF`XM 'zero out irradiance array h
T<n1q~ For i = 0 To ny - 1 }e 9!xA For j = 0 To nx - 1 ?"6Ov ] irrad(i,j) = 0.0 ?Gd sOg^ Next j nnNv0?>d( Next i t<nFy oid[syPB 'main loop dpwD8Q<
U EnableTextPrinting( False ) XS?gn.o\ Cq>6rn ypos = dety + pixely / 2 fXO_g For i = 0 To ny - 1 z8HsYf(! xpos = -detx - pixelx / 2 X7aYpt; ypos = ypos - pixely OL'P]=U $r\"6e EnableTextPrinting( True ) )6{<
i5nJ\ Print i t9FDU EnableTextPrinting( False ) 0GZq`a7[ a2`%ghW3 B8T\s)fxnX For j = 0 To nx - 1 nnwJYEi 2j&v;dmh< xpos = xpos + pixelx vJ"i.:Gf4 )%mg(O8uL 'shift source BkawL, LockOperationUpdates srcnode, True 1<.5ub*i4 GetOperation srcnode, 1, op
?CP2AK op.val1 = xpos mN*?%t op.val2 = ypos ;o0#(xVz SetOperation srcnode, 1, op s~^}F +n LockOperationUpdates srcnode, False 3J~0O2 y6-XHeU 'raytrace F; 8*H1 DeleteRays g #
S0V CreateSource srcnode ? }yfKU` TraceExisting 'draw 2N5`' ^C/ 'radiometry 5G[x }4U For k = 0 To GetEntityCount()-1 |mhKI is U If IsSurface( k ) Then nv0#~UgE#a temp = AuxDataGetData( k, "temperature" ) PT'MNH emiss = AuxDataGetData( k, "emissivity" ) :@eHX& If ( temp <> 0 And emiss <> 0 ) Then fE]XWA4U ProjSolidAngleByPi = GetSurfIncidentPower( k ) 0
Y>M=| frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) z.36;yT/ irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi }rq9I"/L End If :z&7W< ;f1qLI End If ;W]\rft[ :>+\17tx Next k -MBV$:_R d%_OT0Ei Next j \]uV!)V5B (UL4+ta Next i o*5U:'=5} EnableTextPrinting( True ) :nA.j"@ /3!fA=+ 'write out file >yB(lKV fullfilepath = CurDir() & "\" & fname Qkcjr]#^$ Open fullfilepath For Output As #1 ;Hmp f0$ Print #1, "GRID " & nx & " " & ny kLj$@E`4 Print #1, "1e+308" k^\pU\J Print #1, pixelx & " " & pixely k*?I>%^6#T Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 c!#:E` Q >Qibr maxRow = nx - 1
8|6
4R: maxCol = ny - 1 1oiRW Re For rowNum = 0 To maxRow ' begin loop over rows (constant X) eJ0?=u!x row = "" rx0~`cVV: For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) I%j_"r9-I row = row & irrad(colNum,rowNum) & " " ' append column data to row string FAsFjRS Next colNum ' end loop over columns W,XTF bD^b Print #1, row wE]K~y!` *`_{ Next rowNum ' end loop over rows Hnk:K9u.B: Close #1 m3bCZ9iE bi[IqU!9 Print "File written: " & fullfilepath .8(OT./ Print "All done!!" -I.d}[ End Sub A@hppaP! F+m }#p 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: x'<K\qp{{ ZJPmR/OV_ >-8cU_m7s 找到Tools工具,点击Open plot files in 3D chart并找到该文件 aJ Z"D8C V!v:]E ':{>a28= 打开后,选择二维平面图: :cB=SYcC% L){iA-k;Ec
|
|