| infotek |
2023-04-06 08:38 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 .
9
NS 7HJv4\K
成像示意图 5bw]cv$i 首先我们建立十字元件命名为Target H>r-|*n Z^|C~lp;n 创建方法: UVLcR R*y[/Aw 面1 : rNAu@B 面型:plane d{he 材料:Air :}-u`K* 孔径:X=1.5, Y=6,Z=0.075,形状选择Box xsvs3y | &SM$oy#?
]UI+6}r 辅助数据: !$?@;}= 首先在第一行输入temperature :300K, D6]$P%t9 emissivity:0.1; iF0a ~Qsj)9 +E:(-$"R 面2 : Dmi;# WY 面型:plane g#:XN 材料:Air Z:hrrq9 孔径:X=1.5, Y=6,Z=0.075,形状选择Box p^:Lj 9Qax 9H}&Ri% {Y"r]:5i 位置坐标:绕Z轴旋转90度, /$z@_U[L 6'ZnyWb
;40m goN 辅助数据: 8_m9CQ6 i t/ 1NTa 首先在第一行输入temperature :300K,emissivity: 0.1; }^ <zVdwp $ddYH 2P
?Iu& Target 元件距离坐标原点-161mm; w3N%J>4_E I`TD*D
r8%,xA& 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 (3h*sd5ly ?GarD3#A gk1S"H 探测器参数设定: `Cf
en8 LwPM7S~ * 在菜单栏中选择Create/Element Primitive /plane gJxVU41 ;8T=uCi
;QQ7vo HdUW(FZ ->&VbR) _0["J:s9 元件半径为20mm*20,mm,距离坐标原点200mm。 S1`0d9ds# Iq]6] 光源创建: BDRVT Y(s ()#tR^T 光源类型选择为任意平面,光源半角设定为15度。 }.cmiC ?1:/
6 5{0>7c|. 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 8@KFln )[ 9:i,WJO 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 0r ;
nz]' u2BW]T] zlztF$Bo 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 i;zGw.;Q 5b`xN!c 创建分析面: ONq/JW$?LV (+8xUc(w )UZ0gfx 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 >MWpYp !K3cf]2UD
v6-~fcX0G 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 s|j<b#<xQ 6a?$=y FRED在探测器上穿过多个像素点迭代来创建热图 h_chZB' eQVPxt2N FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 .S'fM]_# 将如下的代码放置在树形文件夹 Embedded Scripts, UX'NJ1f I/V )z9
FgQ_a/* 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 _#D\*0J >_aio4j}r 绿色字体为说明文字, 1|WpKaMoq hJo^Wo '#Language "WWB-COM" /D$+b9FR< 'script for calculating thermal image map TflS@Z7C 'edited rnp 4 november 2005 #O9*$eMw +>:}req 'declarations B+e_Y\Bu Dim op As T_OPERATION b({Nf,(a2
Dim trm As T_TRIMVOLUME EdAR<VfleA Dim irrad(32,32) As Double 'make consistent with sampling }\ 939Y Dim temp As Double hHc^ZA Dim emiss As Double 8yWu{'G Dim fname As String, fullfilepath As String TG63 ]fADaw-R 'Option Explicit Z0ncN]) QI#*5zm Sub Main Z&]+A, 'USER INPUTS $EQT"ZX>%i nx = 31 a()6bRc~T ny = 31 FQ^<, numRays = 1000 _(6B. minWave = 7 'microns :q>oD-b$} maxWave = 11 'microns .:Bwa sigma = 5.67e-14 'watts/mm^2/deg k^4 rO(TG fname = "teapotimage.dat" 5hJYy`h~ 2z.8rNwT Print "" uRm _ Print "THERMAL IMAGE CALCULATION" y*}vG}e% XewXTd#x detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 ;<kZfx Gf
H*,1x Print "found detector array at node " & detnode U1> V5u}C-o srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Db#W/8
a8k @L[PW@:SZ Print "found differential detector area at node " & srcnode hY.e [+ d=t}T6.| GetTrimVolume detnode, trm X;OsH detx = trm.xSemiApe #a(%(k S dety = trm.ySemiApe Zk/' \(5 area = 4 * detx * dety 0q[p{_t` Print "detector array semiaperture dimensions are " & detx & " by " & dety #QTfT&m+G} Print "sampling is " & nx & " by " & ny rL%]S&M9 YN%=Oq 'reset differential detector area dimensions to be consistent with sampling "ep ` pixelx = 2 * detx / nx abROFI5.L pixely = 2 * dety / ny >'} Y1_S5 SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False K0O-WJ Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 9h:jFhsA9 `1fJ:b/M 'reset the source power 5)d,G9 SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) %\}dbYS
' Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" V3>f*Z)xn "UQr :/ 'zero out irradiance array L_THU4^j
For i = 0 To ny - 1 {cR_?Y@ For j = 0 To nx - 1 SON^CvMs{ irrad(i,j) = 0.0 QKp+;$SE' Next j Vs_\ykO Next i (dzH3_U E-UB -"6 'main loop !,cQ'*<W8- EnableTextPrinting( False ) gYTyH. @-'/__cgt ypos = dety + pixely / 2 P0%N
Q1bn For i = 0 To ny - 1 {S5RK-ax xpos = -detx - pixelx / 2 2d-TU_JqX ypos = ypos - pixely e[x?6He,$ K&=1Ap EnableTextPrinting( True ) dtB[m^$ Print i \%sPNw=e EnableTextPrinting( False ) Km6Ub?/7o LP.HS'M~u PD6MyW05%9 For j = 0 To nx - 1 <8u>_o6 ;[(=kOI xpos = xpos + pixelx 8[8|*8xqs @GN(]t&3 'shift source <Z{vC LockOperationUpdates srcnode, True ]i-P-9PA4 GetOperation srcnode, 1, op w Y8@1>ah op.val1 = xpos <+V-k| op.val2 = ypos Yo >`h2C4 SetOperation srcnode, 1, op Ct4LkmD LockOperationUpdates srcnode, False Oo FgQEr@ an3~'g? 'raytrace fv|]= e DeleteRays aXMv(e+ CreateSource srcnode nN>J*02( TraceExisting 'draw 1TKEm9j]u ^'m\D; 'radiometry u3U4UK For k = 0 To GetEntityCount()-1 "gFxfWIA If IsSurface( k ) Then qs=Gj?GwGQ temp = AuxDataGetData( k, "temperature" ) >BBl7 emiss = AuxDataGetData( k, "emissivity" ) %1Yz'AiW[ If ( temp <> 0 And emiss <> 0 ) Then ? m&IF<b ProjSolidAngleByPi = GetSurfIncidentPower( k ) }VF#\q frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) OkLz^R?d irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi e"]"F{Q End If "[k1D_PZ ODm&&W#* End If 2;8Xz6T <>%,}j
9 Next k v2d<o[[C *P`v^& Next j vB^uxdt|m _}D%iJg# Next i f0vJm EnableTextPrinting( True ) M&r2:Whk n|WfaJQZ 'write out file =-_)$GOI' fullfilepath = CurDir() & "\" & fname _1ew(x2J Open fullfilepath For Output As #1 n=q=zn; Print #1, "GRID " & nx & " " & ny ~8TF*3[}[ Print #1, "1e+308" D}-o+6TI? Print #1, pixelx & " " & pixely Pg`JQC| Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 `ruNA>M Q
$]YD
pCM maxRow = nx - 1 +IrZ
;&oy maxCol = ny - 1 w!\3ICB For rowNum = 0 To maxRow ' begin loop over rows (constant X) Y(_KizBY row = "" Wbe0ZnM] For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) -IadHX}]t row = row & irrad(colNum,rowNum) & " " ' append column data to row string ygN>"eP Next colNum ' end loop over columns L1sqU-gt B@ {&< Print #1, row 4jQ'+ 2it
[>f]@> Next rowNum ' end loop over rows Z&Ue|Z4Qt Close #1 [F+,YV%t \@K~L4> Print "File written: " & fullfilepath Di> rO038 Print "All done!!" ;FU|7L$H End Sub ~h!
13! *:g_'K"+ 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: nU2V]-qY )s)_XL [[WF0q 找到Tools工具,点击Open plot files in 3D chart并找到该文件 yoQ\lk e`iEy=W "k:=Y7Dx 打开后,选择二维平面图: zC=a3 %?9Ok
|
|