首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2023-04-06 08:38

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 V zx(J)  
cCCplL  
成像示意图
eBKIdR%k  
首先我们建立十字元件命名为Target 51'SA B09  
 -KiS6$-  
创建方法: 6KTY`'I  
2^lT!X@  
面1 : />7/S^  
面型:plane {j@)sDM X  
材料:Air VO6y9X"  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box \gXx{rLW  
~n 9DG>a  
AWNd(B2o  
辅助数据: bj^m<}   
首先在第一行输入temperature :300K, p~co!d.q/}  
emissivity:0.1; mwhn=y#]*  
K9Fnb6J$u  
VMXXBa&  
面2 : J>PV{N  
面型:plane ,99G2E v4c  
材料:Air /RmCMT  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box j( :A  
3?(p;  
Qq`\C0RZ  
位置坐标:绕Z轴旋转90度, wpI4P:  
RV(z>XM  
k| o,gcU  
辅助数据: s~w+bwr  
O waXG/z~  
首先在第一行输入temperature :300K,emissivity: 0.1; ?@(H. D6'v  
]~ M -KT  
dfcG'+RU}  
Target 元件距离坐标原点-161mm; :wAB"TCt0  
[DEw:%  
Y'h'8 \  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 UQ~rVUo.c  
S7Fxb+{6D  
TI  
探测器参数设定: E9hWn0 e  
r&DK> H  
在菜单栏中选择Create/Element Primitive /plane +rY0/T_0,  
o7seGw<$X  
uy{KV"%"^g  
^*Fkt(ida  
dp+Y?ufr  
# GGmA.  
元件半径为20mm*20,mm,距离坐标原点200mm。 8< -Vkr  
N';lc:Ah~  
光源创建: 3MVZ*'1QM\  
7 '/&mX>  
光源类型选择为任意平面,光源半角设定为15度。 iH=@``Z  
bwFc>{Wo5  
9=f'sqIPV  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 swA"_A8>u  
0%/(p?]M  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 -~k2Gy;E  
|O?Aj1g[c?  
9g"H9)EZ^  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 TbuR?#  
iz(+(M  
创建分析面: 8hg(6 XUG  
BoqW;SG$9  
jGCW^#GE  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 K~>kruO";  
enj2xye%Y  
d6VKUAk'7>  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 Dr:}k*  
H>]x<#uz)  
FRED在探测器上穿过多个像素点迭代来创建热图 *79<ypKG$  
HApP*1J^c  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 C*!_. <b  
将如下的代码放置在树形文件夹 Embedded Scripts, Yt^+31/%  
E \RU[  
%XeU4yg\e  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 d\f 5\Y  
D4wB &~U  
绿色字体为说明文字, 4 #N#[;M  
PhS"tOGtX  
'#Language "WWB-COM" "$&F]0  
'script for calculating thermal image map T Bco  
'edited rnp 4 november 2005 ^5+-7+-S  
V1G]LM  
'declarations C&T3vM  
Dim op As T_OPERATION THJ+OnP  
Dim trm As T_TRIMVOLUME 2i)y'+s  
Dim irrad(32,32) As Double 'make consistent with sampling &}uO ]0bR  
Dim temp As Double 1jyWP#M#  
Dim emiss As Double S;g~xo  
Dim fname As String, fullfilepath As String V4H+m,R  
:FSkXe2yy0  
'Option Explicit K*<n<;W  
.H&;pOf  
Sub Main L[K_!^MZ  
    'USER INPUTS w <ID<  
    nx = 31 c2nZd.SD|  
    ny = 31 /d4xHt5a  
    numRays = 1000 4$^=1ax  
    minWave = 7    'microns i469<^A  
    maxWave = 11   'microns R&QT  'i  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 Tla*V#:Ve  
    fname = "teapotimage.dat"  P/Z o  
sw1XN?O  
    Print "" zM!*r~*k$  
    Print "THERMAL IMAGE CALCULATION" 'e)t+  
;H^!yj5H  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 Wac8x%J  
ICi- iX  
    Print "found detector array at node " & detnode x>@UqUJV  
gLH(Wr~(a  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 TaC)N  
]k8XLgJ  
    Print "found differential detector area at node " & srcnode .UcS4JU  
~-6;h.x=  
    GetTrimVolume detnode, trm ,'j5tU?c  
    detx = trm.xSemiApe R3~&|>7/T  
    dety = trm.ySemiApe 1pK7EK3R  
    area = 4 * detx * dety (GV6%l#I  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety t*x;{{jL#(  
    Print "sampling is " & nx & " by " & ny X[w9~t$\  
qr@,92_  
    'reset differential detector area dimensions to be consistent with sampling U:>O6"  
    pixelx = 2 * detx / nx 1/m/Iw@  
    pixely = 2 * dety / ny 0KZ 3h|4lP  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 5v3B8 @CsA  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 (xTHin$  
,]d}pJ}PX`  
    'reset the source power mF1oY[xa_  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) =Yfs=+O  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Oe273Y^e  
,[~EThcq  
    'zero out irradiance array $=bN=hE  
    For i = 0 To ny - 1 *+IUGR  
        For j = 0 To nx - 1 x83XJFPWL  
            irrad(i,j) = 0.0 ^Z!W3q Q  
        Next j I#0.72:[  
    Next i @dXf_2Tv=  
W1OGN4`C  
    'main loop T \AuL  
    EnableTextPrinting( False ) SbZk{lWcq  
*<hpq)  
    ypos =  dety + pixely / 2 6k[u0b`  
    For i = 0 To ny - 1 +)|2$$m  
        xpos = -detx - pixelx / 2 ~ce.&C7cR  
        ypos = ypos - pixely 1/i|  
TKE)NIa  
        EnableTextPrinting( True ) qgDBu\  
        Print i UYPBKf]A9  
        EnableTextPrinting( False ) QV't+)uUVo  
`DwlS!0  
<7p2OPD  
        For j = 0 To nx - 1  lG{J  
S HvML  
            xpos = xpos + pixelx LP\ Qwj{  
FLWz7Rj  
            'shift source ;?&;I!  
            LockOperationUpdates srcnode, True 3.jwOFH$  
            GetOperation srcnode, 1, op 56 )B/0=  
            op.val1 = xpos HGKm?'['   
            op.val2 = ypos j7W_%Yk|E  
            SetOperation srcnode, 1, op l}wBthwCc  
            LockOperationUpdates srcnode, False Ne[O9D 7  
yG_#>3sD+%  
'raytrace ABSeX  
            DeleteRays Ue%0.G|<W  
            CreateSource srcnode }O>IPRZ  
            TraceExisting 'draw JDP#tA3  
lz(9pz  
            'radiometry Dn@ n:m  
            For k = 0 To GetEntityCount()-1 A +p}oY '  
                If IsSurface( k ) Then & dS+!<3  
                    temp = AuxDataGetData( k, "temperature" ) N@VD-}E  
                    emiss = AuxDataGetData( k, "emissivity" ) qEpBzQ&gX6  
                    If ( temp <> 0 And emiss <> 0 ) Then V>%%2"&C  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) Vs"Z9p$U  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) qM`SN4C  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi v`fUAm/  
                    End If /x-t -}  
=SdWU}xn2  
                End If 4$J/e?i  
#K[ @$BY:  
            Next k NubD2  
Vg3&:g5 /  
        Next j C+iP @~  
p?`N<ykF<  
    Next i r B)WHx<  
    EnableTextPrinting( True ) GZ e )QH  
2rH6ap  
    'write out file |&'*Z\*ya  
    fullfilepath = CurDir() & "\" & fname upJishy&I  
    Open fullfilepath For Output As #1 {kzM*!g  
    Print #1, "GRID " & nx & " " & ny &>/nYvuq-  
    Print #1, "1e+308" !F8 !]"*  
    Print #1, pixelx & " " & pixely WX[y cm8  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 '-x%?Ll  
_&M>f?l  
    maxRow = nx - 1 N.<hZ\].=  
    maxCol = ny - 1 XC$~!  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) WS(c0c  
            row = "" #i,O "`4  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) ( r O j,D  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string l{R)yTO  
        Next colNum                     ' end loop over columns M{H&5 9v  
8%"e-chd  
            Print #1, row :b=0_<G  
k8ck#%#}Wu  
    Next rowNum                         ' end loop over rows oHYD6 qJX{  
    Close #1 9f @)EKBK  
gXQ)\MY  
    Print "File written: " & fullfilepath #7>CLjI  
    Print "All done!!" |RmBa'.)z  
End Sub P TP2QAt  
>"[u.1J_'I  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: K?>&Mr  
..t=Y#  
2V]2jxOQ  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 f[RnL#*xJU  
  
3LmHH =  
jDnh/k0{d  
打开后,选择二维平面图: p .HA `R>  
GyCpGP|AZ  
谭健 2023-04-07 08:20
感谢分享 g9XtE  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计