| infotek |
2023-04-06 08:38 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 Pq;1EI |A &Nv~.)
成像示意图 g5/8u2d 首先我们建立十字元件命名为Target J6\<>5A? {}vW= 创建方法: 4AUY8Pxp 4 YI,: 面1 : |yw-H2k1 面型:plane 7;c{lQOj} 材料:Air |+ @ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box W9.ZhpM )p ,-TtV
B*K%&w10~ 辅助数据: 6lsU/`. 首先在第一行输入temperature :300K, ;LthdY()n( emissivity:0.1; J:pnmZ`X v k.Y2
: 4Uz6*IQNl 面2 : ;I]TM#qGF 面型:plane KmpX^Se[ 材料:Air u~%
m( 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 'j>^L dYk)RX`}7! d.2
位置坐标:绕Z轴旋转90度, Q
>)?_O( G2rxr
R4pbi= 辅助数据: I0GL/a4s o]PSyVg 首先在第一行输入temperature :300K,emissivity: 0.1; Y~gpi L3u rDm>Rm= o%Pi;8 Target 元件距离坐标原点-161mm; "fS9Nx3 CM8WI~
+oe
~j\= 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 KiH#*u S [ZDJs`h!` %|r@q 探测器参数设定: Mp"] = d<fS52~l 在菜单栏中选择Create/Element Primitive /plane u&r@@p. V ;"?='vVe
eAm7*2 )Q~Q. Z/:(*F C {tF=c0Z 元件半径为20mm*20,mm,距离坐标原点200mm。 tgc&DT;E k:`^KtBMl 光源创建: x8tRa0-q 2|w(d 光源类型选择为任意平面,光源半角设定为15度。 kZSe#'R's #d(6q$IE *E+)mB"~ 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 4$SW~BpQ C'*1w 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 G@ed2T tj{rSg7{ (:M6*RV 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 V4/eGh_T 69O?sIk 创建分析面: rQN+x|dKMb FSc730rM \#G`$JD 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 :t^=~xO9 an0@EkZ
bZ )3{ 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 6Q>:g"_ .:l78>f FRED在探测器上穿过多个像素点迭代来创建热图 PN+,M50;1 3_vggK% FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ag[ yM 将如下的代码放置在树形文件夹 Embedded Scripts, BYNOgB1 jk) V[7P
mY dU`j 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ''v_8sv ~ EE*/vX 绿色字体为说明文字, V@e0VV3yx% )Ky0q-W '#Language "WWB-COM" {lx^57v 'script for calculating thermal image map Ca?pK_Y 'edited rnp 4 november 2005 3Mr)oM<Q ;y4
"wBX 'declarations ikyvst>O Dim op As T_OPERATION vnXpC!1 Dim trm As T_TRIMVOLUME [rE,fR Dim irrad(32,32) As Double 'make consistent with sampling RrKs!2sCT Dim temp As Double AP/tBCeM Dim emiss As Double 6i=m1Yk Dim fname As String, fullfilepath As String gLd3,$Ei &eK8v]|"W 'Option Explicit 5x4(5c5^ b3y@!_'c Sub Main )]X_')K 'USER INPUTS yBs nx = 31 ^J@Y?CQl\ ny = 31 E83{4A4 numRays = 1000 \>:(++g minWave = 7 'microns xxiEL2"`> maxWave = 11 'microns F-UY~i8 sigma = 5.67e-14 'watts/mm^2/deg k^4 ~;Xdz/ fname = "teapotimage.dat" pA1Tod |/YT.c% Print "" *gVRMSrx4 Print "THERMAL IMAGE CALCULATION" 3 T&m vF1]L]z:? detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 khW3z*e# jNrGsIY$ Print "found detector array at node " & detnode eX;"kO ~(4cnD)BO srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 iMJ jWkk @Je{;1 Print "found differential detector area at node " & srcnode wArNWBM #{i\t E GetTrimVolume detnode, trm J"I{0>@ detx = trm.xSemiApe fu\M2"e dety = trm.ySemiApe Q]IpHNt[> area = 4 * detx * dety U,aV{qz Print "detector array semiaperture dimensions are " & detx & " by " & dety +r4^oT[- Print "sampling is " & nx & " by " & ny )6IO)P/Q~ A5Y z| 'reset differential detector area dimensions to be consistent with sampling 8Qek![3^ pixelx = 2 * detx / nx q31swP pixely = 2 * dety / ny LI"ghz=F SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False v:s~Y Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 sq&$ 5BTQJa 'reset the source power xNE<$Bz SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) uK3,V0 yz Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" 0j_`7<,: u@[D*c1!H 'zero out irradiance array PL%_V ?z For i = 0 To ny - 1 v7xc01x For j = 0 To nx - 1 ]NG`MZ
irrad(i,j) = 0.0 DoNbCVZ Next j <|s|6C Next i &*[T VmV/~- <Z 'main loop fZT=q^26 EnableTextPrinting( False ) F0+ u#/# T+N%KRl ypos = dety + pixely / 2 BWfsk/lej For i = 0 To ny - 1 }(20MW8rMc xpos = -detx - pixelx / 2 y`7BR?l ypos = ypos - pixely h68sQd /&cb`^"U^ EnableTextPrinting( True ) b":cj:mxL Print i LIirOf~e;! EnableTextPrinting( False ) 7 45Uo' :hCp@{ }_:^&cT For j = 0 To nx - 1 W@JmG`Sy W32bBzhL xpos = xpos + pixelx W?5^cEF vfcj,1 'shift source K"#np!Y) LockOperationUpdates srcnode, True IF$f^$ GetOperation srcnode, 1, op _l{GHz
op.val1 = xpos 8b[^6]rM op.val2 = ypos d7N}-nsB SetOperation srcnode, 1, op 7b \Hbg Z LockOperationUpdates srcnode, False >N{K)a 1^b-J0 'raytrace egK,e?~ DeleteRays mJ)o-BV CreateSource srcnode q.g<g u] TraceExisting 'draw [8(e`6xePb Iyz} ;7yVI 'radiometry XGbtmmQG For k = 0 To GetEntityCount()-1 8{(;s$H~ If IsSurface( k ) Then Gt2NUGU temp = AuxDataGetData( k, "temperature" ) xQ-]Iw5 emiss = AuxDataGetData( k, "emissivity" ) oV&AJ=|\ If ( temp <> 0 And emiss <> 0 ) Then 7=aF-;X3jj ProjSolidAngleByPi = GetSurfIncidentPower( k ) K8ecSs}}J frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) .FtW$Y~y irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 0ua.aL' End If <A; R%\V aP>%iRk'J! End If -;Y*;xe Q]uxZ;}aF Next k ^Z$%OM, )k.;.7dXe Next j %J5zfNe)& KtG|m'\D Next i Ze~^+ EE EnableTextPrinting( True ) \/xWsbG\ T&H[JQ/h 'write out file qfd/t<?|D fullfilepath = CurDir() & "\" & fname k id3@ Open fullfilepath For Output As #1 cz~Fz;)2{N Print #1, "GRID " & nx & " " & ny _{_ybXG| Print #1, "1e+308" )[.FUx Print #1, pixelx & " " & pixely r n"'tvhm Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 U,_uy@fE=? @{_[bKg maxRow = nx - 1 Gg]>S#^3 maxCol = ny - 1 WZOi, For rowNum = 0 To maxRow ' begin loop over rows (constant X) iSCv/Gb:, row = "" )hGRq'WA= For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) mJ2>#j;5f row = row & irrad(colNum,rowNum) & " " ' append column data to row string O(2)A>} Next colNum ' end loop over columns &^=6W3RD f"\G"2C Print #1, row jQxv`H \DI%/(? Next rowNum ' end loop over rows bS=aFl# Close #1 "g;^R/sfq _z4c7_H3 Print "File written: " & fullfilepath C_mPw Print "All done!!" 6 9_etv End Sub M0YV Qa )kfj+/ 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: vq-Tq> >k)}R|tJ uH!uSB2 找到Tools工具,点击Open plot files in 3D chart并找到该文件 DgQw`D)+ }pxMO? h$ KSe`G;{ 打开后,选择二维平面图: ZCsL%( D/[(}o(
|
|