| infotek |
2023-04-06 08:38 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 !)~b Un .\ K0+b;
成像示意图 V+myGsr` 首先我们建立十字元件命名为Target ~jWG U-m 2x%Xx3! 创建方法: ]f#1G$ W'WZ@!! 面1 : f}Mx\dc 面型:plane 7<;87t]] 材料:Air zXWf($^&E 孔径:X=1.5, Y=6,Z=0.075,形状选择Box .21[3.bp/q 1;Bgt v$
</~!5x62Oy 辅助数据: &o@IMbJ8 首先在第一行输入temperature :300K,
`R]B<gp emissivity:0.1; Y|$3%t R3=PV{`M faH113nc 面2 : zE$KU$ 面型:plane lQ/u#c$n 材料:Air 2eNA#^T= 孔径:X=1.5, Y=6,Z=0.075,形状选择Box h:%L% Y9z <Sw>5M!j ZmM/YPy 位置坐标:绕Z轴旋转90度, ~m4{GzB c!#DD;<Q
q=Cc2|Ve 辅助数据: m^hi}Am1 `x%(
n@ g 首先在第一行输入temperature :300K,emissivity: 0.1; s az<NT ]!l]^/. *2wFLh Target 元件距离坐标原点-161mm; kC~\D?8E= R Ptc \4
k4WUfL d 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 7Uy49cs, yc ize2>q Z*,Nt6;e 探测器参数设定: t\&u E=PmOw7b 在菜单栏中选择Create/Element Primitive /plane \jlem <& !8'mIXZ$
g~,"C8-H xz9xt +v$,/~$tI _; 7{1n 元件半径为20mm*20,mm,距离坐标原点200mm。 osB8
'\GR aE]/w1a 光源创建: RE*;_DF !{hC99q6 光源类型选择为任意平面,光源半角设定为15度。 2|2'? ,LD[R1TU8 9Rz TC 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 bo>4:i P'wn$WE[n\ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 =}SH*xi6 /da5" `R\aNgCS} 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 Id_? R1CoS6 创建分析面: 1^F
!X= 8v eG^o WX2:c,%: 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 HfQZRDH 7bC1!x*qw
R<"fcsU 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 "Q{)H8,E)x wOfx7D FRED在探测器上穿过多个像素点迭代来创建热图 J`uO~W" CC8M1iW3 FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ;;A8*\*$ 将如下的代码放置在树形文件夹 Embedded Scripts, 12W`7 "t[9EbFL
2.xA' \M 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 d<x7* OW) '{e9Vh<x 绿色字体为说明文字, G6l:El& &Nzq/~uqP '#Language "WWB-COM" U/9i'D[|{ 'script for calculating thermal image map +0{$J\s 'edited rnp 4 november 2005 ~ 9F
rlj kPuY[~i% 'declarations R&lJ& SgC Dim op As T_OPERATION aicvu(%EE Dim trm As T_TRIMVOLUME U04TVQn` Dim irrad(32,32) As Double 'make consistent with sampling n\X'2 Dim temp As Double ]g/:l S4 Dim emiss As Double @e`%' Dim fname As String, fullfilepath As String 7EI5w37 S-^:p5{r 'Option Explicit 9FGe(t< >#9f{ Sub Main FR bmeq3c 'USER INPUTS CtEpS<*c nx = 31 ;7;=)/- ny = 31 ]npsclvJ numRays = 1000 G)(vd0X1 minWave = 7 'microns -k4w$0) maxWave = 11 'microns IjshxNk sigma = 5.67e-14 'watts/mm^2/deg k^4 (pDu fname = "teapotimage.dat" &3@{?K w)nFH)f Print "" PG51+# Print "THERMAL IMAGE CALCULATION" }fS`jq; `f|Gw5R detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 _S$SL%;\ E4CyW Print "found detector array at node " & detnode BXzn-S 4V6^@ srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 2aDjt{7P GBh$nVn$ Print "found differential detector area at node " & srcnode Rhfx $u ae8h GetTrimVolume detnode, trm 80'!XKSP detx = trm.xSemiApe b6]MJ0do dety = trm.ySemiApe ?KB+2]7m6 area = 4 * detx * dety ?Q?=I,2bP Print "detector array semiaperture dimensions are " & detx & " by " & dety l?f%2:}m Print "sampling is " & nx & " by " & ny Ad:}i9-x gpvzOW/ 'reset differential detector area dimensions to be consistent with sampling
spX*e1 pixelx = 2 * detx / nx 6_&uYA<8pE pixely = 2 * dety / ny p%ve1>c SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Ifx
EM Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 aSGZF w VZhHO
d 'reset the source power QEC4!$L^ SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) ?z[k.l+6w Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" PLV-De )j_Y9`R 'zero out irradiance array 8kRqF?rbj For i = 0 To ny - 1 q{c/TRp7 For j = 0 To nx - 1 j#f7-nHyz8 irrad(i,j) = 0.0 u)hr Next j pXE'5IIN Next i ##\
<mFE
BH<jnQ 'main loop :TZ</3Sw EnableTextPrinting( False ) C/JFb zVx U65a_dakk ypos = dety + pixely / 2 -W\1n#J For i = 0 To ny - 1 vl"{ovoC xpos = -detx - pixelx / 2 x%`.L6rj ypos = ypos - pixely ,q".d =6 N E/ _ EnableTextPrinting( True ) yu.N> [= Print i YCBcyE}p EnableTextPrinting( False ) o3ZqPk]al 5*#3v:l/9 ( +x!wX( x For j = 0 To nx - 1 CKuf'h# .Bs~FIe^ xpos = xpos + pixelx
D=!T,p= k@Q>(` 'shift source U#mrbW LockOperationUpdates srcnode, True Y@#rGV> GetOperation srcnode, 1, op 9^zA( op.val1 = xpos c`M
,KXott op.val2 = ypos k3-7Vyg SetOperation srcnode, 1, op vK7J;U+cJ LockOperationUpdates srcnode, False (oG-h"^/ $j"TPkW{M 'raytrace 713)D4y} DeleteRays `*ml/% \
CreateSource srcnode !C>'a: TraceExisting 'draw 8j^3_lD Od?b(bE.] 'radiometry ';J><z{> For k = 0 To GetEntityCount()-1 0Vwl\,7z9 If IsSurface( k ) Then VUbg{Rb) temp = AuxDataGetData( k, "temperature" ) [CAV"u)0 emiss = AuxDataGetData( k, "emissivity" ) xU(yc}vw, If ( temp <> 0 And emiss <> 0 ) Then *D:"I!Ho ProjSolidAngleByPi = GetSurfIncidentPower( k ) Pf?zszvs frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) >VE!3' /' irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi \*r]v;NcP End If a(|,KWHn %{j)w{
LJ End If Lk8NjK6 rd0[(- Next k 7eP3pg# t$k$Hd'; Next j w"/RI#7. Uoqt Next i =L F9im EnableTextPrinting( True ) ](tv`1A,Wd a]%>7yr4 'write out file slRD / fullfilepath = CurDir() & "\" & fname 0%OV3` Open fullfilepath For Output As #1 8^U+P% Print #1, "GRID " & nx & " " & ny j{ :>"6 Print #1, "1e+308" 5.o{A#/NTl Print #1, pixelx & " " & pixely ]fb3>HOTJ Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 @`S8d%6P m@#@7[6]o maxRow = nx - 1 'H|=]n0 maxCol = ny - 1 uHu ( For rowNum = 0 To maxRow ' begin loop over rows (constant X) W%&'EJ)62 row = "" Au[H!J For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) tI;pdR] row = row & irrad(colNum,rowNum) & " " ' append column data to row string *(*3/P4D Next colNum ' end loop over columns qR>"r"Fq \Bg?QhA_D Print #1, row 0f]LOg D@
R>gqb Next rowNum ' end loop over rows vb1Gz]~)> Close #1 \}9GK`oR rZSX fgfr Print "File written: " & fullfilepath ye^l~ Print "All done!!" mO~A}/je End Sub yw{;Qm2\7 A"W}l)+X 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 0//B+.# 0*umf.R Zyx92z9Y 找到Tools工具,点击Open plot files in 3D chart并找到该文件 c=Y8R/G< MRZ/%OZ. ZA!yw7~ 打开后,选择二维平面图: Or9`E( r1o_i;rg
|
|