| infotek |
2023-04-06 08:38 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 z ,ledTl D!@c,H
成像示意图 0&mz'xra 首先我们建立十字元件命名为Target !MGQ+bD6 UhEnW8^bz1 创建方法: lq%s/l Gm6^BYCk 面1 : QTLOP~^ 面型:plane sX**'cH 材料:Air t;4{l`dk 孔径:X=1.5, Y=6,Z=0.075,形状选择Box IzL
yn Ybok[5
^$T>3@rDB 辅助数据: Zd~Z`B} & 首先在第一行输入temperature :300K, M@gm.)d emissivity:0.1; +Uk/Zg
w^ `GSfA0? goxgJOiB 面2 : M&>Z[o 面型:plane y\@XW*_? 材料:Air "1l d4/ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box QzV:^!0J )9PQj #=zh&` 位置坐标:绕Z轴旋转90度, dwmj*+ 7d9%L}+q
GbMSO 辅助数据: k'S/nF A "4ovMan 首先在第一行输入temperature :300K,emissivity: 0.1; G_X'd evn ]n U`:$1*(` Target 元件距离坐标原点-161mm; TYB^CVSZ H(""So7L
/gPn2e; 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 pET5BMxGG .ipYZg'V ,c7 8O8| 探测器参数设定: XRaq\a`=: ;zp0,[r 在菜单栏中选择Create/Element Primitive /plane ,H.q%!{h_ k.rZj|7 L
G-T:7 z?+N3p9 *%Q!22?6F f4:gD*YT 元件半径为20mm*20,mm,距离坐标原点200mm。 \]o#tYN\a0 \5O4}sm$* 光源创建: fpzC# M3x%D)* 光源类型选择为任意平面,光源半角设定为15度。 :,:r :~g=n&x ]X{LZYk 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 _ea!psA0 bl:.D~@ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 UX(#C,qgG :uqsRFo&4 ^TnBtIU-B 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 DmPp& 5H>[@_u+: 创建分析面: ULAAY$o@5 Rl -Sr `|Tr"xavf 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 j@Z4(XL .3!=]=
@e+QGd;} 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 K^w(WE;db t|d9EC]c( FRED在探测器上穿过多个像素点迭代来创建热图 "M1[@xog !SEg4z FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 vA:1z$m 将如下的代码放置在树形文件夹 Embedded Scripts, $^d,>hJi LbvnV~S
0I& !a$: 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 PJS\> N&u %Qrf
] 绿色字体为说明文字, 8
<EE4y d z&8$(f, '#Language "WWB-COM" X.bNU 'script for calculating thermal image map LEWeybT 'edited rnp 4 november 2005 $_% a=0 -T`rk~A9A 'declarations 0vt?yD Dim op As T_OPERATION +P81&CaY Dim trm As T_TRIMVOLUME !A, ] Dim irrad(32,32) As Double 'make consistent with sampling Z$~Wr3/ Dim temp As Double JZ]4?_l Dim emiss As Double PW~+=, Dim fname As String, fullfilepath As String O| ) [j@7 {-09,Q4[& 'Option Explicit -:dUD1 ;1A4p`) Sub Main r|:i: ii 'USER INPUTS E~3wdOZv1 nx = 31 y08.R.
l ny = 31 00[Uk'Q*5 numRays = 1000 ZM`6zS! minWave = 7 'microns B{PI&a9~s% maxWave = 11 'microns >A;Mf*E sigma = 5.67e-14 'watts/mm^2/deg k^4 %!mJnc% fname = "teapotimage.dat" bb`GV #ih(I7prH Print "" P=OHiG\z Print "THERMAL IMAGE CALCULATION" !MOVv\@O 3Gubq4r detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 nm_]2z O ,|<2wn#q Print "found detector array at node " & detnode K?8{y ryg1o=1v/ srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 yF8 av=<{ QX1QYwcm G Print "found differential detector area at node " & srcnode [I^>ji0V & gnE" GetTrimVolume detnode, trm DpI)qg#>V detx = trm.xSemiApe /GD4GWv : dety = trm.ySemiApe u^8:/~8K area = 4 * detx * dety 6sJN@dFA Print "detector array semiaperture dimensions are " & detx & " by " & dety ^2rNty,nH Print "sampling is " & nx & " by " & ny w]J9Kv1)- wC+_S*M-K 'reset differential detector area dimensions to be consistent with sampling L}T:Y). pixelx = 2 * detx / nx 1JMEniB+9 pixely = 2 * dety / ny
\09eH[ SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Ne!F
p Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 s<Px au+A B2w\ 'reset the source power ^V#9{)B SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) yV,ki^^ Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" TPH`{ ?mU
3foa 'zero out irradiance array O$%M.C' For i = 0 To ny - 1 ~8L*N>Y For j = 0 To nx - 1 e[.c^Hw irrad(i,j) = 0.0 uLX5khQ Next j #; CC"
Next i ? FGzw Y&!M#7/'J3 'main loop uu@Y]0- EnableTextPrinting( False ) h
U\)CM pLjet~2}iJ ypos = dety + pixely / 2 :iqFC >D For i = 0 To ny - 1 m7}PJ^*b xpos = -detx - pixelx / 2 (N{Rda*8 ypos = ypos - pixely ?a?i8rnWo 5G"LuA EnableTextPrinting( True ) S<HR6Xw Print i AlT41v~6 EnableTextPrinting( False ) t\Pn67t ~b;l08 <
booth}M For j = 0 To nx - 1 8s(?zK\ U+: o y:mz xpos = xpos + pixelx /J!C2 V;0{o 'shift source Mwp[?#1j LockOperationUpdates srcnode, True U'(}emh} GetOperation srcnode, 1, op .#0),JJZ[ op.val1 = xpos 65X31vU op.val2 = ypos pie<jZt SetOperation srcnode, 1, op f0H
5 )DJf LockOperationUpdates srcnode, False pn3f{fQ /^ *GoB 'raytrace e[_W( v DeleteRays G%0G$3W" CreateSource srcnode 7oaa) TraceExisting 'draw /xf4*zr eLE9-K+ 'radiometry tKg\qbY& For k = 0 To GetEntityCount()-1 DwM4/m If IsSurface( k ) Then L(tS]yWHw temp = AuxDataGetData( k, "temperature" ) NCbl|v= emiss = AuxDataGetData( k, "emissivity" ) FD>j\ If ( temp <> 0 And emiss <> 0 ) Then w20E]4" ProjSolidAngleByPi = GetSurfIncidentPower( k ) @gzm4 frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) eBiP\ irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 3?|gBiX End If .C=&`;Vs 0=Jf93D5 End If ^,S\-Uy9 [ox!MQ+s Next k qZRx,^gd K|*Cka{ Next j cy)b/4h@ FkJa+ZA Next i
/;LteBoY EnableTextPrinting( True ) XP'Mv_!Z ^pz3L'4n 'write out file z{T2!w~[ fullfilepath = CurDir() & "\" & fname UJ'
+Z6d Open fullfilepath For Output As #1 9D74/3b* Print #1, "GRID " & nx & " " & ny AU1P?lk Print #1, "1e+308" + wd} '4) Print #1, pixelx & " " & pixely <}'hkEh{d= Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 tV2SX7N 0[6llcuj maxRow = nx - 1 `K[:<p} maxCol = ny - 1 Dz,Fu:) For rowNum = 0 To maxRow ' begin loop over rows (constant X) EFeG[bxM row = "" #sit8k`GR8 For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) ]e+IaZ[Wo row = row & irrad(colNum,rowNum) & " " ' append column data to row string TnET1$@qr* Next colNum ' end loop over columns y@g{:/cmO rXo2MX@u Print #1, row A(AyLxB47* 0^44${bA Next rowNum ' end loop over rows =QEg~sD^)s Close #1 2=tPxO')B rN?
L8 Print "File written: " & fullfilepath .K^'Q|? Print "All done!!" Bv"Fx*{W End Sub ^5vFF@to E&0A W{ 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: &*g5kh{ 6 .DJRY 2YK4SL 找到Tools工具,点击Open plot files in 3D chart并找到该文件 S|T:rc(~ UNocm0!N' %o<&O(Y 打开后,选择二维平面图: xD#PM |I 'T[=Uuj"
|
|