infotek |
2023-03-14 08:20 |
用于仿真和分析激光晶体封装技术中诱导应力的方法
B:X,vE 摘要 Fi!BXngbd "39\@Ow 提出了一种用来仿真激光晶体封装技术中的诱导应力的方法,并对激光腔内部的双折射效应进行研究。这种方法已经由软件ANSYS 17.0通过热机械仿真来实现。ANSYS的结果稍后被导入到VirtualLab Fusion软件中,这款软件按照波长及偏振性对输入输出光束进行分析。研究是建立在一种用于玻璃或晶体光学封装中低应力焊接技术,也被称作焊机泵浦技术的背景下。分析结果表明对于由钇铝石榴石活性激光晶体构建的激光腔,二次谐波发生器β-钡硼酸盐,以及由低应力焊机泵浦技术组装的熔融石英的输出激光镜来说,输入及输出激光光束几乎没有差异。 qnc?&f ○c2017 Optical Society of America OCIS codes: (140.0140) Lasers and laser optics; (220.0220) Optical design and fabrication; (260.1440) Birefringence. UA0j# G>@KX 参考及链接 azBYh*s=5{ $:l>g)c 1. S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, G. Viera. “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics,Greece 2010. NP#6'eH\ 2. P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, A. Tünnermann,“High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt.Eng. 55(6), 065101 (2016). C
srxi'Pe 3. E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A.Tünnermann, F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406. or<n[<D-C 4. W. Koechner, Solid-State Laser Engineering (Springer, 1999). `W=3_ 5. C. Rothhardt, J. Rothhardt, A. Klenke, T. Peschel, R. Eberhardt, J. Limpert, A. Tünnermann “BBO-sapphire sandwich structure for frequency conversion of high power lasers,” Opt. Mater. Express 4, 1092 (2014). \img
6. J. F. Nye, Physical properties of crystals (Oxford Universty, 2010). }w_r(g?\ 7. Q. Lü, U. Wittrock, S. Dong, “Photoelastic effects in Nd:YAG rod and slab lasers,” Opt. Laser Technol. 27(2), 95–101 (1995). 4-r5C5o,W 8. G. Golub, and F. Charles, Matrix Computations (Johns Hopkins University, 1983). +`RQ^9 9. H. Bremmer, “The W.K.B approximation as the first term of a geometric-optical series,” Commun. Pure. Appl. Math. 4, 105–115 (1951). 7$zeRYD+ 10. F. Wyrowski and M. Kuhn, “Introduction to field tracing,” J. Mod. Opt. 58, 449–466 (2011). {wL30D^ 11. D. W. Berreman, “Optics in stratified and anisotropic media: 4 × 4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). xCTPsw]s 12. G. D. Landry and T. A. Maldonado, “Gaussian beam transmission and reflection from a general anisotropic multilayer structure,” Appl. Opt. 35, 5870–5879 (1996). [C-4*qOaa2 13. L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998). ,%=SO 82W 14. L. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A 20, 655–660 (2003). )hy(0 D 15. Physical optics design software “Wyrowski VirtualLab Fusion”, developed byWyrowski Photonics UG, distributed by LightTrans GmbH, Jena Germany. http://www.lighttrans.com. N e<D'- 16. S. Zhang, Applied Computational Optics Group, Institute of Applied Physics, Friedrich Schiller University Jena,Max-Wien-Platz 1, 07743 Jena, Germany, C. Hellmann and F. Wyrowski are preparing a manuscript to be called 14DHU “Algorithm for the propagation of electromagnetic fields through etalons and crystals.” tEam6xNf, 17. D. Eimerl, L. Davis, S. Velsko E. K. Graham A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987). gJFx#s0?6. 18. W. Martienssen, H. Warlimont, Springer handbook of condensed matter and materials data (Springer, 2005). |O';$a1S 19. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). kfW"vI+d 20. W. L. Bond, “Measurement of the refractive index of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965). !E@4^A80\W 21. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, 1999). I%< |
|
| |