jeremiahchou |
2023-02-22 20:11 |
研究团队将TDV-SIM与其他重建方法进行了比较,包括基于物理模型(Wiener 反卷积,HiFi-SIM,Hessian-SIM)和基于深度学习的方法(scU-Net,DFCAN)。在短曝光时候,研究人员观察活细胞中肌动蛋白丝、内质网以及线粒体等结构的动态变化发现,基于物理模型的降噪方法在低信噪比背景区域由于噪声放大仍然产生伪影。另一方面,虽然基于深度学习方法重建伪影较低,但它的分辨率和结构相似度值都会降低,同时常常在复杂结构如肌动蛋白和内质网的交叉点处以及线粒体内嵴处等地方产生不准确的推断,也就是常说的“幻觉效应”。这些问题可以被结合了物理模型约束的TDV-SIM很好地抑制。总体来说,TDV-SIM可以重构出更多的连续肌动蛋白丝,且伪影更少,其结构相似度值和分辨率与传统重建方法相当。 V^v?;f? z5V~m_RO 在深度学习盛行的今天,AI for science已经深入人心。尽管如此,团队的研究发现,纯数据驱动方法在预测不断变化的不规则和复杂样品结构时存在困难,在这种情况下考虑成像系统的物理模型约束变得至关重要。正如研究人员展示的:在面对结构复杂、动态的样品时,TDV-SIM方法较纯深度学习方法具有明显的优势。总的来说,TDV-SIM从混合重建的角度出发,为低信噪比图像的高分辨率高保真重建提供了一种新的解决方案。由于减少了成像时的光子剂量和相关的光毒性,提高了成像速度,延长了成像持续时间,TDV-SIM对于SR成像活细胞亚细胞结构动力学至关重要。
|
|