首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 光电资讯及信息发布 -> 科学家对光电现象的最短时间尺度进行研究 [点此返回论坛查看本帖完整版本] [打印本页]

cyqdesign 2022-03-31 10:07

科学家对光电现象的最短时间尺度进行研究

半导体电子产品的速度正在变得越来越快--但在某些时候,物理学不再允许任何增加。现在,科学家们已经对光电现象的最短时间尺度进行了研究。据悉,当计算机芯片使用越来越短的信号和时间间隔工作时,在某些方面它们会遇到物理极限。 oCR-KR>{Q  
&a];"2  
[attachment=111839]
s2M|ni=  
能在半导体材料中产生电流的量子力学过程需要一定的时间。这对信号产生和信号传输的速度造成了限制。 #E#.`/4  
okv`v ({  
维也纳大学(TU Wien)、格拉茨大学(Graz)和位于加兴(Garching)的马克斯-普朗克量子光学研究所现在已经能探索这些极限。即使材料以最佳方式被激光脉冲激发,其速度也绝对不能超过1 petahertz(10 ^ 15赫兹)。这一结果现在已经发表在科学杂志《Nature Communications》上。 +\@WOs  
of>"qrdZ  
场和电流 cri.kr9Y  
> Vvjs  
电流和光(即电磁场)总是相互关联的。这也是微电子学的情况。在微芯片中,电力是在电磁场的帮助下控制的。如一个电场可以应用于一个晶体管,然后根据电场的开启或关闭允许电流流动或阻止电流。通过这种方式,电磁场被转换为电信号。 ^lCQHz  
%?~`'vYoi  
为了测试这种将电磁场转换为电流的极限,研究人员使用了激光脉冲--目前最快、最精确的电磁场--而不是晶体管。 1X$hwkof  
c DO<z  
来自维也纳大学理论物理研究所的Joachim Burgdörfer教授指出:“所研究的材料最初根本不导电。这些材料被一个波长在极紫外范围内的超短激光脉冲击中。这个激光脉冲将电子转移到一个更高的能级,这样它们就能突然自由移动。这样一来,激光脉冲在短时间内将材料变成了电导体。”只要材料中存在自由移动的电荷载流子它们就能被第二个稍长的激光脉冲向某个方向移动。这就产生了电流,然后可以用材料两边的电极进行检测。 6pi^rpo  
Z2wgfP`  
这些过程发生得非常快,在阿秒或飞秒的时间尺度上。Christoph Lemell教授表示:“在很长一段时间里,这种过程被认为是瞬间发生的。然而,今天我们有必要的技术来详细研究这些超快过程的时间演变。关键问题是:材料对激光的反应有多快?信号的产生需要多长时间以及在材料可以接触到下一个信号之前需要等待多长时间?实验是在Garching和Graz进行的,理论工作和复杂的计算机模拟则是在TU Wien进行的。 qH-':|h7  
WG?;Z  
时间或能量--但不能同时进行 {^qp~0  
bcCCvV}6WZ  
该实验导致了一个典型的不确定性困境,这在量子物理学中经常发生:为了提高速度需要极短的紫外激光脉冲,这样自由电荷载流子就会很快产生。然而使用极短的脉冲意味着转移到电子上的能量并没有精确定义。电子可以吸收非常不同的能量。Christoph Lemell说道:“我们可以准确地知道自由电荷载流子是在哪个时间点产生的,但不知道它们是在哪个能量状态。固体有不同的能带,在短激光脉冲下,许多能带不可避免地同时被自由电荷载流子填充。” }9,^=g-  
@5y ~A}Vd  
根据携带的能量的多少,电子对电场的反应相当不同。如果它们的确切能量是未知的就不再可能精确地控制它们,而产生的电流信号就会被扭曲--尤其是在高激光强度下。  }FoO  
F"*.Qq  
Joachim Burgdörfer称:“事实证明,大约1 petahertz是受控光电过程的上限。当然,这并不意味着有可能生产出时钟频率略低于1 petahertz的计算机芯片。现实的技术上限很可能要低得多。尽管决定光电子学最终速度极限的自然法则不能被超越,但现在可以用复杂的新方法对其进行分析和理解。”
bairuizheng 2022-04-01 00:28
基础研究真的很有意思
halfy 2022-04-01 00:35
测不准原理 时间与能量不可能同时精确确定。
tassy 2022-04-01 00:59
研究真有意思
tomryo 2022-04-01 07:20
科学家对光电现象的最短时间尺度进行研究
redplum 2022-04-01 08:22
谢谢分享
likaihit 2022-04-01 08:23
谢谢分享
有生之年 2022-04-01 08:25
使材料以最佳方式被激光脉冲激发,其速度也绝对不能超过1 petahertz(10 ^ 15赫兹)
thorn12345 2022-04-01 08:27
光电现象的最短时间尺度
牛开心 2022-04-01 08:28
测不准原理 时间与能量不可能同时精确确定。
sherrod 2022-04-01 08:39
当计算机芯片使用越来越短的信号和时间间隔工作时,在某些方面它们会遇到物理极限
songyang1169 2022-04-01 08:40
这在量子物理学中经常发生
silence唯爱 2022-04-01 08:50
基础研究的重要性,凸显
wmh1985 2022-04-01 08:58
电流和光(即电磁场)总是相互关联的。这也是微电子学的情况。在微芯片中,电力是在电磁场的帮助下控制的。如一个电场可以应用于一个晶体管,然后根据电场的开启或关闭允许电流流动或阻止电流。通过这种方式,电磁场被转换为电信号。
yeyeshuya 2022-04-01 09:14
谢谢分享啊
blacksmith 2022-04-01 09:22
光电现象的最短时间尺度
churuiwei 2022-04-01 09:25
维也纳大学(TU Wien)、格拉茨大学(Graz)和位于加兴(Garching)的马克斯-普朗克量子光学研究所
悠悠白云 2022-04-01 09:28
基础研究真的很有意思
personking 2022-04-01 09:37
科学家对光电现象的最短时间尺度进行研究
zhouxi 2022-04-01 09:45
半导体电子产品的速度正在变得越来越快--但在某些时候,物理学不再允许任何增加。现在,科学家们已经对光电现象的最短时间尺度进行了研究。据悉,当计算机芯片使用越来越短的信号和时间间隔工作时,在某些方面它们会遇到物理极限。
光电青年 2022-04-01 09:48
事实证明,大约1 petahertz是受控光电过程的上限。
xjz0203 2022-04-01 10:22
基础研究真的很有意思
道到 2022-04-01 11:06
科学家对光电现象的最短时间尺度进行研究
木子示羊 2022-04-01 12:09
光电现象的最短时间尺度
lxl199108 2022-04-01 13:32
谢谢楼主分享
jabil 2022-04-01 14:31
Thank you for sharing
小王同学 2022-04-01 15:10
研究真有意思
yzktst 2022-04-01 15:48
光电现象的最短时间尺度
王珏123 2022-04-01 16:36
大约1 petahertz是受控光电过程的上限
mmttxiaoxiao 2022-04-01 16:42
深挖技术方向
wangjin001x 2022-04-01 17:00
科学家对光电现象的最短时间尺度进行研究
jeremiahchou 2022-04-01 19:05
事实证明,大约1 petahertz是受控光电过程的上限。当然,这并不意味着有可能生产出时钟频率略低于1 petahertz的计算机芯片。现实的技术上限很可能要低得多。尽管决定光电子学最终速度极限的自然法则不能被超越,但现在可以用复杂的新方法对其进行分析和理解。
谭健 2022-04-01 19:17
基础研究真的很有意思
谭健 2022-04-01 19:25
谢谢分享
lisanshi2011 2022-04-01 19:57
最短时间尺度
加油艾特我 2022-04-01 23:12
最短时间尺度,好厉害的研究
查看本帖完整版本: [-- 科学家对光电现象的最短时间尺度进行研究 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计