| infotek |
2022-01-24 09:30 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 S2ark,sp6 "hW(S
成像示意图 >&BrCu[u 首先我们建立十字元件命名为Target [d}qG#N e{5,'(1] 创建方法: KL
"Y!PN:
KZ]r8 面1 : m)r]F#@/ 面型:plane PJCnud F 材料:Air \[cH/{nt 孔径:X=1.5, Y=6,Z=0.075,形状选择Box dPHw3^J0j NW)M?f+6
sD2
^_w6j 辅助数据: 9X3yp:>V 首先在第一行输入temperature :300K, (]OFS;% emissivity:0.1; )i @1XH"D 9[kX/#~W* eO'xkm 面2 : P 4QkY#v 面型:plane tR<L`?4 材料:Air L%f;J/ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box b7!UZu]IEv y5_XHi@u~o [g +y_@9s 位置坐标:绕Z轴旋转90度, $:e)$Xnn- U%q:^S%#eG
iOll WkF 辅助数据: O] H=s uWTN2jr 首先在第一行输入temperature :300K,emissivity: 0.1; QNb>rLj52 AVv#\JrRW "c,!vc4 Target 元件距离坐标原点-161mm; "XhOsMJ UWw}!1
<BPRV> 0X 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 (f~gEKcB2u
,gmH2. sMm/4AY] 探测器参数设定: um[!|g/ +0"x|$f~ 在菜单栏中选择Create/Element Primitive /plane +zsZNJ(U xs%LRF#u
cOb4c* [O_^MA,z 7 2,"Cj q@kOTkHv) 元件半径为20mm*20,mm,距离坐标原点200mm。 .T$D^?G!D g4wZvra6%) 光源创建: {a@>6) ;v_V+t<$ 光源类型选择为任意平面,光源半角设定为15度。 !| xZ6KV wbi3lH:; g~!$i`_b 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 xGRT"U( ^=0$ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 A,BEKjR~J Yj|]Uff8O BS7J#8cu 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 K%gP5>y*9> =VSkl;(O 创建分析面: /.$L"u c@(1:,R v"RiPHLT 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 TsHF
tj9S kXwi{P3D$
CCqT tp 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 S;=_;&68? 2*u.3,aW FRED在探测器上穿过多个像素点迭代来创建热图 J#aVo&.Y }1U*A#aN7K FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 #3 bv3m 将如下的代码放置在树形文件夹 Embedded Scripts, 9&K/GaG 2\0Oji\6
AmcC:5 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 .X
`C^z]+ B1$ikY 绿色字体为说明文字, >SDpuG&> 0E6lmz`O '#Language "WWB-COM" jPk
c3dG
+ 'script for calculating thermal image map P`TIaP9%E 'edited rnp 4 november 2005 J :S'uxM Np2ci~"<. 'declarations -$YJfQE6G Dim op As T_OPERATION 4o5i ."l Dim trm As T_TRIMVOLUME J`oTes, Dim irrad(32,32) As Double 'make consistent with sampling i- lKdpv Dim temp As Double B:9.e?t Dim emiss As Double {QQl$ys/ Dim fname As String, fullfilepath As String 5v9Vk`3' `,Orf ZMb 'Option Explicit d?hz LX kNPDm6m Sub Main ;%zC@a~{ 'USER INPUTS 6sB$<# nx = 31 M{Gxjmdx ny = 31 Y=2Un).& numRays = 1000 C1QV[bJK minWave = 7 'microns Y~qb;N\ maxWave = 11 'microns FifbxL sigma = 5.67e-14 'watts/mm^2/deg k^4 k^An97J fname = "teapotimage.dat" &5Y_>{, - k`.j Print "" B8V,)rn Print "THERMAL IMAGE CALCULATION" s@!$='| U7H9/<&o detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 `ZGcgO<c\ n29(!10Px Print "found detector array at node " & detnode #a,9B-X kMxjS^fr srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 'M/([|@ z"379b7cN Print "found differential detector area at node " & srcnode p2d\ZgWD=) #H5=a6E+q GetTrimVolume detnode, trm ^M[P-#X_ detx = trm.xSemiApe ^}>/n. % dety = trm.ySemiApe '*!L!VJ area = 4 * detx * dety Gi7RMql6Q Print "detector array semiaperture dimensions are " & detx & " by " & dety ebM{OI Print "sampling is " & nx & " by " & ny =+oZtP-+o gx;O6S{ 'reset differential detector area dimensions to be consistent with sampling PW)aLycPK pixelx = 2 * detx / nx ngUHkpYS5 pixely = 2 * dety / ny J(iV0LAZb SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False g7V_[R(6 Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 6 bO;& U5+vN[ K 'reset the source power 4JO@BV >t SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 3 QCVgo
i\ Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" $YM_G=k g>0vm2| 'zero out irradiance array EUcKN1 For i = 0 To ny - 1 +nU.p/cK+\ For j = 0 To nx - 1 w~+ aW(2 irrad(i,j) = 0.0 {#hVD4$b Next j t9u|iTY
f! Next i PRr*]$\&Mj 5w<A;f 'main loop +AI`R`Tm EnableTextPrinting( False ) DTY<0Q. c`kQvXx ypos = dety + pixely / 2 h-XY4gq/ For i = 0 To ny - 1 hh"-w3+ xpos = -detx - pixelx / 2 rt!r2dq" ypos = ypos - pixely m<@z}%v- /A07s[L EnableTextPrinting( True ) m5-9yQ=. Print i :zp`6l EnableTextPrinting( False ) VKuAO$s$ e!X(yJI[O6 PT_KXk For j = 0 To nx - 1 <P4FzK 5PiOH"!19 xpos = xpos + pixelx .eF_cD7v AsxD}Nw[Z* 'shift source ?R'Y?b LockOperationUpdates srcnode, True Pe$6s:|NS GetOperation srcnode, 1, op r88"#C6E' op.val1 = xpos OW5t[~y] op.val2 = ypos V|FrN*m SetOperation srcnode, 1, op 3V;gW%> LockOperationUpdates srcnode, False p>kq+mP2bc G+WM`:v8% raytrace \b8\Ug~t DeleteRays D>#l -{d CreateSource srcnode 1}g:|Q TraceExisting 'draw `_qK&&s ai-n z-; 'radiometry 9-lEt l% For k = 0 To GetEntityCount()-1 9M-K]0S( If IsSurface( k ) Then *e{PxaF!C temp = AuxDataGetData( k, "temperature" ) o0I9M?lP emiss = AuxDataGetData( k, "emissivity" ) ]<trA$ 0 If ( temp <> 0 And emiss <> 0 ) Then pJ^NA2 ProjSolidAngleByPi = GetSurfIncidentPower( k ) 0A[e sWmP frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) :tj-gDa\Y irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi aMwB>bt End If &M[f&_"8Q PkUd~c End If uA~slS
Z g>j| ]6 Next k NiSO'=y$n 7$uJ7`e Next j l-)Bivoi ~[W#/kd1n Next i k$"d^*R EnableTextPrinting( True ) b{cU<;G)y. d7Ro}>lp 'write out file ?6N3tk-2 fullfilepath = CurDir() & "\" & fname rT6?!$"%. Open fullfilepath For Output As #1 0D ~
Tga) Print #1, "GRID " & nx & " " & ny [kB
` Print #1, "1e+308" 'Pd(\$ZY Print #1, pixelx & " " & pixely 77,oPLSn Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 *yaw$oB {qpi?oY maxRow = nx - 1 m7jA
,~O maxCol = ny - 1 dE(tFZx For rowNum = 0 To maxRow ' begin loop over rows (constant X) 7+,vTsCd row = "" yfj(Q s For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y)
dt,3"J row = row & irrad(colNum,rowNum) & " " ' append column data to row string 3Qn!y\# Next colNum ' end loop over columns :#{Xuy: 6 "gj!/e Print #1, row EU+cca|qS9 93Yn`Av; Next rowNum ' end loop over rows u=NG6G Close #1 = !2NU 1y5Ex:JVZT Print "File written: " & fullfilepath AHbZQulC Print "All done!!" ~}ovuf=% End Sub uh3)0.nR )N!>= 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: [c& | |