首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 72sD0)?A  
] sz3]"2  
成像示意图
)&era ` e[  
首先我们建立十字元件命名为Target JG C=(;  
Zh5RwQNE~  
创建方法: B63pgPX  
_|72r} j  
面1 : `28};B>  
面型:plane |/g W_;(  
材料:Air ELh8ltLY  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box ;})5:\h  
r1ws1 rr=  
J--m[X  
辅助数据: $Vc~/>  
首先在第一行输入temperature :300K, 7nbB^2  
emissivity:0.1; s5RjIa0$7  
K"<PGOF  
oG$)UTzGc  
面2 : \#68;)+=  
面型:plane pV6d Id  
材料:Air "cTncL  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box tbnH,*  
LZ@|9!KDw  
`mye}L2I  
位置坐标:绕Z轴旋转90度, 0&ByEN9 9  
DK0.R]&4(  
o ]IjK  
辅助数据: mDh1>>K'~  
E~<`/s  
首先在第一行输入temperature :300K,emissivity: 0.1; ! _2n  
dD<fn9t  
86f2'o+  
Target 元件距离坐标原点-161mm; 6<0n *&  
Y!6/[<r$~k  
N_L,]QT?  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 vIvVq:6_3  
c*d 9'}E  
j@Qg0F  
探测器参数设定: EBtLzbj  
Pmi#TW3X  
在菜单栏中选择Create/Element Primitive /plane q9"=mO0J+  
>:=|L%]s;\  
?S?2 0  
>zkRcm  
iut`7  
Y32O-I!9u  
元件半径为20mm*20,mm,距离坐标原点200mm。 ^$%Z! uz  
"uLjIIl  
光源创建: ]a2W e`  
Q4t(@0e}  
光源类型选择为任意平面,光源半角设定为15度。 %AF5=  
R{,ooxH\J  
.k TG[)F0b  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 m~Ld~I"  
Gamr6I"K  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 w@2Vts  
o`khz{SU:  
y80ykGPT\&  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 zU6a't P  
iAY!oZR(WT  
创建分析面: :hGPTf  
W:i?t8y\y  
SM[Bv9|0  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 `"vZ);i <  
 TIy&&_p  
8#R?]Uwq  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 G0n'KB  
=Cqv=   
FRED在探测器上穿过多个像素点迭代来创建热图 ,n2i@?NHZ  
4 !`bZ`_Bw  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 #G9 ad K5  
将如下的代码放置在树形文件夹 Embedded Scripts, Z?MoJ{.!?R  
DOm[*1@^  
`ir3YnT+  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 n$m"]inX  
! BU)K'mj  
绿色字体为说明文字, 0ZAj=u@O  
89o)M5KQ  
'#Language "WWB-COM" h%d^Gq~  
'script for calculating thermal image map Fb2%!0i  
'edited rnp 4 november 2005 ~ aZedQc  
$#o1MX  
'declarations vUQFQ  
Dim op As T_OPERATION 3l!NG=R  
Dim trm As T_TRIMVOLUME 8OWmzY_=  
Dim irrad(32,32) As Double 'make consistent with sampling oFg5aey4  
Dim temp As Double E]^5I3=O  
Dim emiss As Double _17|U K|N  
Dim fname As String, fullfilepath As String BpAB5=M0  
lp&!lb`  
'Option Explicit 1S%k  
@^nu #R  
Sub Main bv?0.{Z  
    'USER INPUTS {}e^eJ  
    nx = 31 ed~R>F>  
    ny = 31 r$)$n&j  
    numRays = 1000 ?`sy%G  
    minWave = 7    'microns ph30'"[Z}  
    maxWave = 11   'microns ' |K.k6  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 2V#6q,2  
    fname = "teapotimage.dat" vM0_>1nN  
gqiXmMm:9  
    Print "" gzfbzt}?  
    Print "THERMAL IMAGE CALCULATION" Z-Wfcnk  
vx0UoKX  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 a#(U2OP  
\d68-JS@~  
    Print "found detector array at node " & detnode  .Oo/y0E^  
=:$) Z  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 8Pmwzpk02  
UOI^c  
    Print "found differential detector area at node " & srcnode = t+('  
O8RzUg&  
    GetTrimVolume detnode, trm ??xlA-E  
    detx = trm.xSemiApe )h"Fla  
    dety = trm.ySemiApe c8Pb  
    area = 4 * detx * dety 9]~PC Z2j  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety #tz8{o?ebN  
    Print "sampling is " & nx & " by " & ny fGO*% )  
$[e%&h@JR  
    'reset differential detector area dimensions to be consistent with sampling JLW$+62  
    pixelx = 2 * detx / nx Q]i[.ME  
    pixely = 2 * dety / ny wixD\t59X  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ZrcPgcF  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 ~= 9V v  
twbcuaCTW  
    'reset the source power vl~%o@*_  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) )kA2vX^=Z  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" s>J3\PC  
Gc}0]!nrW9  
    'zero out irradiance array c% yh(g  
    For i = 0 To ny - 1 *^6k[3VY  
        For j = 0 To nx - 1 XPVV+.  
            irrad(i,j) = 0.0 =#'+"+lQ }  
        Next j 5=.7\#D  
    Next i z@n+7p`w  
VVN # $  
    'main loop aKOf;^@  
    EnableTextPrinting( False ) V%o#AfMI_  
r'PE5xqF  
    ypos =  dety + pixely / 2 :7k`R6 2{  
    For i = 0 To ny - 1 QS%,7'EG  
        xpos = -detx - pixelx / 2 =%)})  
        ypos = ypos - pixely kFnUJM$r  
c}8 -/P=  
        EnableTextPrinting( True ) ?9,YVylg  
        Print i jiOf')d5  
        EnableTextPrinting( False ) 6|i`@|#  
v(k*A:  
@Z,qu2~|!  
        For j = 0 To nx - 1 BMe72  
T+3k$G[e/  
            xpos = xpos + pixelx $<14JEU  
AwA1&mh  
            'shift source vr<)Ay  
            LockOperationUpdates srcnode, True 7kOE/>P?  
            GetOperation srcnode, 1, op w# xncH:1  
            op.val1 = xpos =CGD ~p`  
            op.val2 = ypos !;ZBL;qY9  
            SetOperation srcnode, 1, op NH<Y1t  
            LockOperationUpdates srcnode, False *C tsFS~  
qW+=g]x\  
raytrace '"'D.,[W2  
            DeleteRays 6MrZ6dz^  
            CreateSource srcnode ZKZl>dDuh  
            TraceExisting 'draw HIQ]"Hl  
:Xh_$4~^Y  
            'radiometry #IH<HL)t%e  
            For k = 0 To GetEntityCount()-1 $(Z]TS$M&  
                If IsSurface( k ) Then cA2^5'$$  
                    temp = AuxDataGetData( k, "temperature" ) ab8oMi`z  
                    emiss = AuxDataGetData( k, "emissivity" ) ce 7Yr*ZB  
                    If ( temp <> 0 And emiss <> 0 ) Then o",f(v&u%  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) "u .)X3  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) LuQ"E4;nY%  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi nNd`]F^U  
                    End If Kx(76_XD  
D|u^8\'.  
                End If +,ZU TG  
V)_H E  
            Next k !:]s M-cCt  
qAS70XjOF  
        Next j > C*?17\  
J3]qg.B%z  
    Next i z v L>(R  
    EnableTextPrinting( True ) <M5{.`o  
/Bg6z m  
    'write out file &hSnB~hi  
    fullfilepath = CurDir() & "\" & fname ,(;p(#F>  
    Open fullfilepath For Output As #1 yDu yMt#  
    Print #1, "GRID " & nx & " " & ny /8P4%[\  
    Print #1, "1e+308" -dc"N|.  
    Print #1, pixelx & " " & pixely 2XETQ;9  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 -z>Z0viA  
)V9Mcr*Ce6  
    maxRow = nx - 1 <Y}"D Yt  
    maxCol = ny - 1 p[af[!  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) %~~z96(  
            row = "" iECC@g@a  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) :uU]rBMo  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 1{\,5U&  
        Next colNum                     ' end loop over columns {LMS~nx  
X1 0"G~0  
            Print #1, row ,\m;DR1  
]sm0E@1  
    Next rowNum                         ' end loop over rows F=*BvI "+  
    Close #1 \U<F\i  
)"i>R ~*  
    Print "File written: " & fullfilepath YQB]t=Ha  
    Print "All done!!" yv8dfl  
End Sub 5w,YBUp  
9>.<+b(>!'  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: RB$ 8^#  
k?|zIu  
a dz;N;rIY  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 33v%e  
  
gn e #v  
O+8ApicjTc  
打开后,选择二维平面图: [r~rIb%Zj  
z }b U\3!  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计