首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 nZ4JI+Q)~  
G,{=sFX  
成像示意图
|"K<   
首先我们建立十字元件命名为Target 2H,^i,  
ZWtlOP#]  
创建方法: YmBo/IM  
3`Ug]<m  
面1 : t; 3n  
面型:plane !!{!T;)l  
材料:Air *A^j>lV  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box 3Y;<Q>roT  
zeC@!,lH  
N7wKaezE  
辅助数据: B4&K2;fg_  
首先在第一行输入temperature :300K, K)D5%?D  
emissivity:0.1; 0x N1Xm0d  
3d1$w  
_,"?R]MO  
面2 : ;Dw6pmZ  
面型:plane k@[P\(a3b  
材料:Air 4s:S_Dw  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box MrW*6jY@  
2\b 2W_  
j;BMuLTm1  
位置坐标:绕Z轴旋转90度, ]_hrYjX;  
Pse1NMK9 [  
8et*q3D7`  
辅助数据: bG|aQ2HW  
v M lT  
首先在第一行输入temperature :300K,emissivity: 0.1; ,Ky-3p>  
G1!yPQa7d  
*EB`~s  
Target 元件距离坐标原点-161mm; u2FD@Xq?  
@)IHd6 R  
+L]$M)*0&  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 %XQ!>BeE  
p`PBPlUn  
9>OPaL n  
探测器参数设定: W5f|#{&L:  
eM) I%  
在菜单栏中选择Create/Element Primitive /plane q!OB?03n  
\ y^Ho1Fj  
}5nVZ;  
Uc[ @]  
-aV!ZODt  
p-S&Wq  
元件半径为20mm*20,mm,距离坐标原点200mm。 lG>,&(  
oRALhaI  
光源创建: G%q^8#  
C-:lM1  
光源类型选择为任意平面,光源半角设定为15度。 `Vf k.OP  
^DQp9$la  
!%lcn O  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 b<]Ae!I'  
gd,3}@@SH  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 zF([{5r[!)  
knS(\51A  
>%?kp[  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 IHs^t/;Iv  
)/vse5EG+  
创建分析面: 3&tJD  
pFW^   
v|K'M,E  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 NE1n9  
^K]`ZQjKC  
2Vwv#NAV k  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 P =jRof$  
= 9K5f# ;e  
FRED在探测器上穿过多个像素点迭代来创建热图 m(0c|-  
|3SM  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 2vLV1v$,q  
将如下的代码放置在树形文件夹 Embedded Scripts, B_3:.1>"BM  
"WfVZBWG$  
T4fVZd)x  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 xro%AM  
^Q9;ro*;ck  
绿色字体为说明文字, \ y}!yrQ  
nb|KIW  
'#Language "WWB-COM" TYH4r q &  
'script for calculating thermal image map QMQ\y8E  
'edited rnp 4 november 2005 l6~wm1vO  
uozK'L  
'declarations E-v#G~  
Dim op As T_OPERATION <oKoz0!  
Dim trm As T_TRIMVOLUME ah2L8jN"  
Dim irrad(32,32) As Double 'make consistent with sampling d$}!x[g$Z  
Dim temp As Double *P; cSx?2  
Dim emiss As Double ~zO>Q4-k  
Dim fname As String, fullfilepath As String  &peUC n  
ggL^*MV  
'Option Explicit  SCq:jI  
|x+g5~$  
Sub Main H-C$Jy)f"  
    'USER INPUTS )[np{eF.k  
    nx = 31 lK"m|Z  
    ny = 31 ejh0Wfl  
    numRays = 1000 w^Atd|~gi  
    minWave = 7    'microns !4vepa}Y  
    maxWave = 11   'microns 8k_cC$*Ng  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 >`=9So_J  
    fname = "teapotimage.dat" svRYdInBNu  
FByA4VxB  
    Print "" ,TlYQ/j%h  
    Print "THERMAL IMAGE CALCULATION" B6-1q& E/  
E2i'lO\P  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 9$s~ `z)  
;2}wrX  
    Print "found detector array at node " & detnode 1)t*l;.  
bZlKy`Z  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 &HB!6T/  
Qpocj:  
    Print "found differential detector area at node " & srcnode :x3"Cj  
&2sfu0K  
    GetTrimVolume detnode, trm *X\J[$!  
    detx = trm.xSemiApe :kKdda<g#  
    dety = trm.ySemiApe tLzb*U8'1w  
    area = 4 * detx * dety cnz+%Y N  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety x(7Q5Uk\  
    Print "sampling is " & nx & " by " & ny fk2p}  
Mhu|S)hn  
    'reset differential detector area dimensions to be consistent with sampling W|(U} PrC  
    pixelx = 2 * detx / nx 0b}.!k9  
    pixely = 2 * dety / ny >4&0j'z"  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False V`m9+<.1b  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 PW+B&7{  
Xbu P_U'  
    'reset the source power LnPG+<  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 5;X r0f  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" H,EGB8E2  
+-NH 4vUg  
    'zero out irradiance array (bAw>  
    For i = 0 To ny - 1 /vs79^&  
        For j = 0 To nx - 1 IXpn(vX  
            irrad(i,j) = 0.0 qIwsK\^p  
        Next j -8yN6 0|  
    Next i d:{}0hmxI  
rV}&G!V_t  
    'main loop vZ1?4hG  
    EnableTextPrinting( False ) 0ax ;Q[z2  
p8j*m~4B  
    ypos =  dety + pixely / 2 KNjU!Z/4  
    For i = 0 To ny - 1 +K?sg;  
        xpos = -detx - pixelx / 2 a U*}.{<!  
        ypos = ypos - pixely WAf"|  
z9E*1B+  
        EnableTextPrinting( True ) #gVWLm<  
        Print i "s}Oeu[  
        EnableTextPrinting( False ) ~ R eX$9  
(4|R}jv  
5+UNLvsZ  
        For j = 0 To nx - 1 tX6_n%/L  
MT6"b  
            xpos = xpos + pixelx R '8S)'l  
13pu{Xak  
            'shift source ^SK!? M  
            LockOperationUpdates srcnode, True WF:4p]0~)  
            GetOperation srcnode, 1, op F"1tPWn  
            op.val1 = xpos X#HH7V>  
            op.val2 = ypos R{ udV  
            SetOperation srcnode, 1, op Yr>0Qg],  
            LockOperationUpdates srcnode, False WNt':w^_  
 O*.n;_&  
raytrace U8-OQ:2.  
            DeleteRays Uq~b4X$  
            CreateSource srcnode vK`HgRQ(C  
            TraceExisting 'draw OZC yg/K  
/nv+*+Q?d  
            'radiometry OMM5ALc(F  
            For k = 0 To GetEntityCount()-1 y0-UO+ ;  
                If IsSurface( k ) Then 3hxV`rb  
                    temp = AuxDataGetData( k, "temperature" ) e-OKv#]  
                    emiss = AuxDataGetData( k, "emissivity" ) ><S(n#EB  
                    If ( temp <> 0 And emiss <> 0 ) Then Q*M(d\Vs  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) 'Ebjn>"  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) \ \Tz'>[\  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi D _ 1O4/  
                    End If zG8g}FrzG;  
I>##iiKN  
                End If -Sn'${2  
?>iUz.];t  
            Next k T\(k=0R M  
=FI[/"476  
        Next j t%J1(H  
0w0{@\9  
    Next i 3Pgokj   
    EnableTextPrinting( True ) a s('ZD.9  
KV$4}{  
    'write out file F#M(#!)Y"  
    fullfilepath = CurDir() & "\" & fname jwBJG7\  
    Open fullfilepath For Output As #1 (x?Tjyzw  
    Print #1, "GRID " & nx & " " & ny !c{F{ t-a  
    Print #1, "1e+308" Ir5|H|b<  
    Print #1, pixelx & " " & pixely A<"< DDy  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Kd5 8'$  
;,e16^\' &  
    maxRow = nx - 1 Wz"H.hf  
    maxCol = ny - 1 uwr7 .\7  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) >C!^%e;m  
            row = "" K1BBCe  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) -W<1BJE  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string j*Pq<[~  
        Next colNum                     ' end loop over columns A_9J ~3  
t|i<}2  
            Print #1, row !U>WAD9  
6]d]0TW_  
    Next rowNum                         ' end loop over rows ' h<(  
    Close #1 X?wZ7*'1  
&KAe+~aPm  
    Print "File written: " & fullfilepath ujS oWs  
    Print "All done!!" LybaE~=  
End Sub ?6&8-zt1?  
Q=fl!>P  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 25-h5$s  
i2  c|_B  
y32$b,%Xi,  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 ByJPSuc D  
  
FA$32*v  
o!K DeY  
打开后,选择二维平面图: Yg3nT:K_Y&  
vQK/xg  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计