| infotek |
2022-01-24 09:30 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 "QD>m7 ziDvDu=
成像示意图 dx@|M{jz' 首先我们建立十字元件命名为Target LBxmozT pfBe24q 创建方法: g.Tc>?~ 8)lrQvZ 面1 : )J*M{Gm 6i 面型:plane N5[^W`Qf 材料:Air +0}z3T1L 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 2&"qNpPtE kmUL^vF
2FR+Z3&z 辅助数据: ?g\emhG 首先在第一行输入temperature :300K, ;6eBfMhL emissivity:0.1; rD+mI/_J` h1t~hrq {xAd>fGG+y 面2 : =t^jlb 面型:plane F r!FV4 材料:Air oXjoQ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box vgE
-t h ;@c%Vm C}#$wge
位置坐标:绕Z轴旋转90度, #c!rx%8I @R-11wP)M
AsD$M*It 辅助数据: 5(gWK{R)* M8Vc5 首先在第一行输入temperature :300K,emissivity: 0.1; 6Df*wi!jI k".kbwcaF @@j:z;^| Target 元件距离坐标原点-161mm; 'W,*mfB B0U(B\~Y
cZJ5L>ox 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 =A!rZG 8>@JW] ),CKuq> 探测器参数设定: nK32or3 )X;051Q 在菜单栏中选择Create/Element Primitive /plane U
shIQh DK
eB%k
NRny]! CuD}Uo+u r<'DS9m )Gavjj&uJ 元件半径为20mm*20,mm,距离坐标原点200mm。 :hT.L3n, J/fnSy 光源创建: c7~R0nP ]J [d8S5 光源类型选择为任意平面,光源半角设定为15度。 .uVd' a2Nxpxho LPBa!fq 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 5x%Blkx cF4,dnI 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 I?St}Tl k_{?{:X;y Y/6>OD 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 lP*n%Pn) P3`$4p? 创建分析面: B2oKvgw ^D5Jqh)
xL1Li]fM!' 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 }NoP(&ebz* 3<Zp+rD
d|oO2yzWv 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 `vMhrn 5VP0Xa ~ FRED在探测器上穿过多个像素点迭代来创建热图 3rB0H
yq49fEgc@U FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ymyzbE 将如下的代码放置在树形文件夹 Embedded Scripts, qC{JsX`~ 4xEw2F
e*qGrg (E 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 $%q=tn'EX !b7"K| 绿色字体为说明文字, =qc+sMo BO#tn{(# '#Language "WWB-COM" y/y~<-|<@ 'script for calculating thermal image map hiBsksZRnk 'edited rnp 4 november 2005 4")`}T ?WHf%Ie2( 'declarations &}[P{53sr Dim op As T_OPERATION 'St6a* Dim trm As T_TRIMVOLUME :u./"[G Dim irrad(32,32) As Double 'make consistent with sampling (z>t 4(%\ Dim temp As Double -1Dq_!i Dim emiss As Double Oo@o$\+v Dim fname As String, fullfilepath As String &G\mcstX {='Bd6_= 'Option Explicit !}z'"l4i 4[@YF@_=M Sub Main \$ipnQv 'USER INPUTS o^vX\a?`u nx = 31 gr*CN< ny = 31 K\rQb numRays = 1000 A$3Rbn}" minWave = 7 'microns 6ki2/ Q maxWave = 11 'microns s91[@rh/ sigma = 5.67e-14 'watts/mm^2/deg k^4 {?eUAB< fname = "teapotimage.dat" nq]6S$3
6 q:/df]Ntt Print "" dv>n38&mDQ Print "THERMAL IMAGE CALCULATION" '1:) q 3{$7tck, detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 M/quswn1 a&x:_vv Print "found detector array at node " & detnode OQ&N]P2p v^b4WS+.: srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 :R,M Y"( iCF},W+ Print "found differential detector area at node " & srcnode yl~_~<s6 ZrTB% GetTrimVolume detnode, trm ^iMr't\b detx = trm.xSemiApe )"pvF8JR%3 dety = trm.ySemiApe &7f8\TG| area = 4 * detx * dety m4 (pMrJ Print "detector array semiaperture dimensions are " & detx & " by " & dety O`9c!_lis Print "sampling is " & nx & " by " & ny &bW,N aX^T[ 'reset differential detector area dimensions to be consistent with sampling 3&+dyhL'w pixelx = 2 * detx / nx Nv7-6C6< pixely = 2 * dety / ny :J`@@H SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False -!Myw&*\V Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 8u+kA
mI x 3=1/#9 'reset the source power d
fj23+ SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) YpDJ(61+ Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" '\I(n|\ {h@\C|nF 'zero out irradiance array cjEqN8 For i = 0 To ny - 1 y4Jc|) For j = 0 To nx - 1 [34N/;5 irrad(i,j) = 0.0 x,,y}_YX Next j tp] 5[U Next i k{SGbC1=VK B-Jd|UE`u 'main loop `FMo;,j EnableTextPrinting( False ) 'w+]kt- v_!6S|
ypos = dety + pixely / 2 L/"};VI For i = 0 To ny - 1 *8Z2zmZtR^ xpos = -detx - pixelx / 2 bQt:=> ypos = ypos - pixely _J
l(:r\% 0SIC=p=J EnableTextPrinting( True ) #{8IFA Print i mVZh_R=a EnableTextPrinting( False ) ST*h{:u&A N-M.O:p 8wsU`40=Q For j = 0 To nx - 1 a;HAuy`M x t )zd'[ xpos = xpos + pixelx _RbfyyaN *): |WDR 'shift source (F4e}hr& LockOperationUpdates srcnode, True e xb}
y GetOperation srcnode, 1, op r<UVO$N op.val1 = xpos k&dXK op.val2 = ypos UX)GA[WI SetOperation srcnode, 1, op =Zq6iMD LockOperationUpdates srcnode, False |Kd#pYt%O ~rb0G*R> raytrace 0^ODJ7 DeleteRays rwF$aR>9 CreateSource srcnode ,9P-<P TraceExisting 'draw SyvoN,;Q Bu{Kjv 'radiometry {@InOo!4w] For k = 0 To GetEntityCount()-1 mTE(JZt If IsSurface( k ) Then 9F/I",EA temp = AuxDataGetData( k, "temperature" ) b(*\4n emiss = AuxDataGetData( k, "emissivity" ) v~nKO?{
If ( temp <> 0 And emiss <> 0 ) Then ku]5sd >b ProjSolidAngleByPi = GetSurfIncidentPower( k ) y(COB6r frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) 4D?h}U / irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi !mNst$-H4 End If 75# 8P?i )eyzHB,H End If U#3N90,N= axC|,8~tq Next k *()['c#CC g*V.u]U!i Next j rnIjpc F *g(d}C! Next i a"vzC$Hxd EnableTextPrinting( True ) h*S"]ye5 `nPdZ. 'write out file is<:}z fullfilepath = CurDir() & "\" & fname #1<m\z 7l Open fullfilepath For Output As #1 7V"?o Print #1, "GRID " & nx & " " & ny b"I#\;Ym Print #1, "1e+308" fs!dI Print #1, pixelx & " " & pixely 8M5)fDu*? Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 $BwWQ?lp )CFJXc: maxRow = nx - 1 *qpu!z2m|| maxCol = ny - 1 Cj0r2^` For rowNum = 0 To maxRow ' begin loop over rows (constant X) C>Ik ; row = "" -"[4E0g0 For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) /@9Q:'P row = row & irrad(colNum,rowNum) & " " ' append column data to row string A({czHLhN5 Next colNum ' end loop over columns j
3<Ci {3 zj`c%9N+ Print #1, row
'LYDJ~ 8~'cP? Next rowNum ' end loop over rows ^z
*0 Close #1 tia}&9; i 8sv,P Print "File written: " & fullfilepath ' @!&{N Print "All done!!" cC*WZ] End Sub )M8d\] iJTG+gx 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: K?l|1jez(# tV++QC7@L 7U [C=NL 找到Tools工具,点击Open plot files in 3D chart并找到该文件 $[T~<I 5Q10Ohh Pp?P9s{ 打开后,选择二维平面图: \]x`f3F q`e0%^U
|
|