首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 i[d@qp!H=  
nVVQ^i}`G  
成像示意图
:CJ]^v   
首先我们建立十字元件命名为Target Y &"rf   
b/eJEL  
创建方法: 5bKm)|4z6  
 UX& ?^]  
面1 : cK(S{|F  
面型:plane "<y0D!&  
材料:Air D[ -Gzqh  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box xmI!N0eta  
6+hx64 =  
FV->226o%  
辅助数据: i`}nv,  
首先在第一行输入temperature :300K, WG0Ne;Ho  
emissivity:0.1; lQSKY}h  
^k7`:@ z0U  
+jPs0?}s  
面2 : eJ3w}"?9s  
面型:plane %kRQ9I".  
材料:Air O!7v&$]1  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box ,xeJf6es  
97%S{_2m/  
N @24)g?  
位置坐标:绕Z轴旋转90度, 2MapB*  
Fuuy_+p@G  
gLyE,1Z}u  
辅助数据: xy$agt>j>  
L(bYG0ZI5C  
首先在第一行输入temperature :300K,emissivity: 0.1; C;C= g1I}  
/d\#|[S  
l6wN&JHTh  
Target 元件距离坐标原点-161mm; \q0wY7w  
TzJp3  
XDWR ]  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 cy6lsJ"?  
V#Hg+\{d  
B7 ^*xskH  
探测器参数设定: GV1SKa  
B?c n5  
在菜单栏中选择Create/Element Primitive /plane <^APq8>  
2!u4nxZ.  
kDz!v?Z2+B  
|H LU5=Y  
=/J{>S>(i  
sfv{z!mo  
元件半径为20mm*20,mm,距离坐标原点200mm。 7vRFF@eq}  
$T)EJe  
光源创建: NR* s7>  
#@*;Y(9Ol  
光源类型选择为任意平面,光源半角设定为15度。 q (?%$u.  
p%8v+9+h2  
B`Q~p 92  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 U0PQ[Y#\  
:UMtknV  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 w*E0f?s  
Y] ZNAR  
HFr#Ql>g  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 \,b@^W6e>  
)9.i'{{ 0  
创建分析面: _Py/,Ks.q  
K|n$-WDG}  
01 vEt  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 LZ97nvK  
wcdD i[E>i  
I(cy<ey+e  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 Q9UBxpDV:  
O[tOpf@s.  
FRED在探测器上穿过多个像素点迭代来创建热图 )@X `B d  
Guc~] B  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 IwE{Zvr  
将如下的代码放置在树形文件夹 Embedded Scripts, ]7*Z'E  
zSpL^:~  
!OVTs3}  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 <rO0t9OH  
FXHcy:)}G  
绿色字体为说明文字, 8hTtBa  
tKnvNOhn  
'#Language "WWB-COM" |\1!*Qp  
'script for calculating thermal image map N^G:m~>  
'edited rnp 4 november 2005 8f^QO:  
9WJS.\G^  
'declarations (Hr_gkGtM  
Dim op As T_OPERATION 5BL4VGwJ  
Dim trm As T_TRIMVOLUME -R~!N#y  
Dim irrad(32,32) As Double 'make consistent with sampling lHV&8fny  
Dim temp As Double [r,ZM  
Dim emiss As Double "kE$2Kg  
Dim fname As String, fullfilepath As String w $\p\}~,  
^x! N]  
'Option Explicit [a\U8 w  
)9^0Qk' ]  
Sub Main AI$r^t1  
    'USER INPUTS bJ[{[|yEd  
    nx = 31 E@/yg(?d=  
    ny = 31 FD}hw9VyF@  
    numRays = 1000 nX@lR~g%F  
    minWave = 7    'microns r[>=iim  
    maxWave = 11   'microns B1EI'<S  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 |C\%H R  
    fname = "teapotimage.dat" h)W?8XdM  
-P+@n)?T6  
    Print "" dSD7(s!  
    Print "THERMAL IMAGE CALCULATION" sXD.*D  
o3_dHbdI  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 9]ga\>v  
ewo1^&#>  
    Print "found detector array at node " & detnode X=:|v<E   
X3z$f(lF%)  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 /[[_}\xI%  
IfGmA.O  
    Print "found differential detector area at node " & srcnode %0>DjzYt  
#HMJBQ4v#  
    GetTrimVolume detnode, trm X+'z@xpj  
    detx = trm.xSemiApe X3C"A|HE9  
    dety = trm.ySemiApe E>/kNl  
    area = 4 * detx * dety 2D5S%27,  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety #].n0[  
    Print "sampling is " & nx & " by " & ny o\_@4hXf  
X*Ibk-PUM  
    'reset differential detector area dimensions to be consistent with sampling So ?ScX\lG  
    pixelx = 2 * detx / nx jTo-xP{lC  
    pixely = 2 * dety / ny T-0[P;  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Jj<UtD+  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 k`LoRqF  
e<Hbm  
    'reset the source power :8}iZ.  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) *W'F 6Hpu  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" 2"31k2H[  
nUAoPE  
    'zero out irradiance array $1QQidB  
    For i = 0 To ny - 1 )c'5M]V  
        For j = 0 To nx - 1 - P;_j,~U  
            irrad(i,j) = 0.0 :Hk:Goo2  
        Next j P'.M.I@  
    Next i n:hHm,  
8PWx>}XPt  
    'main loop `m6>r9:  
    EnableTextPrinting( False ) 9uV'# sR  
EhEUkZE3 )  
    ypos =  dety + pixely / 2 0]x gE  
    For i = 0 To ny - 1 ~m ,xG  
        xpos = -detx - pixelx / 2 6m#V=4e*  
        ypos = ypos - pixely k4|9'V&1*6  
|5uvmK  
        EnableTextPrinting( True ) w\ hl2JTy  
        Print i ^DL}J>F9G  
        EnableTextPrinting( False ) s "KPTV  
U@W3x@  
?(9/V7HQ.5  
        For j = 0 To nx - 1 :r?gD2q  
QvM+]pdR6  
            xpos = xpos + pixelx 8MHYk>O~{G  
m/,.3v  
            'shift source OH`| c  
            LockOperationUpdates srcnode, True o:H^ L,<Tl  
            GetOperation srcnode, 1, op r(ej=aR  
            op.val1 = xpos & PHejG_#  
            op.val2 = ypos /S32)=(  
            SetOperation srcnode, 1, op k lLhi<*  
            LockOperationUpdates srcnode, False 2V6=F[T  
Gp0H[-oF  
raytrace 6S#Y$2 P  
            DeleteRays /}G+PUk7  
            CreateSource srcnode ^ olaq(z  
            TraceExisting 'draw OE{{,HFa`G  
iV h^;  
            'radiometry en"]u,!  
            For k = 0 To GetEntityCount()-1 s@USJ4#  
                If IsSurface( k ) Then J~=bW\^I  
                    temp = AuxDataGetData( k, "temperature" )  1 &24:&  
                    emiss = AuxDataGetData( k, "emissivity" ) F`/-Q>Q  
                    If ( temp <> 0 And emiss <> 0 ) Then ?C( ' z7  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) 3j'A.S  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) kq;1Ax0 {  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi }2WscxL  
                    End If qJjXN+/D  
UKYQ @m  
                End If q|An  
Bw;gl^:UG  
            Next k 7Hghn"ol  
F.zx]][JV  
        Next j Q5[x2 s_d  
C$"N)6%q  
    Next i sK)fEx  
    EnableTextPrinting( True ) @ |bN[XL  
s)Gnj;  
    'write out file bW"bkA80  
    fullfilepath = CurDir() & "\" & fname @DiXe[kI  
    Open fullfilepath For Output As #1 = NHE_ 4/p  
    Print #1, "GRID " & nx & " " & ny U_s3)/'  
    Print #1, "1e+308" L1'PQV  
    Print #1, pixelx & " " & pixely r[doN{%  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Rm@#GP`  
xJG&vOf;?  
    maxRow = nx - 1 1D *oXE9Ig  
    maxCol = ny - 1 r7Vt,{4/  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) k|C~qe3E  
            row = "" @uh^)6i]/  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 2TFb!?/RQ  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string w=NM==cLj  
        Next colNum                     ' end loop over columns `IP?w&k)  
0ge"ISK  
            Print #1, row <x QvS^|[  
NCW<~   
    Next rowNum                         ' end loop over rows 6MCLm.L  
    Close #1 &a;{ed1B  
/ .wO<l=  
    Print "File written: " & fullfilepath +8<|P&fH  
    Print "All done!!" PK C}!>2  
End Sub 4>x$I9^Y!  
_f5>r(1Q  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: XmZs4~\K$G  
gxKL yZO!  
*5|;eN  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 a+HGlj 2>  
  
_GhP{ C$  
yL2sce[  
打开后,选择二维平面图: Ow#a|@  
O/XG}G.x|  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计