首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 i&%~:K*  
T*AXS|=ju  
成像示意图
&:K!$W  
首先我们建立十字元件命名为Target I ,j,H z0  
=l7@YCj5c  
创建方法: k/ 6Qwb#  
/I`A wCx  
面1 : = ;hz,+  
面型:plane `x{*P.]N!<  
材料:Air k0@b"y*  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box C`4m#  
""0 cw  
k}MmgaT:5]  
辅助数据: ZDQc_{e{  
首先在第一行输入temperature :300K, 8dgi"/[3  
emissivity:0.1; 0Nvk|uI V[  
Ol%KXq[  
eflmD$]SW  
面2 : qK_jgj=w  
面型:plane ~AqFLv/%  
材料:Air AQx:}PO  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box XLu Y  
|` N|S  
%QYH]DR  
位置坐标:绕Z轴旋转90度, QD2;JI2  
3} Xf  
`#/0q*$  
辅助数据: y'$R e  
-a=RCzX]  
首先在第一行输入temperature :300K,emissivity: 0.1; Kc3BVZ71  
8@$`'h^6  
ZOAHM1ci  
Target 元件距离坐标原点-161mm; DlMT<ld  
|\# ~  
\LN!k-c  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 jDWmI% Y.  
0*=[1tdWY  
5 $58z  
探测器参数设定: '<Fr}Cn  
IqA'Vz,lL  
在菜单栏中选择Create/Element Primitive /plane ?:sk [f6  
G!G]*p5  
i9RAb tQ}  
o_i N(K  
_A>?@3La9  
AG Ws>  
元件半径为20mm*20,mm,距离坐标原点200mm。 *F^t)K2  
yhuzjn  
光源创建: tg R4C#a   
6rP?$mn2  
光源类型选择为任意平面,光源半角设定为15度。 ++gWyzD  
(D<_ iV  
M^89]woC  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 &1 BACKu  
nT:F{2 M;  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 \aY<| 7zK  
Pg''>6w>  
z]49dCN  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 k#oe:u`<  
;%ng])w=;  
创建分析面: q*^m8  
Ue?mb$ykC.  
+{r~-Rn3  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 2+oS'nL  
Jv8JCu"eky  
O{<uW-  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 |uIgZ|7[  
/a .XWfu  
FRED在探测器上穿过多个像素点迭代来创建热图 * YR>u @  
Gf->N `N  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 \dHdL\f  
将如下的代码放置在树形文件夹 Embedded Scripts, r+W;}nyf  
k^{}p8;3  
!^x;4@Ejm  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 1)BIh~1{p  
Oj F]K,$  
绿色字体为说明文字, Y(<(!TJ-  
ul&}'jBr  
'#Language "WWB-COM" )F\^-laMuK  
'script for calculating thermal image map qy( kb(J  
'edited rnp 4 november 2005 ) >H11o{&  
"Q.KBX v/  
'declarations H?4t\pSS  
Dim op As T_OPERATION ?Z2_y-  
Dim trm As T_TRIMVOLUME 3-T"[tCe  
Dim irrad(32,32) As Double 'make consistent with sampling GTocN1,Z~a  
Dim temp As Double g@Z7f y7  
Dim emiss As Double E5X#9;U8E"  
Dim fname As String, fullfilepath As String tE$oV  
*G"}m/j-  
'Option Explicit n.b_fkZNr  
XE`u  
Sub Main 9TU B3x^  
    'USER INPUTS m5%E1k$=  
    nx = 31 G2s2i2& 6E  
    ny = 31 qir8RPW  
    numRays = 1000 aE2Yl  
    minWave = 7    'microns C>*1f|<  
    maxWave = 11   'microns 8=,?B h".  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 ~(-df>  
    fname = "teapotimage.dat" +ZJ1> n  
[l*;+N+  
    Print "" YfUo=ku  
    Print "THERMAL IMAGE CALCULATION" ``,q[|  
1#lH5|XQ  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 {O_`eS  
A(1WQUu j  
    Print "found detector array at node " & detnode +EvY-mwfQ  
swfjKBfw+g  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 H03R?S9AQ  
5n1T7-QCL  
    Print "found differential detector area at node " & srcnode )5ev4Qf  
qpX`Z Y^  
    GetTrimVolume detnode, trm vxk~( 3]<)  
    detx = trm.xSemiApe 3RP\w~?  
    dety = trm.ySemiApe 2!nz>K  
    area = 4 * detx * dety =GL^tAUJ  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety X8 A$&  
    Print "sampling is " & nx & " by " & ny ,D93A  
|!xqkmX  
    'reset differential detector area dimensions to be consistent with sampling xsRu~'f  
    pixelx = 2 * detx / nx M!O &\2Q  
    pixely = 2 * dety / ny =PmIrvr'[5  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False jP )VTk_  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 r}|a*dh'R  
@ 5V3I^  
    'reset the source power wF)g@cw  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) |D~#9  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" zC WN,K`  
qFwAzW;"  
    'zero out irradiance array ) B[S4K2  
    For i = 0 To ny - 1 MNH-SQB|  
        For j = 0 To nx - 1 gezZYP)d  
            irrad(i,j) = 0.0 <(x!P=NM-  
        Next j #F:\_!2c  
    Next i a!mdL|eA@  
hEfFMi=a`  
    'main loop f"d4HZD^  
    EnableTextPrinting( False ) Ta)6ly7'  
r^+n06[  
    ypos =  dety + pixely / 2 f=Kt[|%'e  
    For i = 0 To ny - 1 43/!pW  
        xpos = -detx - pixelx / 2 dRXdV7-!  
        ypos = ypos - pixely otJHcGv  
Rqun}v}  
        EnableTextPrinting( True ) }EJ't io]  
        Print i ~uweBp~O  
        EnableTextPrinting( False ) Yp6% @c6\  
F5YHc$3^  
ntD8:%m  
        For j = 0 To nx - 1 rE4qPzL  
OYY_@'D  
            xpos = xpos + pixelx e%v0EJ},  
lKLb\F%  
            'shift source W4rh7e4  
            LockOperationUpdates srcnode, True DTM xfQdk  
            GetOperation srcnode, 1, op 0 rilg  
            op.val1 = xpos 5dEek7wnf  
            op.val2 = ypos <j^"=UN4#  
            SetOperation srcnode, 1, op h2mU  
            LockOperationUpdates srcnode, False C:P.+AU"`  
IjrjLp[z$  
raytrace <dX7{="&  
            DeleteRays 1/ vcj~|)t  
            CreateSource srcnode Z=y^9]  
            TraceExisting 'draw k+As#7V  
H^0`YQJ3  
            'radiometry "(^1Dm$(  
            For k = 0 To GetEntityCount()-1 =f-.aq(G/  
                If IsSurface( k ) Then hxj[gE'R(  
                    temp = AuxDataGetData( k, "temperature" ) = RQ\i6Y  
                    emiss = AuxDataGetData( k, "emissivity" ) ^*+-0b;[G  
                    If ( temp <> 0 And emiss <> 0 ) Then Tp fC  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) DX4"}w  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) XjV,wsZ=  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi l@nG?l #  
                    End If 5ofsJ!b'  
h2fTG  
                End If uY*|bD`6&  
N!#TK9  
            Next k /b~|(g31"  
4@ =l'Fw  
        Next j ,K[}Bz  
\`,,r_tO  
    Next i O(Vi/r2:e  
    EnableTextPrinting( True ) -~ 5|_G2Y"  
.~fAcc{Qj  
    'write out file @(Y+W2Iyy+  
    fullfilepath = CurDir() & "\" & fname 0G"I}Jp{  
    Open fullfilepath For Output As #1 x1nqhSaD  
    Print #1, "GRID " & nx & " " & ny C`>|D [  
    Print #1, "1e+308" vW:XM0  
    Print #1, pixelx & " " & pixely Ah <6m5+  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 no lLeRE1  
Xv1mjHZCC  
    maxRow = nx - 1 tr $~INe  
    maxCol = ny - 1 84$#!=v  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) ;~5w`F)  
            row = "" >"q~9b A  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) Ib665H7w  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string `VxfAV?}  
        Next colNum                     ' end loop over columns WQT;k0;T]  
<!M ab}  
            Print #1, row 60u}iiC@  
$Q!J.}P@  
    Next rowNum                         ' end loop over rows fooQqWC)  
    Close #1 " O,TL *$  
A(>kp=~  
    Print "File written: " & fullfilepath PgYq=|]`  
    Print "All done!!" L_WVTz?`  
End Sub @hE$x-TP0  
y $K#M  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: \.7O0Q{  
8=h$6=1S  
<M4Qc12jP  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 Lp?JSMe  
  
*l-(tp5  
ve|`I=?2  
打开后,选择二维平面图: yIdM2#`u  
M;i4ss,}!  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计