| infotek |
2022-01-24 09:30 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 *]Eyf") qnU`Q{
成像示意图 .|:R#VW 首先我们建立十字元件命名为Target ACEVd! q 5z.Y} 创建方法: KO))2GET
bIuOB| 面1 : %mS>v| 面型:plane jU{~3Gn? 材料:Air Ih5CtcE1'd 孔径:X=1.5, Y=6,Z=0.075,形状选择Box I#(?xHx
r+a0.
)'/xNR 辅助数据: *"V) hI5 首先在第一行输入temperature :300K, +WCV"m emissivity:0.1; _!yUr5&,Br =s:Z-*vy! `{ \)Wuw 面2 : %y+v0.aWH+ 面型:plane =>e>
r~cW 材料:Air >=Na, D 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 2FM}"g<8 m>DJ w7< k7nke^,| 位置坐标:绕Z轴旋转90度, /vLW{ % fTGVG
>4?735f=x 辅助数据: AD7&-=p&w q3u:Tpn4% 首先在第一行输入temperature :300K,emissivity: 0.1; Go7 oj'" 5[`f(; iG{xDj{CKv Target 元件距离坐标原点-161mm; i@ehD@.dH %\1W0%w
QRdh2YH` 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 }n k[WW T?*f}J Bf$`Hf6 探测器参数设定: <SSkCw .6pVt_f0/ 在菜单栏中选择Create/Element Primitive /plane v+DXs!O{ >UXNR`?
=AX"'q Aot9^@4]) Pu,2a+0N cJ'OqV F 元件半径为20mm*20,mm,距离坐标原点200mm。 0>ce~KU ? RID4xu! 光源创建: 9bUFxSH 8)YDUE%VH 光源类型选择为任意平面,光源半角设定为15度。 wu0q.] +-Z `v vSwRj<|CF 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 0\wW%3C lB 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 (J.k\d Pk`3sfz Oh,]"(+ 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 B|r' ZDm Y${J 创建分析面: :c9 H2 ^MvBW6#1 5a5)hmO RB 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 `ix&j8E22w QVkrhwp
2u(G:cR 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 vywpX^KPv cT
nC FRED在探测器上穿过多个像素点迭代来创建热图 ,hE989x<iI #cqI0ny?G FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 C40o_1g 将如下的代码放置在树形文件夹 Embedded Scripts, pz]!T' x!n8Wx
T _fM\jdI 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 A}(o1wuw dEZlJo@J 绿色字体为说明文字, <4582x,G V+t's*9o3 '#Language "WWB-COM" ~,.;2K73 'script for calculating thermal image map k +Cwnp 'edited rnp 4 november 2005 _Sl3) TrBW0Bn>p 'declarations sGc.;": Dim op As T_OPERATION ]D,\(| Dim trm As T_TRIMVOLUME mB"1QtD Dim irrad(32,32) As Double 'make consistent with sampling #gXxBM Dim temp As Double 6i@* L\
Dl Dim emiss As Double /dHIm`. Z Dim fname As String, fullfilepath As String )T^xDx -\2hSIXj 'Option Explicit ^%!#Q]. J|`.d46 Sub Main Z}.ZTEB 'USER INPUTS S q{@4F}d nx = 31 DKF
'* ny = 31 c7RQ7\ numRays = 1000 HEw&' minWave = 7 'microns d{Owz&PL maxWave = 11 'microns <
pZwM sigma = 5.67e-14 'watts/mm^2/deg k^4 _tE55X& fname = "teapotimage.dat" <>)N$$Rx& 9*r^1PRc Print "" M{4XNE]m Print "THERMAL IMAGE CALCULATION" iUk#hLLC AWJA? detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 }_5 R9w]" n]i#&[*A( Print "found detector array at node " & detnode [2E(3`-u h}kJ,n srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 mhB2l/ h J0U-m Print "found differential detector area at node " & srcnode $m A2AI AREjS$ GetTrimVolume detnode, trm YrV@k*O* detx = trm.xSemiApe na"!"C
s3 dety = trm.ySemiApe 'gHg&E9E& area = 4 * detx * dety pTXF^:8 Print "detector array semiaperture dimensions are " & detx & " by " & dety @0d"^ Print "sampling is " & nx & " by " & ny _W^;a N1B$z3E* 'reset differential detector area dimensions to be consistent with sampling U_l9CZ pixelx = 2 * detx / nx 3R0ioi 7 pixely = 2 * dety / ny SMzq,?-` SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False gd*2*o$g( Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 T5z]=Pd"^ 5{Q9n{dOh 'reset the source power 2t
PfIg SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) A\#z<h[> Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" ncMzHw [:cvy[}v@ 'zero out irradiance array N$x&k$w R For i = 0 To ny - 1
|Wjpnz For j = 0 To nx - 1 !?=U{^|7y irrad(i,j) = 0.0 5n{d jP Next j v; R2,`[W Next i 6)7cw8^ L9lJ4s 'main loop _{-[1-lN5_ EnableTextPrinting( False ) 0^sY>N" :mW<
E ypos = dety + pixely / 2 m(*rMO>_ For i = 0 To ny - 1 U7?v4O]D[ xpos = -detx - pixelx / 2 EO~L.E%W ypos = ypos - pixely D:f=Z?L)> %qiVbm0 EnableTextPrinting( True ) lo(C3o' Print i oeB'{bG EnableTextPrinting( False ) S_/S2(V" WgqSw%:$H n\3#69VY For j = 0 To nx - 1 _OyQ:>M6P L!lmy&1 xpos = xpos + pixelx ".N+nM~ w"wW0uE^ 'shift source &9fQW?Czs LockOperationUpdates srcnode, True mO;QT GetOperation srcnode, 1, op [
'lu;1-, op.val1 = xpos 5af0- hj op.val2 = ypos d?T!)w SetOperation srcnode, 1, op \yC /OLXq LockOperationUpdates srcnode, False zh*D2/r f!`?_ raytrace | @$I< DeleteRays C5 Q!_x( CreateSource srcnode )c{>@WM~ TraceExisting 'draw )Wr_*>xj D2kmBZ3 'radiometry eNK[P=- For k = 0 To GetEntityCount()-1 mXOI"B9Sq If IsSurface( k ) Then #-<Go'yF temp = AuxDataGetData( k, "temperature" ) |w}j!}u emiss = AuxDataGetData( k, "emissivity" ) ]LUcOR If ( temp <> 0 And emiss <> 0 ) Then @,TIw[p ProjSolidAngleByPi = GetSurfIncidentPower( k ) Z17b=xJw frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ekL;SN irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi YE~IO5 End If Y=O+d\_W Syy{ ^Ae} End If 1o%#kf G
rp{
. Next k jDpA>{O[ 9hfg/3t(' Next j 1+uZF 3NLn} Next i Z%]K,9K EnableTextPrinting( True ) in<.0v9w )>:~XA|? 'write out file w;`Jj- fullfilepath = CurDir() & "\" & fname 1>j,v+ Open fullfilepath For Output As #1 "u!gfG?oH Print #1, "GRID " & nx & " " & ny Y~g{9 <! Print #1, "1e+308" RI&O@?+U Print #1, pixelx & " " & pixely ~p?ArZb Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 X]p3?"7 tfGs|x maxRow = nx - 1 V%r`v%ktF maxCol = ny - 1 WJhTU@' For rowNum = 0 To maxRow ' begin loop over rows (constant X) rM,e$ row = "" oxlor,lw/ For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) ]EX6Y row = row & irrad(colNum,rowNum) & " " ' append column data to row string ]O"f % Next colNum ' end loop over columns 7qB4_ J&>@>47 Print #1, row hhy+bA} I.jqC2G Next rowNum ' end loop over rows ?f"5yQ-B Close #1 w5HIR/kP $:F+Nf
8 Print "File written: " & fullfilepath BqNeY<zB* Print "All done!!" MF4( End Sub LUMbRrD- B-rE8\ 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 3y}E*QE Z)`)9]* *#XZ*Ga 找到Tools工具,点击Open plot files in 3D chart并找到该文件 x950,`zy ^el+ej/= pX SShU# 打开后,选择二维平面图: v.-DXQq 3Tl<ST\
|
|