| infotek |
2022-01-24 09:30 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。
3cgq'ob s+v9H10R
成像示意图 AWi>(wk< 首先我们建立十字元件命名为Target _B#x{ii Sir1>YEm 创建方法: xEurkR ;4ybkOD 面1 : ['Lo8 [ 面型:plane k}F7Jw#. 材料:Air wM4{\ f\ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box C3Q #[ 2I}+AW!!=
Z^2SG_pD 辅助数据: %hN>o) 首先在第一行输入temperature :300K, K=HLMDs emissivity:0.1; v0dzM/?* k kAg17 ^ krFp q; 面2 : fo+s+Q|Y 面型:plane 2,q*8=?{6P 材料:Air &"JC8 孔径:X=1.5, Y=6,Z=0.075,形状选择Box \t1#5 X4S|JT (kB 位置坐标:绕Z轴旋转90度, l"E{ ?4 iB(?}SaAZ
uP%VL}%0 辅助数据: @,eo* 2<5LQr 首先在第一行输入temperature :300K,emissivity: 0.1; U5N |2 S$hxR EBW*v ' Target 元件距离坐标原点-161mm; d;p3cW" Bo8f52|
lqv}~MC 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 1aO(+](; zO\_^A|8H Yb5@W/' 探测器参数设定: }v2p]D5n. Xe\}(O 在菜单栏中选择Create/Element Primitive /plane 53:u6bb; AZhI~QWo
9C,gJp}P JS8pN5 mfI[9G ty~Sf-Pri 元件半径为20mm*20,mm,距离坐标原点200mm。 _ps4-<ugC sj&(O@~R 光源创建: ]kmAN65c #e-7LmO~ 光源类型选择为任意平面,光源半角设定为15度。 &$CyT6mb^ y'8T=PqY[t 89D`!`Ah] 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ym6Emf] /];N 1 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 T+P{,,a/] )E=B;.FH .aa7*e 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 u;^H =7R |>j^$^l~ 创建分析面: g~K-'Nw 8q9^ W3\+51P 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 |n,O!29 :%mlsNw
\)\n5F:Zu 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 h6LjReNo : ciwh FRED在探测器上穿过多个像素点迭代来创建热图 aMydeTCHi 7eM6 B#rI FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 Lp$&eROFVs 将如下的代码放置在树形文件夹 Embedded Scripts, 2xuU[ Z%.Ld2Q{
?cz7s28a 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 E"BW-<_! ',FVT4OMw 绿色字体为说明文字, ;+f(1=x :X9;KoJl-V '#Language "WWB-COM" U/U_q-z] 'script for calculating thermal image map E]a,2{&8< 'edited rnp 4 november 2005 su\Lxv
E?K(MT&@ 'declarations U.^%7. Dim op As T_OPERATION tJd/uQJ Dim trm As T_TRIMVOLUME k~<ORnda Dim irrad(32,32) As Double 'make consistent with sampling 96F+I!qC Dim temp As Double 2V9"{F? Dim emiss As Double @d3yqA
Dim fname As String, fullfilepath As String yyVJb3n5:! bsc b 'Option Explicit &{M-<M M#],#o*G Sub Main kbz+6LcV 'USER INPUTS )buy2#8UW nx = 31 /WAOpf5 ny = 31 "wV7PSbM numRays = 1000 9Kz} minWave = 7 'microns p_g8d&]V maxWave = 11 'microns Fok`-U sigma = 5.67e-14 'watts/mm^2/deg k^4 0[Zs8oRiI fname = "teapotimage.dat"
G"yhu + ,8p-EH Print "" M|z4Dy Print "THERMAL IMAGE CALCULATION" G8W^XD Z79Y$d>G<E detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 A sf]sU.. ap|V}jC Print "found detector array at node " & detnode [DSzhi] m<4tH5};d srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Wc##.qU ''EFh&F Print "found differential detector area at node " & srcnode =p!Hl# L|2WTyMU GetTrimVolume detnode, trm olDzmy(=W* detx = trm.xSemiApe MIAC'_<-e dety = trm.ySemiApe #k)J);&ZA area = 4 * detx * dety 3 _DJ Print "detector array semiaperture dimensions are " & detx & " by " & dety *zPz)3; Print "sampling is " & nx & " by " & ny ZoKX ao cC`PmDGq 'reset differential detector area dimensions to be consistent with sampling ^MZ9Zu_ pixelx = 2 * detx / nx i'Q 4touy pixely = 2 * dety / ny /(ArA=# SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 6x_D0j%^] Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2
pe`&zI_`? 8bEii1EM 'reset the source power 6$$ku SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) \]t}N Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" z6Yx
)qBE< M*jn8OE 'zero out irradiance array X9uYqvP\( For i = 0 To ny - 1 -+|{#cz For j = 0 To nx - 1 +Xr87x; irrad(i,j) = 0.0 0(!=N1l Next j =g^JJpS Next i PHn3f;I cf1GA 'main loop Q(YQ$i"S EnableTextPrinting( False ) _"";SqVB >9]i#So^ ypos = dety + pixely / 2 #]o#~:S= For i = 0 To ny - 1 Wp$'#HhB xpos = -detx - pixelx / 2 *[['X%f ypos = ypos - pixely 6~6*(s|]A tJY3k$YX EnableTextPrinting( True ) UzmD2AsO" Print i < G:G/ EnableTextPrinting( False ) wTY8={p] &!FWo@ W[tX%B For j = 0 To nx - 1 ghqq%g $5/lU
}To xpos = xpos + pixelx 41`&/9:"_M q--;5"=S 'shift source '&$xLZ8 LockOperationUpdates srcnode, True HBnnIbEtF' GetOperation srcnode, 1, op d>NM4n[h8 op.val1 = xpos 4 '6HX#J op.val2 = ypos VpkkiN SetOperation srcnode, 1, op -gKo@I LockOperationUpdates srcnode, False H-.8{8 qB IKJ raytrace Od:,r DeleteRays g!`$bF=e CreateSource srcnode {m+(j (6- TraceExisting 'draw VBK9te,A Z6`[dAo 'radiometry >A;9Ee"& For k = 0 To GetEntityCount()-1 564)ha/^( If IsSurface( k ) Then 1tQl^>r16 temp = AuxDataGetData( k, "temperature" ) S20L@e"U emiss = AuxDataGetData( k, "emissivity" ) noa=wy If ( temp <> 0 And emiss <> 0 ) Then }[OOkYF#r ProjSolidAngleByPi = GetSurfIncidentPower( k ) "R/Xv+; frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) DVq5[ntG irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi qj5V<c;h%W End If wd`lN,WiW #\]:lr{>?4 End If le-Q&* Yw\PmRL"p Next k ,!s;o6|*y *g<D p2` Next j [nam H a }QL 2#R Next i vA*Ud;%R EnableTextPrinting( True ) Y&Sk/8 /i#~#Bn| 'write out file #JH#Qg fullfilepath = CurDir() & "\" & fname j[fVF3v Open fullfilepath For Output As #1 (hn@+hc Print #1, "GRID " & nx & " " & ny M8BN'%S Print #1, "1e+308" ./009p Print #1, pixelx & " " & pixely q >|:mXR Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 zMkjdjb ;U=RV& maxRow = nx - 1 F`$V H^%V maxCol = ny - 1 0]c 2 T For rowNum = 0 To maxRow ' begin loop over rows (constant X) 8_S<zE`Ha row = ""
N{u4 For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) f"j"ZM{~U row = row & irrad(colNum,rowNum) & " " ' append column data to row string y%21`y&Os Next colNum ' end loop over columns z;_fO>u: MW^,l=kqW) Print #1, row B%c):`w8] dcgz<m Next rowNum ' end loop over rows 1{8SKfMdP Close #1 gm63dE> 8T:|~%Sw Print "File written: " & fullfilepath ,&;#$ b5 Print "All done!!" ]F5qXF5 End Sub $Q[a^V~: ztNm,1pnQ 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 1Y"[Qs]"mU tTT./-*0 }2^_Gaj
找到Tools工具,点击Open plot files in 3D chart并找到该文件 J?WT 0B^0,d(s 8$:4~:]/ 打开后,选择二维平面图: |-Z9-rl ]OE{qXr{
|
|