首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 A$0H .F>  
uf<@ruN  
成像示意图
Tl]e%A`|  
首先我们建立十字元件命名为Target "eWk#/  
{U]H;~3 ?  
创建方法: ;rI@ *An  
',3HlOJ:  
面1 : B0$:b !  
面型:plane ^VW PdH/Fe  
材料:Air rVvR!"//yH  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box hDP/JN8y  
f|A riM  
0<"k8 k@J  
辅助数据: !J1rRPV  
首先在第一行输入temperature :300K, 4!Z5og1kn  
emissivity:0.1; yw[#  
-\ZcOXpMx=  
7qOa ;^T  
面2 : rt3qdk5U  
面型:plane cEW0;\$  
材料:Air wHZW `  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box uJx"W  
8 a!Rb-Q:  
I&?Qq k  
位置坐标:绕Z轴旋转90度, <99M@ cF  
j.~!dh$mg  
6K cD&S/  
辅助数据: jdKOb  
/[:dp<  
首先在第一行输入temperature :300K,emissivity: 0.1; {^CT} \=>  
=4uSFK_L  
U<"WK"SM  
Target 元件距离坐标原点-161mm; v}@xlB=  
~vLW.:  
K]/4qH$:  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 W)'*m-I  
~DO4,  
-yxOBq  
探测器参数设定: 4v p  
`k(yZtb  
在菜单栏中选择Create/Element Primitive /plane d\e7,"L*Q  
hLJM%on  
}(a+aHH  
MRU7W4W-~/  
!-s!f&_  
*"9><lJ-!  
元件半径为20mm*20,mm,距离坐标原点200mm。 &aM7T_h8  
FYs)M O  
光源创建: PcB_oG g  
01!s"wjf  
光源类型选择为任意平面,光源半角设定为15度。 *5tO0_L  
xI ,2LGO  
Z\[N!Zt|  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 &DqE{bBd!  
vVGDDDz/  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。  u66XN^  
k6`6Mjbc  
'=][J_  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 Cg*H.f%Mr  
$/Aj1j`"9+  
创建分析面: P"sA  
2r$#m*  
&d7Z6P'`G  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 !4]9!<.k  
dr4Z5mw"E  
zByT$P-  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 >-&R47G  
kd"N 29  
FRED在探测器上穿过多个像素点迭代来创建热图 ?UM*Xah  
^ 9!!;)  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 0"~i ^   
将如下的代码放置在树形文件夹 Embedded Scripts, j }b\Z9)!  
a>\vUv*  
\uss Uv  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 W0I#\b18  
Z{?G.L*/  
绿色字体为说明文字, q7u'_ R,;  
o\vBOp?hj  
'#Language "WWB-COM" 8p[)MiC5W^  
'script for calculating thermal image map TLehdZ>^  
'edited rnp 4 november 2005 UGK*Gy  
<nEi<iAY>U  
'declarations s+tGFjq  
Dim op As T_OPERATION <w3!!+oK"  
Dim trm As T_TRIMVOLUME \"hJCP?,  
Dim irrad(32,32) As Double 'make consistent with sampling D7_*k%;@  
Dim temp As Double Z|}G6]h  
Dim emiss As Double @k&qb!Qah  
Dim fname As String, fullfilepath As String |7x\m t  
F5S@I;   
'Option Explicit gv5*!eI  
"Ks,kSEzu  
Sub Main Sna4wkbS  
    'USER INPUTS h=-"SW  
    nx = 31 3_A *$  
    ny = 31 YuB+k^  
    numRays = 1000 f 2l{^E#h  
    minWave = 7    'microns #m={yck *  
    maxWave = 11   'microns tBpC: SG  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 S6fbf>[  
    fname = "teapotimage.dat" vm>b m  
O$4yAaD X  
    Print "" QY== GfHt  
    Print "THERMAL IMAGE CALCULATION" b+Br=Fv"T  
qW b+r  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 qx%}knB  
$\9~)Rq6  
    Print "found detector array at node " & detnode hpU2  
m#=z7.XrX  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 e1P"[|9>R  
zXRlo]  
    Print "found differential detector area at node " & srcnode $ MC)}l  
.`&F>o(A  
    GetTrimVolume detnode, trm G8Du~h!!U  
    detx = trm.xSemiApe $8BPlqBIZ  
    dety = trm.ySemiApe u]OW8rc  
    area = 4 * detx * dety ~g.$|^,.O/  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety IsR!'%Pu  
    Print "sampling is " & nx & " by " & ny n?V+dC=F}  
H= X|h)  
    'reset differential detector area dimensions to be consistent with sampling o=1X^,  
    pixelx = 2 * detx / nx fDSv?crv  
    pixely = 2 * dety / ny 13Lr }M&  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 6^DR0sO  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 64 5z#_}C$  
{p,]oOq\  
    'reset the source power Dl}$pN  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 0 iJue &  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" vhhC> 7  
o6p98Dpg   
    'zero out irradiance array %;D.vKoh  
    For i = 0 To ny - 1 `jOX6_z?I  
        For j = 0 To nx - 1 <m'ow  
            irrad(i,j) = 0.0 +]Y,q w  
        Next j yDGVrc'  
    Next i A= w9V  
1UQHq@aM  
    'main loop 5scEc,JCi  
    EnableTextPrinting( False ) N;[>,0&z  
0#MqD[U(  
    ypos =  dety + pixely / 2 &y#r;L<9  
    For i = 0 To ny - 1 [ Fz`D/  
        xpos = -detx - pixelx / 2 F;>!&[h}G  
        ypos = ypos - pixely 7hcNf,  
 E6WA}_  
        EnableTextPrinting( True ) PsZ >P|e1  
        Print i 3g6j?yYqb  
        EnableTextPrinting( False ) L{c q, jk  
,#8e_3Z$  
/:FOPPs  
        For j = 0 To nx - 1 CoA6  
Hik3wPnp  
            xpos = xpos + pixelx _l1NKk  
)Dz+X9;g+  
            'shift source h*<P$t  
            LockOperationUpdates srcnode, True Exk\8,EGqS  
            GetOperation srcnode, 1, op Cn[0(s6  
            op.val1 = xpos &>Vfa  
            op.val2 = ypos LupkrxV  
            SetOperation srcnode, 1, op ,f&5pw =  
            LockOperationUpdates srcnode, False R,Vd.-5M  
&ZQJ>#~j^  
raytrace } GiHjzsR  
            DeleteRays -xP!"  
            CreateSource srcnode .e3+s*  
            TraceExisting 'draw .AU)*7Gh  
\oZ5JoO  
            'radiometry J.| +ID+  
            For k = 0 To GetEntityCount()-1 `F>O;>i''  
                If IsSurface( k ) Then +="e]Yh;  
                    temp = AuxDataGetData( k, "temperature" ) ]i)j3 WDz]  
                    emiss = AuxDataGetData( k, "emissivity" ) W='> :H  
                    If ( temp <> 0 And emiss <> 0 ) Then lMbAs.!  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) &kpwo )  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) nxl[d\ap+n  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi _ :VB}>  
                    End If zO MA  
L{`JRu  
                End If >MvDVPi~+  
a 7,C>%I  
            Next k z.I9wQ]X[  
Ny%(VI5:  
        Next j aVd,xl  
_:"<[ >9  
    Next i c7FRI0X  
    EnableTextPrinting( True ) -Zz$~$  
fP `b>]N_  
    'write out file ]:~OG@(  
    fullfilepath = CurDir() & "\" & fname wg]j+r@  
    Open fullfilepath For Output As #1 J>bJ 449B  
    Print #1, "GRID " & nx & " " & ny X7g1:L1Ys  
    Print #1, "1e+308" 82DmG@"s2  
    Print #1, pixelx & " " & pixely <|Pun8j  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 '^"6+k  
^!by3Elqqk  
    maxRow = nx - 1 xcf%KXJf6  
    maxCol = ny - 1 c*@E_}C#  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) se>MQM5 )  
            row = "" ;{%\9nS  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) [n$BRk|  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ^~A>8CQOU  
        Next colNum                     ' end loop over columns i|m3mcI%2  
a)'5Nw9*  
            Print #1, row 7[}xP#Z  
Os1>kwC  
    Next rowNum                         ' end loop over rows BFOq8}fX2  
    Close #1 !f+H,]D"  
G JqJlgHe  
    Print "File written: " & fullfilepath L-k@-)98  
    Print "All done!!" gjAIEI  
End Sub f|tjsZxQ  
mA=i)Ga  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: g #6E|n  
u[ Yk  
Yn G_m]  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 -B$2\ZE  
  
.ODR]7{  
z=3\Ab  
打开后,选择二维平面图: c>)Yt^ q&K  
PJL=$gBgKk  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计