首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 /&kTVuN"(  
N%Lh_2EzqV  
成像示意图
[{Y$]3?}  
首先我们建立十字元件命名为Target O#k?c }  
TmQ2;3%  
创建方法: g5T~%t5lo  
w$& 10  
面1 : Y %<B,3  
面型:plane !Noabt  
材料:Air ^ro?.,c T  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box D/{-  
y:v0& 9L  
"M? (Ax  
辅助数据: ?=PQQx2_*u  
首先在第一行输入temperature :300K, n P69W  
emissivity:0.1; ?rv+ydR/q  
UO!OO&l!  
<:%Iq13D  
面2 : B!8]\D  
面型:plane f|b|\/.=  
材料:Air Ke\?;1+  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box @<w$QD  
c[j3_fn1]  
dXdU4YJ X  
位置坐标:绕Z轴旋转90度, .Q?AzU,2D  
]cA){^.Jz  
sA` bPhk  
辅助数据: Yq2 mVo  
<89 js87  
首先在第一行输入temperature :300K,emissivity: 0.1; R)<>} y  
2 3>lE}^G  
0|NbU  
Target 元件距离坐标原点-161mm; UQTt;RS*zS  
0dnm/'L  
qA03EU  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 o}NKqA3  
P}aJvFlmP  
fEgZ/p!g  
探测器参数设定: `N|WCiBV.  
xXHz)w  
在菜单栏中选择Create/Element Primitive /plane al" 1T-  
JBg",2w |C  
MiRMjQ2  
%VwB ?  
N"2@y aN  
w0 "h,{  
元件半径为20mm*20,mm,距离坐标原点200mm。 `;i| %$TU  
< 27e7H*6  
光源创建: (]iw#m{  
R?I(f(ib   
光源类型选择为任意平面,光源半角设定为15度。 0gt/JI($  
5V%K'a(  
rl6vt*g  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 Oj<2_u  
> m5j.GP;  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 GR|Vwxs<@P  
){gOb  
J.El&Dev  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 K=!J=R;  
gA.G:1v  
创建分析面: fV;&Ag*ZiV  
aY"qEH7]  
JU"!qXQr  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 3`="4  
tuUk48!2I  
jMd's|#OP  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 kQ4%J, 7e4  
fzw6VGTf  
FRED在探测器上穿过多个像素点迭代来创建热图 ;qzCoe  
tCA |sN  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 "\> <UJ  
将如下的代码放置在树形文件夹 Embedded Scripts, *D`,z3/*  
 ~LkReQI  
LsBDfp5/  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 |!&,etu  
/i$&89yod  
绿色字体为说明文字, A0&~U0*(~  
8xL-j2w  
'#Language "WWB-COM" GJ?rqmbL  
'script for calculating thermal image map ! 4i  
'edited rnp 4 november 2005 X'iki4  
^=W%G^jJy  
'declarations YBg\L$| n  
Dim op As T_OPERATION e6{/e+/R  
Dim trm As T_TRIMVOLUME fzSZ>I0R  
Dim irrad(32,32) As Double 'make consistent with sampling  %_A1WC  
Dim temp As Double EStHl(DUPq  
Dim emiss As Double s{A-K5S  
Dim fname As String, fullfilepath As String |=GRPvvi  
o#w6]Fmc  
'Option Explicit xazh8X0P  
a}e7Q<cGj  
Sub Main qf7.Sh  
    'USER INPUTS e2Xx7*vS  
    nx = 31 xG<S2R2VQh  
    ny = 31 ir/2/ E  
    numRays = 1000 KF7f<  
    minWave = 7    'microns S,Oy}Nv  
    maxWave = 11   'microns 62Jn8DwAT  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 IO,kP`Wcx  
    fname = "teapotimage.dat" i?|K+"=D  
mflI>J=g  
    Print "" (U-p&q>z  
    Print "THERMAL IMAGE CALCULATION" !nykq}kPN\  
m<OxO\Mpf  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 W*8D@a0 _  
  I]  
    Print "found detector array at node " & detnode {)F-US  
U7:~@eYy  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 @W^g(I(w  
ydlH6>  
    Print "found differential detector area at node " & srcnode 4e*0kItC  
uw]e$,x?  
    GetTrimVolume detnode, trm u,oxUySeG  
    detx = trm.xSemiApe 21cIWvy  
    dety = trm.ySemiApe q2,@>#  
    area = 4 * detx * dety w*bVBuX s  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety zBc7bbK  
    Print "sampling is " & nx & " by " & ny E$Ge# M@dM  
s?_b[B d  
    'reset differential detector area dimensions to be consistent with sampling ~=#jO0dE|  
    pixelx = 2 * detx / nx gqe z-  
    pixely = 2 * dety / ny YQ?|Vb U  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False s/A]&! `  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 |y=CmNG,  
UayRT#}]  
    'reset the source power ;1eu8N8  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 )  H) (K  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" N ~ LR  
iJsw:Nc  
    'zero out irradiance array |,yS>kjp  
    For i = 0 To ny - 1 $p9XXZ"*  
        For j = 0 To nx - 1 8q0f#/`v  
            irrad(i,j) = 0.0 :0srFg?X  
        Next j r3*wH1n  
    Next i Jl^oDW  
eyo)Su  
    'main loop /CZOO)n  
    EnableTextPrinting( False ) TyK; q{  
o}Xp-P   
    ypos =  dety + pixely / 2 {= z%( '^  
    For i = 0 To ny - 1 Q'\jm=k  
        xpos = -detx - pixelx / 2 yp :yS  
        ypos = ypos - pixely B8IfE`  
v}cm-_*v  
        EnableTextPrinting( True ) Q"Bgr&RJ  
        Print i 3K#e]zoI  
        EnableTextPrinting( False ) 1,pg:=N9  
uAJ_`o[  
t zV"|s=o  
        For j = 0 To nx - 1 !C/`"JeYL  
-7+Fb^"L  
            xpos = xpos + pixelx 'ugG^2Y  
0 TS:o/{(a  
            'shift source ^Jkj/n'  
            LockOperationUpdates srcnode, True o/&:w z  
            GetOperation srcnode, 1, op bxyU[`  
            op.val1 = xpos q#WqU8~Y  
            op.val2 = ypos cb UVeh7Q  
            SetOperation srcnode, 1, op MD1,KH+O  
            LockOperationUpdates srcnode, False @-MrmF)<U  
/ Sp+MB9  
raytrace -eNi;u  
            DeleteRays $[]=6.s  
            CreateSource srcnode j}ruXg  
            TraceExisting 'draw Wh4lz~D\@  
fc\hQXYv  
            'radiometry Bq2}nDP  
            For k = 0 To GetEntityCount()-1 $jc>?.6  
                If IsSurface( k ) Then s%/0WW0y^  
                    temp = AuxDataGetData( k, "temperature" ) z&- `<uV~  
                    emiss = AuxDataGetData( k, "emissivity" ) zd;xbH//)b  
                    If ( temp <> 0 And emiss <> 0 ) Then U O[p   
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) 'dht5iI;Yw  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) )<Yy.Z_:DC  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi UbuxD})  
                    End If ?px x,o6l  
S63L>p|ml  
                End If ](0A/,#q6  
XM_S"  
            Next k Dk7"#q@kx  
f|apk,o_  
        Next j )lW<: ?k  
<4>6k7W  
    Next i N4D_ 43jz  
    EnableTextPrinting( True ) 5N[Y2  
1-b,X]i  
    'write out file )c!f J7o:  
    fullfilepath = CurDir() & "\" & fname "5YsBih  
    Open fullfilepath For Output As #1 CP?\'a"Kt  
    Print #1, "GRID " & nx & " " & ny {wMCo ,  
    Print #1, "1e+308" ^^%*2^  
    Print #1, pixelx & " " & pixely Vj:PNt[  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ZERd#7@m+  
Dbtw>:=  
    maxRow = nx - 1 lca.(3u   
    maxCol = ny - 1 t Y^:C[  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) RSkpf94`  
            row = "" -'I)2/%g  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 8>epKFEg  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string }y0UyOa{C  
        Next colNum                     ' end loop over columns xW^<.@Agm  
iI _Fbw8  
            Print #1, row 2Nj0 Hqjq  
&2Y>yFB ,  
    Next rowNum                         ' end loop over rows 9^}GUJy?  
    Close #1 _]Hn:O"o  
0_Y;r{3m"  
    Print "File written: " & fullfilepath E@N_~1  
    Print "All done!!" MW&;{m?2(  
End Sub (*M(gM{;  
*F9uv)[kz  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: U}{r.MryFG  
.jRXHrK;  
wv*r}{%7g[  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 2R1W[,Ga!  
  
@ojn< 7W  
w.V8-9{  
打开后,选择二维平面图: ?^6RFbke+  
1 8&^k|  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计