| infotek |
2022-01-24 09:30 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 &>Q_ _^'fp
成像示意图 lM C4j 首先我们建立十字元件命名为Target ur-&- G^ 7'_zJI^ 创建方法: O^I~d{M 5I `Y-uNJ'.N 面1 : l
tr=_ 面型:plane `!HGM> 材料:Air %b2.JGBqJ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box >De\2gbJ o_p//S#q
A+3@N99HeH 辅助数据: >~I~!i3 首先在第一行输入temperature :300K, \BaN?u)a emissivity:0.1; S=^yJ6xJ !mrB+<:
&(\z 面2 : Zgo^M,g 面型:plane SC`.VCfc. 材料:Air Dg/&m*Yl 孔径:X=1.5, Y=6,Z=0.075,形状选择Box .e5GJAW~9 X~Uvh8O _/ZIDIn 位置坐标:绕Z轴旋转90度, "g\ '5KgRK"
g.X?wyg5 辅助数据: LpJ\OI*v m1=3@> 首先在第一行输入temperature :300K,emissivity: 0.1; 3x9O<H} `h(JD$w `!DrB08A Target 元件距离坐标原点-161mm; =L9sb! ;Aiuy{<
H=z@!rJc. 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 g1L$+xD^ %xf6U>T Ck2O?Ne 探测器参数设定: )MLOYX (1fE^KF@f 在菜单栏中选择Create/Element Primitive /plane zuWj@YG\. g/W<;o<v(I
n[CESo%[ I)V2cOrXM :#"gQ^YNp |:`f#H 元件半径为20mm*20,mm,距离坐标原点200mm。 -]R7[5C: HQK%Y2S 光源创建: FD*`$.e3\ MftW^7W- 光源类型选择为任意平面,光源半角设定为15度。 K_oBSa` bgqN&J)Jr) tXcc#!'4C 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 0K`3BuBs `&b8wF 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 2J^6(vk RO=[Rr! g4&zBn 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 o8BbSZVu n`? j.
s 创建分析面: F*o{dLJ) cfMj^*I "X g@X5BG 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 NQ !t ` w#U3h]>,
5Y#yz>B@ ] 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ;FQAL@"Yj t=NPo+fm FRED在探测器上穿过多个像素点迭代来创建热图 ooreforr s\1h=V)!H FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 bv5,Yk 将如下的代码放置在树形文件夹 Embedded Scripts, D)8&v`LS &OK(6o2m;
sbZ)z#Tr 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 F(^vD_G \eH~1@\S 绿色字体为说明文字, )\l}i%L: YwQxN" '#Language "WWB-COM" 9xyj,;P> 'script for calculating thermal image map d3_aFsQ 'edited rnp 4 november 2005 !
pR&&uG IUAx*R 'declarations r#JE7uneT Dim op As T_OPERATION
ZK1d3 Dim trm As T_TRIMVOLUME EA|*|o4) Dim irrad(32,32) As Double 'make consistent with sampling 2HoTj| Dim temp As Double '}e_8FS Dim emiss As Double eZIqyw Dim fname As String, fullfilepath As String 6C4c.+S b%L8mX 'Option Explicit Zk__CgS# \Pi\c~)Pr Sub Main oS0l Tf\ 'USER INPUTS EeG7 %S
5( nx = 31 8s-y+M@. ny = 31 E'j>[C:U numRays = 1000 0#<q]M?hW minWave = 7 'microns *%7 [{Loz maxWave = 11 'microns IP7j)SM! sigma = 5.67e-14 'watts/mm^2/deg k^4 2Hw&}8 fname = "teapotimage.dat" >N62t9Ll[ zR6,?Tzg Print "" Hdw;=]- Print "THERMAL IMAGE CALCULATION" f5"1WtB ^90';ACFy detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 9+nB;vA C$(US8:{ Print "found detector array at node " & detnode x^Q:U1 aY}:9qBice srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 @X+m,u
]W~\%`#8? Print "found differential detector area at node " & srcnode 0_q8t!<xJw :m]~o3KRy GetTrimVolume detnode, trm 7DDd1"jE detx = trm.xSemiApe }(A`aB_ dety = trm.ySemiApe [Ul"I-K area = 4 * detx * dety Atc9[<~WG Print "detector array semiaperture dimensions are " & detx & " by " & dety XLb
lVi@ Print "sampling is " & nx & " by " & ny ~~a,Fyko2 !TvNT}4 Z 'reset differential detector area dimensions to be consistent with sampling Q)c3=.[> pixelx = 2 * detx / nx WvR-0>E pixely = 2 * dety / ny r*HbglB SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ^\
A[^' 9 Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 G
d~
v _ #V&98 F 'reset the source power ?!^ow5"8 SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 0b6jGa Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" )12.W=p q;Tdqv!Ju 'zero out irradiance array H
xs'VK* For i = 0 To ny - 1 ]xC#XYE:dy For j = 0 To nx - 1 }A jE- K{ irrad(i,j) = 0.0 86Hg?!<i. Next j ve($l"T Next i E! d?@Xr@ `NYu|:JK: 'main loop OL]P(HRm]~ EnableTextPrinting( False ) 2(LF @xb @W}cM ypos = dety + pixely / 2 'yxN1JF For i = 0 To ny - 1 m%m<-.'- xpos = -detx - pixelx / 2 2[~|#0x ypos = ypos - pixely g>G+?PY 9d&@;&al EnableTextPrinting( True ) p3r("\Za, Print i aItQ(+y EnableTextPrinting( False ) 2[|52+zhc `#HtVI Hb}O/G$a* For j = 0 To nx - 1 yPY}b_W `-t8ag3 xpos = xpos + pixelx :I_p4S.) YP
E1s 'shift source }uZ/^_U. LockOperationUpdates srcnode, True >~@O\n-t GetOperation srcnode, 1, op P5Lb)9_Jw op.val1 = xpos M~%P1@% op.val2 = ypos Q$+6f,m#W SetOperation srcnode, 1, op fGZ56eH: LockOperationUpdates srcnode, False 5aj%<r b@ QCdi,u raytrace )
>;7"v DeleteRays L0l'4RRm\ CreateSource srcnode w*?SGW TraceExisting 'draw e!W U cWtuI(. 'radiometry T@wgWE<0y_ For k = 0 To GetEntityCount()-1 rn^cajO^ If IsSurface( k ) Then vB74r]'F temp = AuxDataGetData( k, "temperature" ) |I[/Fl: emiss = AuxDataGetData( k, "emissivity" ) d|#&j." If ( temp <> 0 And emiss <> 0 ) Then vf&_
N ProjSolidAngleByPi = GetSurfIncidentPower( k ) Qb%o%z?hee frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) mT:NC'b<9 irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi H;nEU@>"Z End If fj|b;8_}l M*!WXQlud End If `j1oxJm }y%c. Next k u6nO\.TTtY lArKfs/ Next j dI%?uk e Fh7#~m Next i zmU@ k EnableTextPrinting( True ) =cpUc]~ }u9#S 'write out file "(r%`.l=I fullfilepath = CurDir() & "\" & fname =oBlUE Open fullfilepath For Output As #1 HYg! <y Print #1, "GRID " & nx & " " & ny \q($8< Print #1, "1e+308" beaSvhPU Print #1, pixelx & " " & pixely W#)X@TlE Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 gw!d[{# G9^xv maxRow = nx - 1 IRGcE&m maxCol = ny - 1 @XJ#oxM^ For rowNum = 0 To maxRow ' begin loop over rows (constant X) q<j9l'dHG row = "" He,,bq For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) E!'6vDVC: row = row & irrad(colNum,rowNum) & " " ' append column data to row string ^@3,/dH1 t Next colNum ' end loop over columns dz?On\66 |1GOm=GNK Print #1, row SRtw <UF0Xc&X' Next rowNum ' end loop over rows 'W,*mfB Close #1 B0U(B\~Y ?&'Kw>s@ Print "File written: " & fullfilepath []v$QR&u#v Print "All done!!" hq&| End Sub lb$_$+@Vr RL:B.Lv/W 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: eF]8Ar1 N>Ih2>8t DK
eB%k 找到Tools工具,点击Open plot files in 3D chart并找到该文件 4Q/{lqG CuD}Uo+u r<'DS9m 打开后,选择二维平面图: )Gavjj&uJ ufCpX>lNF
|
|