首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 IctLhYZ  
@GE:<'_:{  
成像示意图
CI,xp  
首先我们建立十字元件命名为Target K?aUIkVs  
-q/FxESp  
创建方法: U*em)/9  
rzgzX  
面1 : _fANl}Mf:  
面型:plane p=J9N-EM  
材料:Air 8rsv8OO  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box sOW,hpNW  
_7w2E   
MEn#MT/Cz  
辅助数据: Mt`XHXTp  
首先在第一行输入temperature :300K, Gu9x4p  
emissivity:0.1; f7QX"p&P  
^7~w yAr  
T?E[LzZg  
面2 : {:9P4<%H  
面型:plane Q CB~x2C  
材料:Air 7 }sj&  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box ss>?fyA  
-d6*M*{|  
8RR6f98FF  
位置坐标:绕Z轴旋转90度, OHha5n  
>qI|g={M  
lb('=]3 }H  
辅助数据: f*SAbDE  
k|}S K9  
首先在第一行输入temperature :300K,emissivity: 0.1; kpN'H_ .  
;i><03  
v{2 Vg  
Target 元件距离坐标原点-161mm; #i GRi!$h  
r3b~|O^}  
v+Q# O[  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 8;s$?*G i  
wfrWpz=FO  
+iPS=?S  
探测器参数设定: 5&r2a}K  
lEC58`Ws  
在菜单栏中选择Create/Element Primitive /plane {L8(5  
a JDu_  
[Pt5c6L:  
cNG6 A4  
1`_i%R^  
f 6P5J|'  
元件半径为20mm*20,mm,距离坐标原点200mm。 n[/|M  
Yg#)@L  
光源创建: 1v&!`^G99j  
U)p P^:|  
光源类型选择为任意平面,光源半角设定为15度。 rLcQG  
(Rk g  
J)n g,i  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 STmCj  
-~h2^Oez  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 Om0S^4y]x  
y*6r&989  
X 3Vpxtb  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 @]HV:7<q  
";e0-t6:  
创建分析面: mHox  
.-N9\GlJ,d  
b`K~l'8  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 P"u*bqk  
RS/%uxS?  
? F f w'O  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 /BVNJNhz  
9bXU!l[  
FRED在探测器上穿过多个像素点迭代来创建热图 nx,67u/Pb  
f K^FD&sF  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 (.!q~G  
将如下的代码放置在树形文件夹 Embedded Scripts, N[ArwV2O  
W.n@  
i4!n Oyk  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 tO?*x/XC{  
.?S#DS )  
绿色字体为说明文字, v(4C?vxhG  
L i=l/  
'#Language "WWB-COM" $X~=M_ W  
'script for calculating thermal image map ce=6EYl  
'edited rnp 4 november 2005 bTHa;* `  
aM.l+D P  
'declarations S,S_BB<Y[b  
Dim op As T_OPERATION QbqLj>-AJ  
Dim trm As T_TRIMVOLUME =GM!M@~,Ab  
Dim irrad(32,32) As Double 'make consistent with sampling }.zgVL L  
Dim temp As Double _I|wp<R  
Dim emiss As Double /yrR f;}<O  
Dim fname As String, fullfilepath As String 7X}_yMxc  
x'JfRz  
'Option Explicit ~w[zX4@  
>cM U<'&  
Sub Main p dnL~sv  
    'USER INPUTS 5I(` s#O  
    nx = 31  |Be.r{l  
    ny = 31 _TQt!Re`,  
    numRays = 1000 ]\ r~"*TZ  
    minWave = 7    'microns $X*$,CCIB  
    maxWave = 11   'microns JG}U,{7(  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 &|E2L1  
    fname = "teapotimage.dat" [S</QS!  
5-mJj&0:!  
    Print "" *%)L?*  
    Print "THERMAL IMAGE CALCULATION" 'OX6e Y5  
nVyb B~.=  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 J;T_ 9  
dnIBAe  
    Print "found detector array at node " & detnode ^ACp_RM  
=C3l:pGMB;  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 At bqj?  
q}\\p  
    Print "found differential detector area at node " & srcnode DD3J2J  
{8B\-LUR  
    GetTrimVolume detnode, trm >MP PYVn7  
    detx = trm.xSemiApe A<.Q&4jb  
    dety = trm.ySemiApe ] &G5/ ]f  
    area = 4 * detx * dety 9I.v?Tap  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety ]-PF?8  
    Print "sampling is " & nx & " by " & ny 1@nR.v"$  
uqO51V~  
    'reset differential detector area dimensions to be consistent with sampling ZA9']u%EJ  
    pixelx = 2 * detx / nx )uX:f8  
    pixely = 2 * dety / ny U.^)|IHW  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False @JEr/yy  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 Rthu8NKn  
ZXU e4@qfl  
    'reset the source power s)M2Z3>+  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) nO|S+S_9  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" +qz)KtJS  
dIpt&nH&$  
    'zero out irradiance array |t]9RC.;7  
    For i = 0 To ny - 1 yh0|f94m  
        For j = 0 To nx - 1 q/B+F%QiMQ  
            irrad(i,j) = 0.0 h |lQ TT  
        Next j j{;3+LCo*  
    Next i (bo bKr  
Uv+pdRXn  
    'main loop k]>k1Mi=  
    EnableTextPrinting( False ) _$bx4a  
`riv`+J{s  
    ypos =  dety + pixely / 2 "pWdz}!  
    For i = 0 To ny - 1 #VO2O0GR  
        xpos = -detx - pixelx / 2 .nSupTyG  
        ypos = ypos - pixely G1nW{vce  
RV$+g.4  
        EnableTextPrinting( True ) / P:Hfq  
        Print i =:g^_Hy  
        EnableTextPrinting( False ) rvmI 8  
v:HgpZo+  
| 5L1\O8#  
        For j = 0 To nx - 1 9Y4N  
%zelpBu+  
            xpos = xpos + pixelx qA~D*=  
Z~,.l  
            'shift source apMYBbC  
            LockOperationUpdates srcnode, True NF1D8uI  
            GetOperation srcnode, 1, op fM|g8(TK,  
            op.val1 = xpos ;OPCBdr  
            op.val2 = ypos "aBd0i&  
            SetOperation srcnode, 1, op Zn/9BO5  
            LockOperationUpdates srcnode, False <zf+Ii1:,  
_5K_YhT  
raytrace L|2COX  
            DeleteRays $HXB !$d  
            CreateSource srcnode 2 Lam vf  
            TraceExisting 'draw 3'"M31iA  
-+9x 0-P  
            'radiometry <bx9;1C>zd  
            For k = 0 To GetEntityCount()-1 V- cuG.  
                If IsSurface( k ) Then t@u\ 4bv  
                    temp = AuxDataGetData( k, "temperature" ) 9V],X=y~  
                    emiss = AuxDataGetData( k, "emissivity" ) >b ["T+  
                    If ( temp <> 0 And emiss <> 0 ) Then E&>,B81  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) `Of wl%G  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) K8U Az"  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi -PnC^r0L$  
                    End If &V?q d{39  
6|KX8\, A@  
                End If @ |GeR  
p\{+l;`  
            Next k h3kHI?jMWG  
ILi5WuOYX  
        Next j NVj J/  
=_'cG:=)  
    Next i reA8=>b/  
    EnableTextPrinting( True ) )R^Cqo'  
@"I#b99  
    'write out file L, {rMLM%  
    fullfilepath = CurDir() & "\" & fname rEhf_[Dv  
    Open fullfilepath For Output As #1 } x.)gW  
    Print #1, "GRID " & nx & " " & ny p0rwiBC=q  
    Print #1, "1e+308" Ib2@Wi   
    Print #1, pixelx & " " & pixely tqQ0lv^J  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 _=L;`~=C9e  
RGO:p]t|  
    maxRow = nx - 1 (oXN>^-D  
    maxCol = ny - 1 5ZA%,pH>Jq  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) Is@a,k  
            row = "" N}Ks[2  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) |mk}@OEf  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ,8I AhQa  
        Next colNum                     ' end loop over columns V./w06;0  
f%{Tu`  
            Print #1, row CjQ"oQw  
~9?U_ahfVt  
    Next rowNum                         ' end loop over rows Z02s(y=k1  
    Close #1 QWHy=(!  
/Tj"Fl\h  
    Print "File written: " & fullfilepath RW 7oL:$dt  
    Print "All done!!" b|dCEmFt  
End Sub Yg)V*%0n  
d=Do@) m|  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: |2@en=EYk  
zw: C*sY  
*>'2$me=  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 bw<w u}ED  
  
z9 w&uZzi  
}6J7 <g  
打开后,选择二维平面图: 5Vi]~dZu7  
y5/6nvH_6  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计