| infotek |
2022-01-24 09:30 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 rMLCtGi ^W'\8L
成像示意图 e}aD<EG 首先我们建立十字元件命名为Target L(}T-.,Slr KLbP;:sr 创建方法: ?EKYKLwr p2tBF98 面1 : %#"uK:(N 面型:plane .lRO;D 材料:Air g_.BJ>Uv 孔径:X=1.5, Y=6,Z=0.075,形状选择Box nuXaZRH b8T'DY;~
,]Hn*\@p[c 辅助数据: Lv#DIQ8y 首先在第一行输入temperature :300K, {5_*tV<I emissivity:0.1; K2)),_,@5+ CJ
KFNa !*EHr09N7 面2 : e,8C}
2 面型:plane XKMJsEPsW 材料:Air 4uDz=B+8y 孔径:X=1.5, Y=6,Z=0.075,形状选择Box \'j%q\Bl; ~"{Kjr#R 4l[f}Z 位置坐标:绕Z轴旋转90度, 0Ac]&N d` zn@tLLX
BxlpI[yWq 辅助数据: M="%NxuS %-H 首先在第一行输入temperature :300K,emissivity: 0.1; G8eAj%88 )%WS(S>8 ~h0SD( Target 元件距离坐标原点-161mm; ]Jm9D= 4z?6[Cg<
NCX!ss 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 :6Bk< LV'v7 2yUH / ijj;9EB 探测器参数设定: ld`oIEj!P_ L}x"U9'C 在菜单栏中选择Create/Element Primitive /plane a&4>xZU # efRa|7!HK
naM4X@jl sj
Yg 4ILCvM RG # 元件半径为20mm*20,mm,距离坐标原点200mm。 J'Gn M?M (F~eknJ 光源创建: )T
3y ,* P g7W:L7 光源类型选择为任意平面,光源半角设定为15度。 3mpEF<z Pgs4/ xOPSw|!w 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 0t6s20*q $OmcEd 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 l% K9Ke W!V06. rsy'ZVLUj 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 X62z>mM V'\4sPt 创建分析面: Z'PL?;&+R ` _[\j] ~Og'IRf 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 +2MsyA?6_ {#0B~Zr
sw8Ic\vT 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 l*xA5ObV JKGUg3\~ FRED在探测器上穿过多个像素点迭代来创建热图 ,5H$Tm,6\S noGMfZ1 FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 W)$;T%u 将如下的代码放置在树形文件夹 Embedded Scripts, ^FF{71; [}}oHm3&
v #IC 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 }DY^a'wJ- j+PW9>Uh 绿色字体为说明文字, 24>{T5E ~iydp '#Language "WWB-COM" `p*7MZ9- 'script for calculating thermal image map ib*$3Fn~ 'edited rnp 4 november 2005 UFC.!t-Z &%C4rAd2 'declarations 64o`7 Dim op As T_OPERATION yEzp+Ky Dim trm As T_TRIMVOLUME {b7P1}>-* Dim irrad(32,32) As Double 'make consistent with sampling Et# }XVCJ Dim temp As Double Vy&F{T;$ Dim emiss As Double Uiv;0Tovl Dim fname As String, fullfilepath As String pi3Z)YcT _QkU,[E 'Option Explicit !A&Vg # L)HuQVc g Sub Main 3sHC1+ 'USER INPUTS d #y{eV$Q nx = 31 =DGaK0n ny = 31 g6;O)b numRays = 1000 t.485L% minWave = 7 'microns d\'M ~VQ maxWave = 11 'microns BY32)8SH sigma = 5.67e-14 'watts/mm^2/deg k^4 +SZ#s:#SE fname = "teapotimage.dat" /M\S^!g@ 3,S5>~R= Print "" v=iz*2+X Print "THERMAL IMAGE CALCULATION" M@
! {m akrEZ7A detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 '?wv::t 8 mV`|2> Print "found detector array at node " & detnode YmNBtGhT }eULcgRG srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 j;J4]]R;o qf(!3 Print "found differential detector area at node " & srcnode
lf[( .'L@$]!G GetTrimVolume detnode, trm D@7\Fg detx = trm.xSemiApe 4$1sBY/ dety = trm.ySemiApe D{PO!WzW area = 4 * detx * dety _lu.@IX- Print "detector array semiaperture dimensions are " & detx & " by " & dety AIN_.=]"? Print "sampling is " & nx & " by " & ny (B7M*e b"/P 'reset differential detector area dimensions to be consistent with sampling e9o(hL pixelx = 2 * detx / nx i*nNu-g pixely = 2 * dety / ny =Q[5U9 SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False s{Ryh.IyI Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 L+9a4/q r}pYm'e 'reset the source power ^#vWdOlt SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) M)i2)]FS Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" DLJu%5F n)^B0DnIk 'zero out irradiance array }#a d For i = 0 To ny - 1 Ag#p ) For j = 0 To nx - 1 Ub4j3` irrad(i,j) = 0.0 p@YU7_sF^! Next j !E4YUEY6 Next i 83OOM;' HwiG~'Ah9 'main loop $l7
<j_C EnableTextPrinting( False ) xBl}=M?Qu B
,e3r ypos = dety + pixely / 2 - YJ7ne] For i = 0 To ny - 1 Z
r xpos = -detx - pixelx / 2
AQ'~EbH( ypos = ypos - pixely }gGcYRT sMs 0*B-[ EnableTextPrinting( True ) M,3sK!`> Print i P9SyQbcK EnableTextPrinting( False ) zxT&K| Ro$l/lXl8t cK1r9ED| For j = 0 To nx - 1 `G@]\)-! j2k,)MHu!x xpos = xpos + pixelx at/bes W Vj2]-]Cm 'shift source Go=MG:` LockOperationUpdates srcnode, True qI5_@[S* GetOperation srcnode, 1, op !QSL8v@c op.val1 = xpos
~%bz2Pd% op.val2 = ypos TMT65X! SetOperation srcnode, 1, op :-69,e LockOperationUpdates srcnode, False XSpX6fq %f*8JUE16 raytrace L|u\3.: DeleteRays G ZDyw9 CreateSource srcnode !Hr~B.f7 TraceExisting 'draw dE%rQE7' zL+jlUkE
'radiometry W{*U#:Jx1 For k = 0 To GetEntityCount()-1 UQ}[2x(Kb If IsSurface( k ) Then `DUMTFcMX temp = AuxDataGetData( k, "temperature" ) l*e*jA_>:7 emiss = AuxDataGetData( k, "emissivity" ) jL<:N
8 If ( temp <> 0 And emiss <> 0 ) Then 6:fe.0H9 ProjSolidAngleByPi = GetSurfIncidentPower( k ) 3ktjMVy\ frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) |'aGj irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi bLhTgss]( End If 2ed$5.D AD_")_B|i End If Tu o`>ZA ;xS@-</: Next k &z+nNkr?yN '-N `u$3Y Next j w/IYQC\v g=XvqD< Next i !D!~4h) EnableTextPrinting( True )
{^a"T'+ c>6dlWTqX 'write out file M ~zA fullfilepath = CurDir() & "\" & fname V|gW%Z,j Open fullfilepath For Output As #1 lmi,P-Q Print #1, "GRID " & nx & " " & ny &)zNu Print #1, "1e+308" 7l/.fSW Print #1, pixelx & " " & pixely ?#YheML? Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 a\pOgIp 7jL+c~ maxRow = nx - 1 opU=49b maxCol = ny - 1 K!Te*?b For rowNum = 0 To maxRow ' begin loop over rows (constant X) q^; SZ^yW5 row = "" 6<u=hhL For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) w$[&ejFb row = row & irrad(colNum,rowNum) & " " ' append column data to row string YcOPqvQ Next colNum ' end loop over columns }Go?j#
! #.L9/b(
Print #1, row LM\ H%=*L X'Q?Mh Next rowNum ' end loop over rows I!eu|_cF Close #1 6?$yBu9l .ZQD`SRrI Print "File written: " & fullfilepath uatY:GSR Print "All done!!" M(8dKj1+ End Sub : fMQ,S0 Kh&W\\K 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: .);~H# #{K}o} VzD LG LH 找到Tools工具,点击Open plot files in 3D chart并找到该文件 ])OrSsV} diHK -LzkM" 打开后,选择二维平面图: PkX4 ! ]8@s+N
|
|