首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 WA+iYLx@H  
[ucpd  
成像示意图
"*In+!K  
首先我们建立十字元件命名为Target XD.)Dl8  
e 9;~P}  
创建方法: gt@m?w(  
MF5[lK9e  
面1 : kM,C3x{A  
面型:plane ` @`CG[-9  
材料:Air be.*#[  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box W"k"I vTW}  
<J) ]mh dm  
As'=tIro  
辅助数据: hb}+A=A=+  
首先在第一行输入temperature :300K, aDU<wxnSvO  
emissivity:0.1; =vX/{C  
qm/)ku0  
.%xn&3  
面2 : Q+[n91ey**  
面型:plane ]n6#VTz*  
材料:Air =l+yA>t|  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box Y3Yz)T}UkS  
_852H$H\  
`sn^ysp  
位置坐标:绕Z轴旋转90度, pFOx>u2`a  
5IE#\FITO|  
Ayxkv)%:@)  
辅助数据: dYJ(!V&  
!2%HhiB'   
首先在第一行输入temperature :300K,emissivity: 0.1; 0XE4<U   
Te"ioU?.  
p{r}?a  
Target 元件距离坐标原点-161mm; >;e~WF>+K  
]Sf]J4eQ  
KcWN,!G  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 wW>A_{Y  
;U/&I3dzV  
LBYMCY  
探测器参数设定: +r2+X:#~T  
:CG`t?N9M  
在菜单栏中选择Create/Element Primitive /plane )_HA>o_?C:  
Q /U2^  
.*OdqLz  
5_GYrR2  
=^M/{51j  
DhKS pA  
元件半径为20mm*20,mm,距离坐标原点200mm。 <cps2*'  
, qMzWa  
光源创建: igCZ|Ru\  
?WGA?J %2  
光源类型选择为任意平面,光源半角设定为15度。 n(1l}TJy  
<FV1Wz  
.s?L^Z^  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 &* M!lxDN  
T<n  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 X _q\Sg  
,0 M_ Bk"  
6AAz  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 }|h# \$w  
9}rS(/@ }  
创建分析面: X-bcQ@Oj  
LBw1g<&  
(nQ^  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 KI"#f$2&  
$0W|26;  
l{*@v=b(  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 g|o,uD  
Ouk ^O}W6  
FRED在探测器上穿过多个像素点迭代来创建热图 uy>q7C  
k =>oO9`  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 *3+4[WT0]a  
将如下的代码放置在树形文件夹 Embedded Scripts, D}-/c"':}  
!z\h| wU+  
G<L;4nA)  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 {5Q!Y&N.%  
S,88*F(<^q  
绿色字体为说明文字, x+\`gK5  
ju8> :y8  
'#Language "WWB-COM" LQ@"Xe]5  
'script for calculating thermal image map AP3a;4Z#  
'edited rnp 4 november 2005 yl'u'-Zb6  
5?f ^Rz  
'declarations ^ gdaa>L  
Dim op As T_OPERATION fW?vdYF  
Dim trm As T_TRIMVOLUME =>m<GvQz  
Dim irrad(32,32) As Double 'make consistent with sampling iDpSj!x/_  
Dim temp As Double z<MsKD0Q  
Dim emiss As Double 3/P1!:g9  
Dim fname As String, fullfilepath As String /4yo`  
(Lbbc+1m  
'Option Explicit &sl0W-;0  
]=\].% >  
Sub Main Sh/08+@+L:  
    'USER INPUTS lt/1f{v[:  
    nx = 31  {y)=eX9  
    ny = 31 Fn wJ+GTu  
    numRays = 1000 Ugr!"Q#M  
    minWave = 7    'microns B`EJb71^Xy  
    maxWave = 11   'microns ?al'F  q  
    sigma = 5.67e-14 'watts/mm^2/deg k^4  4j*  
    fname = "teapotimage.dat" 1a/++4O.|  
QFA8N  
    Print "" v_yw@  
    Print "THERMAL IMAGE CALCULATION" %U/(|wodd  
,>:U2%  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 |NlO7aQ>2H  
<;lkUU(WT2  
    Print "found detector array at node " & detnode Q1Kfi8h}'  
Kf3"Wf^q   
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Z*F3G#A  
Lw1Yvtn  
    Print "found differential detector area at node " & srcnode G0Iw-vf  
s9 mx  
    GetTrimVolume detnode, trm %O;:af"Ja8  
    detx = trm.xSemiApe T9=I$@/  
    dety = trm.ySemiApe &0d# Y]D4`  
    area = 4 * detx * dety 7P } W *  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety 'B |JAi?  
    Print "sampling is " & nx & " by " & ny [+^1.N  
_O?`@g?i  
    'reset differential detector area dimensions to be consistent with sampling GblA9F7  
    pixelx = 2 * detx / nx "69s) ~  
    pixely = 2 * dety / ny *;W+>W  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False O 2V  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 !t"4!3  
y RqL9t  
    'reset the source power #<fRE"v:Q  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) aj='b.2)  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" q])K,)  
Xg6Jh``  
    'zero out irradiance array 4Z3su^XR  
    For i = 0 To ny - 1 L;z?a Z7n  
        For j = 0 To nx - 1  1~gnc|?  
            irrad(i,j) = 0.0 cVv=*81\  
        Next j AI2)g1m  
    Next i hPB9@ hT$  
rI{; IDV  
    'main loop hPkp;a #  
    EnableTextPrinting( False ) 8S TvCH"Z_  
lf|FWqqV  
    ypos =  dety + pixely / 2 %uDi#x.  
    For i = 0 To ny - 1 [jQp~&nY  
        xpos = -detx - pixelx / 2 b=C*W,Q_#  
        ypos = ypos - pixely yX>K/68  
%@b0[ZC  
        EnableTextPrinting( True ) qz_7%c]K[  
        Print i B`)BZ,#p  
        EnableTextPrinting( False ) mY|)KJ  
j^sg6.Z*  
/8'NG6"H`  
        For j = 0 To nx - 1 fUWG*o9  
bW427B0  
            xpos = xpos + pixelx 6_o*y8s.  
,&A7iO  
            'shift source 8Al{+gx@?  
            LockOperationUpdates srcnode, True P;.W+WN  
            GetOperation srcnode, 1, op ^LnTOdAE  
            op.val1 = xpos g/d<Zfq<{  
            op.val2 = ypos #lo6c;*m5  
            SetOperation srcnode, 1, op =ZznFVJ`={  
            LockOperationUpdates srcnode, False /KaZH R.  
:`#d:.@]o@  
raytrace y-b%T|p9  
            DeleteRays 9.M4o[  
            CreateSource srcnode rgQOj^xKv^  
            TraceExisting 'draw yWc$>ne[L  
/U*C\ xMm  
            'radiometry Tk[ $5u*,  
            For k = 0 To GetEntityCount()-1 4"(Bu/24  
                If IsSurface( k ) Then p<FzJ   
                    temp = AuxDataGetData( k, "temperature" ) *KF#'wi  
                    emiss = AuxDataGetData( k, "emissivity" ) }"H,h)T  
                    If ( temp <> 0 And emiss <> 0 ) Then .hb:s,0mP  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) net@j#}j-  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) xIW3={b3  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi jRlYU`?  
                    End If `$IK`O  
Pj^{|U21  
                End If s\(k<Ks  
+)om^e@.  
            Next k m 9WDT  
!-x$L>1$  
        Next j RLXL&  
4Z=_,#h4.  
    Next i tY<4%~%X  
    EnableTextPrinting( True ) >>)b'c  
NNR`!Pty  
    'write out file .VJMz4$]O  
    fullfilepath = CurDir() & "\" & fname I_#kgp  
    Open fullfilepath For Output As #1 {]!mrAjD  
    Print #1, "GRID " & nx & " " & ny 49c:V,  
    Print #1, "1e+308" #G|RnV%t$~  
    Print #1, pixelx & " " & pixely 6'57  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 SM#]H-3  
bo>*fNqAIy  
    maxRow = nx - 1 oulVg];  
    maxCol = ny - 1 *%NT~C q  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) y2dCEmhY  
            row = "" 2;`1h[,-^  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) =:Fc;n>c<K  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 3S@7]Pg  
        Next colNum                     ' end loop over columns 6<SAa#@ey  
xh,qNnGGi  
            Print #1, row 6vo;!V6  
<z&/L/bl"  
    Next rowNum                         ' end loop over rows "Yv_B3p   
    Close #1 ]@c+]{  
L|+~"'l  
    Print "File written: " & fullfilepath a2O75 kWnm  
    Print "All done!!" jXx<`I+]  
End Sub 4r#= *  
[Td4K.c  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: #4% ]o%.  
S~bOUdV Z  
{SPq$B_VR  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 z+wA rPxc  
  
]i)c{y  
IB"w&sBy  
打开后,选择二维平面图: '~<m~UXvD#  
d#Y^>"|$.  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计