| infotek |
2022-01-24 09:30 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 /&kTVuN"( N%Lh_2EzqV
成像示意图 [{Y$]3?} 首先我们建立十字元件命名为Target O#k?c } TmQ2;3% 创建方法: g5T~%t5lo w$&10 面1 : Y
%<B, 3 面型:plane ! Noabt 材料:Air ^ro?.,c T 孔径:X=1.5, Y=6,Z=0.075,形状选择Box D/{- y:v0&9L
"M? (Ax 辅助数据: ?=PQQx2_*u 首先在第一行输入temperature :300K, n
P 69W emissivity:0.1; ?rv+ydR/q UO!OO&l! <:%Iq13D 面2 : B!8]\D 面型:plane f|b|\/.= 材料:Air Ke\?;1+ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box @<w$QD c[j3_fn1] dXdU4YJX 位置坐标:绕Z轴旋转90度, .Q?AzU,2D ]cA){^.Jz
sA`
bPh k 辅助数据: Yq2mVo <89js87 首先在第一行输入temperature :300K,emissivity: 0.1; R)<>} y 2 3>lE}^G 0|NbU Target 元件距离坐标原点-161mm; UQTt;RS*zS 0dnm/'L
qA03EU 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 o}NKqA3 P}aJvFlmP fEgZ/p!g 探测器参数设定: `N|WCiBV.
xXHz)w 在菜单栏中选择Create/Element Primitive /plane al"1T- JBg",2w |C
MiRMjQ2 %VwB
? N"2@yaN w0
"h,{ 元件半径为20mm*20,mm,距离坐标原点200mm。 `;i|
%$TU <27e7H*6 光源创建: (]iw#m{ R?I(f(ib 光源类型选择为任意平面,光源半角设定为15度。 0gt/JI($ 5V%K'a( rl6vt*g 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 Oj<2_u > m5j.GP; 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 GR|Vwxs<@P ){gO b J .El&Dev 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 K=!J=R; gA.G:1v 创建分析面: fV;&Ag*ZiV aY"qEH7] JU"!qXQr 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 3`="4 tuUk48!2I
jMd's|#OP 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 kQ4%J,7e4 fzw6VGTf FRED在探测器上穿过多个像素点迭代来创建热图 ;qzCoe tCA |sN FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 "\>
<UJ 将如下的代码放置在树形文件夹 Embedded Scripts, *D`,z3/* ~LkReQI
LsBDfp5/ 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 |!&,etu /i$&89yod 绿色字体为说明文字, A0&~U0*(~ 8xL-j2w '#Language "WWB-COM" GJ?rqmbL 'script for calculating thermal image map ! 4i 'edited rnp 4 november 2005 X'iki4 ^=W%G^jJy 'declarations YBg\L$|n Dim op As T_OPERATION e6{/e+/R Dim trm As T_TRIMVOLUME fzSZ>I0R Dim irrad(32,32) As Double 'make consistent with sampling %_A1WC Dim temp As Double EStHl(DUPq Dim emiss As Double s{A-K5S Dim fname As String, fullfilepath As String |=GRPvvi o#w6]Fmc 'Option Explicit xazh8X0P a}e7Q<cGj Sub Main qf7.Sh 'USER INPUTS e2Xx7*vS nx = 31 xG<S2R2VQh ny = 31 ir/ 2/
E numRays = 1000 KF7f< minWave = 7 'microns S, Oy}Nv maxWave = 11 'microns 62Jn8DwAT sigma = 5.67e-14 'watts/mm^2/deg k^4 IO,kP`Wcx fname = "teapotimage.dat" i?|K+"=D mflI> J=g Print "" (U-p&q>z Print "THERMAL IMAGE CALCULATION" !nykq}kPN\ m<OxO\ Mpf detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 W*8D@a0 _ I] Print "found detector array at node " & detnode {)F-US U7:~@eYy srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 @W^g(I(w ydlH6 > Print "found differential detector area at node " & srcnode 4e*0kItC uw]e$,x? GetTrimVolume detnode, trm u,oxUySeG detx = trm.xSemiApe 21cIWvy dety = trm.ySemiApe q2,@># area = 4 * detx * dety w*bVBuXs Print "detector array semiaperture dimensions are " & detx & " by " & dety zBc7bbK Print "sampling is " & nx & " by " & ny E$Ge#
M@dM s?_b[B d 'reset differential detector area dimensions to be consistent with sampling ~=#jO0dE| pixelx = 2 * detx / nx gqe
z- pixely = 2 * dety / ny YQ?|Vb
U SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False s/A]&!` Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 |y=CmNG, UayRT#}] 'reset the source power ;1eu8N8 SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) H ) (K Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" N ~LR iJsw:Nc 'zero out irradiance array |,yS>kjp For i = 0 To ny - 1 $p9XXZ"* For j = 0 To nx - 1 8q0f#/`v irrad(i,j) = 0.0 :0srFg?X Next j r3*wH1n Next i Jl^oDW eyo )Su 'main loop /CZOO)n EnableTextPrinting( False ) TyK;
q{ o}Xp-P ypos = dety + pixely / 2 {= z%('^ For i = 0 To ny - 1 Q'\jm=k xpos = -detx - pixelx / 2 yp :yS ypos = ypos - pixely B8IfE` v}cm-_*v EnableTextPrinting( True ) Q"Bgr&RJ Print i 3K#e]zoI EnableTextPrinting( False ) 1,pg:=N9 uAJ_`o[ t zV"|s=o For j = 0 To nx - 1 !C/`"JeYL -7+Fb^"L xpos = xpos + pixelx 'ugG^2Y 0 TS:o/{(a 'shift source ^Jkj/n' LockOperationUpdates srcnode, True o/&:w z GetOperation srcnode, 1, op bxyU[` op.val1 = xpos q#WqU8~Y op.val2 = ypos cb
UVeh7Q SetOperation srcnode, 1, op MD1,KH+O LockOperationUpdates srcnode, False @-MrmF)<U /
Sp+MB9 raytrace -eNi;u DeleteRays $[]=6.s CreateSource srcnode j}ruXg TraceExisting 'draw Wh4lz~D\@ fc\hQXYv 'radiometry Bq2}nDP For k = 0 To GetEntityCount()-1 $jc>?.6 If IsSurface( k ) Then s%/0WW0y^ temp = AuxDataGetData( k, "temperature" ) z&-`<uV~ emiss = AuxDataGetData( k, "emissivity" ) zd;xbH//)b If ( temp <> 0 And emiss <> 0 ) Then U O[p ProjSolidAngleByPi = GetSurfIncidentPower( k ) 'dht5iI;Yw frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) )<Yy.Z_:DC irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi UbuxD }) End If ?pxx,o6l S63L>p|ml End If ](0A/,#q6 XM_S" Next k Dk7"#q@kx f|apk,o_ Next j )lW<:?k <4>6k7W Next i N4D_ 43jz EnableTextPrinting( True ) 5N[Y2 1-b,X]i 'write out file )c!f J7o: fullfilepath = CurDir() & "\" & fname "5YsBih Open fullfilepath For Output As #1 CP?\'a"Kt Print #1, "GRID " & nx & " " & ny {wMCo, Print #1, "1e+308" ^^%*2^ Print #1, pixelx & " " & pixely Vj:PNt[ Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ZERd#7@m+ Dbtw>:= maxRow = nx - 1 lca.(3u maxCol = ny - 1 t
Y^:C[ For rowNum = 0 To maxRow ' begin loop over rows (constant X) RSkpf94` row = "" -'I)2/%g For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) 8>epKFEg row = row & irrad(colNum,rowNum) & " " ' append column data to row string }y0UyOa{C Next colNum ' end loop over columns xW^<.@Agm iI_Fbw8 Print #1, row 2Nj0 Hqjq
&2Y>yFB
, Next rowNum ' end loop over rows 9^}GUJy? Close #1 _]Hn:O"o 0_Y;r{3m" Print "File written: " & fullfilepath E@N_~1 Print "All done!!" MW&;{m?2( End Sub (*M(gM{; *F9uv)[kz 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: U}{r.MryFG .jRXHrK; wv*r}{%7g[ 找到Tools工具,点击Open plot files in 3D chart并找到该文件 2R1W[,Ga! @ojn<7W w.V8-9{ 打开后,选择二维平面图: ?^6RFbke+ 1 8&^k|
|
|