首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 M] /aW  
e:9EP,  
成像示意图
^Q$OzsEk  
首先我们建立十字元件命名为Target <d H@e  
#[lhem]IC  
创建方法: D @*<O=_D(  
!ou#g5Q@z  
面1 : _2hLc\#  
面型:plane CG=c@-"n/  
材料:Air ls]N&!/hq  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box ~dRstH7u  
r8Pd}ptPU  
,=m.WmXE  
辅助数据: &HM-UC|  
首先在第一行输入temperature :300K, qMNW w\k  
emissivity:0.1; +hmFFQQ}  
/^BC Qaj  
vv @m{,7#Y  
面2 : x [FLV8`b|  
面型:plane 'Be'!9K*d  
材料:Air }bjZeh.  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box YNU}R/u6^  
!rM~   
:-k|jt  
位置坐标:绕Z轴旋转90度, i U$ ~H  
G-Tmk7m  
b]+F/@h~]  
辅助数据: F`nQS&y  
Mn.,?IF`K  
首先在第一行输入temperature :300K,emissivity: 0.1; ~-BF7f 6C  
p?:5 U[KM  
YZBh}l6t  
Target 元件距离坐标原点-161mm; tF0jH+7J-  
c~Ka) dF|  
c[dzO .~  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 /9w>:i81  
v~P,OP("c  
fSuykbZ  
探测器参数设定: %SM;B-/zHt  
;!4gDvm  
在菜单栏中选择Create/Element Primitive /plane Q6@<7E]y  
(CmK> "C+  
K T}  
9B: 3Ha=  
4]y)YNQ(  
@!#e\tx  
元件半径为20mm*20,mm,距离坐标原点200mm。 #&&T1;z"#  
Ma[EgG  
光源创建: L_8zZ8 o  
IY`p7 )#i  
光源类型选择为任意平面,光源半角设定为15度。 ??rS h Mu  
xAQtX=FoX+  
zH8E,)  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 %a;#]d  
yw3"jdcl  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 g{65QP  
,fVD`RR(W?  
wHc my  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 (\9`$   
_IYaMo.n  
创建分析面: Ej(J j\  
ff"wg\O4  
5'~_d@M  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 dj0; tQ=C  
kmI0V[Y  
RLB3 -=9t  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ;;Q^/rkC  
>qjV{M  
FRED在探测器上穿过多个像素点迭代来创建热图 1uw#;3<L  
kN1MPd4Yh  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 $B+| &]a  
将如下的代码放置在树形文件夹 Embedded Scripts, _'u]{X\k{J  
XpIiJry!6  
/Rp]"S vt  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 D6sw"V#  
d2 ^}ooE  
绿色字体为说明文字, C_.9qo]DT7  
24mdhT|  
'#Language "WWB-COM" Ykbg5Z  
'script for calculating thermal image map ^URCnJ67Se  
'edited rnp 4 november 2005 4`IM[DIG~  
_]Hna<Ly  
'declarations /HC:H,"i  
Dim op As T_OPERATION $`=p]  
Dim trm As T_TRIMVOLUME yzA05npTl  
Dim irrad(32,32) As Double 'make consistent with sampling kX 1}/l  
Dim temp As Double E h%61/  
Dim emiss As Double IP~!E_e}\  
Dim fname As String, fullfilepath As String .1x04Np!  
Kz4S6N c  
'Option Explicit :QCL9QZ'  
EP;/[O  
Sub Main v\0G`&^1  
    'USER INPUTS ,g`%+s7u  
    nx = 31 T5BZD +Ta  
    ny = 31 Pf?kNJ*Tv)  
    numRays = 1000 E-MPFL  
    minWave = 7    'microns c PGlT"  
    maxWave = 11   'microns 5sD,gZ7  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 "(koR Q  
    fname = "teapotimage.dat" ^?69|,  
h$>F}n j  
    Print "" )^h6'h`  
    Print "THERMAL IMAGE CALCULATION" ?HZp @ &  
I-7LT?r  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 W+XWS,(  
0ju1>.p  
    Print "found detector array at node " & detnode q>q:ZV  
@u3`lhUcT  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 (z?HyxRT  
>%JPgr/ 8  
    Print "found differential detector area at node " & srcnode tiK?VwaKI  
*p l6 V|  
    GetTrimVolume detnode, trm FB=oGgwwq  
    detx = trm.xSemiApe A=CeeC]}  
    dety = trm.ySemiApe -DDA b(2*  
    area = 4 * detx * dety bP,<^zA|X  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety mp|pz%U  
    Print "sampling is " & nx & " by " & ny ]wQ!ZG?)  
Zw]`z*,yRA  
    'reset differential detector area dimensions to be consistent with sampling QbU5FPiN  
    pixelx = 2 * detx / nx $o6/dEKQ  
    pixely = 2 * dety / ny Iw1Y?Qia  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ^}3^|jF  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 ,m=F H?5  
]]xKc5CT  
    'reset the source power ^s,3*cAU  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) ?M2(8 0  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" XLpP*VH3  
<sdgL+&1h  
    'zero out irradiance array (Guzj*12  
    For i = 0 To ny - 1 2FcL-?  
        For j = 0 To nx - 1 p< R:[rz  
            irrad(i,j) = 0.0 (5a73%>@  
        Next j Q&m85'r5X  
    Next i KaIKb=4L|  
UuG%5 ZC  
    'main loop  a+h$u  
    EnableTextPrinting( False ) wNONh`b  
}v1wpv/b(  
    ypos =  dety + pixely / 2 U}v`~' K  
    For i = 0 To ny - 1 $QX$rN  
        xpos = -detx - pixelx / 2 N'^>pSc4W|  
        ypos = ypos - pixely xh6(~'$  
N_t,n^i9>*  
        EnableTextPrinting( True ) lED!}h'4  
        Print i n `j._G  
        EnableTextPrinting( False ) 3)OZf{D[  
3F9V,zWtTi  
#ydold{F  
        For j = 0 To nx - 1 7KT*p&xm  
<H[w0Z$  
            xpos = xpos + pixelx 01bCP  
sYTz6-  
            'shift source vz^ ] g  
            LockOperationUpdates srcnode, True rOIb9:  
            GetOperation srcnode, 1, op J,a&"eOZ  
            op.val1 = xpos $0*sj XV  
            op.val2 = ypos WR+j?Fcf  
            SetOperation srcnode, 1, op }"Y<<e<z:  
            LockOperationUpdates srcnode, False egmUUuO  
W5j wD  
raytrace !E70e$Th  
            DeleteRays Q+CJd>B  
            CreateSource srcnode AR"2?2<mJ7  
            TraceExisting 'draw m l`xLZN>L  
^0,}y]5p  
            'radiometry .5JIQWE(  
            For k = 0 To GetEntityCount()-1 8jK=A2pTa  
                If IsSurface( k ) Then 1nVQYqT_  
                    temp = AuxDataGetData( k, "temperature" ) fif;n[<  
                    emiss = AuxDataGetData( k, "emissivity" ) 0 _!0\d#c  
                    If ( temp <> 0 And emiss <> 0 ) Then IPo t][ N>  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) opX07~1  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ,@"yr>Q9#6  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi  31n"w;  
                    End If f5}afPk  
)1<0c@g=  
                End If [d`Jw/4n  
I=`?4%  
            Next k 8lQ/cGAc  
LpHGt]|D  
        Next j ^} j~:EZb  
]#~J[uk  
    Next i /Qgb t  
    EnableTextPrinting( True ) 8 Ku9;VEk  
!~^2Mu(X  
    'write out file \e a*  
    fullfilepath = CurDir() & "\" & fname zD_5TG M=  
    Open fullfilepath For Output As #1 3Vu}D(PJ  
    Print #1, "GRID " & nx & " " & ny Ff<cY%t  
    Print #1, "1e+308" as07~Xvp-  
    Print #1, pixelx & " " & pixely $W._FAAJ#  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Rtf<UhUn  
2%/F`_XbP  
    maxRow = nx - 1 ,#a4P`q'iC  
    maxCol = ny - 1 ,\`ruWWLb=  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) K#FD$,c~  
            row = "" H UJqB0D ?  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) W3i<Unq  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 81RuNs]  
        Next colNum                     ' end loop over columns 8~y!X0Ov!  
R ENCk (  
            Print #1, row DVQr7tQf  
g}9 ,U&$]y  
    Next rowNum                         ' end loop over rows ft"-  
    Close #1 wXNng(M7  
4DIU7#GG  
    Print "File written: " & fullfilepath t!D'ZLw  
    Print "All done!!" Q}#4Qz~n  
End Sub Ust +g4  
AB=%yM7V*  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: e.\>GwM  
c<13r=+  
Yjg$o:M  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 besc7!S  
  
q\tr&@4iC  
e`Yj}i*bx]  
打开后,选择二维平面图: 8Y SvBy  
\:'GAByy  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计