| infotek |
2022-01-24 09:30 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 k[@/N+;")` 9kbczL^Y
成像示意图 :-(qqC: 首先我们建立十字元件命名为Target 2R;#XmKS ),^pi? 创建方法: .kgt?r
M)H*$!x}> 面1 : #qK5i1< 面型:plane Y_~otoSoY 材料:Air 8PWEQ<ev7> 孔径:X=1.5, Y=6,Z=0.075,形状选择Box aY6F4,7/B 2zuQeFsK
@3S:W2k 辅助数据: iqN?'8 首先在第一行输入temperature :300K, HuQdQ*Q emissivity:0.1; I8YCXh .>LJ(Sx9b OGG9f?? 面2 : 4Tb"+Y} 面型:plane gP |>gy#e 材料:Air %J1oz3n 孔径:X=1.5, Y=6,Z=0.075,形状选择Box x@[6u #q xo1uV(c 4U u`1gtz 位置坐标:绕Z轴旋转90度, u1\r:q yD@eT:lyi
!fjB oK+ 辅助数据: wzBw5nf\ V7cr%tY5 首先在第一行输入temperature :300K,emissivity: 0.1; sa"}9IE*8 L^bX[.uZw t 6lwKK Target 元件距离坐标原点-161mm; Jb-.x_Bf % iZM9Q&NC
<;Tr
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 [ugr<[6 <d >!% q>5j (,6F 探测器参数设定: _KkP{g,Y )ybF@emc 在菜单栏中选择Create/Element Primitive /plane OB*V4Yv <y&&{*KW8m
6RDy2JAOP Ba**S8{/` e*U6^Xex FW|_8q?}< 元件半径为20mm*20,mm,距离坐标原点200mm。 Cl{Ar8d} J ;4aghzY 光源创建: mkl^2V13~ [+!&iN 光源类型选择为任意平面,光源半角设定为15度。 8 )n g> l e+MQmWA'F LWhPd\ 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 i4nFjz 4S[UJ% 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 RgZ9ZrE\ v G9>e&Be nd7g8P9p 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 TQ5kM K9y~
e 创建分析面: ,Q0H)//~ &HtTh { _ElG&hyp 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 =|8hG*D8 ncUS8z
A7|L|+ ? 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 '$?!>HN4 q6<P\CSHy< FRED在探测器上穿过多个像素点迭代来创建热图
SvrUXf O;|Cu7WU FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 -Mz [S 将如下的代码放置在树形文件夹 Embedded Scripts, "?<h,Hvi E+#<WK-
, 2xv 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 "Mhn?PTq lk[Y6yE 绿色字体为说明文字, R<(xWH h72CGA| '#Language "WWB-COM" N_Kdi%q 'script for calculating thermal image map u05Yy&(f 'edited rnp 4 november 2005 '+27_j !a-B=pn!] 'declarations i^V(LGQF Dim op As T_OPERATION #sDb611}# Dim trm As T_TRIMVOLUME yMTO 5~U{ Dim irrad(32,32) As Double 'make consistent with sampling )*S:C Dim temp As Double ^$sqU Dim emiss As Double 2#r4dr0 Dim fname As String, fullfilepath As String Pg{1' - /zoy,t-i 'Option Explicit :O$bsw:3w< Wpi35JrC Sub Main t(9q6x3|e 'USER INPUTS 7GWOJ^) nx = 31 7(N+'8 ny = 31 L+(ng numRays = 1000 x5mg<y2`Ng minWave = 7 'microns ^gZ,A]
maxWave = 11 'microns A`ajsZ{q, sigma = 5.67e-14 'watts/mm^2/deg k^4 u+KZ. n/ fname = "teapotimage.dat" > pP&/ ;R[3nb9% Print "" r$}C<a[U Print "THERMAL IMAGE CALCULATION" c38XM]Jeq qc5[e detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 IA({RE lM{f ld Print "found detector array at node " & detnode
2wHbhW[ j)6p>6 srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Xq&BL,lS F_jHi0A Print "found differential detector area at node " & srcnode [!-gb+L 1{
%y(?` GetTrimVolume detnode, trm P
<+0sh detx = trm.xSemiApe 9;?u% dety = trm.ySemiApe Zo yO[# area = 4 * detx * dety $[n:IDa*@1 Print "detector array semiaperture dimensions are " & detx & " by " & dety HP1QI/*v Print "sampling is " & nx & " by " & ny @qq"X'3t p2{7+m 'reset differential detector area dimensions to be consistent with sampling +ovK~K$A pixelx = 2 * detx / nx %.<_+V#h pixely = 2 * dety / ny 5$D "uAp<V SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False E<[
s+iX Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 Bhd)# P .'gm2 'reset the source power >m,hna]RZ SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) AXW.`~ 4 Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" N}K
[Q= _wS=*-fT 'zero out irradiance array "+-
'o+ For i = 0 To ny - 1 Mzp<s<BX For j = 0 To nx - 1 yJq< &g irrad(i,j) = 0.0 yXJ25Axb Next j 49$<:{ ~ Next i VNHceH 7|DG1p9C 'main loop Y \-W` EnableTextPrinting( False ) \}s/<Q %+N]$Q ypos = dety + pixely / 2 ,=P&{38\q For i = 0 To ny - 1 SG&,o=I$ xpos = -detx - pixelx / 2 A51
a/p# ypos = ypos - pixely ^H3N1eC,`F
D}98ZKi EnableTextPrinting( True ) ~v.mbh Print i 8(L$a1#5W EnableTextPrinting( False ) ^w60AqR8 b0{i +R &*=!B9OBI For j = 0 To nx - 1 6]?mjG6 P1Hab2%+ xpos = xpos + pixelx AafS6]y S\g9@g. 'shift source Z8#nu LockOperationUpdates srcnode, True qk2E> GetOperation srcnode, 1, op g
X!>ef op.val1 = xpos i6'=]f'{ op.val2 = ypos D_DwP$wSo SetOperation srcnode, 1, op uL`#@nI LockOperationUpdates srcnode, False =:gKh | ys5.| raytrace ^l!SIu DeleteRays :>0ywg CreateSource srcnode Zv;nY7B TraceExisting 'draw 4v\HaOk SK}sf9gTv 'radiometry {dpC;jsW1 For k = 0 To GetEntityCount()-1 eiKY az If IsSurface( k ) Then mWT+15\5r( temp = AuxDataGetData( k, "temperature" ) k$3pmy* emiss = AuxDataGetData( k, "emissivity" ) (,U|H` If ( temp <> 0 And emiss <> 0 ) Then x77L"5g ProjSolidAngleByPi = GetSurfIncidentPower( k ) !kovrvM6F frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ,|A^ <R` irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi "lh4Vg\7n End If 9zwD%3Ufn NfV|c~?d End If J3eud}w L 4j#0I]lq Next k 4&mY-N7A [ohLG_9 Next j IVNH.g'
XIInI Next i 9 C[~*,qx EnableTextPrinting( True ) ,a #>e 0=$/ 'write out file Lh[0B.g< fullfilepath = CurDir() & "\" & fname lVvcrU Open fullfilepath For Output As #1 d&+]@ Ii Print #1, "GRID " & nx & " " & ny A8'RM F1 Print #1, "1e+308" N%dY.Fk Print #1, pixelx & " " & pixely q\EYsN</; Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Cn~VJ,l
g xt^1,V4Ei~ maxRow = nx - 1 ?'> .> maxCol = ny - 1 KU|W85ye For rowNum = 0 To maxRow ' begin loop over rows (constant X) @z1QoZ^w row = "" /vSGmW-* For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) QX=TuyO row = row & irrad(colNum,rowNum) & " " ' append column data to row string w}3N!jNDv Next colNum ' end loop over columns ^*ZaqMA
_E C7r>V& Print #1, row 1#d2 +J* sX1DbEjj[o Next rowNum ' end loop over rows *K/K97 Close #1 ]}L'jK
0 :h(HKMSk1 Print "File written: " & fullfilepath ;M~,S^U Print "All done!!" ;fNCbyg4
I End Sub ; J W]b] t%qep| 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 4S26TgY o/{`\4 s<YN*~ 找到Tools工具,点击Open plot files in 3D chart并找到该文件 NY.Cr.} #*iUZo #}^waYAk) 打开后,选择二维平面图: wkp2A18n v2;E W p
|
|