首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 i9+V<'h  
='YR;  
成像示意图
sgFpZk  
首先我们建立十字元件命名为Target xpUaFb  
17J|g.]m-&  
创建方法: @| r*yi  
E5.)ro=$  
面1 : KeY)%{  
面型:plane +xB !T1p D  
材料:Air (%\N-[yZ  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box (5VP*67  
<+C]^*j  
evZ{~v& /  
辅助数据: ]"aC wr  
首先在第一行输入temperature :300K, f |aO9w   
emissivity:0.1; {b} ?I4)  
389T6sP]  
YP+0 uZ[g  
面2 : par $0z/  
面型:plane 6i,d|  
材料:Air omY%sQ{)  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box #;>J<>  
)k=8.j4  
'V .4Nhd  
位置坐标:绕Z轴旋转90度, g,mcxXO  
=]&R6P>  
JYs*1<  
辅助数据: `dMl5b  
Yw4c`MyL  
首先在第一行输入temperature :300K,emissivity: 0.1; ]MRE^Je\h  
7[^:[OEE  
w=y!|F  
Target 元件距离坐标原点-161mm; ^pAqe8u_  
0}-&v+  
`)!)}PXl  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 &KX|gB'  
{ SJ=|L6  
K-(,,wS  
探测器参数设定: 0X~Dxs   
G{$9e}#  
在菜单栏中选择Create/Element Primitive /plane D9+a"2|3<  
X Oc0j9Oa  
fw'$HV76  
q$0^U{j/  
i=]IUjx<  
^s_E|~U  
元件半径为20mm*20,mm,距离坐标原点200mm。 <j-Bj$3  
0q>f x  
光源创建: m>jX4D7KZ  
s=u0M;A0Q  
光源类型选择为任意平面,光源半角设定为15度。 ^7vh ize  
?20y6c<  
[p_R?2uT  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 X_ !Sm  
wwmMpK}f  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 Y[X5S{H`wj  
0+m"eGwTm  
l92#F*  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 `9kjYSd#E  
(S =::ODU  
创建分析面: DbH{; Fb  
)|q,RAn  
M\DUx5d J,  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 2< qq[2  
T<mk98CdE  
mv)M9c,`  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 hm&{l|u{RU  
[="moh2*f  
FRED在探测器上穿过多个像素点迭代来创建热图 $Vlfg51ob  
1W "9u   
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ak;fCx&  
将如下的代码放置在树形文件夹 Embedded Scripts, 6JSa:Q>,  
Xa Yx avq  
tQF7{F-}  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 NGd|7S[^+c  
/1gKc}rB2  
绿色字体为说明文字, q;}^Jpb;  
axxd W)+K  
'#Language "WWB-COM" \4bma<~a  
'script for calculating thermal image map DOw< XlvC  
'edited rnp 4 november 2005 ]j}zN2[A  
ZL+{?1&-  
'declarations );@@>~  
Dim op As T_OPERATION Z8}Zhe.  
Dim trm As T_TRIMVOLUME 1x V~EX  
Dim irrad(32,32) As Double 'make consistent with sampling Mw\/gm_3  
Dim temp As Double (b GiBsb  
Dim emiss As Double C;OU2,c,T  
Dim fname As String, fullfilepath As String '.#KkvE##  
EJNj.c-#  
'Option Explicit Km 'd=B>Jy  
|U8;25Y  
Sub Main X6N^<Z$  
    'USER INPUTS %Jq(,u  
    nx = 31 FwBktuS  
    ny = 31 aL-V9y  
    numRays = 1000 Ni(D[?mZ  
    minWave = 7    'microns [t: =%&B  
    maxWave = 11   'microns 6aX m9 J  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 'N,x=1R5  
    fname = "teapotimage.dat" \I/l6H>o3  
#D .H2'_}  
    Print "" TEE$1RxV(  
    Print "THERMAL IMAGE CALCULATION"  UY+~,a  
R0gjx"U  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 9 /t}S6b{  
H \.EK Z  
    Print "found detector array at node " & detnode Z@t).$  
s><RL]+{G+  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Zdr +{-  
[A yq%MA  
    Print "found differential detector area at node " & srcnode '355Pce/  
}zlvs a+  
    GetTrimVolume detnode, trm IgptiZ7~!  
    detx = trm.xSemiApe k#5S'sCF<  
    dety = trm.ySemiApe 8:huWjh]M  
    area = 4 * detx * dety qdAz3iye  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety OJbY\U  
    Print "sampling is " & nx & " by " & ny fdck/|`t  
tCI8 \~  
    'reset differential detector area dimensions to be consistent with sampling #Ru+|KL  
    pixelx = 2 * detx / nx ]\+bx=  
    pixely = 2 * dety / ny Q'7o_[o/  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False }]=b%CPJh+  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 rfXM*h  
,HUs MCXQ  
    'reset the source power \7$m[h {l  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) w^A8ZT0^7  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Mf%/t HK  
(|(Y;%>-v  
    'zero out irradiance array Mff_j0D  
    For i = 0 To ny - 1 +M-' K19  
        For j = 0 To nx - 1 nD MNaMYb  
            irrad(i,j) = 0.0 U%t:]6d&}  
        Next j zc*qmb  
    Next i lU:z>gC  
l1gAm#  
    'main loop H1s{JJAM>i  
    EnableTextPrinting( False ) `axNeqM  
CW*6 -q  
    ypos =  dety + pixely / 2 rZKv:x}{6  
    For i = 0 To ny - 1 r1}7Q7-z  
        xpos = -detx - pixelx / 2 )#xd]~ <  
        ypos = ypos - pixely [9'5+RXw3  
;yBq'_e3  
        EnableTextPrinting( True ) !yoj ZG MB  
        Print i O4]Ss}ol  
        EnableTextPrinting( False ) H+zQz8zMC  
IR5 S-vO  
ugVsp&i#  
        For j = 0 To nx - 1 hy W4=  
g#Zb}^  
            xpos = xpos + pixelx }\JoE4  
_YmY y\g  
            'shift source rya4sxCh  
            LockOperationUpdates srcnode, True ~AjbF(Ad  
            GetOperation srcnode, 1, op jM2gu~  
            op.val1 = xpos ]r'b(R; S  
            op.val2 = ypos Vn=J$Uv0  
            SetOperation srcnode, 1, op 4) /tCv  
            LockOperationUpdates srcnode, False 14s+ &  
>Q[]i4*A  
raytrace hL67g  
            DeleteRays C UlANd"  
            CreateSource srcnode ds5<4SLj  
            TraceExisting 'draw l*B;/ >nR  
IW6;ZDP  
            'radiometry }gag?yQ.^  
            For k = 0 To GetEntityCount()-1 +:/`&LOS-  
                If IsSurface( k ) Then ndF Kw  
                    temp = AuxDataGetData( k, "temperature" ) !%T@DT=l&  
                    emiss = AuxDataGetData( k, "emissivity" ) ZZ[5Z =te?  
                    If ( temp <> 0 And emiss <> 0 ) Then OFQsfW3O  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) r[EN`AxDb  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) %#/7Tl:  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 8QFY:.h&  
                    End If hh:0m\@<  
yK{;72  
                End If ;d?4phl -.  
&NHIX(b6  
            Next k m feyR  
lq.AQ  
        Next j SV6Np?U  
34s:|w6y  
    Next i zVl(?b&CF  
    EnableTextPrinting( True ) N{|N_}X`Y  
M={k4r_t  
    'write out file pg4M$;ED  
    fullfilepath = CurDir() & "\" & fname u'Mq^8  
    Open fullfilepath For Output As #1 0sV;TQt+f  
    Print #1, "GRID " & nx & " " & ny jUW{Z@{U  
    Print #1, "1e+308" > { fX;l  
    Print #1, pixelx & " " & pixely ]%>;R^HY  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 l~F,i n.  
BO/2kL8*  
    maxRow = nx - 1 &S''fxGL  
    maxCol = ny - 1 DX4 95<6*  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) \iu2rat^  
            row = "" 9)l[$X  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) xV<NeU  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string Rqvm%sAi  
        Next colNum                     ' end loop over columns B0Xn9Tvk  
ro^Y$;G  
            Print #1, row 5-=mtvA:  
JK[7&C-O  
    Next rowNum                         ' end loop over rows R:^GNra;  
    Close #1 _W]3_1Lu  
b*?="%eE(  
    Print "File written: " & fullfilepath //V?rs  
    Print "All done!!" CO4*"~']t  
End Sub )|Y"^K%Jm  
^XZm tB  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: )WKe,:C  
qI5/ME(}  
=_.Zv  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 o6B!ikz 8  
  
E$smr\  
I-fs*yzj;8  
打开后,选择二维平面图: Jw;J$ u!d  
S`"IM?  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计