首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 !)bZ.1o  
^yW['H6V  
成像示意图
a2P)@R  
首先我们建立十字元件命名为Target D!.c??   
_r:Fmn_%-  
创建方法: Ph^1Ko" 2  
, >7PG2 a  
面1 : 'g%:/lwA  
面型:plane [FBS|v#T  
材料:Air cN@_5  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box .i*oZ'[X  
}H ~-oYMu  
d88A.Z3w  
辅助数据: L\#YFf  
首先在第一行输入temperature :300K, t4oD> =,92  
emissivity:0.1; Z@s[8wrmPl  
>h aihT  
2E1`r@L  
面2 : J%?5d:iN+  
面型:plane 8KJUC&`  
材料:Air |%|03}Q  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box ,:mL\ZED  
$b`nV4p  
yksnsHs}d  
位置坐标:绕Z轴旋转90度, # scZP  
lTC0kh  
@T^FOTW  
辅助数据: LG8h@HY&L  
,IB\1#  
首先在第一行输入temperature :300K,emissivity: 0.1; /Bt!xSI  
~u&gU1}  
LK DfV  
Target 元件距离坐标原点-161mm; 'I>USl3hI  
0si1:+t-[+  
uH*6@aYPo  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 \-yI dKj  
f-18nF7{  
x3i}IC  
探测器参数设定: QF/ULW0G!  
.e7tq\k  
在菜单栏中选择Create/Element Primitive /plane KO "/  
fG1iq<~  
x*H#?.E  
G4'Ia$  
Lf(( zk:pt  
5, $6mU#=  
元件半径为20mm*20,mm,距离坐标原点200mm。 ~B|m"qY{i  
nF'YG+;|@  
光源创建: Ry >y  
^i|R6oO_5  
光源类型选择为任意平面,光源半角设定为15度。 l:'#pZ4T  
D^4nT,&8  
- )(5^OQ  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ?Kgb-bXB  
-gvfz&Lz  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 :|n[zjK/S  
9)7$UQY  
l_}d Q&R  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 i2Wvu3,D3-  
A1/@KC"&{G  
创建分析面: sQ`G'<!  
PcC@}3  
UF7h{V})  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 8)>x)T  
&:l-;7d  
wj6u,+  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 SAdT#0J  
zjA]Tr  
FRED在探测器上穿过多个像素点迭代来创建热图 K.xABKPVc  
>$'z4TC\T  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 41<~_+-@  
将如下的代码放置在树形文件夹 Embedded Scripts, "jAd.x?X7e  
p XXf5adl<  
#DgHF*GG+>  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 =dPokLXn  
0{b} 1D  
绿色字体为说明文字, sex\dg<  
k4iiL<|  
'#Language "WWB-COM" 9 " q-Bb  
'script for calculating thermal image map dCi:@+z8  
'edited rnp 4 november 2005 qS\#MMsTd  
e4` L8  
'declarations 3'.@aMA@  
Dim op As T_OPERATION l^&#9d  
Dim trm As T_TRIMVOLUME Uuy$F  
Dim irrad(32,32) As Double 'make consistent with sampling o{y}c->  
Dim temp As Double '{AB{)1  
Dim emiss As Double U1r]e%df)  
Dim fname As String, fullfilepath As String jTR?!Mt0  
12lX-~[["  
'Option Explicit f7a4E+}  
Mq$K[]F  
Sub Main ]i#p2?BR  
    'USER INPUTS YHEn{z7  
    nx = 31 ! $$>D"  
    ny = 31 \I!mzo  
    numRays = 1000 bvtpqI QZ  
    minWave = 7    'microns r+bGZ  
    maxWave = 11   'microns {[2o  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 5z_d$.CIc  
    fname = "teapotimage.dat" 8)0]cX  
@N4~|`?U  
    Print "" cR3d& /_,U  
    Print "THERMAL IMAGE CALCULATION" N; }$!sNIm  
\o!3TK"N  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 w&?XsO@0W  
I uxf`sd  
    Print "found detector array at node " & detnode q2X::Yqk  
w~u{"E$  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ~W21%T+  
hty'L61\z  
    Print "found differential detector area at node " & srcnode w!"L\QT  
ZK]qQrIwy  
    GetTrimVolume detnode, trm `r}_92Tt  
    detx = trm.xSemiApe Y$L` G  
    dety = trm.ySemiApe -LiGO#U  
    area = 4 * detx * dety B!/kC)bF:  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety  tA#$q;S  
    Print "sampling is " & nx & " by " & ny 8lV:-"+5  
!Axe}RD'  
    'reset differential detector area dimensions to be consistent with sampling 8@rYT5e3c  
    pixelx = 2 * detx / nx R0=f`;  
    pixely = 2 * dety / ny 1(Is 7  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False .u)KP*_  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 |3FI\F;^q  
K(?V]Mxl6  
    'reset the source power =v<w29P(g  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) st) is4  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" ;JkIZ8!  
n0=]C%wr  
    'zero out irradiance array z}Cjk6z@  
    For i = 0 To ny - 1 {P6Bfh7CZ  
        For j = 0 To nx - 1 %"f85VfZ  
            irrad(i,j) = 0.0 ]00s o`  
        Next j 'mZ v5?  
    Next i ,w~3K%B4  
~ =u8H  
    'main loop :=hL}(~]  
    EnableTextPrinting( False ) QG*hQh  
3?B1oIHQ  
    ypos =  dety + pixely / 2 ^(TCUY~f&  
    For i = 0 To ny - 1 lW c[Q1  
        xpos = -detx - pixelx / 2 edMCj  
        ypos = ypos - pixely d7kE}{,  
Gt*<Awn8  
        EnableTextPrinting( True ) 'b.jKkW7  
        Print i TIJH} Ri  
        EnableTextPrinting( False ) \uTlwS  
US)i"l7:H*  
k\O<pG[U  
        For j = 0 To nx - 1 Tg^8a,Lt  
) ' xyK  
            xpos = xpos + pixelx ?>+uO0*S  
ug]2wftlQ  
            'shift source X.#*+k3s0  
            LockOperationUpdates srcnode, True h> bjG  
            GetOperation srcnode, 1, op JAHg_!  
            op.val1 = xpos V30w`\1A  
            op.val2 = ypos d9JAt-6z2  
            SetOperation srcnode, 1, op |y7TYjg6  
            LockOperationUpdates srcnode, False Y!j/,FU  
_t-6m2A  
raytrace @2"uJ6o  
            DeleteRays <zqIq9}r  
            CreateSource srcnode er_6PV  
            TraceExisting 'draw 5{yg  
nN&dtjoF  
            'radiometry p8 S~`fjV  
            For k = 0 To GetEntityCount()-1 # fF5O2E'3  
                If IsSurface( k ) Then e5AsX.kv B  
                    temp = AuxDataGetData( k, "temperature" ) L<dh\5#p9Y  
                    emiss = AuxDataGetData( k, "emissivity" ) }uMu8)Q  
                    If ( temp <> 0 And emiss <> 0 ) Then RK@K>)"f  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) jkl dr@t  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) pImq< Z  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi h*^JFZb  
                    End If jy~hLEt7  
@8c@H#H  
                End If +ase>'<N#  
z>+CMH5L)  
            Next k ]iTP5~8U  
t~qSiHw  
        Next j w)<.v+u.Y  
I8i|tQz  
    Next i f]10^y5&  
    EnableTextPrinting( True ) @8\0@[]  
+9LzDH  
    'write out file E<LH-_$  
    fullfilepath = CurDir() & "\" & fname '\QJ{/JV  
    Open fullfilepath For Output As #1 0<uL0FOT  
    Print #1, "GRID " & nx & " " & ny lre(]oBXA  
    Print #1, "1e+308" DBy%"/c  
    Print #1, pixelx & " " & pixely ih("`//nP  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 sz%]rN6$  
@[FO;4w  
    maxRow = nx - 1 &iD&C>;pf  
    maxCol = ny - 1 0xi2VN"X  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) 6GAEQ]  
            row = "" WTD86A  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) iPCn-DoIS  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 7&etnQJ{  
        Next colNum                     ' end loop over columns ymrnu-p o  
}x6)}sz7  
            Print #1, row xGOmvn^lQ  
PQi(Oc  
    Next rowNum                         ' end loop over rows tHqa%  
    Close #1 I7h v'3u  
8fQfu'LyjY  
    Print "File written: " & fullfilepath @(6P L^I  
    Print "All done!!" ,WsG,Q(K  
End Sub uCt?(E>  
sOz {spA  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: BC#`S&R  
M!hD`5.3  
,y0 &E8Z  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 "\lO Op^-  
  
,ZYPffu<*  
<D&  Ep  
打开后,选择二维平面图: Q4Wz5n1yp7  
$? Z}hU  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计