首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 M.l;!U!}  
B$lbp03z  
成像示意图
Q.8Jgel1  
首先我们建立十字元件命名为Target  T  
I/@Xr  
创建方法: ?c43cYb  
p~e6ah?1  
面1 : R.RCa$  
面型:plane 55[K[K  
材料:Air P|6m%y  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box J5l:_hZUV  
?}Mv5SO  
*k=}g][?  
辅助数据: &2c?g1%  
首先在第一行输入temperature :300K, M1oCa,8M+  
emissivity:0.1; *.K}`89T  
c(eu[vj:  
5\a5^FK~  
面2 : 9PGSr4V 1  
面型:plane #ob">R  
材料:Air .lE"N1  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box AU7c = H:?  
U3Dy:K[  
fNlUc  
位置坐标:绕Z轴旋转90度, u4Xrvfb,  
k r/[|.bq  
fY6&PuDf.  
辅助数据: 4sva%Up  
czT$mKj3  
首先在第一行输入temperature :300K,emissivity: 0.1; 3W27R  
mM95BUB  
4f/8APA  
Target 元件距离坐标原点-161mm; TQ>1u  
@ 8SYV}0H  
, R]7{7$  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 ;=E3f^'s  
GCIm_ n  
$60+}B`m  
探测器参数设定: "? R$9i  
R!-RSkB  
在菜单栏中选择Create/Element Primitive /plane `5gcc7b  
MbJV)*Q  
$A-b-`X  
3<'n>'  
N2~Nc"L  
AMkjoy3+]  
元件半径为20mm*20,mm,距离坐标原点200mm。 #kxg|G[Ol  
/njN*rhx&Z  
光源创建: vk$]$6l2  
W;o\}irep  
光源类型选择为任意平面,光源半角设定为15度。 :,cSEST  
jF'S"_/?  
jd$lu^>I  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 T}g;kppC  
H7R1GaJ  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 j:fL_1m  
F02NnF  
0chBw~@*s  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 M~^|dR)D  
]xFd_OHdb  
创建分析面: 44cyD _(  
:vm*miOF  
;Cv x48  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 7$/ O{GBJ  
whD%Oz*f  
Wb^YqqE  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 sl`\g1<{`  
zg"<N  
FRED在探测器上穿过多个像素点迭代来创建热图 >7 4'g }  
 O'_D*?  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ;ML21OjgN  
将如下的代码放置在树形文件夹 Embedded Scripts, yfi.<G)S  
w+[r$+z!k  
T?Hs_u{  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 \-c70v63X  
s,lrw~17  
绿色字体为说明文字, #W* 5=Cf  
& [4Gv61  
'#Language "WWB-COM" `a  
'script for calculating thermal image map }oloMtp$  
'edited rnp 4 november 2005 1?Wk qQ  
~-|K5  
'declarations wzF/`z&0?6  
Dim op As T_OPERATION / bfLox  
Dim trm As T_TRIMVOLUME h=?#D0  
Dim irrad(32,32) As Double 'make consistent with sampling TLw.rEN!;  
Dim temp As Double IJ[#$I+Z%  
Dim emiss As Double D1#fy=u69|  
Dim fname As String, fullfilepath As String p 0R)Yc+;  
f)/Yru. ;  
'Option Explicit uq{w1O5  
abx /h#_q  
Sub Main &*A7{76x  
    'USER INPUTS D&:,,Dp  
    nx = 31 {rf.sN~M  
    ny = 31 \"|E8A6/  
    numRays = 1000 0LN"azhz  
    minWave = 7    'microns SfEgmp-m  
    maxWave = 11   'microns 4f'1g1@$  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 auK*\Wjm?  
    fname = "teapotimage.dat" w+z~Mz}Vz  
L;wzvz\+  
    Print "" /X; [ 9&  
    Print "THERMAL IMAGE CALCULATION" jgK8} C  
hCuUX)>Bt  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 Me_.X_  
vYcea  
    Print "found detector array at node " & detnode #2^eGhwnI  
:I[nA?d[&  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Z vM~]8m  
M4~^tML>Ey  
    Print "found differential detector area at node " & srcnode .}=gr+<bf  
n&y'Mb PB  
    GetTrimVolume detnode, trm N7=lSBm  
    detx = trm.xSemiApe tHgu#k0  
    dety = trm.ySemiApe XOe)tz L  
    area = 4 * detx * dety Nb(c;|nV  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety }(FF^Mh  
    Print "sampling is " & nx & " by " & ny RoS&oGYqR  
J!YB_6b  
    'reset differential detector area dimensions to be consistent with sampling $3psSQQo  
    pixelx = 2 * detx / nx 1P;J%.{  
    pixely = 2 * dety / ny ] -iMo4H  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False !Z]#1"A8  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 :qy< G!o  
THEpW{.E  
    'reset the source power /Ps/m!  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) _c$l@8KS^  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" b\^X1eo  
rr~O6Db  
    'zero out irradiance array "{>BP$Jz  
    For i = 0 To ny - 1 a=@]Ov/  
        For j = 0 To nx - 1  -]n\|U<  
            irrad(i,j) = 0.0 )09>#!*  
        Next j \USl 9*E  
    Next i vJI]ZnL{  
@@uKOFA?  
    'main loop bAOL<0RS9`  
    EnableTextPrinting( False ) (`'(`x#  
u]0{#wu;g  
    ypos =  dety + pixely / 2 wB'GV1|jL  
    For i = 0 To ny - 1 =^ZDP1h/}  
        xpos = -detx - pixelx / 2 HV21=W  
        ypos = ypos - pixely aN UU' [  
V) xwlvX  
        EnableTextPrinting( True ) }ZqnsLu[)  
        Print i f^Io:V\  
        EnableTextPrinting( False ) +6~ut^YiM.  
OKi}aQ2R*  
uSQlE=  
        For j = 0 To nx - 1 10}< n_I  
]Xm+-{5?!R  
            xpos = xpos + pixelx yjE $o?A  
s$g3__|Y  
            'shift source ^ruz-N^Y!  
            LockOperationUpdates srcnode, True &s^t~>Gpr  
            GetOperation srcnode, 1, op w 3kX!%a:  
            op.val1 = xpos K&4FFZ  
            op.val2 = ypos 0q6xXNAX  
            SetOperation srcnode, 1, op {q!GTO  
            LockOperationUpdates srcnode, False \JLea$TM:  
z&wJ"[nOC  
raytrace utzf7?nIS  
            DeleteRays E[NszM[P  
            CreateSource srcnode u(W>HVEG  
            TraceExisting 'draw HkPdqNC&  
b9R0"w!ml  
            'radiometry tqD=)0Uzs  
            For k = 0 To GetEntityCount()-1 :lU#Dm]  
                If IsSurface( k ) Then :P8X?C63W]  
                    temp = AuxDataGetData( k, "temperature" ) B=}s7$^  
                    emiss = AuxDataGetData( k, "emissivity" ) :8t;_f  
                    If ( temp <> 0 And emiss <> 0 ) Then O>y*u8  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) 7S/\;DF  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ]y9u5H^  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi `T,^os#6  
                    End If oL U!x  
1<G,0Lt  
                End If ]P*H,&I`#  
* ,L e--t  
            Next k k 1l K`p  
\_)[FC@  
        Next j Nt,:`o |  
PO nF_FC  
    Next i .4J7 ^l  
    EnableTextPrinting( True ) ^U9b)KA  
;$vVYC  
    'write out file 3!op'X!  
    fullfilepath = CurDir() & "\" & fname %RX!Pi}5+g  
    Open fullfilepath For Output As #1 z2iWr  
    Print #1, "GRID " & nx & " " & ny 6 \?GY  
    Print #1, "1e+308" eRm*+l|?  
    Print #1, pixelx & " " & pixely 0nPg`@e.  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2  eIj2(q9  
LfvNO/:,  
    maxRow = nx - 1 ]E|E4K6g  
    maxCol = ny - 1 |JiN; O+K  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) *7{{z%5Pu  
            row = "" N C3XJ 4  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 8/@*6J  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string &,QBJx<#  
        Next colNum                     ' end loop over columns iU|X/>k?  
p^C$(}Yh  
            Print #1, row <u  ImZC  
p'kB1)~|  
    Next rowNum                         ' end loop over rows bo#?,80L}`  
    Close #1 J u"/#@  
E~S~Ld%  
    Print "File written: " & fullfilepath Q sPZ dC  
    Print "All done!!" -n:;/ere7-  
End Sub *-3*51 jW  
D1V^DbUm_  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: F6ZL{2$k@  
)&[ol9+\  
~X-v@a  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 %~\I*v04  
  
# ';b>J  
**]=!W  
打开后,选择二维平面图: CpU y~  
C_ W%]8u  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计