首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 <sE0426 {  
B0T[[%~3M  
成像示意图
`9SuDuw;s  
首先我们建立十字元件命名为Target -L}crQl.'c  
7;ZSeQ yC  
创建方法: :)_Ap{9J  
~m2tWi@  
面1 : dq?{?~3  
面型:plane X!KjRP\\  
材料:Air ;9MsV.n  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box s~W:N .}*  
l_Mi'}j  
=yJJq=!  
辅助数据: e p* (  
首先在第一行输入temperature :300K, n$i}r\ so  
emissivity:0.1; J39,x=8LL  
*_ {w0U)  
t>:2F,0K9  
面2 : C(qqGK{  
面型:plane pHSq,XP-  
材料:Air  BR;f!  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box S4508l  
Z<T%:F  
G'T/I\tB  
位置坐标:绕Z轴旋转90度, wyvrNru<l4  
H48`z'o  
LT']3w  
辅助数据:  [R:\  
t=J WD2  
首先在第一行输入temperature :300K,emissivity: 0.1; KAH9?zI)M  
H}5zKv.T  
~Q}JC3f>  
Target 元件距离坐标原点-161mm; Q$ r1beA  
!c,=%4Pb  
s_xWvx8?4.  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 (lBgW z  
AdMA|!|:hc  
g(){wCI  
探测器参数设定: %QH "x`;  
Yz4)Q1  
在菜单栏中选择Create/Element Primitive /plane x@/ N9*  
7.@$D;L9  
DA;,)A&=Q  
t ' _Au8  
(:v|(Gn/  
-? {bCq  
元件半径为20mm*20,mm,距离坐标原点200mm。 =>Ss:SGjT  
p(dJf&D  
光源创建: wn2+4> |~p  
[ aC7  
光源类型选择为任意平面,光源半角设定为15度。 FrXFm+8 F  
ODa+s>a`^  
} m5AO4:  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 {nTQc2T?;  
xdw"JS}  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 M| r6"~i  
"#Ov!t  
;o* n*N  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 5MUM{(C  
<Th) &  
创建分析面: d67Q@ ')00  
k+Ew+j1_  
P5 f p!YF  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 F|.,lb |L  
W+N9~.q\^  
K6"#&0  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 Ucnj7>+"  
[]B9Me  
FRED在探测器上穿过多个像素点迭代来创建热图 %@JNX}Y'  
f`Km ctI  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 &%3$zgvR  
将如下的代码放置在树形文件夹 Embedded Scripts, /O@'XWW  
M-> /vi  
V^Gz7`^  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ` @.  
':al4m"  
绿色字体为说明文字, qbu>YTj  
2(SK}<X  
'#Language "WWB-COM" R1.No_`PHq  
'script for calculating thermal image map _m3}0q  
'edited rnp 4 november 2005 K5X,J/n  
NR3]MGBKv  
'declarations (pY'v /a-  
Dim op As T_OPERATION F<SCW+>z2a  
Dim trm As T_TRIMVOLUME qm30,$\c`~  
Dim irrad(32,32) As Double 'make consistent with sampling % H"A%  
Dim temp As Double !YUMAp/  
Dim emiss As Double b'i-/l$  
Dim fname As String, fullfilepath As String YbS$D  
(S ~|hk^  
'Option Explicit fwvPh&U&  
^(,qkq'u D  
Sub Main m$glRs @  
    'USER INPUTS GS),rNBur  
    nx = 31 M#v#3:&5  
    ny = 31 Yr9>ATR  
    numRays = 1000 a`SQcNBf*  
    minWave = 7    'microns NpS*]vSO  
    maxWave = 11   'microns -9Iz$ (>a  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 ziFg+i%s  
    fname = "teapotimage.dat" ,P G d  
M7D@Uj&xx(  
    Print "" (#zSVtZ  
    Print "THERMAL IMAGE CALCULATION" J LOTl.  
IYtM'!u  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 WxNPAJ6YH  
"6.JpUf  
    Print "found detector array at node " & detnode Z7 \gj`  
KIt:ytFx  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 @S#>:o|  
v0pyyUqS  
    Print "found differential detector area at node " & srcnode 5p9zl=mT  
\5g7_3,3W  
    GetTrimVolume detnode, trm uc6;%=%+  
    detx = trm.xSemiApe V0'T)  
    dety = trm.ySemiApe e_Cns&  
    area = 4 * detx * dety rL+K Sb  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety  VlGg?  
    Print "sampling is " & nx & " by " & ny hg8gB8Xq  
Z<j(ZVO  
    'reset differential detector area dimensions to be consistent with sampling fC!]MhA"i  
    pixelx = 2 * detx / nx }lN@J,q  
    pixely = 2 * dety / ny kbij Zj{  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False j\V9o9D  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 eUiJl6^x  
Vq7L:,N9  
    'reset the source power Q~/TqG U  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) VUfV=&D-*g  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" h-"c )?p  
\Qa6mt2h  
    'zero out irradiance array -#yLH  
    For i = 0 To ny - 1 L0j&p[(r  
        For j = 0 To nx - 1 $6p_`LD0  
            irrad(i,j) = 0.0 JXR_klx  
        Next j aOWE\I c8  
    Next i J{98x zb  
JaC =\\B  
    'main loop &p\fdR4e  
    EnableTextPrinting( False ) ?sb Ob  
idL6*%M  
    ypos =  dety + pixely / 2 >eHSbQu/Bu  
    For i = 0 To ny - 1 !L3M\Q0  
        xpos = -detx - pixelx / 2 &_Py{Cv@Dw  
        ypos = ypos - pixely h> K~<BAz'  
>BC?% |l  
        EnableTextPrinting( True ) @=KuoIV  
        Print i X2 {n&K  
        EnableTextPrinting( False ) 5l"EQ9  
e=b>:n  
j~+<~2%c  
        For j = 0 To nx - 1 E\U6n""]  
}t4?*:\  
            xpos = xpos + pixelx x Bn+-V  
!2dA8b  
            'shift source ,Lt+*!;m  
            LockOperationUpdates srcnode, True \k?uh+xl  
            GetOperation srcnode, 1, op mmC&xZ5f  
            op.val1 = xpos L,Jl# S  
            op.val2 = ypos Ax[!7~s  
            SetOperation srcnode, 1, op B7"/K]dR:  
            LockOperationUpdates srcnode, False ;lqtw]4v  
= ;sEi:HC  
raytrace :Mz$~o<  
            DeleteRays 4@6!E^  
            CreateSource srcnode a`.] 8Jy)  
            TraceExisting 'draw cP[3p :  
lWj|7  
            'radiometry w_30g6tA  
            For k = 0 To GetEntityCount()-1 /]=d Pb%  
                If IsSurface( k ) Then 3e UTV<!  
                    temp = AuxDataGetData( k, "temperature" ) { 3=\x  
                    emiss = AuxDataGetData( k, "emissivity" ) J8|F8dcz  
                    If ( temp <> 0 And emiss <> 0 ) Then Do@:|n  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) "bFt+N  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) A^+G w\  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi )zK`*Fa az  
                    End If b>|3?G  
%x_c2  
                End If Kfnn;  
b&.j>=  
            Next k sW)C6 #  
~.qzQ_O/  
        Next j Lq@pJ)a  
bSmF"H0cP  
    Next i  V"n0"\k,  
    EnableTextPrinting( True ) / H+br_D9  
g0ec-  
    'write out file 6Q]c]cCu  
    fullfilepath = CurDir() & "\" & fname h?wNmLre  
    Open fullfilepath For Output As #1 fI"q/+  
    Print #1, "GRID " & nx & " " & ny k)D:lpxv  
    Print #1, "1e+308" ;Ab`b1B  
    Print #1, pixelx & " " & pixely mQt';|X@  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 olPV"<;+pO  
=PXQ X(_  
    maxRow = nx - 1 wD>tR SW  
    maxCol = ny - 1 :5X1Tr= A  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) ND[u$N+5x"  
            row = "" }J}a;P4  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 4`@]jm  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string t ZUZNKODW  
        Next colNum                     ' end loop over columns %=x|.e@J  
*<*{gO?Q4  
            Print #1, row O[Xl*9P  
usiv`.  
    Next rowNum                         ' end loop over rows M0`nr}g  
    Close #1 }^uUw&   
d=%:rLm$  
    Print "File written: " & fullfilepath Y(IT#x?p  
    Print "All done!!" m7X&"0X  
End Sub eUvIO+av  
<VV./W8e9  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: <,qJ% kc  
Ws?BAfP  
kYBTmz} z  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 'Im7^!-d  
  
?(GMe>  
7kU:91zR  
打开后,选择二维平面图: Ms5m.lX  
dw,Nlf~*0  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计