首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 MblRdj6  
9c^,v_W@  
成像示意图
hYoUZ'4  
首先我们建立十字元件命名为Target j_JY[sex  
G9:XEEN  
创建方法: c~<;}ve^z  
+byOThuE  
面1 : 7d;|?R-8D  
面型:plane SAP/jD$5]>  
材料:Air ^xe+(83S2?  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box K6DN>0sY  
wm~7`&  
t/;2rIx>  
辅助数据: wn"}<ka  
首先在第一行输入temperature :300K, NO!Qo:  
emissivity:0.1; f~VlCdf+  
b,'O|s]"Sc  
d{YvdN9d  
面2 : "\wMs  
面型:plane ;e?M;-  
材料:Air +d3|Up8=  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box </[.1&S+\  
C hF~  
 qb? <u  
位置坐标:绕Z轴旋转90度, <- \|>r Q  
6?a`'&  
-#ZvjEaey  
辅助数据: Qu|CXUk  
1_+ h"LE  
首先在第一行输入temperature :300K,emissivity: 0.1; @j|E"VYY  
ZDW9H6ux  
httywa^  
Target 元件距离坐标原点-161mm; }Ulxt:}   
3RaduN]  
xO|r<R7d7  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 I!hh_  
rqjq}L)  
R1zt6oY  
探测器参数设定: 3"x_Y  
CXq[VYM&X  
在菜单栏中选择Create/Element Primitive /plane +p%3pnj:K  
R,3cJ Y_%  
~e}JqJ(97  
n{gEIUo#  
C5~~$7k0  
` @QZK0Ox  
元件半径为20mm*20,mm,距离坐标原点200mm。 %n|  
sT?{  
光源创建: ~$y"Ldrp  
Ja6KO2}p  
光源类型选择为任意平面,光源半角设定为15度。 iwF_'I$#N  
cO J`^^P  
Wk[a|>  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 AX`T ku  
LhL |ETrJ  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 Z!g6uV+.5  
Tri\5O0lPs  
VlV X  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 lsax.uG5x  
z|>TkCW6  
创建分析面: "W(D0oy  
Em!- W5*s  
&qbEF3p^@  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 it}h8:^<  
Wep^He\:  
'ma X  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 &@lfr623  
Cfi4~&  
FRED在探测器上穿过多个像素点迭代来创建热图 ZXx1S?u  
Zv@qdY<:  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 rD}g9?ut  
将如下的代码放置在树形文件夹 Embedded Scripts, =f~<*wQ  
vbmt0df  
`Abd=1nH  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 J.UNw8z  
9G[ DuYJI  
绿色字体为说明文字, )^(gwE  
wh(_<VZ  
'#Language "WWB-COM" y_9\07va<  
'script for calculating thermal image map z@ `o(gh  
'edited rnp 4 november 2005 % mQ&pk  
iDDJJ>F26  
'declarations Sqa9+' [  
Dim op As T_OPERATION 3S3 a|_+%  
Dim trm As T_TRIMVOLUME %6q82}#`  
Dim irrad(32,32) As Double 'make consistent with sampling 0)|Z 7c&  
Dim temp As Double $z_yx `5  
Dim emiss As Double atZe`0  
Dim fname As String, fullfilepath As String 6 ) i-S<(  
f9#zV2ke]  
'Option Explicit 8-<F4^i_i  
^t3>Z|DiB^  
Sub Main [3X\"x5@V  
    'USER INPUTS uqcG3Pi  
    nx = 31 vhF9|('G  
    ny = 31 48 -j  
    numRays = 1000 %1 )c{7  
    minWave = 7    'microns x{;{fMN1  
    maxWave = 11   'microns 7I ~O| Mw  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 B=OzP+  
    fname = "teapotimage.dat" YXp\C"~g  
A l;a~45  
    Print "" &KMI C  
    Print "THERMAL IMAGE CALCULATION" ;?{^LiD+F  
a &tWMxBr  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 -Y524   
'=;e# C`<{  
    Print "found detector array at node " & detnode y`j_]qvt  
F%V|Aa  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 h2'6W)  
=bh: U90y  
    Print "found differential detector area at node " & srcnode 9&r]k8K  
v9 \n=Z  
    GetTrimVolume detnode, trm wa,`BAKJ+F  
    detx = trm.xSemiApe #U-y<[ 3  
    dety = trm.ySemiApe 'TYO-'aC  
    area = 4 * detx * dety M.Q HE2  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety t<te{yt%  
    Print "sampling is " & nx & " by " & ny -o~zb-E  
j)/Vtf  
    'reset differential detector area dimensions to be consistent with sampling rd&d~R6  
    pixelx = 2 * detx / nx ;>2-  
    pixely = 2 * dety / ny ~ox}e(x y  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ; s(bd#Q  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 N?m)u,6-l  
z#!<[**&  
    'reset the source power ]0'cdC  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) KGDN)@D  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" ;#zteqn  
_b8KK4UR  
    'zero out irradiance array (ORbhjl  
    For i = 0 To ny - 1 ?8$`GyjS  
        For j = 0 To nx - 1 `.;U)}Tn  
            irrad(i,j) = 0.0 Z4G%Ve[  
        Next j ;q'-<O   
    Next i ,JI]Eij^  
\ C:Gx4K  
    'main loop *Z"cXg^ti  
    EnableTextPrinting( False ) \X\< +KU  
} Nn+Ny  
    ypos =  dety + pixely / 2 V_ (Ly8"1;  
    For i = 0 To ny - 1 3]1 ! g6  
        xpos = -detx - pixelx / 2 +E9G"Z65iP  
        ypos = ypos - pixely W'9{2h6u(  
Oa:C'M b  
        EnableTextPrinting( True ) &wU"6E  
        Print i nZ=[6?  
        EnableTextPrinting( False ) 28v^j*=* \  
_t,aPowX  
 I wj[ ^  
        For j = 0 To nx - 1 N'{Yhx u  
*[cCY!+Qy  
            xpos = xpos + pixelx ;m] nl_vg  
6v{&,q  
            'shift source }{+?>!qDt  
            LockOperationUpdates srcnode, True \roJf&O }  
            GetOperation srcnode, 1, op jh z*Y}MX  
            op.val1 = xpos i5(qJ/u  
            op.val2 = ypos CSjd&G *ZB  
            SetOperation srcnode, 1, op >#n"r1  
            LockOperationUpdates srcnode, False ?`OF n F,K  
7_36xpw  
raytrace \<9aS Y'U  
            DeleteRays vg?(0Gasm*  
            CreateSource srcnode aVHID{Gf Z  
            TraceExisting 'draw U}HSL5v  
[pms>TQ2  
            'radiometry u0) O Fz  
            For k = 0 To GetEntityCount()-1 =M:Po0?0E  
                If IsSurface( k ) Then LTBH/[q5  
                    temp = AuxDataGetData( k, "temperature" ) y)L X?d  
                    emiss = AuxDataGetData( k, "emissivity" ) 3R$R?^G  
                    If ( temp <> 0 And emiss <> 0 ) Then #Qg)4[pMJ  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) B}NJs,'FJ  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) 29 !QE>Q  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi Ax|'uvVAPT  
                    End If 8T.bT6  
C&@'oLr  
                End If [e\IHakj  
q%bFR[p<*  
            Next k K_t >T)K  
XRM/d5  
        Next j nQ'NS  
'%_K"rb  
    Next i (' %Y3z;  
    EnableTextPrinting( True ) "Cvr("'O  
5KbPpKpd  
    'write out file }'{"P#e8"q  
    fullfilepath = CurDir() & "\" & fname zGme}z;1@  
    Open fullfilepath For Output As #1 AzzHpfv,  
    Print #1, "GRID " & nx & " " & ny DB|w&tygq  
    Print #1, "1e+308" F@z%y'5 Z*  
    Print #1, pixelx & " " & pixely *Q2 oc:6  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 f3vl=EA4|  
b&,Z mDJh  
    maxRow = nx - 1 a{^ 2c!  
    maxCol = ny - 1 O)R}|  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) TqS s*as5  
            row = "" Qru&lAYc<  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) EBWM8~Nm#  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string MowAM+?^}  
        Next colNum                     ' end loop over columns zNGUll$  
/J"fbBXwY  
            Print #1, row V]]!0ugvk(  
Nz"K`C>/  
    Next rowNum                         ' end loop over rows 7r3CO<fb  
    Close #1 67H?xsk@n  
9;n*u9<  
    Print "File written: " & fullfilepath Uv?^qe0=  
    Print "All done!!" pi70^`@'B  
End Sub ZJFF4($qN  
8)s0$64Ra  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: zSMM?g^T  
Nv0a]Am  
DIP%*b#l$\  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 fwx^?/5j  
  
`X ()"Qw  
~[aV\r?  
打开后,选择二维平面图: x~m$(LT  
1f"}]MbLR  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计