| infotek |
2022-01-24 09:30 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 02_%a1g <QyJJQM
成像示意图 .'y]Ea 首先我们建立十字元件命名为Target $=iV)- s3*h=5bX= 创建方法: !kl9X-IiI a;Q.R 面1 : :i&ZMH,O 面型:plane EVW{!\8[ 材料:Air \WnI&nu 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 9oK#n'hjb Q}N.DM@d3
,[lS)`G 辅助数据: (CRY$+d 首先在第一行输入temperature :300K, MHv2r emissivity:0.1; JwNG`MGc Su0[f/4m.Q QGYO{S 面2 : s 9,?"\0Zm 面型:plane rTiW 材料:Air %8 )GuxG* 孔径:X=1.5, Y=6,Z=0.075,形状选择Box v(?^#C>6W Ub%al
D .`OyC' 位置坐标:绕Z轴旋转90度, I-E}D"F;p[ I@ l'Fx
xHv<pza: 辅助数据: 0Dj<-n{9 6OJ`R.DM` 首先在第一行输入temperature :300K,emissivity: 0.1; =y; tOdj QfuKpcT& -0 [^w Target 元件距离坐标原点-161mm; AR i_m P#/k5]g
K<O1PrC 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 k#8,:B2 (c `t'e qNP&f8fH 探测器参数设定:
o*2TH2 }JXAG/<
在菜单栏中选择Create/Element Primitive /plane Vd2bG4*= ~yH<,e
G 2]/g / c1=`OJ [HJ^'/bB' z116i?7EnV 元件半径为20mm*20,mm,距离坐标原点200mm。 b{|Ha3;w G 3HmLz 光源创建: uV r6tb1 Y_3{\g|x 光源类型选择为任意平面,光源半角设定为15度。 12\h| S~ S) /(~ ;iJ*.wVq 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 yUF<qB _RT3Fk 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 {=WTAgP C%LRb{|d _T6l*D 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 q-%;~LF /3F4t
V 创建分析面: pp$WM\r '!*,JG5_ H#IJ&w| 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 bmT_tNz Hi$J@xU
q@K;u[zFK 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 "oZ-W?IK E `mTpL^f FRED在探测器上穿过多个像素点迭代来创建热图 a?bSMt}
fZK&h. FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 lf4V;|!^ 将如下的代码放置在树形文件夹 Embedded Scripts, p._BG80 hj@< wU
P?GHcq$\ 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 t#tAvwFM8 QiB^U^f 绿色字体为说明文字, Az.(tJ X" >U\,(VB '#Language "WWB-COM" gUf-1#g4\` 'script for calculating thermal image map \}SA{) 'edited rnp 4 november 2005 hsIC5@s3 Y !e 'declarations xc[LbaBG Dim op As T_OPERATION tu}AJ Dim trm As T_TRIMVOLUME UR|UGldt_T Dim irrad(32,32) As Double 'make consistent with sampling #9aB3C Dim temp As Double W99MA5P Dim emiss As Double }oHA@o5 Dim fname As String, fullfilepath As String BgLW!|T[ '\qd{mM\r 'Option Explicit [MfKBlA +g8wc(<ik Sub Main N*6Y5[g!\ 'USER INPUTS .#zmX\a nx = 31 nN!/ ny = 31 ?0_Bs4O\ numRays = 1000 7'pCFeA>=T minWave = 7 'microns Hn"xn79nc maxWave = 11 'microns YEF|SEon0 sigma = 5.67e-14 'watts/mm^2/deg k^4 #g,JNJ} fname = "teapotimage.dat" 5MsE oLg e573UB Print "" AfmGA9 Print "THERMAL IMAGE CALCULATION" P$z8TDCH 8x$BbK detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 o:E+c_^q` | k"?I Print "found detector array at node " & detnode Qhlgu! JBa( O-T srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 b~?FV>gl >SO !{ Print "found differential detector area at node " & srcnode ~e<l`rg# B WdR~|2 GetTrimVolume detnode, trm icW?a9 b& detx = trm.xSemiApe KLpu7D5(| dety = trm.ySemiApe 6.? Ke8iC area = 4 * detx * dety L}O_1+b Print "detector array semiaperture dimensions are " & detx & " by " & dety 49b#$Xq Print "sampling is " & nx & " by " & ny My'u('Q% .>z)6S_G 'reset differential detector area dimensions to be consistent with sampling =!{7ZSu\ pixelx = 2 * detx / nx o.yuz+ pixely = 2 * dety / ny ]jNv}{ SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ,-7w\%* Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 mY9^W2: -V@vY42 'reset the source power p9w<|ZQ]: SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) W]Z;=-CBr Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Q]WjW'Ry\ UJ-IK|P.# 'zero out irradiance array BS<5b*wG For i = 0 To ny - 1 a4HUP* For j = 0 To nx - 1 +92/0 irrad(i,j) = 0.0 TJS/ O~= Next j ?f!w:zp Next i +4G]!tV6 r 7w1~z 'main loop 3|4jS"t{f EnableTextPrinting( False ) $$7Mq*a> qW8sJ= ypos = dety + pixely / 2 ` #Qlr+X For i = 0 To ny - 1 rEwEdyK xpos = -detx - pixelx / 2 ;=goIsk{Q ypos = ypos - pixely -*8 |J; ~#/NpKHT@A EnableTextPrinting( True ) Ua^#.K Print i -a:+ h\K EnableTextPrinting( False ) k}T#-Gb -#Xo^-& !{'C.sb?~ For j = 0 To nx - 1
Q)eYJP=W eZes) &4 xpos = xpos + pixelx m\QUt ; 8Jnb/A} 'shift source ``*iK LockOperationUpdates srcnode, True 0mcZe5RS GetOperation srcnode, 1, op \.c op.val1 = xpos 13
`Or(>U op.val2 = ypos A1Tk6i<F1 SetOperation srcnode, 1, op y;zp*(}f$h LockOperationUpdates srcnode, False M*M,Z J3Ipk-'lx raytrace chw6_ctR> DeleteRays K
q;X(&Z CreateSource srcnode DC?U+ TraceExisting 'draw I8*_\Ez mS)|i+5 'radiometry (+SfDL$m For k = 0 To GetEntityCount()-1 OW}ny If IsSurface( k ) Then a<%Ivqni temp = AuxDataGetData( k, "temperature" ) OV<'v%_& emiss = AuxDataGetData( k, "emissivity" ) /)6+I(H If ( temp <> 0 And emiss <> 0 ) Then {4B{~Qe; ProjSolidAngleByPi = GetSurfIncidentPower( k ) TmI~P+5w frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) $tKz|H) irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi (jj=CLe End If "u#,#z_ PVfky@wl" End If SUv(MA& ]w7wwU^^*U Next k 0hJ,l. .gZ1}2GF= Next j ^FO&GM2a dMn0nc+ Next i p7H0|> EnableTextPrinting( True ) =3K}]3f #8xP,2&zf 'write out file 6ZvGD}/ fullfilepath = CurDir() & "\" & fname FU]jI[ Open fullfilepath For Output As #1 C/34K( Print #1, "GRID " & nx & " " & ny k*xMe- Print #1, "1e+308" 7T[Kjn^{Oj Print #1, pixelx & " " & pixely _JEe] Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 P_(QG
6 BqoGHg4iq maxRow = nx - 1 EV=/'f[++ maxCol = ny - 1 JU>F&g/| For rowNum = 0 To maxRow ' begin loop over rows (constant X) l~",<bTc row = "" MS7rD%(,' For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) a!?JVhD& row = row & irrad(colNum,rowNum) & " " ' append column data to row string =}F}XSvXH Next colNum ' end loop over columns c&>S %s&"gWi Print #1, row )4O>V?B QOT|6)Yb Next rowNum ' end loop over rows ;RR\ Hwix Close #1 OSu/!Iv\ BIQQJLu Print "File written: " & fullfilepath &9j*Y Print "All done!!" TUy
25E End Sub JE~;gz] k-CW?= 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: zWO!z= K;L6<a A# >f\$~cp 找到Tools工具,点击Open plot files in 3D chart并找到该文件 /#Fz
K _&SST)Y| _keI0ML-# 打开后,选择二维平面图: O3/w@q Q 6<t<hP_3O
|
|