| infotek |
2022-01-24 09:30 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 ?~oc4J*>( R!>SN0
成像示意图 $-39O3 首先我们建立十字元件命名为Target 3+!G9T! Zy>y7O(, 创建方法: o3le[6C/8= uao#=]?) 面1 : WKq{g+a 面型:plane ayLINpL 材料:Air Kw`}hSE>o 孔径:X=1.5, Y=6,Z=0.075,形状选择Box mqiCn]8G E.CG
(,RL\1zJ 辅助数据: bFJ>+ {# 首先在第一行输入temperature :300K, RuOse9 emissivity:0.1; QL-E4] $8Gj9mw4e' = @lM* 面2 : > v4+@o[~ 面型:plane 5zF$Q {3 材料:Air 6<YAoo 孔径:X=1.5, Y=6,Z=0.075,形状选择Box ~{t<g;F 3.Jk-:u %m k%;oc$0G-3 位置坐标:绕Z轴旋转90度, N\fj[?f[ 5W09>C>OC
es\Fn#?O 辅助数据: zo1fUsK? 2
yRUw 首先在第一行输入temperature :300K,emissivity: 0.1; VD+v\X_ >Xxi2Vy :{aiw?1 Target 元件距离坐标原点-161mm; caL\ d (b7',:_U7
sLc,Dx"+ 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 CZkmd PD-*rG ` WFvVu3 探测器参数设定: wjHH%y d}@n,3 在菜单栏中选择Create/Element Primitive /plane Gf-GDy\{ Ru$%gh>v
9x#Tj/5% yB4eUa!1 e[db?f2! 9r 5( 元件半径为20mm*20,mm,距离坐标原点200mm。 Fh}GJE jEL"Q?# 光源创建: HcGbe37Xq FW3uq^ 光源类型选择为任意平面,光源半角设定为15度。 q<cxmo0S oW6b3Q/B U XOf 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 MSe>1L2= 6|1*gl1_LD 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 D4T(Dce m:cWnG u0%bv\$m 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 i4)]lWnd
*,,:;F^ 创建分析面: RP9~n)h~b
'T]Ok\ -`1)yhS 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 }synU]^7\ Qa"4^s
)4n]n:FjN 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 `~h8D9G fjm3X$tR FRED在探测器上穿过多个像素点迭代来创建热图 Eg1|Kg\& UGP&&A#T- FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 D 75;Y;E 将如下的代码放置在树形文件夹 Embedded Scripts, J>fq5 -#r=
e+y%M 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 (w
Q,($@ +ux`}L( 绿色字体为说明文字, -5@hU8B'a jOL=vG '#Language "WWB-COM" vQ>8>V 'script for calculating thermal image map B8>@q!G8P 'edited rnp 4 november 2005 fBKN?]BdN &H2j3De 'declarations Us3zvpy)o Dim op As T_OPERATION ,t39~w Dim trm As T_TRIMVOLUME DK|/|C}6 Dim irrad(32,32) As Double 'make consistent with sampling QfL8@W~e Dim temp As Double eH%i8a Dim emiss As Double j+2-Xy' Dim fname As String, fullfilepath As String 2c3/iYCKP n%6=w9.%c 'Option Explicit n.1$p m[Qr>= " Sub Main b6'ZVB 'USER INPUTS 5Trc#i<\ nx = 31 tD]vx`0> ny = 31 ;ih;8 numRays = 1000 !ozHS_ minWave = 7 'microns /Ur]U
w maxWave = 11 'microns :d@RN+U sigma = 5.67e-14 'watts/mm^2/deg k^4 >n%ckL|rG fname = "teapotimage.dat" 3vEwui-5 4r9AU mJqw Print "" hO(A_Bw Print "THERMAL IMAGE CALCULATION" QG09=GQ @`HW0Y_: detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 @ZtvpL}e !iUT Re Print "found detector array at node " & detnode MgHO WoF N'?#g`*KW srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 R)%I9M, `(~oZbErM Print "found differential detector area at node " & srcnode BuS[( 3*oZol/ GetTrimVolume detnode, trm >eX 9dA3X detx = trm.xSemiApe `Nv7c{M^ dety = trm.ySemiApe e)|5P area = 4 * detx * dety 5B;;{GR Print "detector array semiaperture dimensions are " & detx & " by " & dety #}[NleTVt Print "sampling is " & nx & " by " & ny P@U2Q%\ !~Kg_*IT 'reset differential detector area dimensions to be consistent with sampling l2kUa'O- pixelx = 2 * detx / nx aO*v"^oF pixely = 2 * dety / ny G1wJ]ar SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False [f=Y*=u9, Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 Kae-Y i.e4<|{ 'reset the source power @E=77Jn[px SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) fj[Kbo 7!h Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Lg|]|,%e *Z3b6X'e 'zero out irradiance array kk}_AZ0eK For i = 0 To ny - 1 E|_}?>{R For j = 0 To nx - 1 JG{`tTu irrad(i,j) = 0.0 p+${_w>pl{ Next j FPu$N d&\ Next i . $
HE C9eisUM 'main loop ,Eo\(j2F. EnableTextPrinting( False ) FDuIm,NI "lL/OmG ypos = dety + pixely / 2 yn.[- For i = 0 To ny - 1 'AZxR4W xpos = -detx - pixelx / 2 6ck%M#v ypos = ypos - pixely Twk<< UtHloq(r EnableTextPrinting( True ) }|l7SFst Print i AL|3_+G EnableTextPrinting( False ) ]2MX7 imyfki $B Nf}i/ For j = 0 To nx - 1 8qoA5fW> 0+AMN- xpos = xpos + pixelx *TPWLR ^ T[2<_ nn= 'shift source FhQb9\g LockOperationUpdates srcnode, True t"YN:y8- GetOperation srcnode, 1, op |Gr@Mi5 op.val1 = xpos [<nd+3E op.val2 = ypos 'a"Uw"/p[ SetOperation srcnode, 1, op q XB E3 LockOperationUpdates srcnode, False qf{HGn_9~1 kA9 k^uR/ raytrace sY?sQ'E2] DeleteRays Y[W]YPs CreateSource srcnode :c(#03w*C TraceExisting 'draw R#s_pW{op o8SP#ET"n 'radiometry a >k9&
w For k = 0 To GetEntityCount()-1 bb$1zSA If IsSurface( k ) Then -jVg{f! temp = AuxDataGetData( k, "temperature" ) 38%"#T3# emiss = AuxDataGetData( k, "emissivity" ) 0f9U:)1z If ( temp <> 0 And emiss <> 0 ) Then Bf" ZmG9 ProjSolidAngleByPi = GetSurfIncidentPower( k ) 7H4kj7UK frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) gBZNO! a,d irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 1yTw*vH F End If ?',Wn3A Fzz9BEw(i End If V(Oi!(H;v 7mL1$i6= Next k !e('T@^u6u .ZM0cwF Next j ?"@SxM~\ L5CnPnF Next i ^Zlbs
goZ EnableTextPrinting( True ) wV,=hMTd&\
JY_!G 'write out file ?i}wm` fullfilepath = CurDir() & "\" & fname |C>\ku* Open fullfilepath For Output As #1 "WH
&BhQYD Print #1, "GRID " & nx & " " & ny `0-i>> Print #1, "1e+308" V=c?V/pl Print #1, pixelx & " " & pixely epcvwM/A Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 M`xI N~ p$<){,R maxRow = nx - 1 FPEab69 maxCol = ny - 1 &09G9G snQ For rowNum = 0 To maxRow ' begin loop over rows (constant X) :)Da^V row = "" Vc+~yh.) For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) @9\E row = row & irrad(colNum,rowNum) & " " ' append column data to row string B0^:nYko Next colNum ' end loop over columns m3|l-[!OA" HN<e)E38 Print #1, row Kc+9n%sp <iM}p^jX9 Next rowNum ' end loop over rows ZQmg;L&7 Close #1 fLV@~T| iu{QHjZK( Print "File written: " & fullfilepath RI BB* Print "All done!!" d!"gb,ec End Sub ?l`|j* FQcm= d_s 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: %t$)sg] pWKI^S V_KHVul 找到Tools工具,点击Open plot files in 3D chart并找到该文件 T? ,Q=. P+,YWp 'f6!a5qC 打开后,选择二维平面图: Nl{on"il <O{G&
|
|