| infotek |
2022-01-24 09:30 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 5/<Y,eZ/ ?##GY;#
成像示意图 $
a7^3 首先我们建立十字元件命名为Target
8~7EWl RIlPH~
创建方法: +dRTHz fpUX
@b 面1 : URwFN OM2 面型:plane e^fjla5 材料:Air h 9/68Gc?6 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 3? "GH1e Z1zC@z4sUj
MwZ`NH|n3" 辅助数据: <?eZ9eB 首先在第一行输入temperature :300K, a<Ta *:R$0 emissivity:0.1; fO+;%B -J:vYhq|g F-t-d1w6 面2 : #cA}B
L!3 面型:plane 99x]DY 材料:Air 71eD~fNdx 孔径:X=1.5, Y=6,Z=0.075,形状选择Box mtp[] . 2WZb_B u:k#1Nn! 位置坐标:绕Z轴旋转90度, f;*\y!|lg~ w t}a`hxu
4V=dD<3m 辅助数据: %PQC9{hUy$ /#HY-b 首先在第一行输入temperature :300K,emissivity: 0.1; l#%w,gX Sx}h$E: a)xN(xp## Target 元件距离坐标原点-161mm; /[mCK3_ (jXgJ" m
SU:Cm:$ 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 <[*s%9)'9 #nnP.t m eL],\\q 探测器参数设定: * fx<>aK t+pI<c^]y 在菜单栏中选择Create/Element Primitive /plane
YEGXhn5E s)> ]'ii
X"R;/tZ S4 =,sMOJc> Z)HQlm aJ2-BRn 元件半径为20mm*20,mm,距离坐标原点200mm。 \Ew2@dF{O ,}bC 光源创建: .DT1Jvl z E{.oi 光源类型选择为任意平面,光源半角设定为15度。 ]wP)!UZ 2o,%O91p b2z~C{l 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 R|_?yV[ xi-^_I 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 YoXXelO&
@wB$qd;v Hkpn/,D5 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 E*[X\70 W}KtB1J
创建分析面: =oSv=xY RS$e^_ W sLCL\dWT 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 F3+)bIz w+Ag!O}.L
z}Xn>-N- 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 z[vMO% Rj-<tR{ FRED在探测器上穿过多个像素点迭代来创建热图 #[2]B8NZ &B[$l`1 FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 -\LB>\;qn 将如下的代码放置在树形文件夹 Embedded Scripts, 9NVe>\s_ JGJQ5zt
5gi`&t` 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 XjWoUnz 0,,x|g$TpT 绿色字体为说明文字, s fazrz`h U<*ZY` B3 '#Language "WWB-COM" 53#7Yy 'script for calculating thermal image map 3:!+B=woR 'edited rnp 4 november 2005 Uq7 y4zJ t(^c]*r~ 'declarations Hw_(Af?C Dim op As T_OPERATION ZY=x$($f Dim trm As T_TRIMVOLUME |eJ4"OPC Dim irrad(32,32) As Double 'make consistent with sampling {3'z}q Dim temp As Double ?-Fp rC Dim emiss As Double F+|zCEc Dim fname As String, fullfilepath As String wS#.Wzp.w ](:aDHa 'Option Explicit <1>\?$)D m8fxDepFA Sub Main ]k5l]JB 'USER INPUTS Ydh]EO0' nx = 31 J)6f"{} & ny = 31 3S ,D~L^ numRays = 1000 g*TAaUs|n minWave = 7 'microns {!@Pho) Q maxWave = 11 'microns pX+ `qxF\ sigma = 5.67e-14 'watts/mm^2/deg k^4 94LFElE3 fname = "teapotimage.dat" ._Wm%'uX noV]+1#"V Print "" zaf%% Print "THERMAL IMAGE CALCULATION" ul1#_xp nJNdq`y2 detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 J[du>1D k/ls!e? Print "found detector array at node " & detnode Pl9/1YhD/ }>>lgW>n,; srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 .|;`qUo ]N,n7v+} Print "found differential detector area at node " & srcnode *^ g7kCe( lZ'-?xo GetTrimVolume detnode, trm eJIBkFW/3y detx = trm.xSemiApe %s6|w=.1 dety = trm.ySemiApe B>Mr/' area = 4 * detx * dety LcI,Dy|P Print "detector array semiaperture dimensions are " & detx & " by " & dety :Em[>XA Print "sampling is " & nx & " by " & ny 1$]4g/":o 4Bsx[~ u& 'reset differential detector area dimensions to be consistent with sampling k.NgE/;3 pixelx = 2 * detx / nx IDyf9Zra? pixely = 2 * dety / ny "hdcB
0 SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 8&\<p7}=h Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 Xkk m~sM6 $fR[zBxA 'reset the source power S;[9
hI+ SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) LS}dt?78`V Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" *W~+Nho.A l:5x*QSX 'zero out irradiance array 3iMh)YH5b For i = 0 To ny - 1 +}@1X&v: For j = 0 To nx - 1 21_>|EKp irrad(i,j) = 0.0 X`YA JG Next j dcew`$SJp Next i \#Ez["mD
%{Ez0XwGCn 'main loop )o-rg
EnableTextPrinting( False ) x>TH yY[sq Y;JV9{j ypos = dety + pixely / 2 ,{!~rSq-l For i = 0 To ny - 1 Q[O[,Rk xpos = -detx - pixelx / 2 `uo'w:Q ypos = ypos - pixely #0V$KC*> B/hL EnableTextPrinting( True ) yu"enA Print i %Aq+t&-BCX EnableTextPrinting( False ) ^W+q!pYM9+ O+ ~.p \q(DlqTqs For j = 0 To nx - 1 bq{":[a 8DHohhN xpos = xpos + pixelx xrd@GTaI })f4`$qf 'shift source J-yj&2 LockOperationUpdates srcnode, True [9| 8p$ GetOperation srcnode, 1, op :d\ne op.val1 = xpos sJu^deX
op.val2 = ypos o\6A]T=R SetOperation srcnode, 1, op oVk*G LockOperationUpdates srcnode, False t4>%<'>e %5.aC|^} raytrace }#va#Nb(, DeleteRays Y?G\@6 CreateSource srcnode Wm! lWQu7 TraceExisting 'draw UZ#Yd|'PD 4Rj;lAlwB 'radiometry S?_/Po| For k = 0 To GetEntityCount()-1 )* 5R/oy, If IsSurface( k ) Then ,[fn? s r temp = AuxDataGetData( k, "temperature" ) ~u|k1 emiss = AuxDataGetData( k, "emissivity" ) K8xwPoRL If ( temp <> 0 And emiss <> 0 ) Then A<-Prvryt ProjSolidAngleByPi = GetSurfIncidentPower( k ) 7 $AEh+f frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) itV@U irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 1|/P[!u End If M\\t)=q ;{'{*g[ End If AfAg#75q pd2Lc
$O@ Next k -XNjyXm2 .PjJ g^^ Next j c|?0iN `\!oY;jk Next i Q(Q.( EnableTextPrinting( True ) L,G{ t^j /HCd52 'write out file =fk+"!-i%" fullfilepath = CurDir() & "\" & fname H{}0-0o Open fullfilepath For Output As #1 ;e~Z:;AR Print #1, "GRID " & nx & " " & ny F~j
U; L Print #1, "1e+308" Y JzKE7%CO Print #1, pixelx & " " & pixely *a}NRf}W Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 m?LnO5Vs Np$peT[ maxRow = nx - 1 l"9.zPvT< maxCol = ny - 1 FnkB
z5D For rowNum = 0 To maxRow ' begin loop over rows (constant X) =~;SUO row = "" $x_6
.AOZ, For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) Lbb{ z row = row & irrad(colNum,rowNum) & " " ' append column data to row string dMkDNaH, Next colNum ' end loop over columns Y4E UW% xDtq@Rb} Print #1, row QUa_gYp0v N~I2~f Next rowNum ' end loop over rows 1O" Mo Close #1 +)8,$1[p| F!v`._] Print "File written: " & fullfilepath )na8a! Print "All done!!" 3a#X:? End Sub )C>4?) qf7:Q?+.| 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: Ec!fx\ eK]g FXk rKZ1
c,y 找到Tools工具,点击Open plot files in 3D chart并找到该文件 GL4-v[]6I \)H} fAx7_}k/ m 打开后,选择二维平面图: aDJ\% f5)4H
|
|