| infotek |
2022-01-24 09:30 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 r~t7Z+PXF _Fjv.VQ,
成像示意图 _XtY/7n 首先我们建立十字元件命名为Target BcWReyO<M i=UJ*c 创建方法: %Z|*!A+wN5 WBdb[N6\ 面1 : !{LwX Kf 面型:plane m 9S5;kB] 材料:Air X35hLp8 M 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 3@JwL{C o\#e7 Hqbh
r+crE %- 辅助数据: vC1 `m 首先在第一行输入temperature :300K, fQh!1 R emissivity:0.1; C0wq ,\b5M`<c ljRR 面2 : 4{=Em5`HbO 面型:plane *np|PyLP: 材料:Air ZhU2z*qN# 孔径:X=1.5, Y=6,Z=0.075,形状选择Box i|e-N?l jw)t"S/E 1^mO"nX 位置坐标:绕Z轴旋转90度, X-)6.[9f Mtlj I6
YDJc@*D 辅助数据: u/:@+rTV_ d!cx%[ 首先在第一行输入temperature :300K,emissivity: 0.1; ic+iTH r=;k[*;{ ek<U2C_u# Target 元件距离坐标原点-161mm; 6IA~bkc} \}5\^&}_
d>f5Tl\E 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 qdh D6#r F/h)azcn ESAh(A)8 探测器参数设定: mb/Y r QF%; 在菜单栏中选择Create/Element Primitive /plane EW)]75o{QF [&$z[/4:8c
\W4SZR%u rBaK$Ut :hr%iu vhKD_}}aP 元件半径为20mm*20,mm,距离坐标原点200mm。 98l#+4+ RAvV[QkT 光源创建:
}0I ! n@ TAP/gN' 光源类型选择为任意平面,光源半角设定为15度。 oPi)#|jcb 1mf_1spB &A>J>b 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 1K!7FiqY XS>4efCJ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 |e!Sm{#! K:y>wyzl l`d=sOB^ 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 jd#{66: u >x2 创建分析面: g\2Y605DM ]C_6I\Z#=W l#Iof)@# 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 /IgTmXxxj NWFZ:h@v
`*!.B 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 8<xJmcTEwO wI)W:mUZZ FRED在探测器上穿过多个像素点迭代来创建热图 #+XKfumLk 2e+DUZBoC FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 0&<{o!>k 将如下的代码放置在树形文件夹 Embedded Scripts, 7:]I@Gc' wEk9(|
h)sc-e 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 % 30&6 " .iw+# 绿色字体为说明文字, y2)~ljR Hc}(+wQN% '#Language "WWB-COM" Xf:-K(%e 'script for calculating thermal image map =r`>tWs 'edited rnp 4 november 2005 07n=H~yU P'zA=Rd&~> 'declarations 9n1O@~ Dim op As T_OPERATION M^H357r% Dim trm As T_TRIMVOLUME *T 6<'a Dim irrad(32,32) As Double 'make consistent with sampling nlh%O@, Dim temp As Double Bp9
u6R Dim emiss As Double H`kfI"u8 Dim fname As String, fullfilepath As String ="MG>4j3.F d^4!=^HN 'Option Explicit 6*CvRb& r" ^P>8 Sub Main &rjMGk"& 'USER INPUTS 1--5ok
h nx = 31 ZM0vB% M| ny = 31 IpHGit28 numRays = 1000 J-b
Z`)[Q minWave = 7 'microns sOv:/' maxWave = 11 'microns fAXF_wj sigma = 5.67e-14 'watts/mm^2/deg k^4 x]w%?BlS fname = "teapotimage.dat" [Qr#JJ pLNv\M+ Print "" {o AJL Print "THERMAL IMAGE CALCULATION" H&l/o uPt({H detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 z" 4$mh ;=aj)lemCr Print "found detector array at node " & detnode 0jG8Gmh! |G }qY5_ srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 EQ\/I(
=l *}Vg]3$4 Print "found differential detector area at node " & srcnode \K55|3~R :(E.sT"R GetTrimVolume detnode, trm 1)w^.8f detx = trm.xSemiApe V-IXtQR dety = trm.ySemiApe *i?#hTw area = 4 * detx * dety AKu]c- Print "detector array semiaperture dimensions are " & detx & " by " & dety vjmNS=l Print "sampling is " & nx & " by " & ny H+6+I53 G*JasHFs 'reset differential detector area dimensions to be consistent with sampling PVLLuv pixelx = 2 * detx / nx 90X<Qs pixely = 2 * dety / ny }I`"$2 SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 0M-=3 T Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 Z7J8%ywQ '9.L5*wh] 'reset the source power xim'TVwvC SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) LR%]4$ /M Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" f0S$p
R Lk#8G>U 'zero out irradiance array ?$J#jhR? For i = 0 To ny - 1 5bBY[qp For j = 0 To nx - 1 sYE| irrad(i,j) = 0.0 0w<vc}{t Next j h&}z@ Next i ]O]6O%.ao L.X"wIs^ 'main loop LYhjI EnableTextPrinting( False ) j2^Vz{ &!N9.e:-] ypos = dety + pixely / 2 RA^6c![ For i = 0 To ny - 1 2Kwr=t xpos = -detx - pixelx / 2 !-B$WAV ypos = ypos - pixely S+2we 5d|hP4fEc EnableTextPrinting( True ) `8M{13fv Print i l^!raoH]q EnableTextPrinting( False ) I' [gGK4F D6N32q@ >W>3w For j = 0 To nx - 1 x<d2/[(}mT Z@(m.&ZRx xpos = xpos + pixelx zpgRK4p,I" r|av|7R 'shift source 'nJ,mZx LockOperationUpdates srcnode, True @}\wec_ GetOperation srcnode, 1, op M,w5F5 op.val1 = xpos b=+3/-d op.val2 = ypos &+|bAn9AJ SetOperation srcnode, 1, op L+K,Y:D!W LockOperationUpdates srcnode, False ;r?s7b/> 40=*Ul U- raytrace >v#6SDg DeleteRays lq}m0}9< CreateSource srcnode ;suY
TraceExisting 'draw !(A< dC>[[_ 'radiometry /`s{!t#Y For k = 0 To GetEntityCount()-1 ,4mb05w;d If IsSurface( k ) Then Kt3T~k temp = AuxDataGetData( k, "temperature" ) <H,E1kGw9 emiss = AuxDataGetData( k, "emissivity" ) YgV" *~ If ( temp <> 0 And emiss <> 0 ) Then hm,H3pN ProjSolidAngleByPi = GetSurfIncidentPower( k ) 0g'MFS frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) SDu%rr7sQ irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi >zX`qv&> End If lK Ry4~O ^UmhSxQ## End If \ORE;pG T-F8[dd^/ Next k Y>2oU`ly, EG!Nsb^, Next j X? 7s
'i:S=E
F Next i !ZS5}/ZU EnableTextPrinting( True ) s:xt4< Owz>g4l
r 'write out file Z6fR2A~Q[ fullfilepath = CurDir() & "\" & fname *RD<*l Open fullfilepath For Output As #1 '$h0l-mQ Print #1, "GRID " & nx & " " & ny 4Q(w
D Print #1, "1e+308" \2 Yo*jE} Print #1, pixelx & " " & pixely RveEA/&& Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 /u~L3Cp( g?rK&UTU maxRow = nx - 1 '
-td/w maxCol = ny - 1 t vp kc; For rowNum = 0 To maxRow ' begin loop over rows (constant X) Wgm{
]9Q row = "" 1}q(Pn2 For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) Bq~?!~\?. row = row & irrad(colNum,rowNum) & " " ' append column data to row string 04c`7[ Next colNum ' end loop over columns 0zpA<"S zB8J|uG Print #1, row Rhzcm`" T5eJIc3a" Next rowNum ' end loop over rows .2
}5Dc,eR Close #1 x75 3o\u! $r1{Nh Print "File written: " & fullfilepath xJ^pqb Print "All done!!" TOsHb+Uv End Sub YR"IPyj W]5sqtF;6 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: T,uJO< vv1W <X0e< & &:ZY4` 找到Tools工具,点击Open plot files in 3D chart并找到该文件 ,-V7~gM%} Zr|\T7w 3 oz'^.+uvE 打开后,选择二维平面图: ^o(C\\>{&
z:d+RMA
|
|