研究小组成功设计出世界上最精确的微芯片传感器
来自代尔夫特理工大学的一个研究小组成功地设计了世界上最精确的微芯片传感器之一;该装置可以在室温下运行。他们将纳米技术和机器学习与自然界的蜘蛛网结合起来,能够使纳米机械传感器在与日常噪音极端隔离的情况下振动。这一突破发表在《先进材料》的新星期刊上,对引力和暗物质的研究以及量子互联网、导航和传感领域有很大影响。 pcIJija: @mM'V5_#
[attachment=109810] ,&$=2<Dx 研究最小尺度的振动物体,如用于传感器或量子硬件的物体,最大的挑战之一是如何保持环境热噪声不与它们的脆弱状态发生作用。例如,量子硬件通常被保存在接近绝对零度(-273.15°C)的温度下,这种特种冰箱的价格为50万欧元一台。来自代尔夫特理工大学的研究人员创造了一种网状的微芯片传感器,在与室温噪声隔离的情况下能产生极好的共振,他们的发现将使建造量子设备的费用更加低廉。 _:F0>=$ D h y
[attachment=109811] . zf#S0y%( 受自然界蜘蛛网的启发和机器学习的指导,理查德·诺特(左)和米格尔·贝萨(右)在实验室里展示了一种新型的传感器。 3D>syf 领导这项研究的理查德-诺特和米格尔·贝萨正在寻找结合纳米技术和机器学习的新方法。他们是如何想到用蜘蛛网作为模型的?诺特表示"我做这项工作已经有十年了,在禁闭期间,我注意到我的阳台上有很多蜘蛛网。我意识到蜘蛛网是非常好的振动探测器,因为它们要测量网内的振动来寻找它们的猎物,而不是网外的振动,比如风吹过树。因此,为什么不搭上数百万年的进化的便车,用蜘蛛网作为一个超敏感设备的初始模型呢?" O}\$E{- b#cXn4< |