| infotek |
2021-11-30 08:54 |
理解并使用复合直方图
1. 介绍 x`Wb9[u8 9fWR8iV 一个复合直方图是标准直方图的扩展,其显示了一个实部和虚部分别具有确定范围的复数场中数据点的个数。(“数据面源”)
h;@>E:4Tg /l+"aKW
2 nvA7eTO6C 在本示例中,在实部范围为-0.75~ -0.25,虚部边界为0.25~0.75的区域上有6个数据点。 j'OXT<n* QX42^]({;c 2. 采用的示例数据:随机位相分布 bM2x
(E\O v4K! BW
振幅 位相 "Th;YJu 3. 生成一个复合直方图 =q>lP+ I%($,kd}s
}=JSd@`_ 4. 结果 M& )yr^ j\NCoos
"3'a.b akw 5. 使暗区域可见 hgbf"J6V8 7VskZbj\ 'blMwD{0&\ 在暗区域随机建立一个矩形标记 ~YenH 点击视图 基于选择缩放 -0TI7 @ \T!,Z;zK 6. 解释:振幅 `[e0_g\ 有许多亮像素和许多暗像素只有少部分像素具有中间亮度。 ^=a:{["@! pMY7{z 7. 解释:振幅 R;fe v
1mE wn|;Li 相位值分布均匀 - 如预期的随机相位分布。 (zxL!ZR< `GlOl- 72/ bC 8. 调整复合直方图:初始的 J1w3g, vE1:;%Q 9Zf 9. 调整复合直方图:嵌入 @4KKm@(p85 <WnIJum 10. 调整复合直方图:更大的“格子” kd_!S[ X]n`YF7 &ld<fa(w+2 hsJ^Au=})w Ujqnl>l 97<Z,q72Y 11. 量化效果 l>L?T#v!_ OH@gwC
8阶振幅硬量化结果 wWSw0 H/ >5?c93? 8阶相位硬量化结果 $at\aJ  
|
|