faithlu |
2007-03-15 13:10 |
华中理工大学硕士研究生论文(LED的封装)
2 白光LED的合成及特性参数 M"L=L5OH- 2.1 白光LED合成方式 Dw"\/p:-3 根据黑体辐射原理制成的白炽灯,由于色温不能太高,大部分能量变成了红外辐射,这部分对照明没有贡献,使发光效率降低。不同色光合成白光有不同的合成,可以是两种,三种或者更多种色光合成白光,颜色种类用的多的话,它的像素就高,但是流明效率降低,这与对合成白光的质量要求有关。白光LED的合成途径大体上有2条路可以走,第一条是RGB,也就是红光LED+绿光LED+蓝光LED,LED走RGB合成白光的这种办法主要的问题是绿光的转换效率底,现在红绿蓝LED转换效率分别达到30%,10%和25%,白光流明效率可以达到60lm/w。通过进一步提高蓝绿光LED的流明效率,则白光流明效率可达到200lm/w。由于合成白光所要求的色温和显色指数不同,对合成白光的各色LED流明效率有不同的。第二条路是LED+不同色光荧光粉:第一个方法是用紫外或紫光LED+RGB荧光粉来合成LED,这种工作原理和日光灯是类似的,但是比日光灯的性能要优越,其中紫光LED的转换系数可达80%,各色荧光粉的量子转换效率可以达到90%,还有一个办法是用蓝光LED+红绿荧光粉,蓝光LED效率60%,荧光粉效率70%;还有是蓝光LED+黄色荧光粉来构成白光。 c &c@M$ 两种途径相比较之下,RGB三色LED合成白光综合性能好,在高显色指数下,流明效率有可能高到200lm/w,要解决的主要技术难题是提高绿光LED的电光转换效率,目前只有13%左右,同时成本高。 h{qgEIk& 为了适应工厂化的生产,本文所采取的白光LED合成方式是蓝色LED+黄色荧光粉,因为它是一条综合性能适中,成本低,容易实现的途径。这种合成方式的工艺是将蓝光LED芯片安装在碗形反射腔中,上面覆盖约500-600nm 厚度的YAG的树脂薄层[23];合成原理是GaN芯片发蓝光(λp=465nm),高温烧结制成的含Ce3+的YAG荧光粉受此蓝光激发后发出峰值波长是550nm的黄色光。剩下的那部分蓝光与荧光粉发出的黄光混合,可以得到得白光。现在,对于InGaN/YAG白光LED,通过改变 YAG荧光粉的化学组成和调节荧光粉层的厚度,可以获得色温3500-10000K 的各色白光。 BnY&f 2.2 白光LED的特性参数 ?e?!3Bx;EM 从目前的LED产品的机理和结构来看,以下几个方面是用来衡量LED优劣的特性参数[24-26]。 gRzxLf`K (1)电流/电压参数(正、反向) ! 8b^, LED的电性能具有典型的PN结伏安特性,不同的电流直接影响LED的发光亮度和PN结的结温。在照明应用中,为了获得大功率的LED灯,往往将许多个发光二极管通过一定的串并联方式组合在一起,相关的各个LED的特性必须匹配,在交流工作状态还必须考虑其反向电特性,因此必须测试它们在工作点上的正向电流和正向压降,以及反向漏电流和反向击穿电压等参数。 DHRlWQox (2)光通量和辐射通量 &7s.` 发光二极管单位时间内发射的总电磁能量称为辐射通量,也就是光功率(W)。对于照明用LED光源,我们更关心的是照明的视觉效果,即光源发射的辐射通量中能引起人眼感知的那部分当量,称作为光通量ΦV(1m)。 lU]nd[x 辐射通量与器件的电功率之比表示LED的辐射效率;光通量与器件的电功率之比表示LED的发光效率,单位lm/W。由于LED是定向出射光,如果从照明效果来评价,其照明性能更明显。LED的出射光到达工作面的有效光通量与总光通量之比表示为LED的光利用系数。显然照明用LED的光利用系数比普通各向发光的照明光源要高一些。 izR"+v (3)光强和发光角 }6ldjCT/, 无论是应用于显示或照明工程的LED,其光强及其空间分布都是十分重要的参数。LED灯的定向发光特性,对于某些局部或定向照明往往会达到非常好的照明效果。LED的发光强度指在给定方向上单位立体角内所发射的光通量: %"-5 <6d I= dΦ/dΩ(cd) (2-1) NHE18_v5 光强分布曲线如图1所示,是表示LED发光在空间各方向的分布状态。在照明应用中计算工作面的照度均匀性和LED灯的空间布置,光强分布是最基本的数据。对于空间光束为旋转对称型分布的LED,用一个过光束轴平面上的曲线表示即可。对光束为椭圆形分布的LED,则用过光束轴及椭圆形长短轴的两个垂直平面上的曲线来表示。对于非对称的复杂图形,一般用过光束轴的六个以上截面的平面曲线来表示。 G#$-1"!` 发光角(或光束角)通常用半强度角θ1/2表示,即在光强分布图中光强大于等于峰值光强1/2时所包含的光束角度。 ia?
c0xL (4)光谱功率分布 ^ZCD ~P_= LED的光谱功率分布表示辐射功率随波长的变化函数,它既确定了发光的颜色,也确定了它的光通量以及它的显色指数。通常用相对光谱功率分布S(λ)表示,光谱功率沿峰值两边下降到其值的50%时,所对应的两个波长之差Δλ=λ2-λ1,即为光谱带。 Iu6
(5)色品坐标 fN2lLn9/u 选三原色红(R)、绿(G)、蓝(B)。 4I[P> X=R/(R+G+B),Y=G/(R+G+B),Z=B/(R+G+B) (2-2) $:^td/p J 由于X+Y+Z=1,所以只用给出X和Y的值,就能唯一地确定一种颜色。这就是通常所说的色度图,为了使坐标值能直接表示亮度大小,国际照明协会规定采用另一种色度坐标X、Y、Z,与R、G、B间存在线性换算关系。若以x、y作为平面坐标系,将自然界中的各种彩色按比色实验法测出其x、y数值,并绘在该坐标平面内,便可得到图2-1所示的色度图。该色度图边沿舌形曲线上的任一点都代表某一波长光的色调,而曲 8FhdN 2Khv>#l
图2-1 CIE1931色度图 ee=D1 qNu; 线内的任一点均表示人眼能看到的某一种混合光的颜色。其中白光区域的特征点A、B、C、D65、E的坐标值和色温见表2-1。 |':{lH6+1 表2-1 特征点对应的色坐标值和色温 qg$ <oL@~~ 光源点 X坐标 Y坐标 色温(K) |vC~HJpuv' A 0.4476 0.4074 2854 GA.8@3 B 0.3484 0.3516 4800 'c~4+o4co C 0.3101 0.3162 6800 pK4)yu+ D65 0.313 0.329 6500 H,NF;QPPC E 0.3333 0.3333 5500 t#yuOUg %}T6]S)%u (6)色温和显色指数 *NQ/UXE 对于白光LED等发光颜色基本为“白光”的光源用色品坐标可以准确地表达该光源的表观颜色。但具体的数值很难与习惯的光色感觉联系在一起。人们经常将光色偏橙红的称为“暖色”,比较炽白或稍偏兰的称为“冷色”,因此用色温来表示光源的光色会更加直观。 2A!FDr~cdT 光源的发光颜色与在某一温度下黑体辐射的颜色相同时,则称黑体的温度为该光源的色温(color temperature) T,单位为开(K)。对于白光LED,其发光颜色往往与各种温度下的黑体(完全辐射体)的色品坐标都不可能完全相同,这时就不能用色温表示。为了便于比较,而采用相关色温(CCT)的概念。也就是当光源的色品与完全辐射体在某一温度下的色品最接近,即在1960CIE-UCS色品图上的色品差最小时,则该完全辐射体的温度称为该光源的相关色温R1。 H"F29Pu2 用于照明工程的LED,尤其是白光LED,除表现颜色外,更重要的特性往往是周围的物体在LED光照明下所呈现出来的颜色与该物件在完全辐射(如日光)下的颜色是否一致,即所谓的显色特性。 Ts x>&W | |