中科微星 |
2021-04-15 17:46 |
分享空间光调制器的MEMS技术应用
空间光调制器使用具有一个单点探测器、基于光学微机电系统 (MEMS) 阵列技术的全新方法可以克服传统光谱分析方法中的很多限制。在基于单点探测器的系统中,一个固态光学MEMS阵列用简单、空间波长滤波器取代了传统的电动光栅。 u]D>O$_ s 这个空间光调制器方法可以在消除精细控制电动系统中问题的同时,利用单点探测器的性能优势。近些年,此类系统已经投入生产,其中,扫描光栅被取代,并且MEMS器件过滤每一个特定波长进入单点探测器。 x]1G u 这个方法在实现更加小巧和稳健耐用光谱分析仪的同时,也表现出很高的性能。 J ejDF*Q 相对于线性阵列探测器架构,光学MEMS阵列的使用具有数个优势。首先,可以使用更大的单元素探测器,以提高采光量,并极大降低系统成本和复杂度,这对于红外系统更是如此。 H[cHF 此外,空间光调制器由于不使用阵列探测器,像素到像素噪声被消除了,而这可以极大地提升信噪比(SNR)性能。SNR性能的提高可以在更短时间内获得更加准确的测量结果。 k|O?qE1hP 在一个使用MEMS技术的光谱分析系统中,衍射光栅和聚焦元件的功能与之前一样,但来自聚焦元件的光在MEMS阵列上成像。 E[z8;A^:0 要选择一个用于分析的波长,一个特定的光谱响应波段被激活,这样的话,就可以将光引入到单点探测器中进行采集和测量。 6:(R/9!P 如果MEMS器件高度可靠,能够生成可预计的滤波器响应,并且在不同的时间和温度下保持恒定,那么这些优势就可以实现。 7tEK&+H` 将一个DLP® 芯片或数字微镜器件(DMD)用作一个空间光调制器,并且在一个光谱分析仪系统架构中将其用作MEMS器件的话,可以克服数个难题。 SO~]aFoYt p1-bq: 首先,使用一组铝制微镜来接通和关闭进入单点探测器的光,这在广泛的波长范围内是光学有效的。 )yHJc$OlMx 其次,数字微镜的打开和关闭状态由机械止动装置和互补金属氧化物半导体(CMOS)静止随机访问存储器(SRAM)单元的锁存电路控制,从而提供固定的电压镜控制。 GzC=xXON 空间光调制器这个固定电压、静止控制意味着这个系统不需要机械扫描或模拟控制环路,并且能够简化校准。它还使得光谱分析仪设计更能免受温度、老化或振动等错误源的影响。 zF%'~S0{ DMD的可编程属性具有很多优势。其中某项优势会在进行光谱分析仪架构设计时显现——如果以被用作滤波器的微镜的寻址列为基础。 qtqTLl@u 由于DMD分辨率通常高于所需的光谱,DMD区域会出现欠填充的情况,并且会对光谱过采样。这使得波长选择完全可编程,并且在光引擎出现极端机械位移的情况下,将额外微镜用作重新校准列。 1l8kuwH 此外, DMD是一个二维可编程阵列,这为用户提供高度的灵活性。通过选择不同的列数量,可以调节分辨率和吞吐量。 4 ^=qc99 扫描时间可动态调整,如此一来,用户可对所需波长进行更长时间、更加详细的检查,从而更好地使用仪器时间和功能。 W7j-siWJ 此外,空间光调制器相对于固定滤波器器具1,诸如采用的Hadamard图形等高级孔径编码技术,可实现高度的灵活性和更高性能。 jJX-S 总之,与目前的光谱分析系统相比,使用DMD的光谱分析器件可实现更高分辨率、更高灵活性、更加稳健耐用、更小的外形尺寸和更低的成本,从而使得它们对于广泛的商业和工业应用更有吸引力。
|
|