光学工程中的聪明的技巧
Richard N. Pfisterer K#+] "._WdY[ Photon Engineering, LLC, 440 South Williams Boulevard, Suite 106, Tucson, AZ, USA 85711 !?M_%fNE \gQ+@O&+ 摘要 !P^$g
R MifgRUe 在光学工程中,高效的计算结果很难通过强力光线追迹来获得。使用辐射测量学技术,在很短的时间内,可以有效并准确地执行杂散光,照度均匀性和自发热辐射的计算来追迹必要数量的光线。 ovo I~k' a7d- 关键字:照明,辐射度量学,光线追迹,杂散光 E4@fP]R+ ;p"XCLHl 1.前言 BW\5RIWwE5 m@2xC,@ 根据MSNtm Encarta(微软公司产品)在线词典,“clever”这个词是一个形容词,意为“展示意志力,敏捷性和创造力”。“trick”这个词是一个名词,意为“一个特殊的、有效或巧妙的技巧,技能或技术”。综上所述,本文的目的是介绍光学工程领域中聪明的和创造性的使用技巧。 Ln%_8yth '>3RZ&O 在光学软件的早期,当开始执行计算时,设计人员和分析师学会了如何高效又富有洞察力的计算。他们必须如此的原因是,在分时享用计算机上进行计算成本很高,而且获取计算机并不总是很方便。此外软件开发人员还没有写出很多如目前的现代软件一样丰富的专门的功能。 ~u&O {OoNhN9 现代的软件提供了无数种计算选择,这使得很多没有经验的用户相信,每一个问题可以通过按下工具栏上的按钮而得以解决(图1)。这是不正确的! ")gCA:1- _~q^YZ
图1 “圣杯”界面的发展:一个解决了用户问题的按钮,…不管它是什么问题。 %+"AF+c3r 有几类问题,仅仅按钮的解决方案是行不通的。这包括杂散光/离轴抑制计算,照明分析问题(特别是源于特定的视角),自发热辐射计算及涉及多光束的干涉分析。这篇论文论述了前三类问题。 fw};.M !VTS
$nJ4 2.杂散光的计算 0A4| )Bvu[rUy 例如,让我们考虑距离地球特定轨道高度上的传感器的典型杂散光计算案例(图2)。在这种情况下,传感器的视线(LOS)是在地球的边缘之上;LOS与边缘之间的角度通常称为“边缘角”。现在的问题是“到达传感器FPA(焦平面阵列)的杂散光数量是多少?” ;-Dd\\)p E4ee_`p
图2 地球传感器的几何结构(不按比例尺测量)。 z ate%y 最显而易见的方法是将地球作为发射器(图3)。使用这种技术,用户需要从地球追迹极大数量上的发射光线,并希望一些光线可以到达传感器。假设一些光线确实到达传感器(不太可能!),这些光线由于光学和机械的原因发生散射,而这些散射的光线在FPA中得到积累。在追迹足够数量光线的极限情况下,这种技术将会起作用,但在合理的时间内,对于任何适当数量的光线追迹,光线统计将极其稀少。 &t:MWb; 7B2Og{P
图3 强力光线追迹:将地球作为朗伯发射体。 SLB iQd. 这个问题显然有它的原因,在于地球的大小和传感器入口处孔径的大小的重大尺寸差异。解决这个问题的传统方法是考虑来自地球的传感器的杂散光特点并且分为两部分来做实验。 & |