电光传感器的协同设计和分析(3)
技术研发的说明 dTcrJ|/Y rlV:%
k 我们对热浸和热瞬态测试数据的集成STOP分析结果可以通过以下三个表中提供的汇总数据的帮助来理解和解释。表2提供了用于每个测试中的热和冷条件下的热聚焦控制系统的一些关键参数。这些数据表明,至少对于1瓦以上的加热器功率,保持聚焦所需的加热器功率大致与周围光具座和L13-16设定点之间的温度差成比例。应指出的是,L13-16设定点温度不同于41℃的设计偏差温度。对于感兴趣的环境边界条件温度值,仪器厂商的控制算法选定的设定点温度由作为保持聚焦的最适的值。另外,在透镜部件13至16中设定的轴向热梯度的大小与采用的加热器功率成正比。 }M*yE]LL;Z
<m7m vVBu/)
表2.热控制系统参数 V'alzw7# 表3总结了对于相同的四个测试条件下集成STOP分析给出透镜组件波前差分布预测值的标准41C设计残差值的变化。波前误差以在0.6328微米波长的波中的峰-谷(PV)量值给出。 这里我们看到两个氟化钙透镜元件(13和15)占主导地位,并且来自透镜13和15的波前误差增量趋于补偿在其他所有加热器功率。 h0ml#A`h AYb-BaIc p(vmMWR!
表3.加热器功率水平下的透镜部件波前误差贡献的变化 )jc`_{PQg 我们集成STOP分析从如下物理视角提供了对这种非常规热聚焦控制操作方法。周围光具座温度降低到L13-16的41℃设计偏置温度以下越多,在透镜子组件透镜13和透镜16端部处的条带加热器上施加的加热器功率越多以保持可见光通道的聚焦。在L13-16子组件的两端施加相等的热量,从而在每个透镜内建立从L13到L16的轴向热梯度和更小的径向热梯度。两个CaF2透镜元件(13和15)具有比玻璃元件(14和16)更低的标准折射率,但是具有较大的dn/dT值。在所有加热器功率水平下,由透镜13和15引入的附加波前误差占主导地位,这表明热致折射率变化正在影响光学性能的变化。与每个透镜的平均体温度的变化相比,在透镜中建立的径向梯度较小(1/3th至1/10th),因此透镜中的体温度变化对图像质量具有主要影响。我们在集成STOP分析中也评估了由在光学表面上固定时弹性应力引起的透镜表面图变化,但是却发现产生的波前误差贡献可以忽略。由仪器厂商的控制算法选定的L13-16设定点温度,总会使具有较小直径的透镜15 CaF2元件的温度升高到高于41℃设计偏差值温度,并将较大直径的透镜13的温度降低到设计点以下,使得对于所有加热器功率水平,这两个透镜的热致波前误差贡献总是倾向于彼此抵消。这种倾向使L13-16子组件的总焦距和图像质量贡献在传感器的预期热环境中相对不变。 ^V,?n@c! 'ONCz 表4中数据总结了该热控制方法在保持聚焦和可见通道波前误差方面的总体效应。我们通过分析可以证实,对于可见光通道,仪器厂商的聚焦控制方法在传感器的预期热环境中可以有效地保持聚焦。对于所有情况,除了一些情况下(瞬态、热情况),每个测试条件的像差残差在衍射极限(0.25波PV)内。此外,通过表4中对于每个测试情况说明,可以通过附加重聚焦来移除像差残差。除了瞬态热情况,对于热效应(1mil)的产生散焦,这些重新聚焦值在仪器厂商的误差预算分配范围内。 bYt[/K, u2\QhP 9 Fp=O:]
表4.聚焦控制效应 &p |