首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 H};1>G4  
.@)vJtH)  
成像示意图
\|S%zX  
首先我们建立十字元件命名为Target 3&})gU&a  
5/nL[4Z  
创建方法: 2om:S+3)2  
r&8aB85  
面1 : ."ZG0Zg  
面型:plane ^(:~8 h  
材料:Air =OF hM7  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box b_TI_  
>ZkL`!:s  
m:)&:Y0 (a  
辅助数据: _R ]s1  
首先在第一行输入temperature :300K, a,oTU\m C  
emissivity:0.1; F6sQeU  
s\ C ,5  
f>6{tI 5X  
面2 : eXKEx4rU  
面型:plane 9 3)fC  
材料:Air @Pcgm"H<  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box .Qrpz^wdt  
GPLop/6   
D'!JV1Q  
位置坐标:绕Z轴旋转90度, r =x"E$  
LujLC&S  
t4UK~ {gh  
辅助数据: =7}1NeC`  
_{'[Uf/l  
首先在第一行输入temperature :300K,emissivity: 0.1; KMi$0+  
15jQ87)  
T9$~tv,5F  
Target 元件距离坐标原点-161mm; DRm`y>.  
%"r9;^bj&<  
c"tlNf?  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 uEb:uENk'(  
\r:*`Z*y  
y%vAEQ2j=  
探测器参数设定: |v7Je?yh  
7u;N/@  
在菜单栏中选择Create/Element Primitive /plane VX8rM!3  
UY9*)pEE  
\Ebh6SRp\  
2 %fcDEG/  
p7> 9 m  
!IR cv a  
元件半径为20mm*20,mm,距离坐标原点200mm。 #+D][LH4  
2 )o2d^^  
光源创建: wA$?e}  
r4P%.YO+X  
光源类型选择为任意平面,光源半角设定为15度。 kAp#6->(q  
.b_ppieNY  
Ry}4MEq]  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 _5S0A0  
<b"^\]l  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 rrfJs  
Mw,]Pt6~i  
"Q+wO+}6  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 ZB1%Kn#zo4  
Vq0X:<9  
创建分析面: F-ZTy"z  
ffk >IOH  
{wM<i  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。  GpTZp#~;  
v\bWQs1  
7Ku&Q<mi  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 u:J( 0re  
Vp; `!+z"  
FRED在探测器上穿过多个像素点迭代来创建热图 rF[-4t %  
0#Gm# =F  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 O1jiD_Y!9  
将如下的代码放置在树形文件夹 Embedded Scripts, k(Xs&f `  
>y8>OJ?A7-  
EG^ rh;  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ;B |  
qQ]fM$!  
绿色字体为说明文字, tt-ci,X+  
Da)p%E>Q  
'#Language "WWB-COM" 0.+Eo.AX4M  
'script for calculating thermal image map vbJdhaf  
'edited rnp 4 november 2005 *\#<2 QAe  
[L-wAk:Fb  
'declarations &bJBsd@Os  
Dim op As T_OPERATION A?04,l]y  
Dim trm As T_TRIMVOLUME 7_3 PM 3C  
Dim irrad(32,32) As Double 'make consistent with sampling fcp_<2KH  
Dim temp As Double 7./-|#  
Dim emiss As Double VTR4uT-  
Dim fname As String, fullfilepath As String 'wFhfZB1!B  
Ln6emXqw  
'Option Explicit "4xo,JUf  
I/upiqy  
Sub Main WYRC_U7  
    'USER INPUTS ?IQDk|<%  
    nx = 31 RLex#j  
    ny = 31 1F>8#+B/W  
    numRays = 1000 ?A\+s,9  
    minWave = 7    'microns 61QA<Wb  
    maxWave = 11   'microns :Nf(:D8  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 LtwfL^#  
    fname = "teapotimage.dat" oR`rs[Kj  
|1H9,:*%  
    Print "" 8(- 29  
    Print "THERMAL IMAGE CALCULATION" /+B6oE>8  
;Q&9 t  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 :I /9j=@1  
xc-[gt6  
    Print "found detector array at node " & detnode +68age;dM  
R f)|p;  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 \2~\c#-k  
c1i[1x%  
    Print "found differential detector area at node " & srcnode ~C>;0a;<:  
S['%>  
    GetTrimVolume detnode, trm Iao?9,NL9O  
    detx = trm.xSemiApe wAu]U6!  
    dety = trm.ySemiApe R-W.$-rF  
    area = 4 * detx * dety n|T$3j)  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety :{S@KsPqE  
    Print "sampling is " & nx & " by " & ny @6|0H`kv  
"fv+}'  
    'reset differential detector area dimensions to be consistent with sampling 6NyUGGRq  
    pixelx = 2 * detx / nx T ;84Sv  
    pixely = 2 * dety / ny qmPu D/ c  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False e\aW~zs 2  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 'S74Ys=-0  
H/ ejO_{  
    'reset the source power -;6uN\gq  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) DfGq m-c  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" &)Zv>P8z`  
Nk%$;Si  
    'zero out irradiance array p|qLr9\A  
    For i = 0 To ny - 1 ukW L3  
        For j = 0 To nx - 1 QTF1~A\  
            irrad(i,j) = 0.0 iu{;|E  
        Next j q~iEw#0-L  
    Next i $z)egh(z  
3qu?qD  
    'main loop 2YQBw,gG  
    EnableTextPrinting( False ) +7lr#AvU/  
ettBque  
    ypos =  dety + pixely / 2 wj'fdrY5h  
    For i = 0 To ny - 1 s)3CosU  
        xpos = -detx - pixelx / 2 1)~9Eku6K  
        ypos = ypos - pixely  xi<}n#  
>D##94PZ  
        EnableTextPrinting( True ) MVQ6I/EA4  
        Print i {@x-T  
        EnableTextPrinting( False ) #@V<{/;49  
Ln+.$ C  
I_?R(V[9  
        For j = 0 To nx - 1 tqB6:p-%  
l.;^w  
            xpos = xpos + pixelx xr Ne:Aj  
6r%i=z  
            'shift source R;U4a2~  
            LockOperationUpdates srcnode, True $%&OaAg  
            GetOperation srcnode, 1, op HpeU'0u0VK  
            op.val1 = xpos ox.kL  
            op.val2 = ypos _~>WAm<  
            SetOperation srcnode, 1, op  cFjD*r-  
            LockOperationUpdates srcnode, False |,TBP@  
|Q%nnN  
            'raytrace aAd1[?&  
            DeleteRays KdTWi;mV2-  
            CreateSource srcnode 2}.~ 6EU/  
            TraceExisting 'draw =kOo(  
*[jq&  
            'radiometry PRyzvc~  
            For k = 0 To GetEntityCount()-1 ns/*WH&[x  
                If IsSurface( k ) Then e!w{ap8u  
                    temp = AuxDataGetData( k, "temperature" ) UpQda`rb  
                    emiss = AuxDataGetData( k, "emissivity" ) 3:sx%Ci/2  
                    If ( temp <> 0 And emiss <> 0 ) Then gCL}Ba  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) BP&] t1p  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) DbR!s1ux  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi l\m7~  
                    End If  l]   
}U}ppq0Eo  
                End If @L607[!?  
mZ?QtyljT  
            Next k ]_!NmB_3  
w&hCt c  
        Next j d,'gh4C  
2>CR]  
    Next i SFEDR?s   
    EnableTextPrinting( True ) ]R09-s 0$7  
|1(L~g  
    'write out file /;y`6WG%2  
    fullfilepath = CurDir() & "\" & fname `oO*ORq&  
    Open fullfilepath For Output As #1 }-Nc}%5  
    Print #1, "GRID " & nx & " " & ny 64'sJc.   
    Print #1, "1e+308" -Vmp6XY3q  
    Print #1, pixelx & " " & pixely a=B $L6*4  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2  ME5M;bz(  
-0k{O@l"  
    maxRow = nx - 1 %bG\  
    maxCol = ny - 1 02:`Joy2D  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) 4 4WyfpTJ*  
            row = "" !Ap*PL  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) mSEX?so=[  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string G8Ow;:Ro  
        Next colNum                     ' end loop over columns \2Q#'  
}4,[oD  
            Print #1, row ).tTDZ   
tp\d:4~R  
    Next rowNum                         ' end loop over rows G 40  
    Close #1  z' 5  
Psf{~ (Ii  
    Print "File written: " & fullfilepath 0@ vzQ$  
    Print "All done!!" DoN]v  
End Sub BISH34  
Pvm pWa  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: ],zp~yVU&  
6jov8GIAt  
:o:/RRp[  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 vNm4xa%  
  
Nk$|nn9#'  
xaq/L:I<  
打开后,选择二维平面图: UnZc9 6  
3CSwcD  
QQ:2987619807
A' n7u'6=  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计