首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 h*^JFZb  
^N7cXK*  
成像示意图
+ase>'<N#  
首先我们建立十字元件命名为Target z>+CMH5L)  
r2f%E:-0G  
创建方法: |d&Kr0QIV  
i+S%e,U*  
面1 : F$i50s  
面型:plane L__{U_p  
材料:Air yUcU-pQ  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box b:9"nALgC  
+mG"m hF  
[.l,#-vp  
辅助数据: A PSkW9H  
首先在第一行输入temperature :300K, DPY+{5q2  
emissivity:0.1; 0Bgj.?l  
!}|'1HIC  
@[FO;4w  
面2 : &iD&C>;pf  
面型:plane 0xi2VN"X  
材料:Air 6GAEQ]  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box w:I!{iX  
xTG5VBv  
\|vo@E  
位置坐标:绕Z轴旋转90度, w?_'sP{pd  
 {y{O ze  
F'wG%  
辅助数据: ~Q^.7.-T  
A~{vja0?  
首先在第一行输入temperature :300K,emissivity: 0.1; a-#$T)mmfj  
.,VLQ btg  
,W 'P8C  
Target 元件距离坐标原点-161mm; ?!"pzDg  
j7Zv"Vq@  
t0<RtIh9e  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 gr!!pp;  
g9Dynm5  
"KCG']DF  
探测器参数设定: yz>S($u  
o=![+g  
在菜单栏中选择Create/Element Primitive /plane xA;)02   
y'6lfThT  
WOgkv(5KN  
e~he#o[%a  
1 "t9x.  
HOPl0fY$L  
元件半径为20mm*20,mm,距离坐标原点200mm。 .LM|@OeaD!  
]w*`}  
光源创建: oG hMO  
-jNnx*  
光源类型选择为任意平面,光源半角设定为15度。 "Qc4v@~)  
!mVq+_7]  
!gsrPM  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ]T40VGJ:h  
5ld?N2<8/  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 Nw ,|4S  
Jz0AYiCq  
$PlMyLu7jc  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 H7drDw  
<Pf4[q&wM  
创建分析面: ]:n9MFv  
jMX+uYx M  
>,Zn~8&Z  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Yp3y%n  
>CcDG  
JS?%zj&@  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ([SJ6ff]&  
'aeuL1mz  
FRED在探测器上穿过多个像素点迭代来创建热图 b'4}=Xpn  
44k8IYC*o  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 :Ez*<;pF'  
将如下的代码放置在树形文件夹 Embedded Scripts, 6\UIp#X  
ww+,GnV  
|<8Fa%!HHc  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 d|gfp:Z`a  
mTL`8hv?  
绿色字体为说明文字, -) +B!"1  
_$vbb#QXZG  
'#Language "WWB-COM" Vvv;m5.  
'script for calculating thermal image map |NTqJ j  
'edited rnp 4 november 2005 wZ`*C mr  
szqR1A  
'declarations hoiC J}us  
Dim op As T_OPERATION zTq"kxn'  
Dim trm As T_TRIMVOLUME ,CBE&g  
Dim irrad(32,32) As Double 'make consistent with sampling w%oa={x  
Dim temp As Double 2PNe~9)*#  
Dim emiss As Double $ \!OO)  
Dim fname As String, fullfilepath As String <&((vrfa  
>C5u>@%9O  
'Option Explicit bq8h?Q  
m,5?|J=  
Sub Main I2) 2'j,B  
    'USER INPUTS oe=1[9T"  
    nx = 31 @L 6)RF  
    ny = 31 j]mnH`#BL  
    numRays = 1000 #B!M,TWf9s  
    minWave = 7    'microns JZ> (h  
    maxWave = 11   'microns aM_O0Rn==  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 Nn?$}g  
    fname = "teapotimage.dat" fgA-+y  
,sg\K> H=  
    Print "" .E7"Lfs-  
    Print "THERMAL IMAGE CALCULATION" G2sj<F=AV  
`Hu2a]e9  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 {=U*!`D  
fMM%,/b{  
    Print "found detector array at node " & detnode 7e#|Iq:o  
g`2O h5dA  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Ue>{n{H"y  
ZhC ,nbM  
    Print "found differential detector area at node " & srcnode ttBqp|.?S  
+A$>F@u  
    GetTrimVolume detnode, trm *l%&/\  
    detx = trm.xSemiApe lO0}  
    dety = trm.ySemiApe E},zB*5TH  
    area = 4 * detx * dety f)r6F JLU  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety t4hc X[  
    Print "sampling is " & nx & " by " & ny 7y.iXe!P  
QTN'yd?WE  
    'reset differential detector area dimensions to be consistent with sampling "];@N!dA  
    pixelx = 2 * detx / nx _~F 0i?  
    pixely = 2 * dety / ny EiZa,}A  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 8L6b:$Y3@C  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 3kwkU  
cHOC>|  
    'reset the source power pEW~zl  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) nC!L<OMr  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" h 'Hnq m  
F'B0\v =  
    'zero out irradiance array @:>gRD  
    For i = 0 To ny - 1 kZi/2UA5Z  
        For j = 0 To nx - 1 S a}P |qI  
            irrad(i,j) = 0.0 {:Kr't<XzF  
        Next j (S?DKPnR  
    Next i *O_^C  
ki1j~q  
    'main loop )V_;]9<wt  
    EnableTextPrinting( False ) _8\B~;0  
H(y Gh  
    ypos =  dety + pixely / 2 U;!J(Us  
    For i = 0 To ny - 1 OkCAvRg  
        xpos = -detx - pixelx / 2 f"zmNG'  
        ypos = ypos - pixely j"VDqDDz  
!aL=R)G&e  
        EnableTextPrinting( True ) <vD(,||  
        Print i 4G XS(  
        EnableTextPrinting( False ) [8 H:5 Ho  
Z a S29}  
v53|)]V  
        For j = 0 To nx - 1 l(@c  
w~Vqg:'\$  
            xpos = xpos + pixelx wkV'']= Xg  
@g]EY&Uzl  
            'shift source j0(jXAc;UB  
            LockOperationUpdates srcnode, True HIC!:|  
            GetOperation srcnode, 1, op 25@@-2h @  
            op.val1 = xpos 1-&L-c.  
            op.val2 = ypos {];-b0MS~  
            SetOperation srcnode, 1, op tCar:p4$  
            LockOperationUpdates srcnode, False ,H^!G\  
A r>BL2@  
            'raytrace 0'YJczDq:7  
            DeleteRays >7S@3,C3ke  
            CreateSource srcnode )} t't"  
            TraceExisting 'draw LIQ].VxIs  
xtLP 4VL  
            'radiometry Q;A\M  
            For k = 0 To GetEntityCount()-1 P|]r*1^5  
                If IsSurface( k ) Then @2 *Q*  
                    temp = AuxDataGetData( k, "temperature" ) Vo6g /h?`  
                    emiss = AuxDataGetData( k, "emissivity" ) e0otr_)3F  
                    If ( temp <> 0 And emiss <> 0 ) Then #N'9 w .  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) %O<8H7e)V  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) l=(( >^i  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi jIVDi~Ld  
                    End If bSz7?NAp  
qd#7A ksm  
                End If {8`$~c  
>}W[>WReI  
            Next k 9cU9'r# h  
sf# px|~9  
        Next j E-FR w  
n${k^e-=  
    Next i g|7o1{   
    EnableTextPrinting( True ) cO 5zg<wF  
Ym! e}`A\F  
    'write out file D} j`T  
    fullfilepath = CurDir() & "\" & fname AS re@pW  
    Open fullfilepath For Output As #1 I~@8SSO,vH  
    Print #1, "GRID " & nx & " " & ny tMp! MQ  
    Print #1, "1e+308" Ki7t?4YE  
    Print #1, pixelx & " " & pixely IF\ @uo`  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 0y?;o*&U\  
:."oWqb)  
    maxRow = nx - 1 |D%mWQng  
    maxCol = ny - 1 u *rP 8GuS  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) c;fLM`{*  
            row = "" +}a(jO  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) j%^4 1y  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string v+W'0ymbnV  
        Next colNum                     ' end loop over columns :zLf~ W  
#jW=K&;  
            Print #1, row \=bKuP(it  
s&-MJ05y  
    Next rowNum                         ' end loop over rows x\8|A  
    Close #1 4OpzGZ4+  
{\P%J:s#9  
    Print "File written: " & fullfilepath ' BS.:^  
    Print "All done!!" +>K&zS  
End Sub >X' -J{4R  
w K#*|  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: V-n{=8s  
p\lR1  
'xGhMgR;  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 r]Wt!oHm5  
  
^jwzCo-  
.hR <{P  
打开后,选择二维平面图: tHZ"o!(S  
k:R\;l5  
QQ:2987619807
9Ffam#  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计