首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 =c>2d.^l  
4#Wczk-b  
成像示意图
)7@f{E#w  
首先我们建立十字元件命名为Target ~Z-M?8:  
epM;u  
创建方法: {`5Sh1b  
sUA==k  
面1 : R!IODXP=  
面型:plane  x~p8Mcv  
材料:Air EUH&"8 L  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box (3 xCW  
` b a}6D  
(XW\4msB)I  
辅助数据: .y'iF>QQ\  
首先在第一行输入temperature :300K, 'L|& qy@  
emissivity:0.1; 5|S|S))_Q  
Pf&\2_H3s9  
;|_aACina  
面2 : ;Q"xXT`;:  
面型:plane IsjxD|u  
材料:Air e0iE6:i  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box =kvfe" N0e  
_~V7m  
xVk|6vA7  
位置坐标:绕Z轴旋转90度, $D{ KXkrd  
1OB,UU"S$  
cojtQ D6  
辅助数据: gB/4ro8  
>i^8K U  
首先在第一行输入temperature :300K,emissivity: 0.1; &)jBr^x#>  
A[lbBR  
y+b4s Ff  
Target 元件距离坐标原点-161mm; gc``z9@Xg  
Zzy!D  
*Ju$A  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 O.61-rp  
]D(!ua5|x`  
M- inlZNR  
探测器参数设定: t^eWFX  
hBb&-/  
在菜单栏中选择Create/Element Primitive /plane V1 y"  
5(BB`)  
g<C_3ap/  
O?`=<W/R  
A+3,y<j\  
c@H_f  
元件半径为20mm*20,mm,距离坐标原点200mm。 *sNZ.Y:.  
R@*mMWW,  
光源创建: .m--# r  
M"QT(u+  
光源类型选择为任意平面,光源半角设定为15度。 tQ!p<Q= $)  
dkTewT6'  
z&fXxp  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 -+vA9,pI  
U*Q1(C  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 5=< y%VF  
`qP <S  
qg521o$*  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 dnRS$$9#  
z1wJ-l  
创建分析面: 3FWl_d~uD  
0 #*M'C#  
uZ[7[mK}n7  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 J\7ukm"9  
ahezDDR-.i  
yb 7  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 O>8|Lc  
}M3f ?Jv  
FRED在探测器上穿过多个像素点迭代来创建热图 oWCy%76@  
luA k$Es  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ;%-f>'KhI7  
将如下的代码放置在树形文件夹 Embedded Scripts,  :{#%_^}k  
y2"PKBK\_  
05$;7xnf(  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 &x~&]  
1oD1ia#  
绿色字体为说明文字, RM^3Snd=V  
+|Tz<\.C  
'#Language "WWB-COM" .I~#o$6  
'script for calculating thermal image map Cs2hi,s  
'edited rnp 4 november 2005 >j5,Z]  
>F@qFP N]  
'declarations )SkJgzvC  
Dim op As T_OPERATION ~ ^)D#Lo  
Dim trm As T_TRIMVOLUME +w'"N  
Dim irrad(32,32) As Double 'make consistent with sampling "Jd!TLt\x  
Dim temp As Double ~|W0+&):  
Dim emiss As Double #Az#dt]H  
Dim fname As String, fullfilepath As String YIP /N  
<Mdyz!  
'Option Explicit JnC$}amr  
87QK&S\  
Sub Main f9+J}  
    'USER INPUTS i=m5M]Ef  
    nx = 31 U[4Xo&`  
    ny = 31 B=0U^wL  
    numRays = 1000 X# 625h  
    minWave = 7    'microns B =EI&+F+  
    maxWave = 11   'microns L5+X&  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 U8f!yXF'  
    fname = "teapotimage.dat" jkTh)Bm|'  
,F&TSzH[@v  
    Print "" dA)JR"r2  
    Print "THERMAL IMAGE CALCULATION" R?%J   
hxCSE$f4  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 {P'_s ]B)  
+"sjkdum1  
    Print "found detector array at node " & detnode qh|t}#DrR  
#hp 7@ Tu  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 7WEh'(`  
x.5!F2$  
    Print "found differential detector area at node " & srcnode cst}/8e  
8OS@gpz  
    GetTrimVolume detnode, trm J$aE:g6'  
    detx = trm.xSemiApe >i6sJ)2?>  
    dety = trm.ySemiApe fX ^h O+f  
    area = 4 * detx * dety {D6p?TL+  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety fwkklg^  
    Print "sampling is " & nx & " by " & ny {V8yJ{.G  
aUy!(Y  
    'reset differential detector area dimensions to be consistent with sampling |S0w>VH>  
    pixelx = 2 * detx / nx eD(;W n  
    pixely = 2 * dety / ny >,Z[IAU.x5  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False j_(DH2D  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 D(E3{\*R  
s6U$]9 `  
    'reset the source power <Ny DrO"C3  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) Wz8 MV -D  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" B4D#T lB  
;+Dq 3NE  
    'zero out irradiance array s6DmZ^Y%  
    For i = 0 To ny - 1 xJ$/#UdP  
        For j = 0 To nx - 1 tj' xjX  
            irrad(i,j) = 0.0 *]7$/%.D  
        Next j EbfE/_I  
    Next i azs lNL  
$fzO:br5WJ  
    'main loop 5[[mS  
    EnableTextPrinting( False ) \&6^c=2=  
PeX^aEc  
    ypos =  dety + pixely / 2 =O1py_m  
    For i = 0 To ny - 1 d3[O!4<T  
        xpos = -detx - pixelx / 2 nrF5^eZ#  
        ypos = ypos - pixely 5LX%S.CW  
'^{:HR#i  
        EnableTextPrinting( True ) rA\6y6dFs  
        Print i f`gs/R  
        EnableTextPrinting( False ) 8|"26UwD/  
9n#lDL O  
rjo1  
        For j = 0 To nx - 1 R1/h<I:  
:~{Nf-y0`1  
            xpos = xpos + pixelx ^[6S]Ft(  
L25v7U  
            'shift source }e K.\_t=  
            LockOperationUpdates srcnode, True 4lF(..Ix  
            GetOperation srcnode, 1, op BN~gk~t_  
            op.val1 = xpos vTl7x  
            op.val2 = ypos JW}O`H9  
            SetOperation srcnode, 1, op E]0}&YG  
            LockOperationUpdates srcnode, False CX}==0od  
\3WQ<t)W  
            'raytrace BY5ODc$  
            DeleteRays ~-tKMc).X  
            CreateSource srcnode g}OZ!mKd  
            TraceExisting 'draw h]jy):9L  
b6?&h:{k  
            'radiometry v,d bto0  
            For k = 0 To GetEntityCount()-1 UOa n  
                If IsSurface( k ) Then rizWaw5E!8  
                    temp = AuxDataGetData( k, "temperature" ) 'JRYf;9c  
                    emiss = AuxDataGetData( k, "emissivity" ) o()No_.8H  
                    If ( temp <> 0 And emiss <> 0 ) Then E;bv;RUio  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) )gHfbUYS  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) pGdFeEkB/  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi O63:t$Yx#  
                    End If ms{iQ:'9  
KL\hV .6  
                End If GWa:C\YK  
?p'DgL{  
            Next k xO{$6M3-~  
$]<wQH/?_  
        Next j gZ>) S@  
xl ]1TB@  
    Next i XI\P#"  
    EnableTextPrinting( True ) sXwa`_{  
uZml.#@4  
    'write out file =$-+~  
    fullfilepath = CurDir() & "\" & fname P47x-;  
    Open fullfilepath For Output As #1 <lgX=wx L  
    Print #1, "GRID " & nx & " " & ny gVI{eoJ  
    Print #1, "1e+308" 7V2xg h!W  
    Print #1, pixelx & " " & pixely :pdl2#5H^  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Bp-e< :  
/@?lV!QiO  
    maxRow = nx - 1 &&ZX<wOM  
    maxCol = ny - 1 [tk6Kx8a  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) uE,g|51H/  
            row = "" c<ORmg6  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) WXQ+`OH7  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 1 \Z/}FT  
        Next colNum                     ' end loop over columns ;~GBD]  
<!q_C5>XJ  
            Print #1, row ?UV|m  
2QgD<  
    Next rowNum                         ' end loop over rows im@QJ :  
    Close #1 bJcO,M:2  
z#B(1uI  
    Print "File written: " & fullfilepath `>& K=C?  
    Print "All done!!" E1s~ +  
End Sub $DW__h  
o8X? 1  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 8GeJ%^0o}  
0"{-<Wot}  
& zv!cf  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 zvn3i5z  
  
e F)my  
~3)d?{5  
打开后,选择二维平面图: ^p~QHS/  
,AH2/^:%c  
QQ:2987619807
tYp 185  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计