首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 (e5Z^9X  
,_H H8[&  
成像示意图
'/XP4B\(E  
首先我们建立十字元件命名为Target r [^.\&-  
doTbol?+  
创建方法: {S+?n[1r\  
qZ E3T:S  
面1 : )uAY_()/  
面型:plane .3UJ*^(?  
材料:Air ;=IJHk1&  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box GK-P6d  
SJX9oVJeZ  
ceJ#>Rj  
辅助数据: <K&A/Ue  
首先在第一行输入temperature :300K, )TVd4s(e  
emissivity:0.1; W tw,YFT  
At[Q0'jkc  
(Nz`w  
面2 : j 7:r8? G  
面型:plane V:j^!*  
材料:Air 55ec23m  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box 2!}F+^8'P  
CV^%'HIs?+  
@",#'eC"  
位置坐标:绕Z轴旋转90度, !%}n9vr!}\  
ZY7-.  
;{H Dz$  
辅助数据: ?(R#  
p*g)-/mA  
首先在第一行输入temperature :300K,emissivity: 0.1; a;KdkykG  
A{-S )Z3}  
gi/k#3_m  
Target 元件距离坐标原点-161mm; kl~/tbf  
 h#}w18l  
6W1+@ q  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 $X-PjQb1Bb  
\ ;]{`  
$ S3b<]B  
探测器参数设定: W;R6+@I[  
-,;woOG  
在菜单栏中选择Create/Element Primitive /plane 3mYW]  
;*zLf 9i  
w(`g)`  
M0C)SU5"  
aqk$4IG  
KI#v<4C$P  
元件半径为20mm*20,mm,距离坐标原点200mm。 b"#S92R+  
r{d@74  
光源创建: *) B \M>  
xc @$z* w  
光源类型选择为任意平面,光源半角设定为15度。 am3JzH  
}&7kT7ogO  
F~E)w5?\O  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 VfJ{);   
`_GCS,/t  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 S}h d,"I  
3 SbZD   
XW8@c2jN\7  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 ,KM%/;1Dm  
b@4UR<  
创建分析面: .eVX/6,  
eJ<P  
W\Scak>  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 O SUiS`k  
;aD~1;q  
NWiDNK[VE}  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 [ R8BcO(  
wTR?8$  
FRED在探测器上穿过多个像素点迭代来创建热图 PCgr`($U  
(>u1O V  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 '>1M~B  
将如下的代码放置在树形文件夹 Embedded Scripts, MD1X1,fk  
A_ &IK;-go  
S/pU|zV[  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 Hr}"g@ <  
O \o@]  
绿色字体为说明文字, "38<14V  
3l`"(5  
'#Language "WWB-COM" * Uy>F[%@  
'script for calculating thermal image map ^)Y3V-@t  
'edited rnp 4 november 2005 *UW 8|\;  
tGl|/  
'declarations 't8!.k  
Dim op As T_OPERATION ZW"f*vwQo  
Dim trm As T_TRIMVOLUME u&o4? ]6  
Dim irrad(32,32) As Double 'make consistent with sampling b0h\l#6  
Dim temp As Double ;}S_PnwC@  
Dim emiss As Double 6K8v:yYPa  
Dim fname As String, fullfilepath As String S3U]AH)C  
@%u}|iF|  
'Option Explicit n;xzjq-  
b|x B <  
Sub Main />9`Mbg[G  
    'USER INPUTS _O87[F1  
    nx = 31 ]x8Y]wAU&{  
    ny = 31 RYC%;h  
    numRays = 1000 BDPE.8s  
    minWave = 7    'microns Z \ @9*  
    maxWave = 11   'microns W"#<r  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 ;XZN0A2  
    fname = "teapotimage.dat" im:[ViR {  
q\!"FDOl4  
    Print "" Dqwd=$2%  
    Print "THERMAL IMAGE CALCULATION" 3kGg;z6  
}mZCQJ#`  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 a8[%-eW,  
"tk1W>liIN  
    Print "found detector array at node " & detnode q |Pebe=  
f]Aa$\@b  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Z9% u,Cb  
l1 08.ao  
    Print "found differential detector area at node " & srcnode $`0^E#Nl  
3#udz C  
    GetTrimVolume detnode, trm PeEaF@#k  
    detx = trm.xSemiApe ]+qd|}^  
    dety = trm.ySemiApe g.:ZMV  
    area = 4 * detx * dety ZZ!6O/M  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety Eqny'44  
    Print "sampling is " & nx & " by " & ny at*DYZBjDB  
v/]xdP^Z  
    'reset differential detector area dimensions to be consistent with sampling n.5M6i/~a  
    pixelx = 2 * detx / nx y\iECdPU  
    pixely = 2 * dety / ny E'8XXV^I?P  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 'S v V10$5  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 {~EsO1p  
/-@F|,O)$n  
    'reset the source power 1dp8'f5^  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) w[QC  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" u,YmCEd_V  
8r,0Qic2K  
    'zero out irradiance array jgpF+V-n$  
    For i = 0 To ny - 1 j9Z1=z  
        For j = 0 To nx - 1 ]4*E:  
            irrad(i,j) = 0.0 @1pfH\m  
        Next j 1Nv qtVC  
    Next i 5?j#  
9dp4&&Z+F  
    'main loop DYZk1  
    EnableTextPrinting( False ) wz:,gpH  
brCL"g|}  
    ypos =  dety + pixely / 2 h;cw=G  
    For i = 0 To ny - 1 b|k(:b-G&.  
        xpos = -detx - pixelx / 2 YO@~y *,  
        ypos = ypos - pixely '2<N_)43$  
ESS1 L$y  
        EnableTextPrinting( True ) /W}"/W9  
        Print i =t}m  
        EnableTextPrinting( False ) E%Ysyk  
8k Sb92  
+rrA>~  
        For j = 0 To nx - 1 1[RI 07g7*  
f.vJJa  
            xpos = xpos + pixelx VjiwW%UOM  
?%Pi#%P  
            'shift source +- hfl/$  
            LockOperationUpdates srcnode, True ="g9>  
            GetOperation srcnode, 1, op #V[Os!ns  
            op.val1 = xpos Fl==k  
            op.val2 = ypos R&/"?&pfa  
            SetOperation srcnode, 1, op O`>u70  
            LockOperationUpdates srcnode, False X4bZ4U*  
1:I _ ;O_  
            'raytrace weOga\  
            DeleteRays 1l}fX}5%I;  
            CreateSource srcnode $D*Yhv!/  
            TraceExisting 'draw &D7Mv5i0@  
-BrJ5]T>*  
            'radiometry l>7?B2^<E  
            For k = 0 To GetEntityCount()-1 .z,`{-7U  
                If IsSurface( k ) Then urD{'FQf  
                    temp = AuxDataGetData( k, "temperature" ) cm>+f^4?n  
                    emiss = AuxDataGetData( k, "emissivity" ) BL\H@D  
                    If ( temp <> 0 And emiss <> 0 ) Then 1HRcEzA  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) jyRz53  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) wFL7JwK:G  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi [hiV #  
                    End If # *7ImEN  
EuD$^#  
                End If Ige*tOv2  
SXV f&8  
            Next k 5lE9UoG[Q  
xwijCFI*  
        Next j Q6PMRG}/o  
&:=[\Ws R  
    Next i )EsFy6K:  
    EnableTextPrinting( True ) ^%33&<mB}  
2 3A)^j  
    'write out file wqt/0,\  
    fullfilepath = CurDir() & "\" & fname jXyK[q&O&  
    Open fullfilepath For Output As #1 6#2E {uy;R  
    Print #1, "GRID " & nx & " " & ny H<3a yp$  
    Print #1, "1e+308" B}d)e_uLj  
    Print #1, pixelx & " " & pixely <'P+2(Oi  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 s#(<zBZ9p#  
~H626vT37  
    maxRow = nx - 1 5e c T.  
    maxCol = ny - 1 & c 81q2  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) YD;"_yH  
            row = "" -$f$z(h  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 1F[W~@jW  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 8ao>]5Rs3  
        Next colNum                     ' end loop over columns n!?u/[@  
CN#2-[T  
            Print #1, row %T~LK=m  
kO8oH8Vt  
    Next rowNum                         ' end loop over rows fSm|anuKZe  
    Close #1 ju/#V}N  
@9h6D<?  
    Print "File written: " & fullfilepath -+ Mh( 'K  
    Print "All done!!" [mG:PTK3  
End Sub _I #a `G  
o:RO(oA0?  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: y6Ea_v  
-Rr Qv(  
NYF 7Ep; _  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 20BU;D3  
  
7V;wCm#b  
]=sGLd^)E  
打开后,选择二维平面图: 0d #jiG  
<Lfo5:.  
QQ:2987619807
K55]W2I9  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计