首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 {Qhv HV  
@*c+`5)_  
成像示意图
EG1SIEo  
首先我们建立十字元件命名为Target Aa1 |{^$:L  
*v 8 ]99N  
创建方法: "?N`9J|j)~  
w1GCjD*y  
面1 : O}KT>84M  
面型:plane $h$+EE!  
材料:Air c/hml4  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box z.jGVF4  
2>H\arEstR  
-({\eL$n  
辅助数据: zY#U]Is  
首先在第一行输入temperature :300K, Sqb#U{E  
emissivity:0.1; QOP*vH >J  
++kiCoC  
NuP@eeF>,  
面2 : 8l}|.Q#--  
面型:plane  Et- .[  
材料:Air =W4cWG?+  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box Y8AU<M  
o%|1D'f^  
-9Can4  
位置坐标:绕Z轴旋转90度, :]//{HF  
.&[nS<~`  
f/ =0  
辅助数据: cdh1~'q/  
oZ8SEC "]  
首先在第一行输入temperature :300K,emissivity: 0.1; )kd)v4#  
:7`,dyIqT  
B"EMir'  
Target 元件距离坐标原点-161mm; BHK_=2WYz  
=-:o?&64  
v |i(peA#  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 WK=!<FsC$  
'@W72ML.  
=_UPZ]  
探测器参数设定: -~aVt~{k/  
-S|L+">=Z  
在菜单栏中选择Create/Element Primitive /plane wWm#[f],?  
+fwq9I>L  
JZ<O-G+  
?(|!VLu  
ktS0  
GV2}K <s  
元件半径为20mm*20,mm,距离坐标原点200mm。 x x 'XR'zK  
KcrF=cA  
光源创建: SKS[Lf  
'2 )d9_ w  
光源类型选择为任意平面,光源半角设定为15度。 62zlO{ >rJ  
'Gc6ZSLM  
NT-du$! u  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 k9bU<  
o2.! G  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 t=pG6U  
yrIT4y  
I|PiZ1]2 Y  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 ;w+A38N$J  
Uvuvr_IP  
创建分析面: ~k J#IA  
]xS< \{og  
[mwfgh&4%  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 {<_}[} XY  
ogPfz/ hw  
}8FP5Z'Cf%  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 G)putk@   
^6`R:SV4Gx  
FRED在探测器上穿过多个像素点迭代来创建热图 56v<!L5%  
i|=XW6J%  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ZWr\v!4  
将如下的代码放置在树形文件夹 Embedded Scripts, eHjR/MMr_  
%TR->F  
i&l$G55F  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 d82IEhZ#  
9!R!H&  
绿色字体为说明文字, c"QI`;D_c  
lE`ScYG  
'#Language "WWB-COM" t,H,*2  
'script for calculating thermal image map ngNg1zV/q  
'edited rnp 4 november 2005 Y<|L|b6  
 (0k0gq;  
'declarations bEy%S "\<  
Dim op As T_OPERATION kg-%:;y.  
Dim trm As T_TRIMVOLUME O ,DX%wk,  
Dim irrad(32,32) As Double 'make consistent with sampling @!F9}n AP  
Dim temp As Double yRy9*r=  
Dim emiss As Double K'71uW>  
Dim fname As String, fullfilepath As String /bw-*  
"zv+|_ZAfd  
'Option Explicit 7kb`o y;(^  
*JDc1$H0  
Sub Main S#""((U$  
    'USER INPUTS HPgMVp'  
    nx = 31 u}$U|Cw-;T  
    ny = 31 > Euput\  
    numRays = 1000 tG{Vn+~/  
    minWave = 7    'microns G3e%~  
    maxWave = 11   'microns 8pk5[=3Z  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 V*/))n?  
    fname = "teapotimage.dat" 6 HEl1FK{@  
JlH|=nIaj6  
    Print "" T^Z#x-Q  
    Print "THERMAL IMAGE CALCULATION" '}}DPoV  
Q647a}  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 F4PD3E_#  
%tu{`PN<  
    Print "found detector array at node " & detnode >,9t<p=Q  
8G@FX $$Q  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 O_:Q#  
sS0psw1  
    Print "found differential detector area at node " & srcnode HnpGPGz@F  
q!7\`>.2:{  
    GetTrimVolume detnode, trm / )EB~|4']  
    detx = trm.xSemiApe ?W|POk}  
    dety = trm.ySemiApe ]>:>":<:  
    area = 4 * detx * dety J 5\> 8I,a  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety Isi ,Tl ^  
    Print "sampling is " & nx & " by " & ny weDv[b5i  
pLIBNo?  
    'reset differential detector area dimensions to be consistent with sampling qa Q  
    pixelx = 2 * detx / nx M,[ClQ 9  
    pixely = 2 * dety / ny PJ_|=bn  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False j9qN!.~mM  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 <^&'r5H  
jG/kT5S  
    'reset the source power `W/6xm(X5;  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) '|+_~ZO*d  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" xNONf4I:6J  
ar{e<&Bny  
    'zero out irradiance array NN$`n*;l  
    For i = 0 To ny - 1 hVID~L$  
        For j = 0 To nx - 1 |;].~7^  
            irrad(i,j) = 0.0 w8on3f;6n#  
        Next j l%)XPb2$J  
    Next i U]P;X~$!  
4gZN~_AI<  
    'main loop _,'UP>Si  
    EnableTextPrinting( False ) ;J _d%  
(Hs frc  
    ypos =  dety + pixely / 2 Z86[sQBg  
    For i = 0 To ny - 1 ?oF@q :W  
        xpos = -detx - pixelx / 2 d p?uq'  
        ypos = ypos - pixely MRa>@Jn??A  
9hq7:  
        EnableTextPrinting( True ) ?@XO*|xkSk  
        Print i 6yR7RF}  
        EnableTextPrinting( False )  "3v%|  
:r6 bw  
^=@%@mR/[C  
        For j = 0 To nx - 1 .=NK^  
c]O4l2nCL  
            xpos = xpos + pixelx }`eeItI+  
,p2 Di  
            'shift source %AJdtJ@0H  
            LockOperationUpdates srcnode, True @!Pq"/  
            GetOperation srcnode, 1, op g_q{3PW.  
            op.val1 = xpos {4Isz-P  
            op.val2 = ypos Z<wg`  
            SetOperation srcnode, 1, op 'J\%JAR@  
            LockOperationUpdates srcnode, False abF_i#  
QOOBCNe  
            'raytrace 2{%BQq>C  
            DeleteRays #8(@a Y  
            CreateSource srcnode 1wq 6E  
            TraceExisting 'draw Ufk7%`  
OU[Sm7B  
            'radiometry QTDI^ZeuF  
            For k = 0 To GetEntityCount()-1 *L!R4;ubE  
                If IsSurface( k ) Then )9*-Q%zc  
                    temp = AuxDataGetData( k, "temperature" ) T|=8 jt,  
                    emiss = AuxDataGetData( k, "emissivity" ) D4S>Pkv  
                    If ( temp <> 0 And emiss <> 0 ) Then \;sUJr"$  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) p'R}z|d)  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) +[>m`XTq  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi %@IR7v~  
                    End If +yYz;, \  
w ggl,+7  
                End If >97V2W  
U2h?l `nP  
            Next k Ms$kL'/  
yNqrL?i  
        Next j 1M+mH#?  
Ltu;sw  
    Next i Z)ObFJMG5  
    EnableTextPrinting( True ) wvgX5P>  
ptsi\ 7BG  
    'write out file LsLsSV  
    fullfilepath = CurDir() & "\" & fname P!-9cd1 C,  
    Open fullfilepath For Output As #1 HID;~Ne  
    Print #1, "GRID " & nx & " " & ny -dza_{&+iZ  
    Print #1, "1e+308" }6o` in>M  
    Print #1, pixelx & " " & pixely X2EC+<  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 GB{%4)%6  
~< k'{  
    maxRow = nx - 1 zIlQqyOQ8  
    maxCol = ny - 1 DQE.;0ld  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) 6.k2,C4dT<  
            row = "" /|>z7#?m^  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) H_jMl$f)j  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string MN#\P1  
        Next colNum                     ' end loop over columns p( z.[  
0uj3kr?cv  
            Print #1, row b>o38(  
K)&AR*Tc  
    Next rowNum                         ' end loop over rows ;ASlsUE\)  
    Close #1 `"    
= i `o+H  
    Print "File written: " & fullfilepath uv Z!3UH.  
    Print "All done!!" j{nL33T%  
End Sub }PoB`H'K5  
-`A6K!W&~p  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: Of-l<Ks\  
&'i>5Y  
1YQ|KJ*K  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 0dXWy`Mn  
  
VJm).>E3k  
$_NVy>\&  
打开后,选择二维平面图: B1\}'g8%f  
'w&,3@Z  
QQ:2987619807
dMYDB  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计