首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 xw+<p  
r=DHt&x=  
成像示意图
60,-\h  
首先我们建立十字元件命名为Target P,/13tZ#3  
<F)w=_%&  
创建方法: @0ov!9]Rw-  
6<s(e_5f  
面1 : aXIB) $1  
面型:plane >{ECyh;  
材料:Air |rxKCzjm  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box YO(:32S  
'l' X^LMD  
*"ykTqa  
辅助数据: 'G l;Ir^  
首先在第一行输入temperature :300K, /1 US,  
emissivity:0.1; EItxRHV5  
B9LSxB  
E#<7\ p>  
面2 : }0BL0N`_  
面型:plane i$[,-4 v  
材料:Air 3q#"i&  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box #juGD9e  
K}PvrcO1  
>HcYVp~G  
位置坐标:绕Z轴旋转90度, v~V;+S=gz  
Gg}5$||^C  
{5QosC+o6Q  
辅助数据: dd \bI_  
66~e~F}z  
首先在第一行输入temperature :300K,emissivity: 0.1; ZI58XS+  
NV8]#b  
FgOUe  
Target 元件距离坐标原点-161mm; 068WlF cWV  
WYwzo V-  
*|];f#^9  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 $R%+*  
;Ze"<U  
S}.\v<  
探测器参数设定: tLS<0  
:%/\1$3P  
在菜单栏中选择Create/Element Primitive /plane _kn]#^ucCe  
|h^K M  
n> MD\ZS  
3TU'*w &  
$zC6(C(l  
9U2Px$E  
元件半径为20mm*20,mm,距离坐标原点200mm。 K4j@j}zK9I  
M[h 1>}$Lz  
光源创建: DUZQO{V  
I:F'S#  
光源类型选择为任意平面,光源半角设定为15度。 $42Au2Jg  
,dHP`j ?  
D^,\cZbY  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 H9%l?r5  
tgO+*q5B  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 T?H\&2CLT  
n&_YYEHx  
<9@&oN+T  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 Sdgb#?MR|  
HG3.~ 6X  
创建分析面: U:qF/%w  
T|;^.TZ  
shM{Y9~O9&  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 $!a?i@  
'oC$6l'rQ  
C0zrXhY_v  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 dKU5;  
>4Iv[ D1  
FRED在探测器上穿过多个像素点迭代来创建热图 iH[E= 6*  
d2ohW|  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 XK1fHfCEa  
将如下的代码放置在树形文件夹 Embedded Scripts, >RM 0=bO  
j,}4TDWa  
w'd.;  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 6/|U  
;)gLjF/F7  
绿色字体为说明文字, -dl}_   
?#4+r_dP  
'#Language "WWB-COM" u/ }xE7G  
'script for calculating thermal image map `Gf{z%/  
'edited rnp 4 november 2005 KZECo1  
!0b%Jh  
'declarations 9QX4R<"wUg  
Dim op As T_OPERATION >5c]aNcv  
Dim trm As T_TRIMVOLUME fzl=d_  
Dim irrad(32,32) As Double 'make consistent with sampling pNuqT*  
Dim temp As Double V R"8Di&)  
Dim emiss As Double QS\Uq(Ja\  
Dim fname As String, fullfilepath As String \ZqK\=  
# 2d,U\_  
'Option Explicit #`vVg GZ&  
 ?J<T  
Sub Main mLJDxh'B  
    'USER INPUTS }bp.OV-+  
    nx = 31 <p09oZ{6  
    ny = 31 gTnS[  
    numRays = 1000 0k%hY{  
    minWave = 7    'microns &1=g A.ZR  
    maxWave = 11   'microns t7&Dwmck9  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 ^dh=M5xz)  
    fname = "teapotimage.dat" gNTh% e  
am2a#4`  
    Print "" (X*9w##x(  
    Print "THERMAL IMAGE CALCULATION" ikr7DBLt  
=9(tsB gTX  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 vuZf#\zh}  
)PwQ^||{  
    Print "found detector array at node " & detnode 4x(F&0  
<E SvvTf  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 |Hfl&3  
!\ZcOk2  
    Print "found differential detector area at node " & srcnode ;t|,nz4kJ  
?;_H{/)m  
    GetTrimVolume detnode, trm |<1M&\oaQ'  
    detx = trm.xSemiApe e^=NL>V6p  
    dety = trm.ySemiApe |e:rYLxm:  
    area = 4 * detx * dety h<)yJh  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety bTiBmS  
    Print "sampling is " & nx & " by " & ny >{b3>s~T  
:b5XKv^  
    'reset differential detector area dimensions to be consistent with sampling A0OB$OK  
    pixelx = 2 * detx / nx ^Wm*-4  
    pixely = 2 * dety / ny 1#]B^D  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False w]F!2b!  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 >4~#%&  
3+%nn+m  
    'reset the source power t?HF-zQ  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) s@PLS5d"  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" k1 RV'  
$,@JYLC2  
    'zero out irradiance array Wa<-AZnh  
    For i = 0 To ny - 1 HJ",Sle  
        For j = 0 To nx - 1 U:\p$hL9  
            irrad(i,j) = 0.0 a}dw9wU!:  
        Next j R1Yqz $#  
    Next i %7 /,m  
>C*4_J7  
    'main loop ^\T]r<rCY  
    EnableTextPrinting( False ) <n\i>A3`,S  
m d_g}N(C  
    ypos =  dety + pixely / 2 bLco:-G1E1  
    For i = 0 To ny - 1 R B%:h-t4  
        xpos = -detx - pixelx / 2 c@9##DPn  
        ypos = ypos - pixely oBC]UL;8xJ  
6^ab@GrN\  
        EnableTextPrinting( True ) >x*)GPDa  
        Print i 50 *@.!^*  
        EnableTextPrinting( False ) 8 ip^]  
#Skj#)I"  
DLXL!-)z  
        For j = 0 To nx - 1 S}b~_}  
;P8(Zf3wJb  
            xpos = xpos + pixelx x)$2nonM  
Sk$KqHX(  
            'shift source u-:MVEm  
            LockOperationUpdates srcnode, True h\FwgkJP  
            GetOperation srcnode, 1, op {:$NfW  
            op.val1 = xpos MOeoU1Hn  
            op.val2 = ypos {!r#f(?uT  
            SetOperation srcnode, 1, op Se Oy7  
            LockOperationUpdates srcnode, False 7DZTQUb"  
`,P >mp)uU  
            'raytrace Wj tft%  
            DeleteRays ,_bp)-OG  
            CreateSource srcnode .:N:pWe  
            TraceExisting 'draw r>O|L%xpv  
>4c`UW  
            'radiometry d>/Tu_ y  
            For k = 0 To GetEntityCount()-1 |EEi&GOR(y  
                If IsSurface( k ) Then cWM:  
                    temp = AuxDataGetData( k, "temperature" ) YXRjx .srf  
                    emiss = AuxDataGetData( k, "emissivity" ) MyFCJJ/  
                    If ( temp <> 0 And emiss <> 0 ) Then tgB=vIw?3  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) *6P'q4 )  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) h1-Gp3#  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi y;QQ| =,  
                    End If cJ/4G l  
]!faA\1  
                End If ST% T =_q  
OpUA{P  
            Next k ^vaL8+  
="2/\*.SL  
        Next j !-,Ww[G>  
}*Zo6{B-  
    Next i .1{l[[= W  
    EnableTextPrinting( True ) vpV$$=Qwp  
Cm410=b  
    'write out file =f `=@]  
    fullfilepath = CurDir() & "\" & fname N iISJWk6'  
    Open fullfilepath For Output As #1 WUY,. 8  
    Print #1, "GRID " & nx & " " & ny Q i^;1&  
    Print #1, "1e+308" .<.#aY;N  
    Print #1, pixelx & " " & pixely O8y9dX-2  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 .)t (:)*b  
/=/ HB  
    maxRow = nx - 1 xW0Z'==  
    maxCol = ny - 1 z<h|#@\  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) 7UDq/:}Fo  
            row = "" -=sf}4A  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) {G%3*=?,j  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ?Q?598MC  
        Next colNum                     ' end loop over columns --A&TV  
[S)G$JW  
            Print #1, row b!,ja?  
2rmNdvvrk  
    Next rowNum                         ' end loop over rows f:XfAH3R{  
    Close #1 i7s\CY  
T]uKH29.%  
    Print "File written: " & fullfilepath s>r ^r%uK  
    Print "All done!!" 67?n-NP  
End Sub  Oq}ip  
wE4;Rk1  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: <p/MyqZf  
Ko+al{2  
m_$JWv\|\  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 \ j:AR4  
  
7*MU2gb  
vzcz<i )  
打开后,选择二维平面图: o X@nP?\  
>j:|3atb  
QQ:2987619807
5QOZ%9E&M  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计