首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 4tSh.qBht  
"B9zQ,[Q  
成像示意图
*z]P|_:&G  
首先我们建立十字元件命名为Target 3h6,x0AG  
w9Nk8OsL  
创建方法: s !I I}'Je  
M&e=LV  
面1 : 0*j\i@  
面型:plane q?8#D  
材料:Air h]4qJ  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box %D7'7E8.  
Y5*A,piq  
(l/i#  
辅助数据: \*pS 4vy5x  
首先在第一行输入temperature :300K, waG &3m  
emissivity:0.1; ca[*#xiJ  
|T-Y tuy8  
g^U-^ f  
面2 : w1 A-_  
面型:plane 9e&*+ +vf  
材料:Air 9h<iw\ $'  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box Z*(OcQ-  
0:x+;R<P*w  
QRF:6bAxsL  
位置坐标:绕Z轴旋转90度, 9QkssI  
c~6ywuq+M`  
Y"dTm;&  
辅助数据: $H6ngL  
>f;oY9 {m  
首先在第一行输入temperature :300K,emissivity: 0.1; r%LG>c`^  
VotI5O $  
@Q:?,  
Target 元件距离坐标原点-161mm; 7j"B-k#  
{q&A/  
uuy0fQQ8ti  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 GB}X  
o Y<vKs^  
{s?hXB  
探测器参数设定: vmW`}FKW  
o/!a7>xO4  
在菜单栏中选择Create/Element Primitive /plane V_9\Ax'X  
f&X M|Bg  
54 f?YR  
w_Z*X5u  
!V/p.O  
U* T :p>&  
元件半径为20mm*20,mm,距离坐标原点200mm。 xCMuq9zt@  
`?T8NK  
光源创建: T8vMBaU!qY  
g$8a B{)  
光源类型选择为任意平面,光源半角设定为15度。 ~SEIIq  
|G)bnmi7  
[U{RDX  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 /ZSdY_%s  
ry4:i4/[  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 -AKbXkc~\  
@Tsdgx8  
`UkPXCC\1  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 {1GIiP-U  
d UiS0Qs}  
创建分析面: L/O:V^1  
puGy`9eKv1  
;giT[KK  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 dr4m}v.  
2V*<J:;wb  
zrur-i$N+  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 iLFhm4.PO  
9K{0x7~  
FRED在探测器上穿过多个像素点迭代来创建热图 ~|e H8@o  
@wXo{p@W  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ;'|t>'0_  
将如下的代码放置在树形文件夹 Embedded Scripts, }@g#S@o  
1)M%]I4  
\JZ'^P$Q  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 Q__1QUu  
wW^3/  
绿色字体为说明文字, 65pC#$F<x  
p5=VGKp  
'#Language "WWB-COM" 6j~'>w(F  
'script for calculating thermal image map NSAp.m   
'edited rnp 4 november 2005 %MN>b[z  
$qhVow5~  
'declarations &v_b7h  
Dim op As T_OPERATION zMN4cBL9m  
Dim trm As T_TRIMVOLUME ?I#zcD)w  
Dim irrad(32,32) As Double 'make consistent with sampling -ID!kZx  
Dim temp As Double iI%"]- 0@1  
Dim emiss As Double C$EvcF% 1  
Dim fname As String, fullfilepath As String &k {1N.  
tPho4,x$  
'Option Explicit XZ&q5]PJI  
KP!ctlP~  
Sub Main }^B=f_Ag  
    'USER INPUTS ]]bL;vlw  
    nx = 31 }!RFX)T  
    ny = 31 w.H\j9E l  
    numRays = 1000 $+ ?A[{JG  
    minWave = 7    'microns B (dq$+4  
    maxWave = 11   'microns HzF]hm,  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 %y;Cgo[  
    fname = "teapotimage.dat" 1PJ8O|Z t8  
fdTyY ;  
    Print "" A ZYu/k  
    Print "THERMAL IMAGE CALCULATION" rF5O?<(  
uia-w^F e  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 ~*h` ?A0  
d.uJ}=|  
    Print "found detector array at node " & detnode w0^T-O`<  
I- X|-  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 !B{N:?r  
*.9.BD9  
    Print "found differential detector area at node " & srcnode "J%/xj  
3pKr {U92  
    GetTrimVolume detnode, trm w/HGmVa  
    detx = trm.xSemiApe r$~ f[cA  
    dety = trm.ySemiApe v-@xO&<  
    area = 4 * detx * dety Yj^n4G(h  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety n.$wW =  
    Print "sampling is " & nx & " by " & ny 9L'R;H?L  
u;*Wc9>sU  
    'reset differential detector area dimensions to be consistent with sampling "b"Q0"w  
    pixelx = 2 * detx / nx SD^6ib/]b  
    pixely = 2 * dety / ny OQON~&~  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False "!6 Ax-'  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 dF%sD|<)  
4X2/n  
    'reset the source power DKfw8"L]  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) T7=~l)I  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" z`D;8x2b  
lT3, G#(  
    'zero out irradiance array L 59q\_|  
    For i = 0 To ny - 1 $z~sN  
        For j = 0 To nx - 1 5? `*i"  
            irrad(i,j) = 0.0 }*4K]3et$  
        Next j b;O|-2AR  
    Next i Y&k6Xhuao  
"[(I*  
    'main loop t*zBN!Wu_  
    EnableTextPrinting( False ) S&@uY#_(*T  
Z\d7dbv  
    ypos =  dety + pixely / 2 8ctUK|  
    For i = 0 To ny - 1 ^MesP:[2  
        xpos = -detx - pixelx / 2 6XO%l0dC.  
        ypos = ypos - pixely r~uWr'}a}  
b"y][5VE  
        EnableTextPrinting( True ) d aIt `}s  
        Print i joh=0nk;D  
        EnableTextPrinting( False ) nJ`JF5tI  
mT8($KQ  
t/K<fy 6  
        For j = 0 To nx - 1 Kd _tjWS  
s:UQ~p}"S  
            xpos = xpos + pixelx \KmjA )(  
/u }AgIb  
            'shift source n; 0bVVMV  
            LockOperationUpdates srcnode, True )IGE2k|  
            GetOperation srcnode, 1, op MmBM\Dnv  
            op.val1 = xpos c_]$UM[7L  
            op.val2 = ypos ;N4b~k)  
            SetOperation srcnode, 1, op \w!G  
            LockOperationUpdates srcnode, False G l=dL<F  
h*f=  
            'raytrace /s>ZT8vaAs  
            DeleteRays *K6 V$_{S  
            CreateSource srcnode ) w.cCDL c  
            TraceExisting 'draw 7CzZHkTg  
 ] }XK  
            'radiometry 4Wq{ch  
            For k = 0 To GetEntityCount()-1 Y B@\"|}  
                If IsSurface( k ) Then ~l%Dcp  
                    temp = AuxDataGetData( k, "temperature" ) !Re/W ykY  
                    emiss = AuxDataGetData( k, "emissivity" ) l|`%FB^k  
                    If ( temp <> 0 And emiss <> 0 ) Then ^IuHc_  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) b<qv /t)$  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) g83!il\  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi (u-i{<   
                    End If e*e}X&|(g  
Pq~"`-h7:  
                End If <L@0w8i`  
>A|6 kzC  
            Next k DNdwMSwp  
9}Tf9>qP>M  
        Next j 4`G":nE?We  
kIV/o  
    Next i 12aAO|]/~  
    EnableTextPrinting( True ) :cop0;X:Wm  
2f>lgZ!  
    'write out file gEtD qq~y@  
    fullfilepath = CurDir() & "\" & fname Xd>4n7nb$`  
    Open fullfilepath For Output As #1 o(w1!spA  
    Print #1, "GRID " & nx & " " & ny ~wIVw}  
    Print #1, "1e+308" ZGa>^k[:  
    Print #1, pixelx & " " & pixely O,ZvV3  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 t<9oEjk["  
)'xTDi  
    maxRow = nx - 1 I+w3It  
    maxCol = ny - 1 )JTh=w4n|z  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) n 8Jx;j  
            row = "" HFBGM\R02  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) /] ce?PPC  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string Qv,|*bf  
        Next colNum                     ' end loop over columns B=#rp*vwL  
Y4}!9x  
            Print #1, row I@a7AuOw  
f3s0.G#l  
    Next rowNum                         ' end loop over rows Rk56H  
    Close #1 ZrnZ7,!@  
cu]2`DF  
    Print "File written: " & fullfilepath Q <EFd   
    Print "All done!!" H^p ?t=Y  
End Sub ZebXcT ,41  
)MLOYX  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 1b E$x^P  
C',D"  
cUaLv1:HI  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 ~qLbyzHaB  
  
 |X`xJL  
|]HU$Gt S  
打开后,选择二维平面图: ($' rV!}  
@P6K`'.0  
QQ:2987619807
fzRzkn:=  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计