首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 l{R)yTO  
OU+*@2")t  
成像示意图
k8ck#%#}Wu  
首先我们建立十字元件命名为Target Z/x1?{z  
<uvshZ v  
创建方法: Q4x71*vy  
$_VD@YlAp  
面1 : BO_^3Me*  
面型:plane 7[)(;-  
材料:Air Dmw,Bi*  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box g:EU\  
9+:Trc\%N  
4Y2>w  
辅助数据: J]UH q$B  
首先在第一行输入temperature :300K, ,?qS#B+>  
emissivity:0.1; VX%+!6+fS  
;1%a:#5  
6PH*]#PfoD  
面2 : j7d;1 zB+G  
面型:plane $d"+Njd  
材料:Air RB"rx\u7K  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box *E]\l+]J  
5f5ZfK3<i  
4!jHZ<2 Z  
位置坐标:绕Z轴旋转90度, }dz(DP d  
F0\ry "(t  
"DpQnhvbB  
辅助数据: ry0 =N^  
v4$,Vt:7  
首先在第一行输入temperature :300K,emissivity: 0.1; =X*E(.6Ip  
b~gF,^w  
S\A[Z&k 0  
Target 元件距离坐标原点-161mm; rx/6x(3  
9m6j?CFG}  
brWt  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 (XJQ$n  
.Dm{mV@*T  
TE~@Bl;{?c  
探测器参数设定: ]@YQi<d2^  
[78 .%b'  
在菜单栏中选择Create/Element Primitive /plane V*}zwm s6  
BP$#a #  
;>N ~ ,Q  
R 28*  
YqgW8 EM  
R`q!~8u  
元件半径为20mm*20,mm,距离坐标原点200mm。 d}_c (  
=*jcO119L  
光源创建: v=VmiBq[  
}c%y0)fL  
光源类型选择为任意平面,光源半角设定为15度。 T*yveo &j  
e% 6{P  
MVZ>:G9:  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 QEa=!O  
VKz<7K\/  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 Oy$BR <\  
?` i/  
u7WM6X  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 +;;%Atgn  
J_ |x^  
创建分析面: _#m qg]W'  
:* b4/qpYv  
{LHe 6#  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 X:&p9_O@  
7"ps#)O  
RI3{>|*  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 P1stL,  
s$x] fO  
FRED在探测器上穿过多个像素点迭代来创建热图 -i5g 8t'  
Ag0_^  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 Gc z@ze  
将如下的代码放置在树形文件夹 Embedded Scripts, &\|<3sd(  
;<@6f@  
lFGxW 5  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ZM`P~N1?)g  
x9A ZS#e)[  
绿色字体为说明文字, (!5}" fj  
OKP_3Ns  
'#Language "WWB-COM" cqL7dlhIl  
'script for calculating thermal image map Ja=70ZI^ 6  
'edited rnp 4 november 2005 *jw$d8q2  
'O2#1SWe  
'declarations 8t: &#h  
Dim op As T_OPERATION (L:Fb  
Dim trm As T_TRIMVOLUME K6*UFO4}i  
Dim irrad(32,32) As Double 'make consistent with sampling i2a"J&,6O  
Dim temp As Double _% 9+U [@  
Dim emiss As Double 7h9[-d6  
Dim fname As String, fullfilepath As String 3r:)\E+Q_  
<&s)k  
'Option Explicit J*~2 :{=%  
A='+tJa  
Sub Main *RbOQ86vP  
    'USER INPUTS 4 Re@QOZ  
    nx = 31 JRjMt-7H_  
    ny = 31 wQ=yY$VP  
    numRays = 1000 g;#KBxE  
    minWave = 7    'microns M|5]#2J_2  
    maxWave = 11   'microns >+jbMAYSq  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 r>:L$_]L  
    fname = "teapotimage.dat" RJ}yf|d-C  
?+,*YVT  
    Print "" Ns|V7|n]  
    Print "THERMAL IMAGE CALCULATION" E7NbPNd  
r]JC~{  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 B==a  
#ON#4WD?  
    Print "found detector array at node " & detnode [[?[? V ,  
T7lj39pJq  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 vJj:9KcP>h  
9 yW ~79n  
    Print "found differential detector area at node " & srcnode >1a \ %G  
tFvgvx\:  
    GetTrimVolume detnode, trm I`"-$99|t1  
    detx = trm.xSemiApe jW1YTQ  
    dety = trm.ySemiApe ]D ?# \|  
    area = 4 * detx * dety BbXU| QtY  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety Iu-'o  
    Print "sampling is " & nx & " by " & ny ;-9zMbte :  
T@Ss&eGT2  
    'reset differential detector area dimensions to be consistent with sampling A{4G@k+#d  
    pixelx = 2 * detx / nx 2;%#C!TG;  
    pixely = 2 * dety / ny y|e2j&m  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False dXhCyr%"6  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 c_ qcb7<~.  
\'; t*  
    'reset the source power ^sT +5M^  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) JNxW6 cK  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Th7wP:iDP  
H5AK n*'7  
    'zero out irradiance array ZRXI?Jr%  
    For i = 0 To ny - 1 C(F1VS  
        For j = 0 To nx - 1 FG>;P]mvp  
            irrad(i,j) = 0.0 q)K-vt)98  
        Next j eW%L$I  
    Next i C 'B4 mmC  
k Zk .]b  
    'main loop < 72s7*Rv  
    EnableTextPrinting( False ) ERp:EZ'  
A+0T"2  
    ypos =  dety + pixely / 2 @@xO+$6  
    For i = 0 To ny - 1 j}|N^A_ S  
        xpos = -detx - pixelx / 2 &Q'\WA'  
        ypos = ypos - pixely =w',-+@  
\yih 1Om>~  
        EnableTextPrinting( True ) /Y;+PAy  
        Print i 9"WRIHt'c  
        EnableTextPrinting( False ) I$aXnd6)  
]{K5zSK  
-]Q3/"Q  
        For j = 0 To nx - 1 D-Bv(/Pz]$  
I`/]@BdgY  
            xpos = xpos + pixelx }Q`/K;yq  
v$t{o{3  
            'shift source \# 7@a74  
            LockOperationUpdates srcnode, True ?D1x;i9<  
            GetOperation srcnode, 1, op gb]h OB7g  
            op.val1 = xpos AU0$A403  
            op.val2 = ypos ZvUp#8x(3  
            SetOperation srcnode, 1, op |*%/ovg+  
            LockOperationUpdates srcnode, False OF-E6bc  
D35m5+=I  
            'raytrace v]66.-  
            DeleteRays IKvd!,0xf  
            CreateSource srcnode  G5!|y#T  
            TraceExisting 'draw >-VWm A  
Lqg] Fd  
            'radiometry 63.( j P1;  
            For k = 0 To GetEntityCount()-1 3b<: :t  
                If IsSurface( k ) Then vB Sm=M  
                    temp = AuxDataGetData( k, "temperature" ) +VwV5iy[`  
                    emiss = AuxDataGetData( k, "emissivity" ) D`V6&_. p  
                    If ( temp <> 0 And emiss <> 0 ) Then !{ $qMhT  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) :}^Rs9 '  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) -y%QRO(  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi :eSc;  
                    End If V:(y*tFA  
NK8<= n%"  
                End If Cm^Yl p  
7@JjjV  
            Next k B i'd5B5  
wc"9A~  
        Next j 5;}2[3}[  
Ys-^7 y_  
    Next i `4_c0 q)N4  
    EnableTextPrinting( True ) cxgE\4_u"  
>A<Df  
    'write out file  +.=1^+a  
    fullfilepath = CurDir() & "\" & fname ]7*kWc2  
    Open fullfilepath For Output As #1 Is ot4HLM  
    Print #1, "GRID " & nx & " " & ny KVg[#~3  
    Print #1, "1e+308" _wmI(+_  
    Print #1, pixelx & " " & pixely }*h47t}  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 kY=rz&?U  
>d#3|;RY  
    maxRow = nx - 1 axtb<5&  
    maxCol = ny - 1 ,'u*ZB;  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) >G&^?5  
            row = "" w;~>k%}j  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) oooS s&t  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string Nfg{,/ O  
        Next colNum                     ' end loop over columns =x1Wii$`  
lirNYJ]tO  
            Print #1, row X{`1:c'x  
(#If1[L  
    Next rowNum                         ' end loop over rows oXdel Ju?  
    Close #1 j|mv+O  
1\y@E  
    Print "File written: " & fullfilepath !j0_ cA  
    Print "All done!!" +mLD/gK`  
End Sub #~S>K3(  
@`S.@^%7fO  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: $R?@L  
_$5@uL{n"^  
J0sGvj{  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 %A) 538F  
  
]+ZM/'X  
r%|A$=[Q  
打开后,选择二维平面图: `c9'0*-  
lm*g Gy1i  
QQ:2987619807
xp^ 7#`MJ?  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计