首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 QX(:!b  
;yk@`<  
成像示意图
RNvtgZ}k{X  
首先我们建立十字元件命名为Target @~gz-l^$  
u%*;gu"2  
创建方法: 2N)vEUyDV  
R!$j_H  
面1 : n}MG  
面型:plane ;utjW1y  
材料:Air MF E%q  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box xOu cZ+  
>) S a#w;  
D]oS R7h  
辅助数据: yobi$mnsy!  
首先在第一行输入temperature :300K, hZzsZQ`  
emissivity:0.1; j@9nX4Z  
1uy+'2[Z-D  
'Y"q=@Ei9  
面2 : QT-rb~  
面型:plane 6'wP?=  
材料:Air ! B)Em  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box n!tCz<v  
lXz<jt@5  
u8[X\f  
位置坐标:绕Z轴旋转90度, DDkO g]  
e dD(s5  
sk],_l<  
辅助数据: Jn:GqO  
Vx#xq#wK  
首先在第一行输入temperature :300K,emissivity: 0.1; ?NHh=H\7u  
92} , A`=  
D@j `'&G  
Target 元件距离坐标原点-161mm; H3b@;&`&  
zR`]8E]  
zizrc.g/Yg  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 Fir7z nRW  
>)VrbPRuA  
="I]D I  
探测器参数设定: s'K0C8'U  
;#j/F]xG  
在菜单栏中选择Create/Element Primitive /plane %OzxR9  
K): )bL(B  
khEHMvVH  
0c`wJktWK  
r<b g->lX  
Y*7.3 +#  
元件半径为20mm*20,mm,距离坐标原点200mm。 ^,`yt^^A  
8taaBM`:  
光源创建: %F{@DN`  
I/'jRM  
光源类型选择为任意平面,光源半角设定为15度。 KD#ip3  
_e?(Gs0BM  
$%!]tNGS  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 2j_L jY'7  
-aec1+o  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 +i K.+B  
HF0J>Clq  
8~4{e,} ,  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 W;hI[9  
Wk$%0xZ7  
创建分析面: &{7%Vs TB  
^srx/6X  
30B! hj$C  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 o{ U= f6  
;H}? 8L  
s3t{freM  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 = [:ruE  
\bfNki  
FRED在探测器上穿过多个像素点迭代来创建热图 L]9*^al  
<ZCjQkka>r  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 `XI1,&Wp7  
将如下的代码放置在树形文件夹 Embedded Scripts, RX#:27:  
kkh#VGh"  
1k;X*r#  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 =G*<WcR  
sdrE4-zd  
绿色字体为说明文字, ?_ p3^kl  
G0<m3 Up  
'#Language "WWB-COM" cp]\<p('A  
'script for calculating thermal image map V<(cW'zA/  
'edited rnp 4 november 2005 rw58bkh6  
%/~Sq?f-9@  
'declarations RD,` D!  
Dim op As T_OPERATION wl}Q|4rZ  
Dim trm As T_TRIMVOLUME  X&(1DE  
Dim irrad(32,32) As Double 'make consistent with sampling $,bLb5}Qu  
Dim temp As Double .p <!2   
Dim emiss As Double 0urQA_JC  
Dim fname As String, fullfilepath As String `43E-'g  
z,$^|'pP  
'Option Explicit joYj`K  
7!z0)Ai_>=  
Sub Main 0riTav8  
    'USER INPUTS 8*6U4R  
    nx = 31 Z+FJ cvYx  
    ny = 31 PC=b.H8P+W  
    numRays = 1000 $M#G;W5c  
    minWave = 7    'microns _@SC R%  
    maxWave = 11   'microns Un@dWf6'  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 }eSaF@.  
    fname = "teapotimage.dat" -PoW56  
ioz4kG!  
    Print "" kp LDK81I  
    Print "THERMAL IMAGE CALCULATION" +<&_1% 5+  
`Z0FQ( r_  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 (jtrQob  
1H{J T op  
    Print "found detector array at node " & detnode 7S}NV7  
q\/ph(HF  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 lE'2\kxI?  
Z`T]jm-3  
    Print "found differential detector area at node " & srcnode 4ba[*R2  
0EKi?vP@y7  
    GetTrimVolume detnode, trm 2V:`':  
    detx = trm.xSemiApe #;z;8q  
    dety = trm.ySemiApe kq8.SvIb  
    area = 4 * detx * dety I w~R@,  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety  6g576  
    Print "sampling is " & nx & " by " & ny Z8%?ej`8  
X@RS /  
    'reset differential detector area dimensions to be consistent with sampling `-/-(v+ i  
    pixelx = 2 * detx / nx oIrO%v:'!  
    pixely = 2 * dety / ny =;ClOy9  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False TkBHlTa"=  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 _Dr9 w&;<  
u5;;s@{Ye4  
    'reset the source power ;G.5.q[A  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) |Bz1u|uc  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" z{`K_s%5  
+saXN6  
    'zero out irradiance array N?`V;`[  
    For i = 0 To ny - 1 Vdd HK  
        For j = 0 To nx - 1 t-B5,,`  
            irrad(i,j) = 0.0 #9zpJ\E  
        Next j Bs)'Gk`1  
    Next i EM QGP<[  
eu={6/O  
    'main loop hz:h>Hwy  
    EnableTextPrinting( False ) )Fon;/p  
V^Y'!w\LGI  
    ypos =  dety + pixely / 2 /s*.:cdH  
    For i = 0 To ny - 1 z36wWdRa6  
        xpos = -detx - pixelx / 2 ZP{<f~;  
        ypos = ypos - pixely h?[|1.lJx(  
6S`0<Z;;/  
        EnableTextPrinting( True ) )G#mC0?PV  
        Print i 76H>ST@G|  
        EnableTextPrinting( False ) f7YBhF  
' _d4[Olu  
ls7eypKR  
        For j = 0 To nx - 1 @<NuuYQ&  
wg%g(FO  
            xpos = xpos + pixelx J0V`sK  
3ew4QPT'  
            'shift source vj jVZ  
            LockOperationUpdates srcnode, True m8@&-,T   
            GetOperation srcnode, 1, op XeX\u3<D  
            op.val1 = xpos m/z,MT74*J  
            op.val2 = ypos G %'xEr0n  
            SetOperation srcnode, 1, op .G.WPVE  
            LockOperationUpdates srcnode, False 27k(`{K  
$=iw<B r  
            'raytrace k&2=-qgVR  
            DeleteRays #x;,RPw5  
            CreateSource srcnode `78Bv>[A  
            TraceExisting 'draw I`zd:o]  
{j=`  
            'radiometry d]poUN~x  
            For k = 0 To GetEntityCount()-1 h2 KI  
                If IsSurface( k ) Then nl qn:[BU  
                    temp = AuxDataGetData( k, "temperature" ) 8[;vC$  
                    emiss = AuxDataGetData( k, "emissivity" ) Fvf |m7  
                    If ( temp <> 0 And emiss <> 0 ) Then f(Y_<%  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) 8l_M 0F ,  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) vfc:ok1  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi #=t/wAE y:  
                    End If #F`A(n  
fqhL"Ah   
                End If >!6|yk`GJ  
lDTHK2f  
            Next k s bj/d~$N  
TP"cEfs x  
        Next j AH|gI2  
GL=}Vu`(*  
    Next i HcgvlFb  
    EnableTextPrinting( True ) @@)2 12  
VGmvfhf#"  
    'write out file &'SD1m1P  
    fullfilepath = CurDir() & "\" & fname &E_a0*)e  
    Open fullfilepath For Output As #1 $#q`Y+;L2  
    Print #1, "GRID " & nx & " " & ny *!%lBt{2  
    Print #1, "1e+308" +{1.kb Zq  
    Print #1, pixelx & " " & pixely &^r>Q`u  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 `&M,B=E  
27EK +$  
    maxRow = nx - 1 X*QS/\  
    maxCol = ny - 1 -}#HaL#'K  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) G18w3BFx  
            row = "" & 3BoK/y3  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) N-gYamlQ  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 5J10S  
        Next colNum                     ' end loop over columns m[^lu1\wn  
y3zP`^  
            Print #1, row pFvu,Q"  
Mf1(4F  
    Next rowNum                         ' end loop over rows TaN{xpo  
    Close #1 gcU*rml  
wT4@X[5$  
    Print "File written: " & fullfilepath Fl-\{vOn  
    Print "All done!!" @1MnJP  
End Sub +!/ATR%Uci  
uh )S;3|  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 98>GHl'lM  
iRzFA!wH  
|_V(^b}  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 T3X'73M  
  
X2z<cJG|d@  
=l/6-j^  
打开后,选择二维平面图: p;O%W@n"  
CMXF[X)%  
QQ:2987619807
q,vWu(.  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计