| infotek |
2020-11-18 10:58 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 K'xV;r7Nt >eaaaq9B-
成像示意图 .VqhV 首先我们建立十字元件命名为Target \^LFkp KXrjqqXs 创建方法: )_:NLo: xoL\us`A 面1 : .X&9Q9T=# 面型:plane -4K5-|>O 材料:Air r^ XVB`v 孔径:X=1.5, Y=6,Z=0.075,形状选择Box gr{ DWCK ta0|^KAA
k'YTpO 辅助数据: E$e5^G9 首先在第一行输入temperature :300K, xLE)/}y_7H emissivity:0.1; rjP/l6
~' "7
yD0T)2 7=uj2.J6 面2 : JC"z&ka 面型:plane cl1T8vFM 材料:Air J4'eI[73 孔径:X=1.5, Y=6,Z=0.075,形状选择Box m~|40) RFGffA&
l] vm=7: 位置坐标:绕Z轴旋转90度, )+^+sd W)/#0*7
YUb_y^B^ 辅助数据: @WhHUd4s <b.D& 首先在第一行输入temperature :300K,emissivity: 0.1; #4:?gfIj Sdo-nt R_KH"`q Target 元件距离坐标原点-161mm; Wqnc{oq|$ nTas~~Q
cL ]1f 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 [^)g%|W (:_$5&i7 1 zZlC#V 探测器参数设定: 9$t(&z= hgmCRC 在菜单栏中选择Create/Element Primitive /plane Xvv6~ F
[M,]?
!i50QA|(G \+etCo
_t$sgz& ?[AD=rUC 元件半径为20mm*20,mm,距离坐标原点200mm。 /z!%d%" F2WKd1U 光源创建: qM`}{
/i [
3Gf2_ 光源类型选择为任意平面,光源半角设定为15度。 sB</DS bOB\--:] .>S!ji 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 |>Vb9:q9Po $`c:& 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 vdZW%-A&\ m*pJBZxd #R"*c
hLV 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 M{@(G5 YVU7wW,1 创建分析面: y `UaB3q P?\6@_ Z M7T5
~/4 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 bsX[UF VRMXtQ*1Dm
UpG~[u)%@ 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 $X6h|?3U, O?2DQY?jT FRED在探测器上穿过多个像素点迭代来创建热图 t!XwW$@ WLT"ji0w2 FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 #4PN"o@ 将如下的代码放置在树形文件夹 Embedded Scripts, WMdg1J+~ 3$ pX
\85i+q:LuA 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。
)2.Si# WE?5ehEme 绿色字体为说明文字, \~W'v3:W +whDU2 " '#Language "WWB-COM" siI;"? 'script for calculating thermal image map bw7@5=?; 'edited rnp 4 november 2005 DUS6SO QV!up^Zso 'declarations v+XJ*N[W Dim op As T_OPERATION 5+'<R8{:, Dim trm As T_TRIMVOLUME RP"kC4~1 Dim irrad(32,32) As Double 'make consistent with sampling ueudRb Dim temp As Double ;TYBx24vD' Dim emiss As Double l**X^+=$ Dim fname As String, fullfilepath As String CZ;6@{ o
ep8 'Option Explicit CTb%(<r L,\Iasv Sub Main }7Uoh(d 'USER INPUTS r@V!,k#S nx = 31 ^W^OfY ny = 31 ;pAK_> numRays = 1000 J5qZFD minWave = 7 'microns hb$Ce'}N maxWave = 11 'microns jp,4h4C^) sigma = 5.67e-14 'watts/mm^2/deg k^4 7! Nsm fname = "teapotimage.dat" _f83-':W6 DQ3<$0 Print "" TOt dUO Print "THERMAL IMAGE CALCULATION"
];m_4 L0,'mS detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 l#o
~W` !0+JbZ<%r| Print "found detector array at node " & detnode ll^#JpT[S )`:UP~)H srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ?9/G[[( :;}P*T*PU Print "found differential detector area at node " & srcnode m0wDX*Qn 23PGq%R GetTrimVolume detnode, trm dPlV>IM$z detx = trm.xSemiApe @JMiO^ dety = trm.ySemiApe FrS]|=LJhX area = 4 * detx * dety ?,mmYW6TjB Print "detector array semiaperture dimensions are " & detx & " by " & dety o-5TC Print "sampling is " & nx & " by " & ny b6bHTH0 ';CNGv - 'reset differential detector area dimensions to be consistent with sampling js(pC@<q5 pixelx = 2 * detx / nx y(#e}z: pixely = 2 * dety / ny ZK,G v SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False B#A6v0Ta Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 |Cv!,]9:r @d'j zs 'reset the source power p K*TE5] SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) WWY6ha Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" 3]Ct6 Txu/{M, 'zero out irradiance array $Sq:q0 For i = 0 To ny - 1 |yCMt:Hk For j = 0 To nx - 1 * 4'"2" irrad(i,j) = 0.0 J.a]K[ci Next j *dQSw)R Next i rI\FI0zIp_ ,tFg4k[ 'main loop &C}*w2]0S EnableTextPrinting( False ) 4#D,?eA7 [Xkx_B ypos = dety + pixely / 2 =X}J6|>X For i = 0 To ny - 1 OUnA;_ xpos = -detx - pixelx / 2 4W75T2q# ypos = ypos - pixely -"x$ZnHU ZJoM?g~WFI EnableTextPrinting( True ) b%+Xy8a Print i ).O)p9 EnableTextPrinting( False ) }MySaL> NEs:},)o Eci\a] For j = 0 To nx - 1 5P bW[ UKGPtKE< xpos = xpos + pixelx ctQ/wrkU F|8& 'shift source jXJyc'm7 LockOperationUpdates srcnode, True vN $s|R'@ GetOperation srcnode, 1, op T{"(\X$ op.val1 = xpos +@UV?"d op.val2 = ypos k6^Z~5
Sy SetOperation srcnode, 1, op }p
V:M{Nu& LockOperationUpdates srcnode, False %T[]zJ( ceA9){ 'raytrace 6)J#OKZ DeleteRays u*R_\*j@ CreateSource srcnode MV"=19] TraceExisting 'draw +ZYn? #IQ )oZ dj` 'radiometry =4!mAo} For k = 0 To GetEntityCount()-1 `cO:<^% If IsSurface( k ) Then gw(z1L5
n temp = AuxDataGetData( k, "temperature" ) %O<BfIZ emiss = AuxDataGetData( k, "emissivity" ) b>k y If ( temp <> 0 And emiss <> 0 ) Then XW9!p.*.U ProjSolidAngleByPi = GetSurfIncidentPower( k ) Bvj0^fSm frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) MD]>g> irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi PF2nLb2- End If Dq xs+ 1YA% -~ End If Xj*Wu_ %y@AA>x! Next k iLT}oKF2N; ,Q B<7a+I Next j <3iMRe E^PB)D(. Next i Z)!C'c b EnableTextPrinting( True ) )0MB9RMk1 0x7'^Z>-oe 'write out file -&f$GUTJ fullfilepath = CurDir() & "\" & fname R]dg_Da Open fullfilepath For Output As #1 ex|F|0k4} Print #1, "GRID " & nx & " " & ny Cw%{G'O Print #1, "1e+308" V)^+?B)T Print #1, pixelx & " " & pixely g`^x@rj`E Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 l%ZhA=TKQ l,
wp4Ll maxRow = nx - 1 o
K@"f9 maxCol = ny - 1 67TwPvh For rowNum = 0 To maxRow ' begin loop over rows (constant X) 4 :=]<sc, row = "" 'yth'[ For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) j|n R"! row = row & irrad(colNum,rowNum) & " " ' append column data to row string kT?J5u_o Next colNum ' end loop over columns A
>$I
-T+ >7r!~+B"9' Print #1, row ~
1 pr~ yVc(`,tZ( Next rowNum ' end loop over rows t5zKW _J7 Close #1 4YHY7J p'fYULYE Print "File written: " & fullfilepath Je@v8{][| Print "All done!!" P4?glh q# End Sub }Lv;! 8Y3I0S 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 5r_|yu -&;TA0~; eFAnFJ][L 找到Tools工具,点击Open plot files in 3D chart并找到该文件 fh{`Mz,o C?Ucu]cW J;%Xfx] 打开后,选择二维平面图: 3F0 N^)@ ]?)TdJ`
QQ:2987619807 7|D +Ihy;
|
|