首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 rqTsKrLe  
3Ct)5J  
成像示意图
?wVq5^ e  
首先我们建立十字元件命名为Target PouWRGS_  
u>*d^[zS  
创建方法: "R0(!3  
XP(fWRT1  
面1 : =gAn;~  
面型:plane 2CRgOFR  
材料:Air GhR%fxe  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box %\B@!4]  
ldWrv7. P  
'MQJt2QU9{  
辅助数据: xM_+vN *(  
首先在第一行输入temperature :300K, cH`ziZ<&m1  
emissivity:0.1; lnnT_[ni.  
/DX6Hkkj%  
4tlLh`-8  
面2 : nEgYypwr  
面型:plane ~\UAxB=  
材料:Air ozkmZ;  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box +:&|]$8<  
ZjveXrx  
[orS-H7^  
位置坐标:绕Z轴旋转90度, T:g=P@  
cd.|>  
H|z:j35\  
辅助数据: SquuK1P=  
<P_B|Y4N/  
首先在第一行输入temperature :300K,emissivity: 0.1; I(va;hG<o  
>dfk2.6e  
2`pg0ciX (  
Target 元件距离坐标原点-161mm; 2}6StmE }  
S8Yti  
.&rL>A2U  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 h 6juX'V  
)KKmV6>b  
/{!?e<N>  
探测器参数设定: u&r+ylbs I  
}TG=ZVi  
在菜单栏中选择Create/Element Primitive /plane e VRjU  
]dL#k>$0q  
%Wa. 2s  
Pk^W+M_)~  
`|e3OCU  
c4iGtW  
元件半径为20mm*20,mm,距离坐标原点200mm。 b$N&sZ  
hIFfvUl  
光源创建: mH 9_HK.C  
`:kI@TPI_C  
光源类型选择为任意平面,光源半角设定为15度。 Bn5$TiTcl  
,2]a<0m  
F1NYpCR  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 !T~C=,;  
@WICAC=  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 z<,-:=BC"  
HBcL1wfS  
1Ts$kdO  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 M{O8iq[  
DgKe!w$  
创建分析面: 4+q3 Kw  
|`Iispn  
h.)o4(bO  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Y(6p&I  
>_SqM!^v  
&nfGRb  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 O^sOv!!RH/  
@]@6(To  
FRED在探测器上穿过多个像素点迭代来创建热图 3oMhsQz~z  
;}4^WzmK^(  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 eY8rm  
将如下的代码放置在树形文件夹 Embedded Scripts, ev9ltl{  
L(DDyA{bA  
j S<."a/n  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 -gVsOX0  
]OLe&VRix  
绿色字体为说明文字, PEPf=sm  
!uSG 1j" y  
'#Language "WWB-COM" ;lc/FV[/  
'script for calculating thermal image map L<Q>:U.@\  
'edited rnp 4 november 2005 48RSuH  
>WmT M0  
'declarations CC,CKb  
Dim op As T_OPERATION 6Ej.X)~'K  
Dim trm As T_TRIMVOLUME Z&Xp9"j,@;  
Dim irrad(32,32) As Double 'make consistent with sampling 10{zF_9yx  
Dim temp As Double lC'U3Q&  
Dim emiss As Double vY2^*3\<D  
Dim fname As String, fullfilepath As String \&b1%Asyz  
BTDUT%Yfg  
'Option Explicit 9_xJT^10  
GDY=^r  
Sub Main 1)hO!%  
    'USER INPUTS Y|~+bKa  
    nx = 31 +AYB0`X)  
    ny = 31 ;%!]C0 ?  
    numRays = 1000 :EV*8{:aLU  
    minWave = 7    'microns R_2T"  
    maxWave = 11   'microns '|@?R|i0  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 >$G'=N:=X&  
    fname = "teapotimage.dat" Q|(G -  
Eh&-b6:  
    Print "" PIM4c  
    Print "THERMAL IMAGE CALCULATION" _:~I(c6   
PDkg@#&y,k  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 jW;g{5X  
&9F(C R  
    Print "found detector array at node " & detnode 2k M;7:  
maOt/-  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 )6*)u/x:  
1h#e-Oyff  
    Print "found differential detector area at node " & srcnode a~&euT2  
!yD$fY  
    GetTrimVolume detnode, trm `&URd&ouJD  
    detx = trm.xSemiApe v4vIcHDs  
    dety = trm.ySemiApe DdCNCXU  
    area = 4 * detx * dety 'q\[aKEX=  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety ff5 e]^,  
    Print "sampling is " & nx & " by " & ny d[`vd^hI  
GUC.t7!  
    'reset differential detector area dimensions to be consistent with sampling HcCT=x7:  
    pixelx = 2 * detx / nx qh#?a'  
    pixely = 2 * dety / ny p mUG`8SY  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 3GPGwzX |  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 *9tRh Rc  
)8%m|v#W  
    'reset the source power ~PyZh5x  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) Iad&Z8E  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" X=jHH=</  
2:G/Oj h&]  
    'zero out irradiance array 11?d,6Jl  
    For i = 0 To ny - 1 `y$@zT?j  
        For j = 0 To nx - 1 J~|:Q.Rt`  
            irrad(i,j) = 0.0 Ru@ { b`  
        Next j "Z)zKg  
    Next i J*4T| #0  
0DX)%s,KO  
    'main loop @t2S"s$m  
    EnableTextPrinting( False ) n;e.N:p  
th%T(D5n  
    ypos =  dety + pixely / 2 5Kl;(0B9  
    For i = 0 To ny - 1 "f:_(np,  
        xpos = -detx - pixelx / 2 6e%ZNw{#=  
        ypos = ypos - pixely B7( bNr  
=F09@C,  
        EnableTextPrinting( True ) _b9>ZF~  
        Print i b<j*;n.  
        EnableTextPrinting( False ) PO*0jO;%  
sp6A* mwl  
[:8+ +#KD  
        For j = 0 To nx - 1 q9(Z9$a(\  
95sK;`rE+  
            xpos = xpos + pixelx +LF`ZXe8l  
LoW}!,|  
            'shift source 3;F up4!4}  
            LockOperationUpdates srcnode, True x:+]^?}r  
            GetOperation srcnode, 1, op ^ /)%s3  
            op.val1 = xpos %xdyG Al:  
            op.val2 = ypos \G2PK&)F  
            SetOperation srcnode, 1, op lX64IvG8+o  
            LockOperationUpdates srcnode, False |!L0X@>  
=-]NAj\  
            'raytrace w%$J<Z^-?  
            DeleteRays BBa!l e9P  
            CreateSource srcnode !:Ob3Mq\  
            TraceExisting 'draw )i<Qg.@MX  
465?,EpS  
            'radiometry X'p%K/-m  
            For k = 0 To GetEntityCount()-1 UZ!It>  
                If IsSurface( k ) Then 4VhKV JX  
                    temp = AuxDataGetData( k, "temperature" ) H@'u$qr$:  
                    emiss = AuxDataGetData( k, "emissivity" ) BK1I_/_!  
                    If ( temp <> 0 And emiss <> 0 ) Then U% OlYP$g  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) }(!3)k7*  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) Z6#(83G4  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi D~)bAPAD  
                    End If 8aTo TA7JA  
A'n{K#  
                End If wZt2%+$6m  
x{S2   
            Next k 9yp'-RKjw  
*2 ~"%"C  
        Next j 5C-XQS1  
B?9"Ztb  
    Next i u<EPK*O*  
    EnableTextPrinting( True ) ))I[@D1b  
>3&9Wbv>  
    'write out file a~Yq0d?`D  
    fullfilepath = CurDir() & "\" & fname JtxitF2  
    Open fullfilepath For Output As #1 "Fz1:VV&  
    Print #1, "GRID " & nx & " " & ny 0qL.Rnt  
    Print #1, "1e+308" n@J>,K_B  
    Print #1, pixelx & " " & pixely {/i&o  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 "Iacs s0;  
j-wKm_M#jX  
    maxRow = nx - 1 3-BC4y/  
    maxCol = ny - 1 o@ @|4 F  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) 8Fv4\dr  
            row = "" !UHX? <3r  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) t c{Qd&"(  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ) .W0}  
        Next colNum                     ' end loop over columns cXK.^@du  
fDAT#nlyp  
            Print #1, row |k]fY*z(  
0B"_St}3D  
    Next rowNum                         ' end loop over rows <GSp%r  
    Close #1 B^C 5?  
vJ e c+a  
    Print "File written: " & fullfilepath } wx(P3BHD  
    Print "All done!!" )gV @6w  
End Sub XW:%YTv  
BzTzIo5  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: `o21f{1]X&  
b?:?"   
dw%g9DT  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 _po5j;"_O  
  
(+(bw4V/  
(V0KmNCW`  
打开后,选择二维平面图: &;U F,  
9&{HD  
QQ:2987619807
n>xuef   
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计