首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 ={HYwP;  
uBdS}U  
成像示意图
_!vxX ]  
首先我们建立十字元件命名为Target uVnbOqR<X  
}n!$)W*?  
创建方法: dj>ZHdTn  
/Y NV  
面1 : F+%6?2 J  
面型:plane HF(pC7/a:  
材料:Air b FV+|0  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box --t"X<.z  
]/G~ L  
XTzz/.T;Z  
辅助数据: tw<mZd2H  
首先在第一行输入temperature :300K, eouxNw}F1  
emissivity:0.1; |f9fq~'1e  
7/$r  
hUL5V1-j  
面2 : /UwB6s(  
面型:plane L?aaR %6#  
材料:Air mmN!=mf*  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box W3AtO  
Sbf+;:D  
w;e42.\  
位置坐标:绕Z轴旋转90度, S,Y\ox-  
Qyh_o  
6[\b]I\Q  
辅助数据: m%?+;V  
3Ryae/Nk  
首先在第一行输入temperature :300K,emissivity: 0.1; <i<[TPv";  
$w:7$:k  
!(%^Tg=  
Target 元件距离坐标原点-161mm; p\>im+0oh  
dV~d60jOF  
F. N4Q'2Z  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 oRp;9   
-XbO[_Wf  
:6N'%LKK  
探测器参数设定: ceKR?%8s  
L%h Vts'  
在菜单栏中选择Create/Element Primitive /plane GjHV|)^  
\A~r~  
4hymQ3 g  
oU\Q|mN(  
4u!<3-3Zy  
+{eZ@  
元件半径为20mm*20,mm,距离坐标原点200mm。 QTy xx  
{[ E7Cf  
光源创建: .aA 8'/  
?PpGBm2f*  
光源类型选择为任意平面,光源半角设定为15度。 Oo)MxYPU  
P&6hk6#  
:o2^?k8k&#  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。  4E"OD+  
49e~/YY  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 ?zS t  
G $P|F6  
@,=E[c 8  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 Z`W @Od$f  
z?b[ 6DLV;  
创建分析面: PkqOBU*|=  
+nLsiC{&  
J&vmW}&  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Eps2  
<`rl[C{  
c@uNA0 p  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 /d1 B-I  
!BQ:R(w  
FRED在探测器上穿过多个像素点迭代来创建热图 =m+'orJ1  
Os9;;^k  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 >3{l"SPU  
将如下的代码放置在树形文件夹 Embedded Scripts, v?9  
_&]B  
KX|7mr90K  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ec$kcD!  
8/tvS8I#y  
绿色字体为说明文字, ,j'>}'wG)  
_ @U11|  
'#Language "WWB-COM" O<:"Irq\qr  
'script for calculating thermal image map s}O9[_v  
'edited rnp 4 november 2005 [r)Hm/_=|U  
qMHI-h_A  
'declarations IM^K]$q$47  
Dim op As T_OPERATION DGQGV[9%4C  
Dim trm As T_TRIMVOLUME ]V`L\  
Dim irrad(32,32) As Double 'make consistent with sampling LKEf#mp  
Dim temp As Double fD1a)Az  
Dim emiss As Double M^e;WY@ D  
Dim fname As String, fullfilepath As String 9q4%s?)j  
Ki8]+W37  
'Option Explicit }u CC~ <^  
Kgb 3>r  
Sub Main [1 ?  
    'USER INPUTS X}Oo5SNgff  
    nx = 31 @77%15_Jz  
    ny = 31 [VsTyqV a  
    numRays = 1000 \dq}nOsX*  
    minWave = 7    'microns SDW_Y^Tb  
    maxWave = 11   'microns d/m.VnW  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 =/|2f; Q  
    fname = "teapotimage.dat" 9/@7NNKJ  
sNF[-,a  
    Print "" 7M#irCX  
    Print "THERMAL IMAGE CALCULATION" w7;,+Jq  
u=U. +\f5  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 [5iBXOmpS=  
YyF=u~l  
    Print "found detector array at node " & detnode AwC"c '  
1U/ dc.x5  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 DO^K8~]  
LRuB&4r8  
    Print "found differential detector area at node " & srcnode y|e@zf  
y\xa<!:g  
    GetTrimVolume detnode, trm Kb/w+J S  
    detx = trm.xSemiApe .[qm>j,  
    dety = trm.ySemiApe H/v|H}d;  
    area = 4 * detx * dety 1 po.Cmx  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety fBi6% #  
    Print "sampling is " & nx & " by " & ny -k+}w_<Q  
Q.$|TbVfds  
    'reset differential detector area dimensions to be consistent with sampling nKO4o8js{{  
    pixelx = 2 * detx / nx 1dl@2CVS  
    pixely = 2 * dety / ny `F^~*FnR,B  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ^`MGlI}   
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 sgc pH  
N1vPY]8  
    'reset the source power gZ^'hW-{  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 4|]0%H~n6  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" -!C9x?gNY  
$BPTk0Y  
    'zero out irradiance array KcK,%!>B  
    For i = 0 To ny - 1 1h[xVvo<L  
        For j = 0 To nx - 1 Kz>Bw;R(  
            irrad(i,j) = 0.0 |BC/ERms  
        Next j 'Y%@fZf x  
    Next i =u.jZ*u]WT  
,8Yc@P_O  
    'main loop s9p~  
    EnableTextPrinting( False ) Si:$zGL$(  
KbcmK( `_  
    ypos =  dety + pixely / 2 WkF60'Hf  
    For i = 0 To ny - 1 JSAbh\Mq6  
        xpos = -detx - pixelx / 2 cu~\&3 R  
        ypos = ypos - pixely bh~"LQS1  
)yj:P  
        EnableTextPrinting( True ) }=fVO<R v  
        Print i zBKfaQI,  
        EnableTextPrinting( False ) &>T7]])  
v"K #  
.C=I~Z  
        For j = 0 To nx - 1 .Z0$KQ'iy  
h,(f3Ik0O  
            xpos = xpos + pixelx ]DO ~7p[  
O #  
            'shift source *\M$pUS{  
            LockOperationUpdates srcnode, True dh~ cj5  
            GetOperation srcnode, 1, op us0{y7(p  
            op.val1 = xpos WCpCWtmy  
            op.val2 = ypos _^(}6o  
            SetOperation srcnode, 1, op 1\{_bUZ&  
            LockOperationUpdates srcnode, False H/I1n\  
F70_N($i  
            'raytrace f0h^ULd  
            DeleteRays 6bacU#0o  
            CreateSource srcnode "{lw;AA5F  
            TraceExisting 'draw 4uV,$/  
E;>Bc Pt5  
            'radiometry l?rT_uO4  
            For k = 0 To GetEntityCount()-1 i"HENJyCb  
                If IsSurface( k ) Then ' thEZ  
                    temp = AuxDataGetData( k, "temperature" ) T]fBVA  
                    emiss = AuxDataGetData( k, "emissivity" ) (3[Lz+W.u  
                    If ( temp <> 0 And emiss <> 0 ) Then -{=c T?"+  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) $UX^$gG  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) 1yg5d9  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi R'Y=- yF  
                    End If 1vG]-T3VC  
yE6EoC^  
                End If B/n/bi8T  
?;c&5'7ct  
            Next k (X(296<;  
3ZhB 8 P  
        Next j DClV&\i=o  
&AS<2hB  
    Next i Z`9yGaTO  
    EnableTextPrinting( True ) j&qJK,~  
@=0O' XM  
    'write out file @[vwqPOL  
    fullfilepath = CurDir() & "\" & fname G=Qslrtg  
    Open fullfilepath For Output As #1 }p <p(  
    Print #1, "GRID " & nx & " " & ny * I{)8  
    Print #1, "1e+308" [|NgrU_.  
    Print #1, pixelx & " " & pixely +1] xmnts  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 F:P&hK  
Bv)4YU  
    maxRow = nx - 1 } XJZw|n  
    maxCol = ny - 1 F[65)"^  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) Q~L"Mr8>V  
            row = "" 51Nh"JTy  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) L+b"d3!G&%  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ?d? cD  
        Next colNum                     ' end loop over columns (ru9Ke%Dx  
2S{IZ]  
            Print #1, row %mv9+WJN.  
(_Ld^ ^|  
    Next rowNum                         ' end loop over rows GkutS.2G#  
    Close #1 o YZmz  
@6~OQN  
    Print "File written: " & fullfilepath ~Xf&<&5d T  
    Print "All done!!" `c-(1 ;Jb  
End Sub o (OC3  
?pLKUAh  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: X`QfOs#\  
w ,CZ*/^  
t\p_QWnF  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 R\oas"  
  
ZV=)`E`I|  
GsG9;6c+u  
打开后,选择二维平面图: z+J4XpX0,  
?b&~(,A{  
QQ:2987619807
wJb\Q  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计