首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 &nZ=w#_  
0 (@8   
成像示意图
NZi5rX N  
首先我们建立十字元件命名为Target n KDX=73  
bveNd0hN  
创建方法: '`/1?,=  
QIBv}hgcy  
面1 : 76zi)f1f  
面型:plane .;/@k%>   
材料:Air 8l+\Qyj  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box @6h=O`X>  
lJ R",_  
qJ5Y}/r  
辅助数据: vRRi"bo  
首先在第一行输入temperature :300K, ]Ol@^$8}  
emissivity:0.1; 9t7_7{Q+;  
KB *[b  
G80d!*7  
面2 : 9oc.`-e\?  
面型:plane }4A+J"M4y  
材料:Air j= ]WAjT  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box &qMSJ  
-.ha\t0J  
NrNbNFfo  
位置坐标:绕Z轴旋转90度, NnrX64|0  
C1r]kF  
/G G QO$'  
辅助数据: ;gK+AU  
,F6i5128{  
首先在第一行输入temperature :300K,emissivity: 0.1; $N+a4  
t}_qtO7>  
&" K74  
Target 元件距离坐标原点-161mm; l)a]V]oQ  
RfEmkb<9Z  
\Ao M'+  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 xh_6@}D2J  
NU I|4X  
TP'EdzAT  
探测器参数设定: ^3*/x%A,g  
F2!_Z=  
在菜单栏中选择Create/Element Primitive /plane Y.[^3  
 x)THeH@  
<,HdX,5  
P `T&zK  
psgXJe$  
e@NS=U` <  
元件半径为20mm*20,mm,距离坐标原点200mm。 T AwA)Zg  
o*'J8El\y^  
光源创建: H2E!A2\m  
P7 H-Dw  
光源类型选择为任意平面,光源半角设定为15度。 =HQH;c"  
0p*(<8D}  
|L%F`K>Z:  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 Ip4CC'  
`k a!`nfo  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 1Xu\Tm\Ux  
/V$ [M  
FxTOc@<  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 V[HHP_  
" <m)Fh;  
创建分析面: QmvhmsDL  
@/@#,+  
02g}}{be8  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 3fgVvt-2  
aze}ko NE  
f wWI2"}  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 Wf^6:  
FX`SaY>D  
FRED在探测器上穿过多个像素点迭代来创建热图 hF"yxucj$  
_5uzu6:y  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 \Bg;}\8 X  
将如下的代码放置在树形文件夹 Embedded Scripts, =B@owx  
vn}:$|r$J  
UIc )]k%  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 9^h0D}#@  
81u}J9z;  
绿色字体为说明文字, MKq:=^w  
p}$VBl$'  
'#Language "WWB-COM" rH"&  
'script for calculating thermal image map g]PmmK_L  
'edited rnp 4 november 2005 $-H#M] Gq  
2fM*6CaS  
'declarations bx`s;r=  
Dim op As T_OPERATION uO8z.  
Dim trm As T_TRIMVOLUME 'B ocMjRA  
Dim irrad(32,32) As Double 'make consistent with sampling M@ILB-H  
Dim temp As Double Pb 4%" 9`  
Dim emiss As Double #q 'J`BC  
Dim fname As String, fullfilepath As String \_;z m+ <{  
o,dO.isgh>  
'Option Explicit T~@$WM(  
c193Or'6Y  
Sub Main s{\USD6  
    'USER INPUTS 4jMC E&<  
    nx = 31 XC"]/ y  
    ny = 31 =oz$uD}?  
    numRays = 1000 <\l@`x96"D  
    minWave = 7    'microns {WfZE&B  
    maxWave = 11   'microns >|Ps23J#  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 ~ HFDX@m*  
    fname = "teapotimage.dat" :!H]gC 4  
h8OmO5/H  
    Print "" r!A1Sfo4P  
    Print "THERMAL IMAGE CALCULATION" C\#E1\d  
V`Ve__5;  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 *\ZK(/V  
!lf'gW  
    Print "found detector array at node " & detnode *F7ksLH|q  
(|H1zO  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 qk!")t  
RS'!>9I  
    Print "found differential detector area at node " & srcnode OtK=UtVI  
JtA tG%  
    GetTrimVolume detnode, trm gbF^m`A>%+  
    detx = trm.xSemiApe t:|knZq  
    dety = trm.ySemiApe MD`1KC_m  
    area = 4 * detx * dety >~C*m `#  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety $}kT )+K  
    Print "sampling is " & nx & " by " & ny >HMuh)  
QfqosoP\D  
    'reset differential detector area dimensions to be consistent with sampling 2eNA#^T=  
    pixelx = 2 * detx / nx h:%L% Y9z  
    pixely = 2 * dety / ny cVCylR U"  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 2rK%fV53b  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 ?U3X,uv5J  
rm}OVL  
    'reset the source power qRy<W  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) m^hi}Am1  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" `x%( n@g  
s az<NT  
    'zero out irradiance array ]!l]^/ .  
    For i = 0 To ny - 1  0Bbno9Yp  
        For j = 0 To nx - 1 kC~\D?8E=  
            irrad(i,j) = 0.0 :f1Q0klwP  
        Next j k4WUfL d  
    Next i g?Jx99c;  
dG5p`N %  
    'main loop :v-&}?  
    EnableTextPrinting( False ) <<a1a  
E=PmOw7b  
    ypos =  dety + pixely / 2 \jlem<&  
    For i = 0 To ny - 1 B5FRe'UC  
        xpos = -detx - pixelx / 2 9UF^h{X  
        ypos = ypos - pixely `` !BE"yN  
_G9 vsi  
        EnableTextPrinting( True ) @JFfyQ {-  
        Print i Hrz #So\#  
        EnableTextPrinting( False ) jV:Krk6T<  
~CTe5PX c  
!aylrJJ  
        For j = 0 To nx - 1 c& &^D o  
HP`dfo~j  
            xpos = xpos + pixelx o{C7V *  
Z+# =]Kw)  
            'shift source i6)7)^nG  
            LockOperationUpdates srcnode, True POZ5W)F(  
            GetOperation srcnode, 1, op Rwu y!F  
            op.val1 = xpos *Cs RO  
            op.val2 = ypos #ZFedK0vv  
            SetOperation srcnode, 1, op x}acxu 2H7  
            LockOperationUpdates srcnode, False AHg:`Wjv-  
?ks3K-.4  
            'raytrace T ~=r*4  
            DeleteRays 0Fd<@w Q0  
            CreateSource srcnode V_)G=#6Dy  
            TraceExisting 'draw ?\_\pa/+  
oRJ!J-Z]  
            'radiometry UJ hmhI  
            For k = 0 To GetEntityCount()-1 km%c0:  
                If IsSurface( k ) Then /Mac:;W`  
                    temp = AuxDataGetData( k, "temperature" ) .O h4b5  
                    emiss = AuxDataGetData( k, "emissivity" ) jY: )W*TXt  
                    If ( temp <> 0 And emiss <> 0 ) Then ]Tv0+ Ao  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) =IbDGw(  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) V5]}b[X  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi ~Bw)rf,  
                    End If 0[\^Y<ec  
!&8nwOG  
                End If YU*u!  
QJeL&mf  
            Next k olHT* mr  
C2l=7+X#W  
        Next j )sONfn  
X`,=tM  
    Next i he/WqCZg  
    EnableTextPrinting( True ) {Kbb4%P+h  
^( w%m#  
    'write out file z' oK 0"  
    fullfilepath = CurDir() & "\" & fname pfs'2AFj  
    Open fullfilepath For Output As #1 B^;G3+}  
    Print #1, "GRID " & nx & " " & ny #o>~@.S#:0  
    Print #1, "1e+308" [UP-BX(  
    Print #1, pixelx & " " & pixely %S'gDCwq  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 <%_7%  
5mtsN#  
    maxRow = nx - 1 :NHP,"  
    maxCol = ny - 1 2r zOh},RS  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) YI877T9>  
            row = "" C i?BJ,  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) ){D6E9  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ZmXO3,sf)  
        Next colNum                     ' end loop over columns >EacXPt-O  
[WfigqY`b*  
            Print #1, row sxP1. = W  
CXAW>VdK_  
    Next rowNum                         ' end loop over rows q=,  
    Close #1 WLO4P  
bjR:5@"  
    Print "File written: " & fullfilepath ?KB+2]7m6  
    Print "All done!!" B.Szp_$  
End Sub nq/SGo[c  
zUQn*Cio e  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: O4+a[82  
? "+g6II  
B(eC|:w[z  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 t7P[^f15[  
  
'5f6 M^}|2  
*v}3So  
打开后,选择二维平面图: yPn!1=-(  
8:9/RL\"x  
QQ:2987619807
2HX#:y{\l  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计