首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 pWE(?d_M{G  
pFd{Tdh  
成像示意图
y`m0/SOT  
首先我们建立十字元件命名为Target uDG>m7(}/h  
GTbV5{Ss  
创建方法: U= GJuixy  
U4dfO=  
面1 : /NB|N*}O)  
面型:plane ^vh!1"T  
材料:Air xr.;B`T0\'  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box O=}  
._p2"<  
z+oy#p6+F.  
辅助数据: vt"bB  
首先在第一行输入temperature :300K, %Qj$@.*:  
emissivity:0.1; *eXs7"H  
XjzGtZ#6  
3s]o~I2x  
面2 : /AX)n:,  
面型:plane "MzBy)4Q  
材料:Air a"4X7 D+  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box dL'oIBp  
@ukL! AV?Y  
xv>8rW(Np5  
位置坐标:绕Z轴旋转90度, 0;1O;JRw  
PY4">~6\i  
'Kmf6iK>[  
辅助数据: &N7q 9t  
(i{ZxWW&  
首先在第一行输入temperature :300K,emissivity: 0.1; RI'}C`%v  
?gAwMP(>  
dw}ge,bBic  
Target 元件距离坐标原点-161mm; 3LQ u+EsS  
6C"${}S F`  
V?T&>s  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 3`3my=   
]n1#8T&<*z  
_o?aO C  
探测器参数设定: ~|~2B$JeV  
YJwI@E(l$  
在菜单栏中选择Create/Element Primitive /plane 9^sz,auB  
:`BG/  
,3G B9  
ZBK)rmhMx  
 S{XO3  
m/g[9Y  
元件半径为20mm*20,mm,距离坐标原点200mm。 Tsu\4 cL]  
;\13x][  
光源创建: o@$py U8  
Sd I>  
光源类型选择为任意平面,光源半角设定为15度。 R Ee~\n+P^  
Y^#>3T  
'g<FL`iP  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 W>CG;x{  
A] 'XC"lS  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 ?` ebi|6  
[ p0_I7  
?: vB_@  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 #K-O<:s=y  
>Wd=+$!I  
创建分析面: FgP{  
1D"EF  
<gvgr4@^yR  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 CC`#2j  
{9F}2 SJ  
j=Q ?d]  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 -q-BP}r3  
ey>tUmt6?  
FRED在探测器上穿过多个像素点迭代来创建热图 dqt}:^L*0g  
zLS?: yq  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 apxq] ! `  
将如下的代码放置在树形文件夹 Embedded Scripts, {oo(HD;5  
bM W}.v!  
o(i?_4 E  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 caTKi8  
XS0NjZW  
绿色字体为说明文字, 6l|SGt\  
cR6 #$-a  
'#Language "WWB-COM" %yVP@M  
'script for calculating thermal image map 2-duzc  
'edited rnp 4 november 2005 ]>(pQD  
Hg(nC*#/Q  
'declarations dlV HyCW  
Dim op As T_OPERATION P=4o)e7E!  
Dim trm As T_TRIMVOLUME <;Td8T;  
Dim irrad(32,32) As Double 'make consistent with sampling :7qJ[k{g  
Dim temp As Double ]4_)WUS.c  
Dim emiss As Double ^S(["6OJ(  
Dim fname As String, fullfilepath As String 6,p;8I  
\xk8+=/A  
'Option Explicit eGrxS;NY  
=~$)Ieu  
Sub Main u&Xn#f h  
    'USER INPUTS 7I@@}A  
    nx = 31 =fK F#^E@  
    ny = 31 VsRdZ4  
    numRays = 1000 _ba.oIc  
    minWave = 7    'microns S#ud<=@!9  
    maxWave = 11   'microns hQJ-  ~  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 d[e;Fj!  
    fname = "teapotimage.dat" u,S}4p&l  
}~NWOJ3;  
    Print "" RjHKFB2  
    Print "THERMAL IMAGE CALCULATION" G8hDR^ra  
J#k.!]r,Y  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 ozG!OiRW  
-~=:tn)0  
    Print "found detector array at node " & detnode E K^["_*A  
URxy*)  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 4,6nk.$yN  
p~t5PU*(  
    Print "found differential detector area at node " & srcnode ].*I Z  
X;p4/ *U  
    GetTrimVolume detnode, trm ulY<4MN  
    detx = trm.xSemiApe 'miY"L:| O  
    dety = trm.ySemiApe C@FX[:l@-  
    area = 4 * detx * dety rt!Uix&  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety eRwm>l"fVV  
    Print "sampling is " & nx & " by " & ny -*"Q-GO  
!p e!Z-,  
    'reset differential detector area dimensions to be consistent with sampling U3ao:2zP  
    pixelx = 2 * detx / nx = M/($PA  
    pixely = 2 * dety / ny IWAp  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False DWar3+u&0  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 c9xc@G!  
]g0\3A  
    'reset the source power A/U,|  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) F$&{@hd  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" ]bb`6 \h  
' +[fJ>Le  
    'zero out irradiance array J*'#! xIa  
    For i = 0 To ny - 1 YumHECej  
        For j = 0 To nx - 1 y e1hcQ  
            irrad(i,j) = 0.0 Nm=\~LP90  
        Next j |R$/oq  
    Next i G~Mxh,aD$>  
1W2hd!J7C  
    'main loop 1Igo9rv  
    EnableTextPrinting( False ) ){{]3r  
\A9hYTC)  
    ypos =  dety + pixely / 2 B<uUf)t  
    For i = 0 To ny - 1 = ^A/&[&31  
        xpos = -detx - pixelx / 2 }CXL\, ;  
        ypos = ypos - pixely $X:r&7t+Q[  
SPK% ' s  
        EnableTextPrinting( True ) C'jE'B5b  
        Print i a6fqtkZ x  
        EnableTextPrinting( False ) V$XCe  
6H_7M(f  
P~"`Og+  
        For j = 0 To nx - 1 /SDDCZ`;|c  
Z39I*-6F9W  
            xpos = xpos + pixelx \%D/]"@r  
$f^ \fa[  
            'shift source }28,fb /  
            LockOperationUpdates srcnode, True vg/:q>o  
            GetOperation srcnode, 1, op  B Ji  
            op.val1 = xpos (qM(~4|`  
            op.val2 = ypos QX j4cg  
            SetOperation srcnode, 1, op E _DSf  
            LockOperationUpdates srcnode, False /*8Ms`  
^Q$U.sN? R  
            'raytrace 5+[`x ']l  
            DeleteRays QjlwT2o'  
            CreateSource srcnode fhZD#D  
            TraceExisting 'draw 1"Z61gXrz  
h5?yrti  
            'radiometry T]tG,W1>i  
            For k = 0 To GetEntityCount()-1 dkRG4 )~g  
                If IsSurface( k ) Then ^"!j m  
                    temp = AuxDataGetData( k, "temperature" ) J0vCi}L  
                    emiss = AuxDataGetData( k, "emissivity" ) ua]>0\D  
                    If ( temp <> 0 And emiss <> 0 ) Then 9"YOj_z  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) pkR+H|  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) C4jq T  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi &_EjP hZ  
                    End If W6m oFn  
s2-p -n  
                End If do:3aP'S,  
L[Dr[  
            Next k Ox` +Z0)a  
hK t c  
        Next j ^&W(|R-,J&  
q{W@J0U  
    Next i mGmkeD'  
    EnableTextPrinting( True ) Nuw_,-h  
zl W 5$cC[  
    'write out file ^=nJ,-(h_  
    fullfilepath = CurDir() & "\" & fname  OBY  
    Open fullfilepath For Output As #1 tDl1UX  
    Print #1, "GRID " & nx & " " & ny iJza zQ  
    Print #1, "1e+308" C>vp oCA  
    Print #1, pixelx & " " & pixely #*[G,s#t^  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ad1%"~1  
od7 [h5r  
    maxRow = nx - 1 E r6'Ig|U  
    maxCol = ny - 1 xi]qdiA  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) gt9{u"o  
            row = "" 72gQ<Si  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) S 'jH  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 1R1DK$^c  
        Next colNum                     ' end loop over columns RfMrGC^?  
8jE6zS }m  
            Print #1, row }?pY~f  
k{op,n#  
    Next rowNum                         ' end loop over rows :dtX^IT  
    Close #1 IQFt4{aK3  
pm-SDp>s  
    Print "File written: " & fullfilepath e7<//~W7W  
    Print "All done!!" EPQ~V  
End Sub l%?D%'afN  
TS9=A1J#  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: h]rF2 B  
H*DWDJxmV  
yB&+2  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 QeYO)sc`  
  
y;+5cn C  
KB$s7S"=  
打开后,选择二维平面图: 0ivlKe%  
wL'tGAv  
QQ:2987619807
(Yzy;"iAu  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计