首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 /\pUA!G)BD  
c[?&;# feV  
成像示意图
J=#9eW  
首先我们建立十字元件命名为Target Ap}`Q(.  
9H%ixBnM  
创建方法: b]WvKdq  
:O*62olC5  
面1 : ^P*+0?aFr  
面型:plane A+hT2Ew@t}  
材料:Air ( "J_< p  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box DEenvS`,P  
a S+i`A:a  
 Z Mf,3  
辅助数据: NB&zBJ#  
首先在第一行输入temperature :300K, T(*A0  
emissivity:0.1; #XAH`L\  
y)`q% J&  
Uetna!ABB  
面2 : z|N*Gs>,  
面型:plane Z ^yn S  
材料:Air 3>^S6h}o  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box Olq`mlsK  
j1dz'G}hj  
RgVg~?A@  
位置坐标:绕Z轴旋转90度, 95-%>?4  
 w"h'rw  
MPJ0>Ly  
辅助数据: h56s~(?O  
4"V6k4i5  
首先在第一行输入temperature :300K,emissivity: 0.1; &. "ltB  
7FP @ vng  
n,|YJ,v[  
Target 元件距离坐标原点-161mm; FHZQyO<|  
$/P\@|MqYQ  
bKPjxN?!9  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 tqOx8%  
g7]g0*gxXW  
"I45=nf  
探测器参数设定: ZF;s`K)  
VD2o#.7*eu  
在菜单栏中选择Create/Element Primitive /plane s Qa9M  
7Y*Q)DDy  
iSj.lW  
x/#.%Ga#T  
v7D3aWoe  
O:[@?l  
元件半径为20mm*20,mm,距离坐标原点200mm。 >tV:QP]Y  
1?#Wg>7'  
光源创建: q&EwD(k  
T`|>oX  
光源类型选择为任意平面,光源半角设定为15度。 -<gQ>`(0  
3- 4jSN\  
~bX ) %jC  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 O9MBQNwjA  
~DK=&hCd!  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 { :_qa|  
\!'K#%]9  
4fdO Ow  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 &Zm1(k6&K  
%Z#[{yuFs  
创建分析面: Y t0s  
))#_@CwRr  
F[U0TP@&*  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 M% FKg/  
)]m_ L$9  
m_>~e}2'A  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ^]?Yd)v  
05vu{>  
FRED在探测器上穿过多个像素点迭代来创建热图 8]0?mV8iOE  
82Nw 6om6i  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 tsqWnz=)  
将如下的代码放置在树形文件夹 Embedded Scripts, JWs?az  
OL$^7FB  
%Z6\W; (n  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ),+u>Os&  
"0l7%@z*)q  
绿色字体为说明文字, STQ~mFs"  
3` \)Qm  
'#Language "WWB-COM" 9mH+Ol#(  
'script for calculating thermal image map Rk52K*Dc  
'edited rnp 4 november 2005 .FAuM~_99b  
g4>1> .s  
'declarations p` LPO  
Dim op As T_OPERATION pNR69/wGi  
Dim trm As T_TRIMVOLUME 7_ah1IEK  
Dim irrad(32,32) As Double 'make consistent with sampling 9]TvL h3  
Dim temp As Double wKs-<b%;  
Dim emiss As Double (L6*#!Dt  
Dim fname As String, fullfilepath As String /w*;|4~Bf  
)VCRbz"[g  
'Option Explicit 4'-GcH  
;Cqjg.wkB  
Sub Main B[Fuyy?  
    'USER INPUTS o+Kh2;$)  
    nx = 31 lw"5p)aB  
    ny = 31 h 66X746  
    numRays = 1000 9ApGn!`  
    minWave = 7    'microns 0^{?kg2o_  
    maxWave = 11   'microns 4$!iw3N(  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 L]HYk}oD.  
    fname = "teapotimage.dat" j;b<oQH  
Ev;ocb,  
    Print "" ,0Y5O?pu\  
    Print "THERMAL IMAGE CALCULATION" xiPP&$mg  
f@a@R$y  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 zx{O/v KG  
#GHLF  
    Print "found detector array at node " & detnode A?xb u*zV,  
6|D,`dk3U  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 (^Kcyag4  
!zNMU$p  
    Print "found differential detector area at node " & srcnode h}_1cev?  
UMJ>6 Ko8  
    GetTrimVolume detnode, trm K9y!ZoB  
    detx = trm.xSemiApe !*gTC1bvB  
    dety = trm.ySemiApe 3y Azt*dZ  
    area = 4 * detx * dety O$=)  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety IlcFW  
    Print "sampling is " & nx & " by " & ny ep<2u x  
k(;c<Z{?1  
    'reset differential detector area dimensions to be consistent with sampling <IBzh_  
    pixelx = 2 * detx / nx :bA@ u>  
    pixely = 2 * dety / ny Y(]&j`%  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 9)qjW&`  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 1Bz'$u;  
&,Xs=Lv mq  
    'reset the source power .baS mfc  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) GBZx@B[TY  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" WM}bM] oe  
sQS2U6  
    'zero out irradiance array w^&TG3m1~  
    For i = 0 To ny - 1 hsQrHs'k  
        For j = 0 To nx - 1 ?7cF_Zvve  
            irrad(i,j) = 0.0 B94mh  
        Next j u= K?K  
    Next i P~0d'Oi  
khb Gyg%  
    'main loop X~Li`  
    EnableTextPrinting( False ) %XqLyeOS  
-< 7KW0CA  
    ypos =  dety + pixely / 2 t p.qh]2c  
    For i = 0 To ny - 1 S`"M;%T  
        xpos = -detx - pixelx / 2 ud`.}H~aB  
        ypos = ypos - pixely %&"_=Lc  
1px:(8]{  
        EnableTextPrinting( True ) 5}R /C{fs  
        Print i yVxR||e  
        EnableTextPrinting( False ) MQQ!@I`  
gT R:9E:B  
$2^V#GWo  
        For j = 0 To nx - 1 {cv,Tz[Q>  
&Sc}3UI/F  
            xpos = xpos + pixelx d& @KGJ  
`\&qk)ZP  
            'shift source P,O9On  
            LockOperationUpdates srcnode, True A;h0BQm/j  
            GetOperation srcnode, 1, op %&^F.JTt\  
            op.val1 = xpos H+; _fd  
            op.val2 = ypos Z$,1Tk"O/s  
            SetOperation srcnode, 1, op S{z%Q  
            LockOperationUpdates srcnode, False 1C=}4^Pu  
f$k#\=2%  
            'raytrace eR8qO"%2:  
            DeleteRays WZCX&ui  
            CreateSource srcnode h2KXW}y"4  
            TraceExisting 'draw EPr{1Z  
fZXJPy;n  
            'radiometry }_M .-Xm  
            For k = 0 To GetEntityCount()-1 SM:{o&S`  
                If IsSurface( k ) Then vdNh25a<h  
                    temp = AuxDataGetData( k, "temperature" ) @yB!?x  
                    emiss = AuxDataGetData( k, "emissivity" ) ,KIa+&vJW@  
                    If ( temp <> 0 And emiss <> 0 ) Then Xt8;Pl  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) FQ?H%UcW  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) d<qbUk3;  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi slHlfWHq  
                    End If Eln"RKCt}9  
bsPwTp^  
                End If qEf )TW(  
cCU'~  
            Next k C|W_j&S65  
X<(h)&E  
        Next j 4%p5X8|\ih  
_hMVv&$  
    Next i NeHR% a2~  
    EnableTextPrinting( True ) ?i(Tc!  
t3Q;1#Zf  
    'write out file $&k2m^R<  
    fullfilepath = CurDir() & "\" & fname F)_Rs5V:(  
    Open fullfilepath For Output As #1 3 T Q#3h  
    Print #1, "GRID " & nx & " " & ny KL.{)bi  
    Print #1, "1e+308" +tkd($//  
    Print #1, pixelx & " " & pixely JeUFCWm  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 D/{Tl  
g;v{JB  
    maxRow = nx - 1 HC4ad0Gs+{  
    maxCol = ny - 1 cGsxfwD  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) GMgsM6.R  
            row = "" '|4/aHU  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) Lvv`_  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ui G7  
        Next colNum                     ' end loop over columns )R9>;CuC9?  
xYM/{[  
            Print #1, row m]N 4.J  
tI{ n!  
    Next rowNum                         ' end loop over rows ID'@}69.S  
    Close #1 N_q7ip%z  
YV{^S6M  
    Print "File written: " & fullfilepath pwd7I  
    Print "All done!!" !pw%l4]/t  
End Sub gA2\c5F<  
TDtk'=;  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: )5d&K8@  
;n7k_K#0z!  
e d4T_O;  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 f:"es: Fb  
  
%Dsa ~{  
Iy|]U&`  
打开后,选择二维平面图: e#kPf 'gL  
3{d1Jk/S  
QQ:2987619807
NO`a2HR$  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计