| infotek |
2020-11-18 10:58 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 A +J&(7N HOrD20
成像示意图 CHX- 4-84{ 首先我们建立十字元件命名为Target ;wvhe;! C
Nt 创建方法: tHV81F1J ?3{:[* 面1 : A ^wIsAxT 面型:plane MehMhHY 材料:Air V]$J&aD 孔径:X=1.5, Y=6,Z=0.075,形状选择Box XrD@q :#=XT9
\9}RAr#2]N 辅助数据: mUW4d3tE 首先在第一行输入temperature :300K, %uWq)D4r emissivity:0.1; U4hFPK< hs m%o\ b _#r_` 面2 : /^T XGc. 面型:plane bF
X0UE> 材料:Air bzt(;>_8 孔径:X=1.5, Y=6,Z=0.075,形状选择Box CHPu$eu 6!GO{2d" hLf<-NM 位置坐标:绕Z轴旋转90度, :6r)HJ5sg gwyHDSo8:a
4)XZ'~| 辅助数据: c0%.GcF0{ <+wbnnK 首先在第一行输入temperature :300K,emissivity: 0.1; ^YLk&A)X ?i8a)!U vdLBf+Zi Target 元件距离坐标原点-161mm; CtO `t5 / .ddx<
4.}{B_)LK 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 e0ea2
2
wgb
e7-{ *$eMM*4 探测器参数设定: O-D${== !b0ANIp 在菜单栏中选择Create/Element Primitive /plane @{|vW dO{a!Ca
A*r6 "DniDA MvLmEmKb}\ p*_^JU(<p 元件半径为20mm*20,mm,距离坐标原点200mm。 ~rWys= Vk>m/" 光源创建: 9Rg|o CP_ ?!4xtOA 光源类型选择为任意平面,光源半角设定为15度。 0A}'@N@G) TC%ENxDR &u@<0 1= 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 hrRkam !y kDz!v?Z2+B 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 ?IWLH-fkP =/J{>S>(i sfv{z!mo 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 0"*!0s~
,1}c% C*,Q 创建分析面: $i^#KZ}-WK "5+x6/9b 9F&s9(=\ 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 rX-V0 gg-4ce/
m|}};8 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 t=IpVl! a=m7pe^ FRED在探测器上穿过多个像素点迭代来创建热图 zuq7 x7 wstH&^ FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 m,,FNYW 将如下的代码放置在树形文件夹 Embedded Scripts, h]6"~ m b xU13ESv
K|n$-WDG} 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 01 vEt \
nIz5J}3 绿色字体为说明文字, Y~|C]O 4!%TY4bJ '#Language "WWB-COM" u9.x31^ 'script for calculating thermal image map O[tOpf@s. 'edited rnp 4 november 2005 )@X
`B d Guc~]
B 'declarations 80p? qe Dim op As T_OPERATION V8aLPJ0_ Dim trm As T_TRIMVOLUME 'g4t !__ Dim irrad(32,32) As Double 'make consistent with sampling eX;Tufe*(Q Dim temp As Double 3M;[.b Dim emiss As Double ~F</s. Dim fname As String, fullfilepath As String `YZK$
-, Y55Yo5<j/+ 'Option Explicit lcv&/ A aetK<9L$ Sub Main ;oKN 8vI#7 'USER INPUTS E!~Ok nx = 31 *@XJ7G[ ny = 31 AjTkQ)
numRays = 1000 %[x oA)0! minWave = 7 'microns lHV&8fny maxWave = 11 'microns [r,ZM sigma = 5.67e-14 'watts/mm^2/deg k^4 $yZ(c#L fname = "teapotimage.dat" w4: (-RZ|VdYg Print "" 5pOb;ry")` Print "THERMAL IMAGE CALCULATION" qhKW6v i.|zKjF' detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 jLANv{" rRTAWAs%T Print "found detector array at node " & detnode =~OH.=9\ D[m+=- srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 KRY%B[k %Fh*$gzh*5 Print "found differential detector area at node " & srcnode kl0!*j Ca SoR | GetTrimVolume detnode, trm &8l"Dl detx = trm.xSemiApe z!z+E%H^ dety = trm.ySemiApe #E[{ area = 4 * detx * dety _TB,2 R Print "detector array semiaperture dimensions are " & detx & " by " & dety *PXlbb Print "sampling is " & nx & " by " & ny xKilTh_.6 7O_@b$Q 'reset differential detector area dimensions to be consistent with sampling _I("k:E7 pixelx = 2 * detx / nx 6#,VnS)`q pixely = 2 * dety / ny $ BEIG@qG SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False F,t
,Ja Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 )1PZ# \S[7-:Lu^ 'reset the source power Orb('Z,-3 SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) u?OyvvpH Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" S,K'y?6 : ryE`EhB 'zero out irradiance array aV^wTs#2I For i = 0 To ny - 1 7^{M:kYC! For j = 0 To nx - 1 ])d_B\)Kck irrad(i,j) = 0.0 aoLYw 9 Next j Jj<UtD+ Next i k`LoRqF e <Hbm 'main loop C~16Jj:v EnableTextPrinting( False ) 6Un61s we6kV-L. ypos = dety + pixely / 2 eR'Df"+ For i = 0 To ny - 1 K$S:V=y%r7 xpos = -detx - pixelx / 2 Z9:erKT ypos = ypos - pixely '6^20rj QJBzv| EnableTextPrinting( True ) V3<baxdE Print i 8hx4s(1! EnableTextPrinting( False ) orGNza"A M;BDo(1 2v
^bd^]u: For j = 0 To nx - 1 zJp}JO CNC3">Dk~9 xpos = xpos + pixelx 9y BENvq #Y*?kTF 'shift source 7j9:s>D LockOperationUpdates srcnode, True ()< E?D= GetOperation srcnode, 1, op kB|jN~ op.val1 = xpos E7A psi4] op.val2 = ypos UL81x72O SetOperation srcnode, 1, op (!-gX"<b LockOperationUpdates srcnode, False ]7qn&(] w2-:!,X 'raytrace "<c^`#CWuO DeleteRays AXUSU(hU CreateSource srcnode Nm{\?
TraceExisting 'draw o,| LO$~ Vy]y73~ 'radiometry )ZxDfRjL For k = 0 To GetEntityCount()-1 ]*I:N If IsSurface( k ) Then AT){OQF8& temp = AuxDataGetData( k, "temperature" ) (w31W[V'# emiss = AuxDataGetData( k, "emissivity" ) dP>~ExYtm If ( temp <> 0 And emiss <> 0 ) Then m `"^d # ProjSolidAngleByPi = GetSurfIncidentPower( k ) k)Y}X)\36 frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) =T73660 irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi gB4&pPN End If ;x 9_ hf6=`M}>i End If r)ni;aP _zAHN0d Next k gb b2!q6p 4CO"> : Next j 6OBe^/ZRt 3j'A.S Next i kq;1Ax0{ EnableTextPrinting( True ) VrV
)qfG .hBq1p
'write out file 3NI3b-7 fullfilepath = CurDir() & "\" & fname ~}uv4;0l] Open fullfilepath For Output As #1 N_dHPa Print #1, "GRID " & nx & " " & ny {M`yYeo Print #1, "1e+308" 'q158x Print #1, pixelx & " " & pixely l(c2 B Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 i!H)@4jX c$Vu/dgx maxRow = nx - 1 4*k>M+o/C4 maxCol = ny - 1 #6t 4 vJ1 For rowNum = 0 To maxRow ' begin loop over rows (constant X) vNMndo! row = "" 4@2<dw|*h For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) _n6ge*,E row = row & irrad(colNum,rowNum) & " " ' append column data to row string glMYEGz6p Next colNum ' end loop over columns U
GA_^?4 L1'PQV Print #1, row r[doN{% 4LG[i}u.N Next rowNum ' end loop over rows [v@3|@ Close #1 z\S#P|; N>R\,n|I Print "File written: " & fullfilepath D-{;;<nIr` Print "All done!!" t0*kL. End Sub r]h>Bb l ga%U~ 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: o#"U8N%r i-.]onR l#%qF Db 找到Tools工具,点击Open plot files in 3D chart并找到该文件 0bG[pp$[ uDtml$9rN Sb2hM~ 打开后,选择二维平面图: ^T?zR7r UL{+mp
QQ:2987619807 1 X8P v*,
|
|