首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 '4N[bRCn  
]lm9D@HMC  
成像示意图
]+fL6"OD/2  
首先我们建立十字元件命名为Target zb:p,T@5  
NhpGa@[D  
创建方法: /R F#B#9  
 q#MA A_  
面1 : {^$rmwN  
面型:plane gqG l>=.m  
材料:Air 6;5}% B:#h  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box ^Z\1z!{R  
kO/dZ%vj  
*-` /A  
辅助数据: 1/ j}VC  
首先在第一行输入temperature :300K, Hyc19|  
emissivity:0.1; CX\# |Q8q  
0 ,Bd,<3  
/z5j.TMs  
面2 : mezP"N=L~  
面型:plane vgsu~(L;  
材料:Air /XnI>  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box cBc6*%ZD  
~Dgui/r9J  
8 I,(\<Xv  
位置坐标:绕Z轴旋转90度, d]w*fn  
]Nsb V  
E)>6}0P  
辅助数据: i[WTp??Uv  
=}_c=z?UY  
首先在第一行输入temperature :300K,emissivity: 0.1; X~n Kuo  
#WfJz}P,!  
uw;s](~E  
Target 元件距离坐标原点-161mm; d+"KXt5CV  
D|_}~T>;&  
N=:yl/M  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 +O9l@X$l=  
Mt-y{*6!k  
_mFb+8C  
探测器参数设定: .6  
h`Y t4-Y  
在菜单栏中选择Create/Element Primitive /plane 7|"11^q  
;jI\MZ~l\  
1!BV]&,[  
*4=Fy:R]O  
\/{qE hP  
0^{zq|%Q!  
元件半径为20mm*20,mm,距离坐标原点200mm。 }]tSWVb*  
x$6-7<p  
光源创建: `p'L3u5H-  
oLBpG1Va  
光源类型选择为任意平面,光源半角设定为15度。 ZhM-F0;`  
kZf7  
x"_f$,:!  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 .hZ =8y9  
a?Q~C<k  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 .{)b^gE  
`| R8WM  
Dt.OZ4w5  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 d|DIq T~{W  
Zw"6-h4  
创建分析面: bncK8SK  
-hhE`Y  
H$\?D+xlf  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。  Zp]Bs  
?mgr #UN  
<%) :'0q&  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 OM2|c}]ZQ  
I caIB)  
FRED在探测器上穿过多个像素点迭代来创建热图 Re,0RM\  
I%{U~  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 69q8t*%O  
将如下的代码放置在树形文件夹 Embedded Scripts, } vcr71u  
0Wv9K~F  
zz02F+H$Y  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 " P0o)g+{  
2Uu,Vv  
绿色字体为说明文字, =fG(K!AQ  
9YB~1 M  
'#Language "WWB-COM" c.jnPVf:  
'script for calculating thermal image map F fl`;M  
'edited rnp 4 november 2005 C8NbxP  
F KL}6W:  
'declarations %'^m6^g;  
Dim op As T_OPERATION y]cx}9~  
Dim trm As T_TRIMVOLUME 9DPf2`*$  
Dim irrad(32,32) As Double 'make consistent with sampling X(E f=:  
Dim temp As Double VAq( t  
Dim emiss As Double dbnH#0i  
Dim fname As String, fullfilepath As String AS4m227  
;zz"95X7  
'Option Explicit `Gsh<.w!7  
TpMfk7-  
Sub Main EEaKT`/d  
    'USER INPUTS Uc7X)  
    nx = 31 oHeo]<Fbv  
    ny = 31 hhYo9jTHW  
    numRays = 1000 (m.]0v*&c  
    minWave = 7    'microns \k;raQR4t*  
    maxWave = 11   'microns kv`x  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 _k6N(c2Nd  
    fname = "teapotimage.dat" -pkeEuwv{  
t}*teo[  
    Print "" & qd:o}  
    Print "THERMAL IMAGE CALCULATION" KHF5Nt  
4.??U!r>KI  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 G-,PsXSwe  
t7)Y@gRy  
    Print "found detector array at node " & detnode nc$?tC9V  
_)%4NjWKk  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 [C7:Yg7  
Z/Mp=273  
    Print "found differential detector area at node " & srcnode p aMw88*u  
G?jY>;P)  
    GetTrimVolume detnode, trm N}Q,  
    detx = trm.xSemiApe -4GSGR'L&y  
    dety = trm.ySemiApe A3 j>R477A  
    area = 4 * detx * dety +{Q\B}3cj1  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety ~ RTjcE  
    Print "sampling is " & nx & " by " & ny GI6 EZ}.MZ  
\a|gzC1G  
    'reset differential detector area dimensions to be consistent with sampling Q^0K8>G^  
    pixelx = 2 * detx / nx j}h50*6KO  
    pixely = 2 * dety / ny I -;JDC?  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 5HOhk"  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 lG jdDqi  
/B}]{bcp$  
    'reset the source power C'zMOR6c  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) N#ex2c  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" a?+) K  
#yU4X\oO  
    'zero out irradiance array uOougSBV,  
    For i = 0 To ny - 1  hi.{  
        For j = 0 To nx - 1 @?gH3Y_  
            irrad(i,j) = 0.0 `o:)PTQNg  
        Next j z|pH>R?:  
    Next i ]=]'*Z%  
0*tEuJ7  
    'main loop ~r>WnI:vg  
    EnableTextPrinting( False ) >8>.o[Q&  
4H\O&pSS  
    ypos =  dety + pixely / 2 u# %7>=  
    For i = 0 To ny - 1 )Hev -C"  
        xpos = -detx - pixelx / 2 *23  
        ypos = ypos - pixely SkPv.H0Id  
YK}(VF?&  
        EnableTextPrinting( True ) 9N'$Y*. d<  
        Print i ;7 IVg[f  
        EnableTextPrinting( False ) $xloB  
/Ee0S8!Z!1  
(& ~`!]  
        For j = 0 To nx - 1 ^g~-$t<!  
poXkH@[O  
            xpos = xpos + pixelx sPd5f2'  
6j` waK  
            'shift source _@"Y3Lqi  
            LockOperationUpdates srcnode, True W^y F5  
            GetOperation srcnode, 1, op TOBAh.1  
            op.val1 = xpos Ex@#!fz{%  
            op.val2 = ypos G~m(&,:Mu  
            SetOperation srcnode, 1, op +mF}j=k  
            LockOperationUpdates srcnode, False *[vf47)r!  
/>f`X+d  
            'raytrace kg !@i7  
            DeleteRays v`v+M4upC  
            CreateSource srcnode L(8Q%oX%o  
            TraceExisting 'draw HP?e?3.T  
+}^} <|W6  
            'radiometry 8PQ$X2)  
            For k = 0 To GetEntityCount()-1 ?G8 D6  
                If IsSurface( k ) Then 9_TZ;e  
                    temp = AuxDataGetData( k, "temperature" ) FE_n+^|k<  
                    emiss = AuxDataGetData( k, "emissivity" ) `ZNjA},.  
                    If ( temp <> 0 And emiss <> 0 ) Then VvoJ85  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) ,xR^8G 8  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) Kvk;D ]$  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi { ! FrI@  
                    End If qv,|7yw{  
g`1*p|  
                End If G1P m!CM=  
moc_}(  
            Next k 1F$a My?  
:b.#h7Qt<  
        Next j wef QmRK  
K IqF"5  
    Next i AE<AEq  
    EnableTextPrinting( True ) YJ:CqTy  
[[bMYD1eO  
    'write out file QDgOprha  
    fullfilepath = CurDir() & "\" & fname >\@6i s  
    Open fullfilepath For Output As #1 vn kktD'n  
    Print #1, "GRID " & nx & " " & ny ?j $z[_K  
    Print #1, "1e+308" ^ qE4:|e  
    Print #1, pixelx & " " & pixely QU417EV'  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 #}B~V3UD  
+J#H9>To!  
    maxRow = nx - 1 52:oe1-8  
    maxCol = ny - 1 :jUd?(  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) lSbAZ6  
            row = "" $?'z%a{  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) @B1rtw6  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ]")i~-|R  
        Next colNum                     ' end loop over columns [u-~<80  
`T~M:\^D  
            Print #1, row m =opY~&h  
a?D\H5TF-  
    Next rowNum                         ' end loop over rows Z9!goI  
    Close #1 0"<g g5  
*emUQ/uvf  
    Print "File written: " & fullfilepath S'?XI@t[  
    Print "All done!!" Fmsg*s7w  
End Sub w|RG  
WM>9sJf  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于:  Q.cxen  
n*-#VKK^  
B8;ZOLAU  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 ~v<r\8`OI2  
  
ss-Be  
N5~g:([k  
打开后,选择二维平面图: H:0-.a^ZS  
;jnnCXp>  
QQ:2987619807
h`5au<h<  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计