首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 bk}'wcX<+]  
;qN;oSK  
成像示意图
qTuQ]*[-  
首先我们建立十字元件命名为Target qG<3H!Z!ky  
NlG~{rfI  
创建方法: 0lm7'H*~  
8h%oJ4da   
面1 : %Y:"5fH  
面型:plane OkV*,n  
材料:Air u9zEhfg8  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box [Ep%9(SgA'  
H6t'V%Ys  
1XpG7  
辅助数据: \~!!h.xR  
首先在第一行输入temperature :300K, Z.l4<  
emissivity:0.1; (& UQ^  
cM hBOm*  
EQTJ=\WFF  
面2 : <9bfX 91  
面型:plane  .V   
材料:Air J_S8=`f%  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box  B8~JUGD  
ouE/\4'NB  
*t%Z'IA  
位置坐标:绕Z轴旋转90度, JJZu%9~[  
(xdC'@&  
?l9j]  
辅助数据: 2if7|o$=  
yt@7l]I  
首先在第一行输入temperature :300K,emissivity: 0.1; &pzf*|}  
TKe\Bi  
DEw>f%&4  
Target 元件距离坐标原点-161mm; !*1 $j7`tP  
NHL9qL"qk  
y<g1q"F  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 m!K`?P]:N  
OAauD$Hh  
i$5<>\g  
探测器参数设定: n "bii7h  
bQ3txuha  
在菜单栏中选择Create/Element Primitive /plane KcvstC`  
C<Z{G%Qm  
vR3\E"Zi  
"qrde4O  
0MI4"<  
" vka7r  
元件半径为20mm*20,mm,距离坐标原点200mm。 D"V(A\sZ  
y1)ZO_'  
光源创建: hp1+9vEN  
jNvDE}'  
光源类型选择为任意平面,光源半角设定为15度。 8<)ZpB,7  
M>_vsI^I'  
AP:Q]A6}  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 l0 8vF$k|d  
9Vru,7g  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 o(k{Ed  
v YJ9G"E  
@-ml=S7;Sz  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 c'.XC}  
Kh$Q9$  
创建分析面: r~z'QG6v/  
16ZyLt  
6_s(Kx>j  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 BsU}HuQZQ  
-VeC X]  
K9{RU4<  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 +CM>]Ze  
", p5}}/  
FRED在探测器上穿过多个像素点迭代来创建热图 ]"&](e6*  
f"*k>=ETI  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 lA pZC6Iwk  
将如下的代码放置在树形文件夹 Embedded Scripts, kH5D%`Kw  
g#MLA5%=u  
u"uL,w 1-  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 : r(dMU3%  
QC?~$>h!?  
绿色字体为说明文字, -&COI-P8  
cNbUr  
'#Language "WWB-COM" Sx[ eX,q  
'script for calculating thermal image map E.Q]X]q  
'edited rnp 4 november 2005 Z}TLk^_[  
Sbl=U  
'declarations S,j. ?u*!  
Dim op As T_OPERATION 41x"Q?.bY  
Dim trm As T_TRIMVOLUME rlaeqG  
Dim irrad(32,32) As Double 'make consistent with sampling V2!0),]B  
Dim temp As Double pI:,Lt1B  
Dim emiss As Double Y hQ)M5  
Dim fname As String, fullfilepath As String ?=ffv]v|  
?G5,}%  
'Option Explicit lxm/*^  
z&WtPSyGj  
Sub Main xbBqR _ H_  
    'USER INPUTS mU]VFPr5  
    nx = 31 i!zFW-*5  
    ny = 31 pB4Uc<e  
    numRays = 1000 qm3H/cC9+  
    minWave = 7    'microns ^nK<t?KS  
    maxWave = 11   'microns 3 3|t5Ia  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 P`ou:M{8  
    fname = "teapotimage.dat" ~ney~Pz_  
(c>g7d<>n  
    Print "" qa-FLUkIk!  
    Print "THERMAL IMAGE CALCULATION" R0}1:1}$Sn  
K Ax=C}9  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 G[\TbPh  
'Y/0:)  
    Print "found detector array at node " & detnode y ?&hA! x  
R!%nzL@e&`  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 fO$){(]^  
PR Mg6  
    Print "found differential detector area at node " & srcnode G.H8 ><%  
y-db CYMc  
    GetTrimVolume detnode, trm B ytx.[zbX  
    detx = trm.xSemiApe J\r\_P@;c  
    dety = trm.ySemiApe P&uSh?[ ^  
    area = 4 * detx * dety !+Xul_XG  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety N^dQX,j  
    Print "sampling is " & nx & " by " & ny HMCLJ/  
iCPm7AU  
    'reset differential detector area dimensions to be consistent with sampling ? Bpnnwx  
    pixelx = 2 * detx / nx `^Vd*  
    pixely = 2 * dety / ny n&njSj/  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False =nGFLH6)  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 l[Z o,4*  
Z^ :_,aJ?  
    'reset the source power J(l\VvK  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) :YI5O/gsk?  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" b2OwLt9  
$ ]s^M=8  
    'zero out irradiance array F#gA2VCm  
    For i = 0 To ny - 1 3uocAmY  
        For j = 0 To nx - 1 ,7LfvZj4[  
            irrad(i,j) = 0.0 [zx|3wWAX-  
        Next j >jX "  
    Next i  px<psR5  
ryVYY> *(K  
    'main loop (N}-]%#  
    EnableTextPrinting( False ) oFj_o  
[,;e ,ld  
    ypos =  dety + pixely / 2 !fzS' pkk.  
    For i = 0 To ny - 1 o]q~sJVk6  
        xpos = -detx - pixelx / 2 nzC *mPX8  
        ypos = ypos - pixely s/tLY/U/  
B/wD~xC?x  
        EnableTextPrinting( True ) i%-yR DIX  
        Print i |%C2 cx  
        EnableTextPrinting( False ) w.q`E@ T*  
}PBme'kP  
d}\]!x3t  
        For j = 0 To nx - 1 MY,~leP&  
rLsY_7!  
            xpos = xpos + pixelx SBreA-2  
pUHgjwT'U  
            'shift source NPK;  
            LockOperationUpdates srcnode, True e*2^  
            GetOperation srcnode, 1, op 9;+&}:IVS  
            op.val1 = xpos l+9RPJD/:  
            op.val2 = ypos I=kqkuW  
            SetOperation srcnode, 1, op p AOKy  
            LockOperationUpdates srcnode, False w a_{\v=  
KnkmGy  
            'raytrace .dU91> ~Ov  
            DeleteRays l zFiZx  
            CreateSource srcnode uOA/r@7I}S  
            TraceExisting 'draw mD9Iao%4~  
t`8Jz~G`  
            'radiometry kH eD(Ea  
            For k = 0 To GetEntityCount()-1 \6wltTW]#  
                If IsSurface( k ) Then /(^-= pAX  
                    temp = AuxDataGetData( k, "temperature" ) epsRv&LfC  
                    emiss = AuxDataGetData( k, "emissivity" ) {N2GRF~c-y  
                    If ( temp <> 0 And emiss <> 0 ) Then B~I ]3f  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) -s 0SQe{!_  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ".>#Qp%  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi hoFgs9  
                    End If g$uiwqNA%  
-dM~3'  
                End If (2;Aqx5i  
:zU4K=kR  
            Next k E!Q@AZ  
nOPB*{r|  
        Next j >)WE3PT/O"  
=8l' [  
    Next i m~+.vk  
    EnableTextPrinting( True ) x<l 5wh  
D+!T5)>(  
    'write out file (f&V 7n  
    fullfilepath = CurDir() & "\" & fname cIO/8D#zU  
    Open fullfilepath For Output As #1 j0L%jz  
    Print #1, "GRID " & nx & " " & ny 791v>h    
    Print #1, "1e+308" )j8'6tk)Z  
    Print #1, pixelx & " " & pixely rPB Ju0D"  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 I;XM4a  
Kh3i.gm7g  
    maxRow = nx - 1 &3iI\s[  
    maxCol = ny - 1 z"< S$sDh  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) ]4t1dVD  
            row = "" 1Lf -  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) <IZr..|O  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string gX!K%qJBg  
        Next colNum                     ' end loop over columns 7oE:]  
CRo @+p10  
            Print #1, row mCnl@  
A@3'I  ;  
    Next rowNum                         ' end loop over rows KYTXf+oh  
    Close #1 _oZ3n2v}@  
MTwzL<@$  
    Print "File written: " & fullfilepath htYfIy{5w  
    Print "All done!!" P=}l.R*1G  
End Sub |$tF{\  
{v!w2p@  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: c*owP  
\)*\$I\]  
6Lq8#{/]u  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 :2 \NG}  
  
*vNAm(\N  
GB+$ed5@<  
打开后,选择二维平面图: 9F3aT'3#!  
<DMm [V{  
QQ:2987619807
r6D3u(kMb  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计