| infotek |
2020-11-18 10:58 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 hg:$H9\% >qOj^WO~
成像示意图 ho B[L}<c 首先我们建立十字元件命名为Target BX6kn/i
m2YsE
j7 创建方法: '\+"3!$
>@ xe-0z 面1 : !*HJBZ]q 面型:plane r b\t0tg 材料:Air ~t/i0pKq. 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 1c429&- KZ%us 6
U 8p %MFD 辅助数据: ]h&1|j1 首先在第一行输入temperature :300K, j_~mP>el) emissivity:0.1; ~IWdFUKk `W" ;4A ~iQBgd@D^ 面2 : ~b!la 面型:plane nT+ZSr 材料:Air /#&jF:h 孔径:X=1.5, Y=6,Z=0.075,形状选择Box A%7f;&x! Iu~<Y(8^q# NI.ROk1{+4 位置坐标:绕Z轴旋转90度, = &?&}pVF #qR 6TM&;
r>i95u82' 辅助数据: I{WP:]"Yf Iz'Et'w8! 首先在第一行输入temperature :300K,emissivity: 0.1; GA/afc,V X9SOcg3a 8O(L;&h Target 元件距离坐标原点-161mm; @D=%J!!* 6>;OVX
wfEL
.h 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 42A'`io[w] @Tq-3Um U6*[}Ww 探测器参数设定: rFkZ'rp74b Iz
j-,a 在菜单栏中选择Create/Element Primitive /plane ]W4{|%@H" 6&0G'PMf
oWLP|c~Ap XEagN:
FE^/us7r yzT1Zg_ER 元件半径为20mm*20,mm,距离坐标原点200mm。 {:VK}w <?}pCX/O 光源创建: C& XPn;f qsXkm4 光源类型选择为任意平面,光源半角设定为15度。 {X{S[(| s^IC]sW\% XqUQ{^;aI 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ~Dz:n]Vk/ 7CSz 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 }$L1A !L
q'o? ~o|sm a5. 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 2p#d "aI)LlyCY 创建分析面: m ie~.
" m[Ihte-> 1#7|au%:) 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 pU<J?cU8N )\VuN-d
<Opw"yY&q] 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ~6Fh,S1? 3`{;E{ FRED在探测器上穿过多个像素点迭代来创建热图 GD
d'{qE6 LklE,W FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 UF6U5],`u 将如下的代码放置在树形文件夹 Embedded Scripts, kONn7Itbu \v\ONp"
T,uF^%$@AQ 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 $joGda );}M"W8 绿色字体为说明文字, skan1wQ DNgh#!\X '#Language "WWB-COM" KnA BFH 'script for calculating thermal image map ":qHDL3 'edited rnp 4 november 2005 ss }-YnG .|g@#XIwe# 'declarations Qbjm,>H/^ Dim op As T_OPERATION lxgfi@@+h Dim trm As T_TRIMVOLUME ^E\n^D-RV Dim irrad(32,32) As Double 'make consistent with sampling !v=/f_6 Dim temp As Double RsS:I6L Dim emiss As Double pO5j-d* Dim fname As String, fullfilepath As String f{O-\ y(22m+B 'Option Explicit 7t#Q8u? (G} }h Sub Main lX2:8$?X 'USER INPUTS
^[}W} j> nx = 31 C@t,oDU# ny = 31 qN' 3{jiPL numRays = 1000 /F"eqMN minWave = 7 'microns Opg_-Bf maxWave = 11 'microns 5{+2#- sigma = 5.67e-14 'watts/mm^2/deg k^4 "q= ss:( fname = "teapotimage.dat" .=<s@Sg,t e1JHN Print "" dqQJC qc! Print "THERMAL IMAGE CALCULATION" "s] _[(EsIqc(F detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 :OjmaP M=95E$6 Print "found detector array at node " & detnode LWhy5H;Es
E^5 srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 8tv4_Lbx ?f3R+4 Print "found differential detector area at node " & srcnode 8EdaqF jck(cc=R GetTrimVolume detnode, trm u*5}c7)uId detx = trm.xSemiApe >?ar dety = trm.ySemiApe [N~-9 area = 4 * detx * dety 0F_hXy@K Print "detector array semiaperture dimensions are " & detx & " by " & dety )16+Pm8 Print "sampling is " & nx & " by " & ny Hhk`yX c_ &J|I&p 'reset differential detector area dimensions to be consistent with sampling PZ'|) pixelx = 2 * detx / nx FJ!`[.t1AU pixely = 2 * dety / ny !T:7xEr SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False BQ[R)o Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 Ah@e9`_r c V@^< 'reset the source power -}sMOy` SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) xZ%3e
sp Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" <3N\OV2 ''q;yKpaz 'zero out irradiance array iR{@~JN=) For i = 0 To ny - 1 zd-
*UFi For j = 0 To nx - 1 ;=^J_2ls irrad(i,j) = 0.0 5W|wDy Next j HN/YuP03[ Next i ;@gI*i
N" bJ"2|VNH( 'main loop |E$q S)y EnableTextPrinting( False ) 3$K[(>s @gf <%> ypos = dety + pixely / 2 b%"/8rK For i = 0 To ny - 1 IDqUiN xpos = -detx - pixelx / 2 ^qBm%R( ypos = ypos - pixely &YD+s%OL \Wppl,"6c EnableTextPrinting( True ) G)b:UJa" Print i qM 1ZCt EnableTextPrinting( False ) g[@0H= ^2%)Nq; O U
Rq9:{ For j = 0 To nx - 1 1>OU~A" .`J*l=u$ xpos = xpos + pixelx ]c'EJu
b">"NvlB 'shift source n!X%i+|4x LockOperationUpdates srcnode, True z52F-< GetOperation srcnode, 1, op l<S3<'& op.val1 = xpos !nsr( 7X2 op.val2 = ypos pjV70D8$A SetOperation srcnode, 1, op Bonj K# LockOperationUpdates srcnode, False ]w]BKpU= pBBKfv 'raytrace n4XkhY| DeleteRays '
Gx\ CreateSource srcnode |t3}>+"?z TraceExisting 'draw %a0q|)Nrj Pd d(1K* 'radiometry `O.pT{Lf For k = 0 To GetEntityCount()-1 ;"9Ks. If IsSurface( k ) Then F>n_k temp = AuxDataGetData( k, "temperature" ) <j#IR emiss = AuxDataGetData( k, "emissivity" ) Vi'7m3& If ( temp <> 0 And emiss <> 0 ) Then (~F}O ProjSolidAngleByPi = GetSurfIncidentPower( k ) uP8 cW([ frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) @{3_7 irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi &pz`gna End If 7OXRR)]V \ E5kpm End If 6wq%4RI0 vKdS1Dn1 Next k Tb:'M:dM" MDd2B9cy[ Next j ix?Z:pIS0 Ly
v"2P Next i v!<FeLW EnableTextPrinting( True ) 3y:),;|5 ]eFNR1<OP 'write out file *(i%\ fullfilepath = CurDir() & "\" & fname /Q#eP m Open fullfilepath For Output As #1 AtAu$"ue Print #1, "GRID " & nx & " " & ny e(DuJ- Print #1, "1e+308" XJS^{=/ Print #1, pixelx & " " & pixely Kh&a# ~c Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 33hP/p% ^$oEM0h maxRow = nx - 1 ~G^+.>j maxCol = ny - 1 w`#9Re For rowNum = 0 To maxRow ' begin loop over rows (constant X) L!ms{0rJ row = "" 0BjP|API For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) YVz,P_\(m row = row & irrad(colNum,rowNum) & " " ' append column data to row string )B~{G\jS Next colNum ' end loop over columns d]E.F64{ 2U+Fat@ Print #1, row W7~OU(}[` @_WZZ Next rowNum ' end loop over rows '=K~M Close #1 ;\/RgN "zFTPL" Print "File written: " & fullfilepath iZ ;562Mo Print "All done!!" t`V U< End Sub $"Ci{iE 4Xv."L 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: QNj6ETB-d gG(9&}@( y,<\d/YY@ 找到Tools工具,点击Open plot files in 3D chart并找到该文件 hrfSe $8 -Zg@#H Fj<a;oV 打开后,选择二维平面图: v:9Vp{) N{!@M_C^%R
QQ:2987619807 x.(Sv]+[
|
|