首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 W0l,cOOZJ  
$Hj.{;eC/k  
成像示意图
w,h`s.AN  
首先我们建立十字元件命名为Target Cq'KoN%nQ  
cFeXpj?GV  
创建方法: 8>0e*jC  
DpUbzr41+k  
面1 : -?mfE+kt  
面型:plane ?)u@Rf9>  
材料:Air Ed_N[ I   
孔径:X=1.5, Y=6,Z=0.075,形状选择Box )rekY;  
@>p<3_Y1  
C}_ ojcR  
辅助数据: kP-3"ACG  
首先在第一行输入temperature :300K, MO n  
emissivity:0.1; a>GyO&+Dkg  
P/Q!<I  
P*I}yPeb  
面2 : Cn "s` q  
面型:plane 4scNSeW  
材料:Air JwAYG5W  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box BFo5\l:q8  
V+VkY3  
wM2*#  
位置坐标:绕Z轴旋转90度, P@9t;dZN  
dvt9u9Vg=  
,M^P!  
辅助数据: X{\F;Cb*  
iZM+JqfU|D  
首先在第一行输入temperature :300K,emissivity: 0.1; 5 N#3a0)  
hM{{\yZS  
8 0Gn%1A9  
Target 元件距离坐标原点-161mm; R,pX:H&#+  
no< ^f]33  
>_|O1H./4  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 >D(RYI  
DV<` K$ET  
,u`B<heoLU  
探测器参数设定: Mf&{7%  
z7Q?D^miy  
在菜单栏中选择Create/Element Primitive /plane MLRK74D  
">y%iE  
G>1eFBh }  
 Kfh|  
o]; [R  
sB c (gr  
元件半径为20mm*20,mm,距离坐标原点200mm。 =8; {\  
o1FF"tLkN  
光源创建: ?kB2iU_f+  
\E% 'Y  
光源类型选择为任意平面,光源半角设定为15度。 wnM9('\  
DDPxmuNG  
]3KhgK%c8  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ~%SH3$  
e S<lwA_  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 9hOJvQ2U]  
E}40oID  
.pN`;*7`  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 n~A%q,DmF  
Axe8n1*y  
创建分析面: \H=&`?  
bpKZ3}U  
nij!1z|M  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 `<\1[HJ\  
m6',SY9T  
1Dv R[Lx%  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 2Fq<*pxAY  
Gcig*5   
FRED在探测器上穿过多个像素点迭代来创建热图 59O?_F9  
,0hA'cp  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 0IfKJ*]M  
将如下的代码放置在树形文件夹 Embedded Scripts, \9/ b!A  
%=/)  
K)\M5id]  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 IGtl\b=  
\>7^f 3m  
绿色字体为说明文字, WnGGo ' Z  
+TQ47Z c  
'#Language "WWB-COM" [L:o`j  
'script for calculating thermal image map wYQ&C{D%  
'edited rnp 4 november 2005 p TeOW9  
Kwg4sr5"D  
'declarations m<0&~rg   
Dim op As T_OPERATION Fv Jd8kV  
Dim trm As T_TRIMVOLUME ,B0_MDA +  
Dim irrad(32,32) As Double 'make consistent with sampling OujCb^Rm  
Dim temp As Double ho0@ l  
Dim emiss As Double D,g1<:<  
Dim fname As String, fullfilepath As String OnK~3j  
#@"<:!?z  
'Option Explicit /yZQ\{=  
JXu$ew>q  
Sub Main Xt#4/>dlR  
    'USER INPUTS F$hY KT2|  
    nx = 31 yb/%?DNQT  
    ny = 31 5JLu2P  
    numRays = 1000 $`- 4Ax4%  
    minWave = 7    'microns I;Bjfv5  
    maxWave = 11   'microns @ )-$kk*  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 -tyK~aasQ  
    fname = "teapotimage.dat" cdG |m[  
m q{];  
    Print "" $pFo Rv  
    Print "THERMAL IMAGE CALCULATION" 7g(F#T?;'  
ODC8D>ZYl  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 tc!wLnhG  
FN%m0"/Z{t  
    Print "found detector array at node " & detnode Ie4hhW  
[fKUyIY_  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 !Z5[QNVaV  
W"k8KODOY  
    Print "found differential detector area at node " & srcnode e&qh9mlE  
,i,q!M{-  
    GetTrimVolume detnode, trm Tp9- niW  
    detx = trm.xSemiApe i![dPM  
    dety = trm.ySemiApe EB_NK  
    area = 4 * detx * dety qq1-DG  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety y:h}z).  
    Print "sampling is " & nx & " by " & ny vJU*>U,  
0#YX=vjX7  
    'reset differential detector area dimensions to be consistent with sampling `p7&> BOA  
    pixelx = 2 * detx / nx p$x{yz3  
    pixely = 2 * dety / ny GKFq+]W  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False kr9g K~  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 =T7A]U]  
^=^z1M 2P  
    'reset the source power ,57`D'  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) o,!T2&}  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" )"m!YuS Y  
DVkB$2]  
    'zero out irradiance array {M?vBg R\B  
    For i = 0 To ny - 1 q=DN {a:  
        For j = 0 To nx - 1 pOrWg@<\L  
            irrad(i,j) = 0.0 Cc, `}SP  
        Next j /g$G_}  
    Next i ^+1#[E  
S>0nx ^P  
    'main loop &%_& 8DkG  
    EnableTextPrinting( False ) N?m0US u*  
RJON90,J  
    ypos =  dety + pixely / 2 <6G1 1-K  
    For i = 0 To ny - 1 wprX!)w<i  
        xpos = -detx - pixelx / 2 !xKJE:4/,m  
        ypos = ypos - pixely ~(@ E`s&{  
H-xFiF  
        EnableTextPrinting( True ) >Z;jY*  
        Print i ZDC9oX @  
        EnableTextPrinting( False ) %c1#lEC2xN  
,~);EC=`  
wV)}a5+  
        For j = 0 To nx - 1 v*qQ? S  
'vbc#_;  
            xpos = xpos + pixelx vi)%$~  
f(eQ+0D  
            'shift source ~6 I)|^Z  
            LockOperationUpdates srcnode, True 7 uarh!  
            GetOperation srcnode, 1, op P@]8pIB0d^  
            op.val1 = xpos @y/wEBb  
            op.val2 = ypos " sgjWo6  
            SetOperation srcnode, 1, op !gmH$1w  
            LockOperationUpdates srcnode, False ,o7hk{fR*  
07/L}b`P  
            'raytrace Ol')7d&  
            DeleteRays p<v.Q   
            CreateSource srcnode ~kCwJ<E  
            TraceExisting 'draw 0liR  
U5]pi+r  
            'radiometry oiH|uIsqR  
            For k = 0 To GetEntityCount()-1 8V-\e?&^  
                If IsSurface( k ) Then cFagz* !  
                    temp = AuxDataGetData( k, "temperature" ) dk==?  
                    emiss = AuxDataGetData( k, "emissivity" ) R <"6ojn  
                    If ( temp <> 0 And emiss <> 0 ) Then bhs(Qzx  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) k5&bq2)I  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) b`_w])Y@  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi T`9-VX;`  
                    End If Kwhdu<6  
=q"eU=9  
                End If 3},Zlu  
3[XQR8o  
            Next k G^(}a]>9  
WM)F0@"  
        Next j &-1./?  
m4[g6pNx~  
    Next i 60Z]M+8y8  
    EnableTextPrinting( True ) t+nRw?Z  
%k0EpJE%  
    'write out file 6TH!vuQ1(  
    fullfilepath = CurDir() & "\" & fname L z\UZeq  
    Open fullfilepath For Output As #1 )n=ARDd^e  
    Print #1, "GRID " & nx & " " & ny XW L^  
    Print #1, "1e+308" U4Nh  
    Print #1, pixelx & " " & pixely htPqT,L  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 _iE j  
`Vq`z]}  
    maxRow = nx - 1 5v^L9!`@%v  
    maxCol = ny - 1 > 4oY3wk8  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) {?{U,&  
            row = "" nVD Xj  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) n$2RCQ  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string {[(pWd%J  
        Next colNum                     ' end loop over columns Qeb}!k2A  
!CjqL~  
            Print #1, row wE).>  
yW.COWL=)  
    Next rowNum                         ' end loop over rows 5A&y]5-Q`  
    Close #1 %q_Miu@  
Ewo*yY>  
    Print "File written: " & fullfilepath 8G ]w,eF  
    Print "All done!!" nE y]`  
End Sub B(l-}|m_  
2:$ k  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: s%;<O:x8o  
Poa?Ej  
Y(GN4@`S  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 g$j6n{Yl  
  
'Zk<l#"}  
|)@N-f:E  
打开后,选择二维平面图: i=v]:TOu  
jnoL2JR[=-  
QQ:2987619807
j.3o W  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计