首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 sl'4AK~\  
 s5VK  
成像示意图
Y6jyU1>  
首先我们建立十字元件命名为Target CsO!Y\'FY  
7H6Ts8^S  
创建方法: -c`xeuzK'  
*[Hp&6f  
面1 : VeA@HC`?"  
面型:plane (t4i&7-  
材料:Air t;8)M $ p  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box HsCL%$k  
[EAOk=X  
h3MdQlJ&  
辅助数据: L AQ@y-K3  
首先在第一行输入temperature :300K, 7)rQf{q7  
emissivity:0.1; Fy=GU<&AI  
F @PPhzZ  
/vQ)$;xf#  
面2 : c2E /-n4K@  
面型:plane "#d$$ 8  
材料:Air $S6(V}yh  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box fv;Q*; oC&  
,1 -%C)  
~;"eNg{ T  
位置坐标:绕Z轴旋转90度, [OC( ~b  
y1V}c ,  
X5)D[aE6  
辅助数据: /`PYk]mJh  
Ia2WBs =  
首先在第一行输入temperature :300K,emissivity: 0.1; }+,Q&]>~  
i$Y#7^l%k  
e@'x7Zzh  
Target 元件距离坐标原点-161mm; j*%#~UFw  
-)A:@+GF  
wT@Z|.)  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 x;mw?B[  
{j wv+6]U  
<a R  
探测器参数设定: bmT%?it  
 5wK==hZ  
在菜单栏中选择Create/Element Primitive /plane N_%@_$3G]  
4H8r[  
<J8c dB!e  
%NLd"SV  
H1N@E}>|  
e~vO   
元件半径为20mm*20,mm,距离坐标原点200mm。 5hE#y]pfN  
jFQy[k-B  
光源创建: 6#=Iv X4  
Q& [!+s:2J  
光源类型选择为任意平面,光源半角设定为15度。 Dl!0Hl  
?q!4REM  
a~KtH;7<  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 g ~<[;6&{  
`^#Rwn#  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 ^gVQ6=z%  
49"C'n0wST  
~ <1s[Hu  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 JuJW]E Q  
A1zRzg4I  
创建分析面: TOiLv.Dor  
6*,55,y  
pj%]t  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 SFg4}*"C/  
'D W|a  
nOC\ =<Nsg  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 *)[fGxz \  
SU%O\ 4Ty  
FRED在探测器上穿过多个像素点迭代来创建热图 5Sl"1HL  
;(K/O?nrJ  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 |QS|\8g{0V  
将如下的代码放置在树形文件夹 Embedded Scripts, PTHxvml  
g9C-!X-<T  
s(_z1  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 C b'|  
^E%R5JN  
绿色字体为说明文字, 9DBX.|  
QFTiE1mGH  
'#Language "WWB-COM" :h,}yBJ1L  
'script for calculating thermal image map U<Oc&S{]*  
'edited rnp 4 november 2005 2IJniS=[>  
/CALX wL  
'declarations #>yOp *  
Dim op As T_OPERATION A^lm0[3q  
Dim trm As T_TRIMVOLUME g?v/ u:v>W  
Dim irrad(32,32) As Double 'make consistent with sampling Kmx4bp4  
Dim temp As Double ]Mq-67  
Dim emiss As Double 2Ys=/mh  
Dim fname As String, fullfilepath As String 39^+;Mev  
c RI2$|  
'Option Explicit n\9IRuYO  
/'oo;e  
Sub Main T6y~iNd<  
    'USER INPUTS gZHgL7@  
    nx = 31 p#c41_?'e  
    ny = 31 &NF$_*\E  
    numRays = 1000 o4: e1  
    minWave = 7    'microns _"*vj-{-y  
    maxWave = 11   'microns &SIf|IX.  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 0%xb):Ctw  
    fname = "teapotimage.dat" / 8O=3  
-75mgOj.#  
    Print "" w[a(I} x  
    Print "THERMAL IMAGE CALCULATION" @n qM#  
-[!t=qi  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 "wH(t k4  
jNbVp{%/S}  
    Print "found detector array at node " & detnode ebEI%8p g  
R|@~<*  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 = 1veO0  
+Zi+ /9Z(H  
    Print "found differential detector area at node " & srcnode m|JA }&A  
it{Jd\/hR  
    GetTrimVolume detnode, trm @|h9jx|  
    detx = trm.xSemiApe XFTqt]  
    dety = trm.ySemiApe IqlCl>_j  
    area = 4 * detx * dety ,J2qLH1  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety ;E{jn4B'  
    Print "sampling is " & nx & " by " & ny +DQUL|\  
h [Sd3Z*  
    'reset differential detector area dimensions to be consistent with sampling X<_HQ  
    pixelx = 2 * detx / nx {1=|H$wKg  
    pixely = 2 * dety / ny oFp1QrI3k8  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ;\|GU@K{hC  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 ?@in($67  
D,*|:i  
    'reset the source power m*1  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) FaJK R  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" nN.Gn+Cl  
m|B)A"Sm  
    'zero out irradiance array bGB$a0  
    For i = 0 To ny - 1 @=z.^I30  
        For j = 0 To nx - 1 h}nS&.  
            irrad(i,j) = 0.0 byP<!p*  
        Next j yQ^,>eh  
    Next i $XcH.z  
WnGi;AGH=1  
    'main loop #|+4`Gf^  
    EnableTextPrinting( False ) CN` ~DD{  
:G98uX t  
    ypos =  dety + pixely / 2 L9^ M?.a  
    For i = 0 To ny - 1 U<F|A!Fg  
        xpos = -detx - pixelx / 2 !\VEUF,K?  
        ypos = ypos - pixely jLn#%Ia}  
2Y9u9;ah  
        EnableTextPrinting( True ) C(h<s e?  
        Print i C}uzzG6s  
        EnableTextPrinting( False ) y(iq  
|_g7k2oLY  
sk07|9nU  
        For j = 0 To nx - 1 ;:oXe*d  
k(7Q\JKE  
            xpos = xpos + pixelx +qpG$#J0  
:B=Gb8?  
            'shift source e*`ht+  
            LockOperationUpdates srcnode, True PPy~dp  
            GetOperation srcnode, 1, op ?Hdu=+ZV  
            op.val1 = xpos ^kC!a>&  
            op.val2 = ypos l-nH  
            SetOperation srcnode, 1, op V=fh;p  
            LockOperationUpdates srcnode, False bbjEQby  
)w<Z4_!N4s  
            'raytrace 2[=3-1c  
            DeleteRays !#%>,X#+  
            CreateSource srcnode %t6-wWM97  
            TraceExisting 'draw kf<c[su  
RcJtVOrd  
            'radiometry mA.,.<xE@  
            For k = 0 To GetEntityCount()-1 DC/Czkv9  
                If IsSurface( k ) Then w\D !e  
                    temp = AuxDataGetData( k, "temperature" ) dg~lz80  
                    emiss = AuxDataGetData( k, "emissivity" ) iO Z#}"  
                    If ( temp <> 0 And emiss <> 0 ) Then +w.$"dF!  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) 6&;GC<].(y  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) | @ ut/  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi >l%8d'=Jl  
                    End If 2?6]Xbs{  
_OjZ>j<B.  
                End If DOGGQ$0  
xDl; tFI  
            Next k N.q*jY= X|  
cK\ u  
        Next j PW5)") z  
oj{CNa  
    Next i 479X5Cl  
    EnableTextPrinting( True ) #C.  
5y g`TW  
    'write out file ~@6l7H6{  
    fullfilepath = CurDir() & "\" & fname }6.@  
    Open fullfilepath For Output As #1 BtbU?t  
    Print #1, "GRID " & nx & " " & ny Ye$j43b  
    Print #1, "1e+308" <'UGYY\wg0  
    Print #1, pixelx & " " & pixely VoUo!t:(+  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 R ai 0 4  
})70S8k  
    maxRow = nx - 1 vR!g1gI23  
    maxCol = ny - 1 $+n6V2^K)7  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) /i27F2NQm  
            row = "" U/kQwrM  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) vOz1& |;D  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string A-uIZ zC  
        Next colNum                     ' end loop over columns %1jcY0zEQ  
H I_uR$m  
            Print #1, row = &pLlG  
-L]-u6kC[  
    Next rowNum                         ' end loop over rows l"}_+5  
    Close #1 o<3$|`S&  
6YNL4HE?  
    Print "File written: " & fullfilepath a,S;JF)v  
    Print "All done!!" ,>b>I#{  
End Sub NNbdP;=:u  
]OdZlZBsJ  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 3Ji$igL  
2yg6hR  
mgVYKZWL-i  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 z#o''  
  
I_z(ft.  
7XyCl&Dc:  
打开后,选择二维平面图: 4LB8p7$|a3  
7`A]X,:  
QQ:2987619807
.S-)  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计