| infotek |
2020-11-18 10:58 |
十字元件热成像分析
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 zZ;V9KM>v P|t2%:_
成像示意图 B[9y<FB+ 首先我们建立十字元件命名为Target 0[E\h L}rYh`bUP[ 创建方法: DhXV=Qw f4$sH/ 2#v 面1 : ^0 &jy:{ 面型:plane zxkO&DGRbN 材料:Air aNP\Q23D 孔径:X=1.5, Y=6,Z=0.075,形状选择Box ]A%~bQ7 k~)@D| ?
nf1O8FwRb 辅助数据: X.ecA`0 首先在第一行输入temperature :300K, |5jrl| emissivity:0.1; vIf-TQw wHh6y? g\ 2D/bMq 面2 : {.ypZ8JU 面型:plane m|3Q' 材料:Air g'cVsO)S 孔径:X=1.5, Y=6,Z=0.075,形状选择Box aJ}hlM> i|m8#*Hd z_Hkw3? 位置坐标:绕Z轴旋转90度, WyRSy-{U(} ae" o|Q
29cx( 辅助数据: n|Ts:>`V r+k&W 首先在第一行输入temperature :300K,emissivity: 0.1; ubRhJ~XB ) ]DqK<- cg_ " }]Y1 Target 元件距离坐标原点-161mm; r6GXmr 31UxYBY
IwRP,MQ~ 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 X *EseC [w!T
&XCP@@T 探测器参数设定: Kj)sL0 Mdq|:^px 在菜单栏中选择Create/Element Primitive /plane #<X4RJ #%w+PL:*O
)O5@R cQ'x]u_ %!eRR g/}d> 6 元件半径为20mm*20,mm,距离坐标原点200mm。 Bh'!aip k |}UA=? Xl 光源创建: `NsQ&G ]_|'N7J 光源类型选择为任意平面,光源半角设定为15度。 )_\ ;l%& }zxf~41 /nsBUM[; 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 -%|
]
d ; #%F-Xsk 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 J5n6K$.d ?zQW9e mln4Vl(l2M 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 ZjY,k (EvYrm4 创建分析面: 5*+DN
U@ `Tf}h8* v9FR 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 1zCu1'Wv 'n>44_7 L
j}d):3! 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 FPkk\[EU Y652&{>q
FRED在探测器上穿过多个像素点迭代来创建热图 m mZP; mj'N)6ga FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 rsa_)iBC 将如下的代码放置在树形文件夹 Embedded Scripts, B9[vv;lzu vH-|#x~
CM$&XJzva 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 |vm-(HY! }h1LH4 绿色字体为说明文字, q,<l3r In d}tmZ*q '#Language "WWB-COM" 6"Lyv 'script for calculating thermal image map 9C2pGfEbn} 'edited rnp 4 november 2005 QV.>Cy pdER#7Tq 'declarations e$P^},0/ Dim op As T_OPERATION 4M> pHz4 Dim trm As T_TRIMVOLUME (9ZW^flY Dim irrad(32,32) As Double 'make consistent with sampling R9^vAS4t[O Dim temp As Double
04&S.#+( Dim emiss As Double (T$cw(! Dim fname As String, fullfilepath As String s8[( O`1!&XT{x 'Option Explicit kTfRm^ DBHHJD/q Sub Main 0^Vw^]w 'USER INPUTS qTRP2rH,L& nx = 31 !vRN'/(Vyu ny = 31 5%(whSKZF numRays = 1000 7P}l^WX minWave = 7 'microns jtpHDS maxWave = 11 'microns Ws1|idAT sigma = 5.67e-14 'watts/mm^2/deg k^4 @BjB
Mi, fname = "teapotimage.dat" V`LE 'E |v@_~HV Print "" v;G/8>GRy Print "THERMAL IMAGE CALCULATION" 6Iv};f"Y VyNF)$'T detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 f/Y7@y ,1B4FAR& Print "found detector array at node " & detnode G~.VW48{n T+~&jC:{ srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 l l*g *zt3 [h-NX Print "found differential detector area at node " & srcnode jg'"?KSU~ Qi dI GetTrimVolume detnode, trm qGR1$\] detx = trm.xSemiApe lul dety = trm.ySemiApe ^`dMjeF area = 4 * detx * dety 4clCZ@\K^ Print "detector array semiaperture dimensions are " & detx & " by " & dety .t>SbGC Print "sampling is " & nx & " by " & ny 2?Ryk`2i) ".Q]FE@> 'reset differential detector area dimensions to be consistent with sampling H|aC(c pixelx = 2 * detx / nx e@vZg8Ie pixely = 2 * dety / ny R+He6c!?9 SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 9Z=hg[`]< Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 j|o/>^ 'e H(--hG5} 'reset the source power SJO*g&duQ SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) dc~vQDNw[X Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" +/%4E % 7^Us 'zero out irradiance array rfQs
7S;G For i = 0 To ny - 1 --TH6j" For j = 0 To nx - 1 d^$cx(2$D irrad(i,j) = 0.0 NcwUK\ Next j 2,B^OZmw Next i pp*MHM)x|q Yz0HBEA 'main loop knHrMD; EnableTextPrinting( False ) cdH`#X &1=,?s]& ypos = dety + pixely / 2 Bqa_l| For i = 0 To ny - 1 K)`R?CZ:s xpos = -detx - pixelx / 2 ~e,K ypos = ypos - pixely Gv 8Z {[NQD3=+F EnableTextPrinting( True ) r
z@%rOWV Print i X3gYe-2 EnableTextPrinting( False ) s:,fXg25J Ebi~gGo ;9=4]YZt For j = 0 To nx - 1 CnY dj~ >[T6/#M xpos = xpos + pixelx Kb5}M/8 /Z#AHfKF 'shift source S*3$1BTl LockOperationUpdates srcnode, True l<sWM$ez GetOperation srcnode, 1, op l{ fL~O op.val1 = xpos >/@Q7V99{ op.val2 = ypos @.`HvS SetOperation srcnode, 1, op YWi Y[ LockOperationUpdates srcnode, False QiRx2Z*\ }gX4dv
B 'raytrace Xe/7rhov DeleteRays c No)LF CreateSource srcnode .&^M
Z8 TraceExisting 'draw OQuTM[W Pm24;' 'radiometry t`\l+L For k = 0 To GetEntityCount()-1 i~HS"n If IsSurface( k ) Then e<Oz% temp = AuxDataGetData( k, "temperature" ) q> #P| emiss = AuxDataGetData( k, "emissivity" ) )OGO
wStz If ( temp <> 0 And emiss <> 0 ) Then
_ @|_`5W ProjSolidAngleByPi = GetSurfIncidentPower( k ) tE=$# frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) c/3]M>+M irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi (%M:=zm End If U.WMu% etP`q:6^c End If 0R,Y[).U KiNluGNt Next k VK4" 3e^'mT Next j gBd~:ZUa e=Kr>~q= Next i +G!;:o EnableTextPrinting( True ) SY2((!n._ n8e}8.Bu 'write out file Yg`z4U'6~ fullfilepath = CurDir() & "\" & fname zhwajc Open fullfilepath For Output As #1 v|>'m#Ln2 Print #1, "GRID " & nx & " " & ny 'cbD;+YH Print #1, "1e+308" *_yp]z" Print #1, pixelx & " " & pixely 2)
A$bx Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ds
QGj& X_I.f6v{ maxRow = nx - 1 zB{be_Tw maxCol = ny - 1 m=IA/HOR^ For rowNum = 0 To maxRow ' begin loop over rows (constant X) %G~%:uJ5 row = "" en gh3TZC For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) zd[cp@ row = row & irrad(colNum,rowNum) & " " ' append column data to row string ~E7=c3:" Next colNum ' end loop over columns K fNR)
+f?xVW<h Print #1, row L_7-y92<W i+.b R.WO Next rowNum ' end loop over rows QGd"Z lQ Close #1 5 %aT UbV} ! Print "File written: " & fullfilepath {R.@EFkZ Print "All done!!" $yg}HS7HC End Sub 1Xu^pc ;tLu 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: kv3jbSKCT v~>4c<eG
X*C4NF0 找到Tools工具,点击Open plot files in 3D chart并找到该文件 =u`^QE +EgQj*F* :j,e0#+sA 打开后,选择二维平面图: BI6o@d;=4 +Gvf5+ 5VR
QQ:2987619807 hu
qQ0
|
|