首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 pj(,Zd[47  
%TqC/c  
成像示意图
^.y\(=  
首先我们建立十字元件命名为Target dh\P4  
,zc(t<|-y  
创建方法: j<$2hiI/?&  
jEwIn1  
面1 : <VE@DBWyl~  
面型:plane !R$`+wZ62  
材料:Air rN>R|].  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box \2z>?i)  
Bw.i}3UT6  
30{ gI0jk  
辅助数据: 7EJ+c${e.-  
首先在第一行输入temperature :300K, < %Y}R\s?  
emissivity:0.1; xz]~ jL@-]  
6u%&<")4HP  
+C)~bb*  
面2 : rl.}%Ny  
面型:plane VEH>]-0K  
材料:Air VU#7%ufu&  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box PY'2h4IL  
- YBY[%jF>  
 !u hT  
位置坐标:绕Z轴旋转90度, #9s,# }  
W*G<X.Hf  
Ort(AfW  
辅助数据: kxCSs7J/  
Rb;'O89Hj@  
首先在第一行输入temperature :300K,emissivity: 0.1; @VI@fN  
EX"yxZ~  
4Tc~b3\!Y  
Target 元件距离坐标原点-161mm; $VR{q6[0S?  
>mkFV@`  
,: ^u-b|  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 A}w/OA97RO  
%2h>-.tY  
g2]Qv@nxw  
探测器参数设定: dWW.Y*339  
+,l-Nz  
在菜单栏中选择Create/Element Primitive /plane -RLOD\ZBh  
xx $cnG  
ig"L\ C"T  
fsXy"#mOkD  
g{LP7 D;6  
T4F/w|Q  
元件半径为20mm*20,mm,距离坐标原点200mm。 A(XKyEx  
r|Z{-*`  
光源创建: ABkl%m6xf  
sRfcF`7  
光源类型选择为任意平面,光源半角设定为15度。 <naz+QK'  
yQrD9*t&g  
|a@L}m  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 13f)&#, F  
0\$2X- c  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 @nf`Gw ;  
DwF hK*  
qP;OaM CX  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 2qp#N%  
JS77M-Ac  
创建分析面: t,' <gI  
cCX*D_kCB  
^@]3R QB  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 >dT*rH3w  
ce(#2o&`  
N g,j#  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 M=Wz  
lfg6646?S  
FRED在探测器上穿过多个像素点迭代来创建热图 .(vwIb8\_  
_B0L.eF  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 Dh*n!7lD`  
将如下的代码放置在树形文件夹 Embedded Scripts, v0y(58Rz.  
j.YA 2mr  
ntY]SK%Z  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 F[0]/  
OJxl<Q=z  
绿色字体为说明文字, 9FX-1,Jx  
W>LR\]Ti@  
'#Language "WWB-COM" =lC7gS!U  
'script for calculating thermal image map bZ6+,J  
'edited rnp 4 november 2005 +h$ 9\  
T;#FEzBz  
'declarations uw7zWJ n  
Dim op As T_OPERATION -YE^zzh  
Dim trm As T_TRIMVOLUME 54/=G(F   
Dim irrad(32,32) As Double 'make consistent with sampling =Sv/IXX\di  
Dim temp As Double 1Z;iV<d  
Dim emiss As Double olcDt&xv]  
Dim fname As String, fullfilepath As String `x|?&Ytmf9  
 @8 6f  
'Option Explicit t^L]/$q  
q*KAk{kR(v  
Sub Main 9VT;ep  
    'USER INPUTS 2?x4vI np;  
    nx = 31 ME dWLFf  
    ny = 31 S[N5 ikg  
    numRays = 1000 #b`k e/P  
    minWave = 7    'microns u4j5w  
    maxWave = 11   'microns n|;Im&,  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 ~m |BC*)  
    fname = "teapotimage.dat" BzzTGWq\  
+d>IHpt  
    Print "" |^aKs#va  
    Print "THERMAL IMAGE CALCULATION" 7 3m1  
ceV}WN19l  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 HV.t6@\};  
MPV5P^@X  
    Print "found detector array at node " & detnode ;aBG,dr}i  
#S(Hd?34,  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 KSvE~h[#+  
<q SC#[xu  
    Print "found differential detector area at node " & srcnode 40/Y\  
putrSSL}  
    GetTrimVolume detnode, trm 0mnw{fE8_  
    detx = trm.xSemiApe G?ZXWu.  
    dety = trm.ySemiApe /NlGFO*Z  
    area = 4 * detx * dety /\Ef%@  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety Z7#+pPt!  
    Print "sampling is " & nx & " by " & ny "#]$r  
g ?k=^C  
    'reset differential detector area dimensions to be consistent with sampling [~^0gAlQC  
    pixelx = 2 * detx / nx z}@7'_iJ  
    pixely = 2 * dety / ny `g,..Ns-r  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False N$DkX)Z  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 H.c7Nle  
K;(mC<  
    'reset the source power +:f"Y0  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) KP"+e:a%  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" U17d>]ka  
TJN4k@\$2  
    'zero out irradiance array Tk>#G{Wb-  
    For i = 0 To ny - 1 O=lzT~G|4  
        For j = 0 To nx - 1  <Uur^uB  
            irrad(i,j) = 0.0 pI[uUu7O  
        Next j d1*<Ll9K  
    Next i TV:9bn?r)  
"8/,Y"W"  
    'main loop !W\+#ez  
    EnableTextPrinting( False ) SKtrtm  
#ABCDi={zA  
    ypos =  dety + pixely / 2 5\v3;;A[  
    For i = 0 To ny - 1 s.#`&Sd>  
        xpos = -detx - pixelx / 2 j+!v}*I![  
        ypos = ypos - pixely FlQGg VN  
D@KlOU{<  
        EnableTextPrinting( True ) \GBuWY3B  
        Print i b'g )  
        EnableTextPrinting( False ) G B^Br6  
edD)TpmE,  
7,MR*TO,  
        For j = 0 To nx - 1 9^x> 3Bo  
: DNjhZ  
            xpos = xpos + pixelx vIvIfE  
)_:NLo:  
            'shift source 6LZCgdS{  
            LockOperationUpdates srcnode, True }qUX=s GG  
            GetOperation srcnode, 1, op -4K5-|>O  
            op.val1 = xpos r^ XVB`v  
            op.val2 = ypos gr{ DWCK  
            SetOperation srcnode, 1, op ta0|^KAA  
            LockOperationUpdates srcnode, False IgzQr >  
YR70BOxK  
            'raytrace xLE)/}y_7H  
            DeleteRays  \*da6Am  
            CreateSource srcnode "7 yD0T)2  
            TraceExisting 'draw 7=uj2.J6  
DDZ@$L!  
            'radiometry cl1T8vFM  
            For k = 0 To GetEntityCount()-1 ^Pf WG*  
                If IsSurface( k ) Then m~|40)   
                    temp = AuxDataGetData( k, "temperature" ) [UR-I0 s!/  
                    emiss = AuxDataGetData( k, "emissivity" ) "4Nt\WQ  
                    If ( temp <> 0 And emiss <> 0 ) Then pCDmXB  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) _{>vTBU4F  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) TpaInXR  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi F@t3!bj9  
                    End If :0/ 7,i  
qK+5NF|  
                End If b>W %t  
km(Po}  
            Next k s~>}a  
U:`Kss`  
        Next j ~u{uZ(~  
OI*H,Z "  
    Next i hp2t"t  
    EnableTextPrinting( True ) 3$tdwe$S  
v19-./H^ j  
    'write out file W^Yxny  
    fullfilepath = CurDir() & "\" & fname O1lNAcpeM  
    Open fullfilepath For Output As #1 K9[UB  
    Print #1, "GRID " & nx & " " & ny ' QG?nu  
    Print #1, "1e+308" `uFdwO'DD  
    Print #1, pixelx & " " & pixely pmM9,6P4@  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 >z03{=sAN  
E./2jCwI(Y  
    maxRow = nx - 1 |4JEU3\$  
    maxCol = ny - 1 Q8NX)R  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) XX@ZQcN  
            row = "" ' %qr.T %  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 0f/<7R  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string \RiP  
        Next colNum                     ' end loop over columns 97]E1j]  
@F eTz[  
            Print #1, row eDMO]5}Ht  
6<]lW  
    Next rowNum                         ' end loop over rows . vV|hSc  
    Close #1 UZMd~|  
-@s#uA h  
    Print "File written: " & fullfilepath ^#$n~]s  
    Print "All done!!" ]'}L 1r  
End Sub 8Wx=p#_  
DrR@n~  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: ,2q-D&)\Z  
L#J1b!D&<6  
>j/w@Fj  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 paK2 xX8E  
  
]`K2 N  
2 nCA<&  
打开后,选择二维平面图: 6t$8M[0-U  
}j%5t ~Qa  
QQ:2987619807
Y|n"dMrL  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计