首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 m-%E-nr  
xVf| G_5$  
成像示意图
a_[Eh fE  
首先我们建立十字元件命名为Target &LmJ!^#  
?# Mr  
创建方法: T!-\@PB !  
 jPC[_g  
面1 : H;D>|q  
面型:plane 00<cYy  
材料:Air @v$Y7mw3D  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box efSM`!%j  
ZWii)0'PV  
K}2Erm%A@y  
辅助数据: $[9%QQk5<L  
首先在第一行输入temperature :300K, LnFdhrB@x  
emissivity:0.1; eiuSvyY  
t![7uU.W  
tN[L@t9#cr  
面2 : `^91%f  
面型:plane V@\gS"Tu  
材料:Air Xk:OL,c  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box c4!^nk]  
g(nPQOs$u  
zuP B6W^  
位置坐标:绕Z轴旋转90度, LO'**}vm  
#:%&x@@c3P  
rjl`&POqc  
辅助数据: @(l^]9(V\  
y9_V  
首先在第一行输入temperature :300K,emissivity: 0.1; -Bt k 3  
Z<U6<{b  
'#! gh?  
Target 元件距离坐标原点-161mm; "B8Q:  
K*\' .~[6  
yhlFFbU  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 c@YI;HS_g  
"-y-iJ  
wWgWWXGT}  
探测器参数设定: k2E0/ @f{k  
"vA}FV%tRq  
在菜单栏中选择Create/Element Primitive /plane s.EI`*xylY  
O[# 27_dH  
\%u3  
nvca."5y  
:Y-{Kn6`_  
Yi .u"sh]  
元件半径为20mm*20,mm,距离坐标原点200mm。 WJ)z6m]  
CF&NFSti^  
光源创建: ,/[6e\0~  
h"lX 4  
光源类型选择为任意平面,光源半角设定为15度。 QpZ:gM_  
=5aDM\L$&  
EQ2#/>  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 jN e`;o  
"rTQG6`  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 %?LOs H   
NHB4y/2  
Yj%U >),8  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 ^<;V]cY`  
.#wqXRd  
创建分析面: uB |Ss  
Vw[6t>`  
Mc#*wEo)8  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 a5 *2h{i  
o5xAav"+>  
YNYx>Ue  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ! N|0x`  
4!$s}V=6  
FRED在探测器上穿过多个像素点迭代来创建热图 NxSu 3e~PS  
:z}MIuf  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 N03G>fZ  
将如下的代码放置在树形文件夹 Embedded Scripts, F1iGMf-8  
h H <J,Wn  
Nb?w|Ne(T  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 @vpf[j  
(Lo%9HZ1Mx  
绿色字体为说明文字, ~i@Y|38C  
qe#P?[  
'#Language "WWB-COM" g wz7krUTe  
'script for calculating thermal image map ]"+95*B  
'edited rnp 4 november 2005 CQZgMY1{  
b'P eH\h{  
'declarations XIvn_&d;G  
Dim op As T_OPERATION Jwj%_<  
Dim trm As T_TRIMVOLUME ktK_e  
Dim irrad(32,32) As Double 'make consistent with sampling (&&4J{`W9  
Dim temp As Double *o-.6OxZ$  
Dim emiss As Double PpV'F[|,r  
Dim fname As String, fullfilepath As String qZ]pq2G  
1h>yu3O  
'Option Explicit .udv"?!z  
$k0k k  
Sub Main "+\lws  
    'USER INPUTS Z?pnj8h-&  
    nx = 31 7~&/_3  
    ny = 31 ,REJt  
    numRays = 1000 a,3j,(3  
    minWave = 7    'microns tyfTU5"x  
    maxWave = 11   'microns {*[\'!d--.  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 R-NS,i={  
    fname = "teapotimage.dat" ]V-W~r=  
HQ|MhM/"  
    Print "" I+Jm>XN  
    Print "THERMAL IMAGE CALCULATION" oHMo>*?  
jAy^J(+  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 Jo$G,Q  
\=+b}mKV m  
    Print "found detector array at node " & detnode 53c0 E  
'7D,m H  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 N+LL@[  
 DVah  
    Print "found differential detector area at node " & srcnode W3Dc r@Dy  
n8uv#DsdK  
    GetTrimVolume detnode, trm SF}<{x_  
    detx = trm.xSemiApe O:TlIJwW  
    dety = trm.ySemiApe #?*WPq  
    area = 4 * detx * dety !_+8A/  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety S{FROC~1R  
    Print "sampling is " & nx & " by " & ny *?y+e  
F6o_b4l  
    'reset differential detector area dimensions to be consistent with sampling `6 /$M!4$  
    pixelx = 2 * detx / nx !:|TdYrmj  
    pixely = 2 * dety / ny TT50(_8  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False B;R.#^@/  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 W?0 lV5/  
j=*l$RG  
    'reset the source power t<T[h2Wd  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) U7!.,kR-  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" AS E91T~  
"jTKSgv+q5  
    'zero out irradiance array /&CmO>^e  
    For i = 0 To ny - 1 c1$ngH0  
        For j = 0 To nx - 1 ~/8M 3k/  
            irrad(i,j) = 0.0 $U$V?x uE  
        Next j VR+<v   
    Next i Z|_K6v/c  
eh4gQ^l  
    'main loop ,ldI2 ]  
    EnableTextPrinting( False ) !(n4|Wd  
q(zJ%Gv)  
    ypos =  dety + pixely / 2 %1.]c6U  
    For i = 0 To ny - 1 U~} U\_  
        xpos = -detx - pixelx / 2 ~XyW&@  
        ypos = ypos - pixely MZTx:EN!  
R)M_|ca  
        EnableTextPrinting( True ) )I^2k4Cg"  
        Print i Y4cYZS47  
        EnableTextPrinting( False ) f;&]:2.j  
!L;\cl  
 ] GHt"  
        For j = 0 To nx - 1 UOGuqV-  
r'dr9"-{  
            xpos = xpos + pixelx j4>a(  
qw7@(R'"  
            'shift source JCPUM *g8  
            LockOperationUpdates srcnode, True  *[r!  
            GetOperation srcnode, 1, op !@x+q)2  
            op.val1 = xpos -29gL_dk.  
            op.val2 = ypos oEx\j+}@n  
            SetOperation srcnode, 1, op :9R=]#uD  
            LockOperationUpdates srcnode, False :}h>by=  
]J* ,g,  
            'raytrace  6\u!E~zy  
            DeleteRays b{d4xU8'  
            CreateSource srcnode kaxvP v1  
            TraceExisting 'draw oT{@_U{*J  
E,wVe[0)f  
            'radiometry l" q1?kaVg  
            For k = 0 To GetEntityCount()-1 3#vinz  
                If IsSurface( k ) Then [97KBoSU  
                    temp = AuxDataGetData( k, "temperature" ) RrhT'':[  
                    emiss = AuxDataGetData( k, "emissivity" ) 28hHabd|  
                    If ( temp <> 0 And emiss <> 0 ) Then ari7iF ~j  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) 4EXB;[ ]  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ;>%~9j1C  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi =\,uy8HX  
                    End If g ^!C  
j}BHj.YuP  
                End If 65oWD-  
]Ni;w]KE  
            Next k &f>eQ S=(  
p1D[YeF4  
        Next j xrqv@/kJ  
IcrL   
    Next i &m {kHM  
    EnableTextPrinting( True ) V $|<  
' JdkUhq1V  
    'write out file :^'O}2NP  
    fullfilepath = CurDir() & "\" & fname T# lP!c  
    Open fullfilepath For Output As #1 FZ|CqD"#  
    Print #1, "GRID " & nx & " " & ny dl5=q\1=  
    Print #1, "1e+308" nx:KoB"ny  
    Print #1, pixelx & " " & pixely ckjrk  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 2oZ9laJO  
e8h,,:l3j  
    maxRow = nx - 1 YB)3X[R+0  
    maxCol = ny - 1 E RdL^T>  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) g7CXlT0Q6  
            row = "" BPqGJ7@  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) x1gx$P  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string #5&jt@NS  
        Next colNum                     ' end loop over columns -h-oMqgu(  
1|ZhPsD.}g  
            Print #1, row 3L _I[T$s  
1/ZR*f a  
    Next rowNum                         ' end loop over rows C#i UP|7hh  
    Close #1 w?mEuXc  
joa5|t!D9  
    Print "File written: " & fullfilepath dQgk.k  
    Print "All done!!" \OC6M` /  
End Sub Te{ *6-gO3  
pi@Xkw  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: y^Vw`-e  
zTo8OPr  
Aaw(Ed  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 J^m<*  
  
q (+ZwaV@  
"R9Yb,tIN  
打开后,选择二维平面图: h?UVDzI!O  
~%#mK:+  
QQ:2987619807
,WWj-X|+=  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计