纠缠本身不会纠缠光
据国外媒体报道,在使纠缠光通过一条2米长的多模光纤之后,娜塔莉亚·赫瑞拉-巴伦西亚和她的同事们成功地将该纠缠光恢复到原状。在梅于尔·马利克的带领下,爱丁堡赫瑞瓦特大学的研究团队利用纠缠本身解决了这个难题。参与这项研究的还有格拉斯哥大学的一位研究人员。最近发表于《自然物理学》上的论文详细描述了该研究。 7@JjjV %z30=?VL
[attachment=103380] j]AekI4I 混沌的光斑:光被诸多如多模光纤之类的复杂介质扰乱后而产生的图案 iM8sX
B 通过无序(或“复杂”)介质(如大气雾气或多模光纤)的光会以已知方式散射。结果就是,光携带的信息虽然能够得以保留,但会失真。因此,需要额外的步骤来获取这些信息。当传输的是纠缠光时,这就变得十分棘手,因为介质会扰乱量子相关性。状态被“加扰”,要找回原来的纠缠态就必须得先“解扰”。 6Ux[,]GK >xZ5ac
I 纠缠解救纠缠 # ?_#!T| 3] N q@t 为理解复杂介质,物理学家使用传输矩阵(即一个二维复数阵列),来预测任何物质通过介质后的结果。传输矩阵理论,再加上技术中的一些关键发展,直至最近才使得经典光可通过复杂介质传播。在这项研究中,爱丁堡的研究团队将传输矩阵的概念,拓展应用到了量子光学领域。 I<sfN'FpT 87pnSj/X" 一种被称为“信道状态对偶性”的属性让研究人员得以仅使用一个量子纠缠态(一对属性相互关联的光子),作为探针来提取介质的完整传输矩阵。这与构建矩阵的经典方式不同。经典方式须让多个光探针穿过介质,来获得完整的矩阵。 )5U!>,fT \]t]#D>0 当他们知道介质如何加扰信息后,赫瑞拉-巴伦西亚和她的同事们就可以使用相同的矩阵来消除介质的影响。在这里,纠缠又一次使出了巧妙花招:和解扰通过光纤的光不同,研究人员可以加扰其“纠缠孪子”,从而无需穿过介质就可以得到相同的结果。他们使用名叫“空间光调制器”(SLM)的设备对光进行加扰。该设备可以影响光场分布。 -=5EbNPwG 2H6:np|O 处理更高维度 <&`:& |