| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* }/vW"&h- Demo for program"RP Fiber Power": thulium-doped fiber laser, \/Mx|7< pumped at 790 nm. Across-relaxation process allows for efficient u7[}pf$} population of theupper laser level. W~ET/h *) !(* *)注释语句 P7.bn 87 s *lS diagram shown: 1,2,3,4,5 !指定输出图表 {k)gDJU ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 G7nhUg ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 /!?LBtqy ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 'V]&X.=zC ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 O9sEaVX ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ^'V :T Y PVo7Sy!'H include"Units.inc" !读取“Units.inc”文件中内容 7pyzPc#_ _?I{>:!| include"Tm-silicate.inc" !读取光谱数据 HYfGu1j?X XnQR(r)pR2 ; Basic fiberparameters: !定义基本光纤参数 4a-JC" L_f := 4 { fiberlength } !光纤长度 r0XEB,} No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 P0n1I7| r_co := 6 um { coreradius } !纤芯半径 yWi-ic
[n N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 }4A] x`3 |vI`u[P ; Parameters of thechannels: !定义光信道 <e2l@@#oy l_p := 790 nm {pump wavelength } !泵浦光波长790nm . 5(YL8d dir_p := forward {pump direction (forward or backward) } !前向泵浦 <&3P\aM> P_pump_in := 5 {input pump power } !输入泵浦功率5W @Vre)OrN# w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um &
o5x I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 *q=T1JY loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 $4nAb^/ MuoE~K2 l_s := 1940 nm {signal wavelength } !信号光波长1940nm K~TwyB-h w_s := 7 um !信号光的半径 .AfZ5s]/F I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Y![Q1D!
loss_s := 0 !信号光寄生损耗为0 nkW})LyB\ ?=? _32O R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 b@Ej$t& q+?<cjVg ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 kxMvOB$ calc e4S@ J/D begin gP2zDI global allow all; !声明全局变量 V}jGxt0 set_fiber(L_f, No_z_steps, ''); !光纤参数 >JpBX+]5m add_ring(r_co, N_Tm); =;Gq:mHi def_ionsystem(); !光谱数据函数 JrzPDb`m pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 lsz3'!%Y) signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 [G<ga80 signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 *~#I5s\s! set_R(signal_fw, 1, R_oc); !设置反射率函数 p='j/= finish_fiber(); |Y7SP]/`gB end; YX$(Sc3.6 /ZvP.VW& ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 6TP
/0o) show "Outputpowers:" !输出字符串Output powers: `YNzcn0x show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) 8y
LcTA$T show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 2bt>t[0ad eZ'8JU] n7[nl43 ; ------------- +A}t_u3< diagram 1: !输出图表1
^^a6 (b zp}7p~#k^ "Powers vs.Position" !图表名称 /Hr|u r2-iISxg+ x: 0, L_f !命令x: 定义x坐标范围 y;b#qUd5a "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 \|PiQy*_? y: 0, 15 !命令y: 定义y坐标范围 .?Eb{W)^br y2: 0, 100 !命令y2: 定义第二个y坐标范围 JW>k8QjyN frame !frame改变坐标系的设置 PmuG(qg legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) "qmSwdM hx !平行于x方向网格 F2N"aQ& hy !平行于y方向网格 K#R]of~/ \e86'& f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 g}_2T\$k color = red, !图形颜色 %' DOFiU width = 3, !width线条宽度 zluq2r "pump" !相应的文本字符串标签 pDS[ecx f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ^/n1hg color = blue, +XWTu! width = 3, RY;V@\pRY+ "fw signal" pwo$qs(p f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 7KgaXi3r color = blue, #2]*qgA4 style = fdashed, 9PB%v.t5y width = 3, z^9oaoTl "bw signal" P^te }?2X
q f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 @b(@`yz.a yscale = 2, !第二个y轴的缩放比例 OY1bFIE color = magenta, kFjv'[Y1N width = 3, DuC#tDP style = fdashed, (wu'FFJp# "n2 (%, right scale)" Bz'.7"
":0 jf)cDj2 f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 EV6R[2kl yscale = 2, Zj[m color = red, vjX,7NY? width = 3, W3~u J( style = fdashed, `)cI^! "n3 (%, right scale)" >vD}gGBe jm%P-C
@ dOv\] ; ------------- ^p(aZj3k diagram 2: !输出图表2 4A+g-{d _#\Nw0{ "Variation ofthe Pump Power" +E.
D: T;DKDga x: 0, 10 8s22VL "pump inputpower (W)", @x {aA6b y: 0, 10 qG,h
1 y2: 0, 100 YC;@ ^ frame wfO-bzdw hx 0WzoI2Q hy c)
Eu(j\# legpos 150, 150 Foq3==*p H,
3Bf f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 W?SAa7+ step = 5, Sm[#L`eqW color = blue, i;pg9Vw width = 3, cAN8'S(s1 "signal output power (W, leftscale)", !相应的文本字符串标签 kKRu]0J~[ finish set_P_in(pump, P_pump_in) Q1Qw45$ +o3n%( ^~ f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 N5l`Rq^K yscale = 2, _S[@?]=`b step = 5, #&uajo color = magenta, 8oUR/___ width = 3, Qxy~%;X "population of level 2 (%, rightscale)", 5M> p%/ finish set_P_in(pump, P_pump_in) 7h(
8~qpOQX^V f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 Q(x=;wf5r yscale = 2, ?lqqu#;8 step = 5, iuqJPW^} color = red, Ib2&L width = 3, sAO/yG "population of level 3 (%, rightscale)", ph)=:*A6& finish set_P_in(pump, P_pump_in) %iPIgma xP9R
d/xa| }x{1{Bw>Y ; ------------- AvIheR diagram 3: !输出图表3 ve a$G~[%6 oT:wGBW "Variation ofthe Fiber Length" _ZWU~38PM kyJKai x: 0.1, 5 uFuH/(}K[ "fiber length(m)", @x `{yD\qDyX y: 0, 10 [vBP,_Tjx "opticalpowers (W)", @y 1A(f_ 0,.Q frame dqU)(T=C hx jA@
uV,w hy 9l[C&0w#\ w4^$@GtN f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 \/wk!mWV@ step = 20, pxbuZ9w2Q color = blue, ,o
`tRh< width = 3, Q[!?SSX% "signal output" GAR6nJCz e=tM=i" ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 {)Zz4 step = 20, color = red, width = 3,"residual pump" /K,@{__JP {poTA+i ! set_L(L_f) {restore the original fiber length } M.$=tuUL )>rYp
) tnXW7ej ^ ; ------------- ]'#^ ~. diagram 4: !输出图表4 :W'.SRD Q."rE"}< "TransverseProfiles" grd
fR`3 ^sJp!hi4=) I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) pL.~z A~a7/N6s; x: 0, 1.4 * r_co /um `Z`o[]% "radialposition (µm)", @x &4p~i Z y: 0, 1.2 * I_max *cm^2 ZI!;~q "intensity (W/ cm²)", @y H[/^&1P y2: 0, 1.3 * N_Tm gi/W3q3c6 frame lb)i0`AN+ hx OH5#.${O hy J
B
!Q {*Qx^e`h$. f: N_dop(1, x * um,0), !掺杂浓度的径向分布 0te[i*G yscale = 2, g+k
yvI7o color = gray,
A^pRHbRq width = 3, aFy'6c}
maxconnect = 1, ];Bk|xJ/> "N_dop (right scale)" V#-8[G6Ra e({-.ra f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 KlRIJOS color = red, ,HW[l.v maxconnect = 1, !限制图形区域高度,修正为100%的高度 qP[jtRIN width = 3, rge/qUr/^ "pump" !2g*=oY cfW;gFf f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 NFb<fD[C color = blue, }xy[&-dh maxconnect = 1, ohB@ij C! width = 3, y)+lU "signal" +@yTcz (yhnv Z mp>Ne6\Tu ; ------------- fUS1` diagram 5: !输出图表5 lyyRyFfQ agPTY{; "TransitionCross-sections" V5HK6- T #?RT$L>n I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) _{YUWV50} %8g1h)F"S x: 1450, 2050 6^"Spf] "wavelength(nm)", @x IkJ-*vI6 y: 0, 0.6 3 etW4 "cross-sections(1e-24 m²)", @y 8{4jlL;"`? frame rE$=~s hx J`d;I#R%c hy Hn!13+fS ,LVZ f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 vAjvW&'g color = red, pt=H?{06 width = 3, aLt2fB1 ) "absorption" >K-S&Y f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 cCbZ* color = blue, .h[yw$z6 width = 3, eNX!EN(^ "emission" /V$U%0 gis;)al
|
|