| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* Y]`.InG@ Demo for program"RP Fiber Power": thulium-doped fiber laser, 9X<OJT;3J pumped at 790 nm. Across-relaxation process allows for efficient Ma-\^S= population of theupper laser level. a)-FGP^ *) !(* *)注释语句 5-u=o)> L}{`h diagram shown: 1,2,3,4,5 !指定输出图表 OU DcY@x~ ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 7XrfuG*L$ ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 "R
#k~R ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 JMBK{J K> ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 BG2)v.CU ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 jMBiaX`F }]P4-KqI include"Units.inc" !读取“Units.inc”文件中内容 v*hRz; +m\|e{G include"Tm-silicate.inc" !读取光谱数据 |tMn={ U$&hZ_A ; Basic fiberparameters: !定义基本光纤参数 XhU@W}} L_f := 4 { fiberlength } !光纤长度 G1T^a>tj4 No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 I{0k r_co := 6 um { coreradius } !纤芯半径 "L"150Ih N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 Y o0FUj <S"~vKD' ; Parameters of thechannels: !定义光信道 (n(
fI f l_p := 790 nm {pump wavelength } !泵浦光波长790nm 1,y&d}GW dir_p := forward {pump direction (forward or backward) } !前向泵浦 0O!cN_l| P_pump_in := 5 {input pump power } !输入泵浦功率5W ,0$)yZ3*3, w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um kW=z+ I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 T0HuqJty loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 m,LG=s |V[9}E:
h l_s := 1940 nm {signal wavelength } !信号光波长1940nm %6j)=IOts w_s := 7 um !信号光的半径 JEn3`B!* I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 &FdWFt=X loss_s := 0 !信号光寄生损耗为0 5@osnf? Y[ reD R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 ZBD;a;wx RH)EB<PV ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Zzua17
calc pI`?(5iK6| begin &UHPX?x global allow all; !声明全局变量 }|)R
set_fiber(L_f, No_z_steps, ''); !光纤参数 -OZ 5vH0 add_ring(r_co, N_Tm); UO`;&e-DB def_ionsystem(); !光谱数据函数 wVs.Vcwr
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 _hf4A8ak signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 qL5I#?OMkU signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 UK#&lim set_R(signal_fw, 1, R_oc); !设置反射率函数 Upl6:xYrG finish_fiber(); td2/9|Q end; <c[U#KrvJ v'2[[u{7* ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 CLD-mx|? show "Outputpowers:" !输出字符串Output powers: 4wzlJ19E( show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) RNVbcd show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) /{2*WI; ge3sU5iZ 8cx=#Me ; ------------- 5@Bu99` diagram 1: !输出图表1 Ko>&)%))$X 0Y=![tO8 "Powers vs.Position" !图表名称 VvbFp =tTqN+4 x: 0, L_f !命令x: 定义x坐标范围 |iFVh$N "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 tL
SN`6[: y: 0, 15 !命令y: 定义y坐标范围 \/7i-B]G7 y2: 0, 100 !命令y2: 定义第二个y坐标范围 3CjL\pIC frame !frame改变坐标系的设置 8{U-m0v legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) BDY}*cX hx !平行于x方向网格 k`HP"H hy !平行于y方向网格 aMARZ)V stl 1QO(h f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 " }gVAAvc7 color = red, !图形颜色 .V9e=yW!* width = 3, !width线条宽度 &}mw'_ I "pump" !相应的文本字符串标签 3
vP(SIF f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 r5&I?
0 color = blue, Sgb*tE)T width = 3, nq}Q "fw signal" SxgYjIa- f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 jg
2qGC color = blue, 7DW]JK l style = fdashed, XALI<ZY width = 3, NY$uq+Z> "bw signal" M_0zC1 'J*<iA*W f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 $DFv30 f yscale = 2, !第二个y轴的缩放比例 R`Aj|C
z color = magenta, pZZgIw}aS width = 3, 4W4kwU6D style = fdashed, fHrt+_Zn| "n2 (%, right scale)" D;GD<zC] a^qNJ?R! f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 sH,kW|D yscale = 2, 2s*#u<I color = red, 1PaUI#X"2F width = 3, ?71+f{s style = fdashed, &WXY 'A= "n3 (%, right scale)" Dq\ Jz~ T[k4lM U;_[b"SW% ; ------------- wCMQPt)VS diagram 2: !输出图表2 `i,_aFB| Hi!Jj "Variation ofthe Pump Power" K)7zKEp`cj P47V:E% x: 0, 10 Bsf7mcXz7z "pump inputpower (W)", @x {P9J8@D y: 0, 10 >t,M y2: 0, 100 s6*ilq1 frame os3 8u!3- hx ]e:/" hy %Kh4m7 legpos 150, 150 psh^MX)Q pD"vRbYF f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 tary6K9K+ step = 5, i
LBvGZ<9 color = blue, FQ%c~N width = 3, -F&U "signal output power (W, leftscale)", !相应的文本字符串标签 r'LVa6e"N finish set_P_in(pump, P_pump_in) rj]F87" F~#zxwd f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 uhH^>z
KA yscale = 2, ! hd</_# step = 5, a/Q$cOs color = magenta, s>_V
width = 3, ^Jp&H\gI. "population of level 2 (%, rightscale)", V!%jf:k finish set_P_in(pump, P_pump_in) &K_)#v`| 0Q,g7K<d f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 v dbO( yscale = 2, m ~#! step = 5, W+wA_s2&D color = red, ',3HlOJ: width = 3, ~fl@ 2 "population of level 3 (%, rightscale)", ^VW
PdH/Fe finish set_P_in(pump, P_pump_in) rVvR!"//yH hDP/JN8y bUV >^d ; ------------- 0<"k8
k@J diagram 3: !输出图表3 %R#L Mj-vgn&/ "Variation ofthe Fiber Length" 5wB => 8bK|:B#6, x: 0.1, 5 -\ZcOXpMx= "fiber length(m)", @x +;BAV y: 0, 10 rt3qdk5U "opticalpowers (W)", @y .LVQx frame wHZW ` hx 2n><RZ/9 hy eg<bi@C1| kh~'Cn "O f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 84HUBud76Y step = 20, @J{m@ji{ color = blue, i"zuil width = 3, \y6OUM2y "signal output" eAUcv`[#p 5Dp#u ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 !Bz0^1,L step = 20, color = red, width = 3,"residual pump" rWys'uc ^
PI 5L ! set_L(L_f) {restore the original fiber length } ELrsx{p: sAo&
uZ ERwHLA ; ------------- i
8!zu!-0 diagram 4: !输出图表4 (npj_s!.C) j.a`N2]WE "TransverseProfiles" mOo`ZcTU +[\eFj|= I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) #QCphhG iu**`WjI\ x: 0, 1.4 * r_co /um _0+0#! J! "radialposition (µm)", @x 0![
+Q4" y: 0, 1.2 * I_max *cm^2 T|&[7%F3" "intensity (W/ cm²)", @y f)]%.> y2: 0, 1.3 * N_Tm ,F&g5' frame _X~87 hx U$oduY# hy yx V:!gl FZreP.2)! f: N_dop(1, x * um,0), !掺杂浓度的径向分布 [ dtbkQt,c yscale = 2, |6Gm:jV color = gray, e \O/H< width = 3, [m^+,%m5] maxconnect = 1, Vcd.mE(t% "N_dop (right scale)" Pxn,Qw* sLE#q+W f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 'B+ ' (f color = red, q&C""!h^ maxconnect = 1, !限制图形区域高度,修正为100%的高度 Zmbfq8K width = 3, 4|A>b})H "pump" </uOe.l>Q t|t#vcB f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 \OlmF<~ color = blue, :JlP[I
maxconnect = 1, c1X1+b, width = 3, JNcYJ[wqv "signal" Q)"A-"y <dyewy*.L tabT0 ; ------------- 8Sz})UZ diagram 5: !输出图表5 fnx-s{c? o1nURJ! "TransitionCross-sections" m%?V7-9!k U]a*uF~h I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 1CLL%\V boG_f@dv( x: 1450, 2050 NnVnUgx "wavelength(nm)", @x f6$b
s+oP y: 0, 0.6 <w3!!+oK" "cross-sections(1e-24 m²)", @y
Ov<NsNX] frame D7_*k%;@ hx Z|}G6]h hy `~eUee3b.~ k4 F"'N f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 !?Wp+e6 color = red, KZPEG!-5 width = 3, X$/2[o#g "absorption" Haqm^Ky$ f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 [9:9Ql_h color = blue, hMtf.3S7c width = 3, S*yjee<@ "emission" ;;&}5jcV T0]MuIJ).
|
|