| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* !idVF!xG Demo for program"RP Fiber Power": thulium-doped fiber laser, ohx$;j pumped at 790 nm. Across-relaxation process allows for efficient H<fi,"X^ population of theupper laser level. 2bw), W *) !(* *)注释语句 .-T P1C Zazs". diagram shown: 1,2,3,4,5 !指定输出图表 Z:AB(c ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 R\7r!38 ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 x"C7NW[$ ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 B[7,Hy,R ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 j5:4/vD ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Z&iW1 Ut'T!RD include"Units.inc" !读取“Units.inc”文件中内容 { ?jXPf yl@Nyu include"Tm-silicate.inc" !读取光谱数据 LprGsqr: (n>Gi;u(R ; Basic fiberparameters: !定义基本光纤参数 $)KODI>| L_f := 4 { fiberlength } !光纤长度 N3\RXXY No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 6S{F4v2/0 r_co := 6 um { coreradius } !纤芯半径 wL:7G N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 oGI'a:iff d(^HO~p ; Parameters of thechannels: !定义光信道 fDW:|%{Y, l_p := 790 nm {pump wavelength } !泵浦光波长790nm >\:GFD{z dir_p := forward {pump direction (forward or backward) } !前向泵浦 b3[!1i P_pump_in := 5 {input pump power } !输入泵浦功率5W :5j+^/ w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um D bi ^% I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 v,QvCozOz loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 "HqmS j-**\.4a~ l_s := 1940 nm {signal wavelength } !信号光波长1940nm 7 qn=W w_s := 7 um !信号光的半径 w[3a^ I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 03zt^< loss_s := 0 !信号光寄生损耗为0 ??.aLeF& |X XO0 R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 rloxM~7!,) W,yLGz \ ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Hq<4G:# calc y!x[N!a begin
jwLZC global allow all; !声明全局变量 a;IOL set_fiber(L_f, No_z_steps, ''); !光纤参数 q&9]4j add_ring(r_co, N_Tm); lo6upirZX def_ionsystem(); !光谱数据函数 I9xu3izAmR pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 >iK LC signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 `~VL&o1> signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 3[_WTwX0 set_R(signal_fw, 1, R_oc); !设置反射率函数 eE
.wnn finish_fiber(); 3$P end; &XI9%h9| :XAyMK7 ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 o(?9vU show "Outputpowers:" !输出字符串Output powers:
T;{}bc&I show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) gq*W 0S show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) V6c8o2G;+ :a2[d1 w;Fy/XQ ; ------------- toD!RE diagram 1: !输出图表1 [Rq|;p ONpvx5'# "Powers vs.Position" !图表名称 @Z#h?: ~rjK*_3/ x: 0, L_f !命令x: 定义x坐标范围 gn.)_ "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ZRw^<
+ y: 0, 15 !命令y: 定义y坐标范围 WEG!;XZ y2: 0, 100 !命令y2: 定义第二个y坐标范围 GoX<d{ frame !frame改变坐标系的设置 8tjWVo legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) _D{FQRU<YD hx !平行于x方向网格 )Kl@dj hy !平行于y方向网格 v)|a}5={ reYIF* f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 @C[p? ak color = red, !图形颜色 daSx^/$R width = 3, !width线条宽度 Wql=PqF "pump" !相应的文本字符串标签 bcuUej: f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Z]2z*XD color = blue, Yg&/^ width = 3, ZvC?F=tH "fw signal" JS\]|~Gd f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 jJvd!,=) color = blue, @QnKaZ8jW style = fdashed, 99'c\[fd' width = 3, Ywt9^M|z; "bw signal" doX`NbA ,+v(?5[6 f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 KkzG#'I1 yscale = 2, !第二个y轴的缩放比例 \0;w7tdo color = magenta, z,dFDl$ width = 3, "9Q_lVI|Q style = fdashed, %M8Q6 "n2 (%, right scale)" OaoHN& " ]0(ZlpT f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 S_??G:i yscale = 2, M1 o@v 0 color = red, @_c&lToj_ width = 3, mxJe\[I style = fdashed, ;F%EW`7 "n3 (%, right scale)" xi,fm h5aPRPU g
n^qwE ; ------------- i~<.@&vt diagram 2: !输出图表2 V5
9Vf[i| wXdt\@Qr "Variation ofthe Pump Power" \7$"i5 xa?auv! x: 0, 10 9MQwc "pump inputpower (W)", @x 4pcIH5)z y: 0, 10 (&V*~OR y2: 0, 100 Lew
2Z frame UIIsgNca hx LKZ<\%
X hy 1Zo3K<*J legpos 150, 150 C\{hN n1R{[\ >1 f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 R Eo{E step = 5, 37tJ6R6[ color = blue, .]<iRf[\[ width = 3, mL;oR4{ "signal output power (W, leftscale)", !相应的文本字符串标签 j#p3<V S4 finish set_P_in(pump, P_pump_in) s{Y-Vdx :Us+u-~ f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 x @9rc,by yscale = 2, Ts=TaRwWf step = 5, hHOx ] color = magenta, F6+4Yy+ width = 3, zY4y]k8D* "population of level 2 (%, rightscale)", &wkbr2P finish set_P_in(pump, P_pump_in) ,^v_gc W ,]Ua] f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 K}whqe]j yscale = 2, &t6SI' step = 5, ,K&L/* color = red, v.,D,6qZ width = 3, ~Hx>yn94e "population of level 3 (%, rightscale)", nx{X^oc8e finish set_P_in(pump, P_pump_in) Z)u_2e i~4$V 8KdcU[w] ; ------------- $c+:dO|Fb diagram 3: !输出图表3 \K
Kt&bKL BGu<1$G "Variation ofthe Fiber Length" "%rU1/@# THCvcU?X x: 0.1, 5 Gch3|e "fiber length(m)", @x
3
}#rg y: 0, 10 uCWBM "opticalpowers (W)", @y /}d)g4\j frame _.W;hf` hx %;GRR (K hy 2ryg3%+O jnFN{(VH f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 `yRt?UQRS step = 20, mJVru0 color = blue, ZJjm r,1 width = 3, s|:j~>53 "signal output" eFQz G+/ wu}Zu ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 AC?a:{./ step = 20, color = red, width = 3,"residual pump"
}[;r-5} Qb86* ! set_L(L_f) {restore the original fiber length } oPF
n`8dQ 2kFP;7FO --7@rxv ; ------------- ;s$
P?(' diagram 4: !输出图表4 ^|cax|> 9N<TJp,q "TransverseProfiles" I$fm"N kNrd=s,-]D I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) `;s#/ `c|/ {'+.?g x: 0, 1.4 * r_co /um #<-%% "radialposition (µm)", @x reNUIDt/c y: 0, 1.2 * I_max *cm^2 FaG&U "intensity (W/ cm²)", @y *OY
Nx4 k y2: 0, 1.3 * N_Tm xl(R|D)) frame z{U^j:A hx ;![rwra hy !~}@Eoii4 ,e*WJh8k[ f: N_dop(1, x * um,0), !掺杂浓度的径向分布 msZ3%L yscale = 2, i6:O9Km color = gray, MeO2 cy!5q width = 3, WG5)-;>q| maxconnect = 1, 9%?a\#C "N_dop (right scale)" )gxZ &n6 m*>gG{3; f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 Qf@ha color = red, W;P8'_2Y maxconnect = 1, !限制图形区域高度,修正为100%的高度 '=ydU+X width = 3, x0dBg~I "pump" 6J3<k(#: $69d9g8-(! f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 _6\"U5*Y color = blue, "Q1oSpF maxconnect = 1, /+?eSgM/ width = 3, R9~c: A4G "signal" +!-U+W (U|WP%IM' AZbFj-^4 ; ------------- 1Zgv+. diagram 5: !输出图表5 ;fm>
\f aydf# [F "TransitionCross-sections" :io[9B [ ?;
tz I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ,+'VQa"] /}3I:aJwb x: 1450, 2050 FND+Ok& "wavelength(nm)", @x f2i9UZ$=e! y: 0, 0.6 Vx=tP.BO] "cross-sections(1e-24 m²)", @y 6oq/\D$6~ frame ##yH*{/& hx 3 E!F8GZ hy ,egbU(:l n wO5<b; f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 b'(Hwc\ t color = red, 2;ac&j1 width = 3, `_<O_ "absorption" 8}|!p> f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ?l](RI
color = blue, oSkvTK$&i width = 3, 9_J'P2e "emission" (iu IeJ^Z ZE6W"pbjU
|
|