| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* aQzDOeTi Demo for program"RP Fiber Power": thulium-doped fiber laser, BN??3F8C pumped at 790 nm. Across-relaxation process allows for efficient 8$)xxV_zp population of theupper laser level. [t#xX59 *) !(* *)注释语句 -\=s+n_ZP? }7)iLfi diagram shown: 1,2,3,4,5 !指定输出图表 %l{0z< ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 BMaw]D ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Egy#_ RT{ ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 JmlMfMpXMs ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 r"HQ>Wn ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 NVyel*QE eO7 )LM4 include"Units.inc" !读取“Units.inc”文件中内容 7dxTyn= O7D aVlln include"Tm-silicate.inc" !读取光谱数据 FFC"rG JK.<(=y\ ; Basic fiberparameters: !定义基本光纤参数 :Y4m3| L_f := 4 { fiberlength } !光纤长度 i`k{}!F No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Tfsx&k\ r_co := 6 um { coreradius } !纤芯半径 D1G9^7:^E N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 (rTn6[* s}w?Dvo \ ; Parameters of thechannels: !定义光信道 z[vHMJ
0 l_p := 790 nm {pump wavelength } !泵浦光波长790nm M/?*?B dir_p := forward {pump direction (forward or backward) } !前向泵浦 |azdFf6A:[ P_pump_in := 5 {input pump power } !输入泵浦功率5W Twq/Y07M w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um Xg<R+o I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 nC6 ;:uM loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 xlKg0&D ~;)H |R5kV l_s := 1940 nm {signal wavelength } !信号光波长1940nm fX:=_c w_s := 7 um !信号光的半径 qnO>F^itF I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 o57r ,`N loss_s := 0 !信号光寄生损耗为0 )\O;Rt( 58]C``u@Y R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 1iLrKA k[ZkVwx ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 vyS8yJUY calc Xzn}gH] begin j'IZ etT global allow all; !声明全局变量 !_i;6UVG set_fiber(L_f, No_z_steps, ''); !光纤参数 ja2BK\"1: add_ring(r_co, N_Tm); Ea<kc[Q def_ionsystem(); !光谱数据函数 (JX 9c pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 cPp<+ ts signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 $R&K-;D/8 signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 U*Sjb%
Qb set_R(signal_fw, 1, R_oc); !设置反射率函数 %96l(JlJ)B finish_fiber(); x?6
\C-i end; ]@P!Q&V # +{b3A@f|F ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 DnP
"7}v show "Outputpowers:" !输出字符串Output powers: ^l8&y;-T show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) n=iL6Yu( show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) KAI/*G\z \2#j1/d4 YQ$Wif:@(n ; ------------- wAA9M4 diagram 1: !输出图表1 9er0Ww.d Ljs4^vy<J "Powers vs.Position" !图表名称 ;N?raz2mEi '_fj:dy x: 0, L_f !命令x: 定义x坐标范围 w l#jSj%pd "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 !;%+1j?d y: 0, 15 !命令y: 定义y坐标范围 k [eWhdSw y2: 0, 100 !命令y2: 定义第二个y坐标范围 ]_js-+w6 frame !frame改变坐标系的设置 *|*6q/ legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) Nc_Qd4<[@G hx !平行于x方向网格 h8
!(WO! hy !平行于y方向网格
iF^
2t}^8 f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 \R|qXB $ color = red, !图形颜色 d`sIgll&n width = 3, !width线条宽度 d>gN3}tT "pump" !相应的文本字符串标签 c`s ]ciC f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 f+V^q4 color = blue, "QLp%B,A width = 3, .T*89cEu "fw signal"
`)n/J+g f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 79d<,q;uR color = blue, ZOzwO6(_ style = fdashed, J`'wprSBb width = 3, OhiY < "bw signal" /I~(*X XtftG7r9S f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 La8 D%N yscale = 2, !第二个y轴的缩放比例 G_v^IM#B= color = magenta, \F8:6- width = 3, f\X7h6k8{ style = fdashed, Jq8:33s "n2 (%, right scale)" 2*pNIc r}M2t$nv f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 C+vk9:" yscale = 2, B#, TdP]/ color = red, *T-v^ndJh width = 3, PM8*/4Cu.5 style = fdashed, |0$7{nQ "n3 (%, right scale)" 9D{p^hd fD~f_Wr u,`cmyZ ; ------------- I#U) diagram 2: !输出图表2 !)HB+yr Q7pjF`wu "Variation ofthe Pump Power" HSlAm&Y\ 9/dI 6 P7 x: 0, 10 XLj|y#h "pump inputpower (W)", @x PwS7!dzH- y: 0, 10 rOTxD/ y2: 0, 100 3Q2z+`x' frame (dHil#l hx I.{%e;Reg hy rtT*2k* legpos 150, 150 &H:2TL! v
O@7o f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 UhbGU G step = 5, ^-g-]?q color = blue, ,niQs+'< width = 3, m:]60koz]o "signal output power (W, leftscale)", !相应的文本字符串标签 @%
.;}tC finish set_P_in(pump, P_pump_in) J?oEzf;M ';KZ.D f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 _.+2sm yscale = 2, ~pPj step = 5, pe>[Ts`2F color = magenta, 3)_(t.$D width = 3, fT0+inRG "population of level 2 (%, rightscale)", 0xzS9 finish set_P_in(pump, P_pump_in) ~vw$Rnotz L%31>)8 f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 SxW.dT8{ yscale = 2, E=RX^ 3+} step = 5, n|) JhXQ color = red, E#(dri*#t
width = 3, VdF<#(X+ "population of level 3 (%, rightscale)", &e;GoJ finish set_P_in(pump, P_pump_in) UY/qI%#L#, g$^I/OK? fea4Ul{ib ; ------------- +J
<<me4 diagram 3: !输出图表3
(x1 #_~ uTRFeO> "Variation ofthe Fiber Length" 3?uah'D5 ^-dhz88wV x: 0.1, 5 df7 xpV "fiber length(m)", @x .aD=d\ y: 0, 10 u$nYddak "opticalpowers (W)", @y o>@9[F,h+ frame #KwK``XC4 hx DUWSY?^c hy r9whW;"q -b'a-? f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 FSA"U9 w< step = 20, Bw4 _hlm color = blue, ebIRXUF}> width = 3, <iNxtD0 "signal output" C#:L.qK p[:E$#W~; ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ~s-"u
*> step = 20, color = red, width = 3,"residual pump" +dJLT}I8M k_](u91 ! set_L(L_f) {restore the original fiber length } fe+2U|y =O'>H](Q #Y<(7 ; ------------- dobqYd4` diagram 4: !输出图表4 k?qd
-_sC VTs
,Ln!,U "TransverseProfiles" OuwEO >;Vy{bL8 I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) W'f)W4D$6 X$9
"dL x: 0, 1.4 * r_co /um &*;E wfgZ "radialposition (µm)", @x !R3ZyZcX y: 0, 1.2 * I_max *cm^2 ">!< | |