| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* A 5\"e^> Demo for program"RP Fiber Power": thulium-doped fiber laser, \}_7^)S; pumped at 790 nm. Across-relaxation process allows for efficient fTnyCaB population of theupper laser level. sZ(Q4)r
*) !(* *)注释语句 6(RqR E9NGdp&-Ah diagram shown: 1,2,3,4,5 !指定输出图表 Ymh2qGcj]8 ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 % w/1Uo24 ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 _O'rZ5}& ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 `[R:L.H1 ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 E?W!.hbA ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 oI"Fpo w+ )GM include"Units.inc" !读取“Units.inc”文件中内容 zK]%qv] ;{#M include"Tm-silicate.inc" !读取光谱数据 D"><S<C\C U8 @*I>vA ; Basic fiberparameters: !定义基本光纤参数 XT;IEZQZ L_f := 4 { fiberlength } !光纤长度 dXy"yQ>{ No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 BB}iBf I' r_co := 6 um { coreradius } !纤芯半径 `E%d$ N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 o ML
K!]a t@mw f3, ; Parameters of thechannels: !定义光信道 <UHf7:0V l_p := 790 nm {pump wavelength } !泵浦光波长790nm MkIO0&0O dir_p := forward {pump direction (forward or backward) } !前向泵浦 Kwmo)|7uPU P_pump_in := 5 {input pump power } !输入泵浦功率5W H< 3b+Sg w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um L
~'N6 I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 - cC(d$y loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 [ Sa
C q>h+Ke l_s := 1940 nm {signal wavelength } !信号光波长1940nm X|0`$f w_s := 7 um !信号光的半径 GoGgw]h>x I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 yru}f;1 loss_s := 0 !信号光寄生损耗为0 E.*OA y }E]&13>r R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 \d8=*Zpz7 IOsDVIXL\ ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 g0U\AN calc I>\?t4t begin Ho*RLVI0U global allow all; !声明全局变量 >Qu^{o set_fiber(L_f, No_z_steps, ''); !光纤参数 /-9+( add_ring(r_co, N_Tm); `RLrT34 def_ionsystem(); !光谱数据函数 [_B&7#3>7 pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 >.sN?5}y signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 omU)hFvyS signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 X Ow^"=Oa[ set_R(signal_fw, 1, R_oc); !设置反射率函数 im%3*bv- finish_fiber(); 4E94W,1%,Y end; n ]g,)m W-B[_ ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 X64I~* show "Outputpowers:" !输出字符串Output powers: n Fn`>kQ show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) gDBQ\vM8 show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) #GJh:#tt^ 69w"$Vk +opN\`
; ------------- `^Sq>R!; diagram 1: !输出图表1 qf {B jiD8|%}v "Powers vs.Position" !图表名称 ?Gu>!7 #.xTAvD x: 0, L_f !命令x: 定义x坐标范围 CzbNG^+ "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 C\h<02 y: 0, 15 !命令y: 定义y坐标范围 j ZafwBi y2: 0, 100 !命令y2: 定义第二个y坐标范围 `h]f( frame !frame改变坐标系的设置 1Ac1CsK* legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) a-hGpYJJG hx !平行于x方向网格 I8:&Btf hy !平行于y方向网格 CplRnKra |ZzBCL8q f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 2$UR"P color = red, !图形颜色 +5\\wGo< width = 3, !width线条宽度 W.<<azi "pump" !相应的文本字符串标签 eF\C?4 f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 fL:Fn"Nv color = blue, tfQq3 # width = 3, ?5gpk1 "fw signal" _L.yt5_ f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 U$Z}<8 color = blue, Xqw7lj;K style = fdashed, xo+z[OIlF width = 3, K>6p5*& "bw signal" s]>%_(5 vRs5-T f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 P
ie!Su` yscale = 2, !第二个y轴的缩放比例 (o\~2e: color = magenta, K>eG5tt width = 3, &9{BuBO[ style = fdashed, r/ f;\w7 "n2 (%, right scale)" >$F]Ss)$ [J
Xrj{ f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 g&wQ^ yscale = 2, 2N]s}/l color = red, .@V>p6MV width = 3, kMXl
{ style = fdashed, Zv93cv "n3 (%, right scale)" -GjJrYOU tT:yvU@a E(#2/E6 ; ------------- @xEQ<g diagram 2: !输出图表2 !HYqM(|{. H'> "Variation ofthe Pump Power" w (1a{m?ht O/nS,Ux x: 0, 10 ^eii
4 "pump inputpower (W)", @x Q!v[b{]8 y: 0, 10 f6) H!SI y2: 0, 100 r MlNp?{_ frame |zKcL3* hx F^-4Pyq@ hy 1\uS~RR legpos 150, 150 5JXLfYTUI 7j8_O@_ f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 #4>F%_ step = 5, dGe color = blue, &@+;]t width = 3, \mloR
' "signal output power (W, leftscale)", !相应的文本字符串标签 T~>:8i finish set_P_in(pump, P_pump_in) (n\
cs$ [qB=OxH? f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 ^(R
gSMuT` yscale = 2, =_Rd0, step = 5, >Mn.|:DF]& color = magenta, RU=%yk-gM width = 3, Pif1sL6' "population of level 2 (%, rightscale)", bkTj
Q finish set_P_in(pump, P_pump_in) &7LfNN` LJD"N#c f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 2 6A#X yscale = 2, C'ZU .Y
step = 5, Yi`.zm color = red, Qw:j2g2H7 width = 3, \N30SG?o "population of level 3 (%, rightscale)", uvL|T48 finish set_P_in(pump, P_pump_in) (!s[~O 6 v]v f(]"" "'Ik{wGc ; ------------- =RA6 p diagram 3: !输出图表3 `0D+x gQ~4udla. "Variation ofthe Fiber Length" @p;4g_F ?jbam!A x: 0.1, 5 Iu8=[F> "fiber length(m)", @x !k:j+h/ y: 0, 10 jolCR-FDu "opticalpowers (W)", @y Ts\7)6|F frame SzgVvmM} hx H\T
h4teE hy hjE9[{K e(Verd:c f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Hi Yx(hY step = 20, (ZYOm color = blue, &N EzKf width = 3, S`::f(e "signal output" #!2gxm;g T(6S~;,Z ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 kQ + step = 20, color = red, width = 3,"residual pump" =GF+hM/~ -?uwlpm# ! set_L(L_f) {restore the original fiber length } ^P[*yf x;+,lP `f s[C
; -------------
[7bY( diagram 4: !输出图表4 Hl#o& *Ui" $jHL8r\e7 "TransverseProfiles" ^JTfRZ:a 9} vWTt0 I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ;(XSw%Y
H gVGq x: 0, 1.4 * r_co /um =Zj9F1E[i "radialposition (µm)", @x 7cC$) y: 0, 1.2 * I_max *cm^2 +wmfl:\^{H "intensity (W/ cm²)", @y _Qv4;a y2: 0, 1.3 * N_Tm X@arUs7 frame ,"D1!0 hx '
|4XyU= hy \ .:CL?m# 9DIG K\ f: N_dop(1, x * um,0), !掺杂浓度的径向分布 r
)T`?y yscale = 2, W?@ ;(k color = gray, `]%{0 Rx width = 3, dWI\VS 9 maxconnect = 1, l6i 2!&8P% "N_dop (right scale)" VR'w$mp IcA]<}0!"v f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 LcF0: h' color = red, })J]D~!p maxconnect = 1, !限制图形区域高度,修正为100%的高度 _%t w#cM width = 3, MFC= oKD "pump" s#4
"f %hXa5}JL f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 e@6}?q; color = blue, IRpCbTIXK maxconnect = 1, }\1V;T width = 3, pD){K "signal" R8ZW1 5~\W!|j/ =~R0U ; ------------- ;N)qNiJY diagram 5: !输出图表5 0hPm,H*Y] 5bgx;z9 "TransitionCross-sections" 3c6<JW 2^|*M@3r I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) &)rmv L:~
"Vw6]_ x: 1450, 2050 RlpW)\{j? "wavelength(nm)", @x ^D!UF(H y: 0, 0.6 \wTWhr0 "cross-sections(1e-24 m²)", @y ~V (WD;Mk frame T'w=v-(J hx 9X!OQxmg hy f9;M"Pd v=|ahsYC f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 6Z7{|B5}Y color = red, CnJO]0Op3 width = 3, ).k=[@@V "absorption" ETYw f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ,KZ_#9[> color = blue, ;hRo}
+\l width = 3, U#YM)8;Iz "emission" 'DVPx%p !sUo+Y
|
|