| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* \9!W^i[+ Demo for program"RP Fiber Power": thulium-doped fiber laser, Hw_(Af?C pumped at 790 nm. Across-relaxation process allows for efficient fH>]>2fS population of theupper laser level. )
=sm{R%T *) !(* *)注释语句 (@mvNlc: cs,%Zk.xjw diagram shown: 1,2,3,4,5 !指定输出图表 1)vdM(y3j ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 kpcIU7|e ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 5|";L&` ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 <1>\?$)D ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 m8fxDepFA ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ]k5l]JB Ydh]EO0' include"Units.inc" !读取“Units.inc”文件中内容 J)6f"{} & 3S ,D~L^ include"Tm-silicate.inc" !读取光谱数据 g*TAaUs|n {!@Pho) Q ; Basic fiberparameters: !定义基本光纤参数 pX+ `qxF\ L_f := 4 { fiberlength } !光纤长度 94LFElE3 No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ._Wm%'uX r_co := 6 um { coreradius } !纤芯半径 noV]+1#"V N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 b&. o9PV" ul1#_xp ; Parameters of thechannels: !定义光信道 nJNdq`y2 l_p := 790 nm {pump wavelength } !泵浦光波长790nm LS*^TA(I[ dir_p := forward {pump direction (forward or backward) } !前向泵浦 k/ls!e? P_pump_in := 5 {input pump power } !输入泵浦功率5W Pl9/1YhD/ w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um kK>PFk( I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 Vnlns2pQl loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ]N,n7v+} 7'k+/rAO l_s := 1940 nm {signal wavelength } !信号光波长1940nm ,~p'p) w_s := 7 um !信号光的半径 );'8*e' I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Tn8Z2iC loss_s := 0 !信号光寄生损耗为0 )=8MO-{ ]^uO3!+ R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 2'$p( |MY6vRJ( ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 q4C$-W%rj calc J.N%=-8 begin =0c yGo global allow all; !声明全局变量 be}^}w= set_fiber(L_f, No_z_steps, ''); !光纤参数 < {$zOF} add_ring(r_co, N_Tm); *+{umfZy def_ionsystem(); !光谱数据函数 $fR[zBxA pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 Zu951+&` signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 LS}dt?78`V signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 *W~+Nho.A set_R(signal_fw, 1, R_oc); !设置反射率函数 l:5x*QSX finish_fiber(); 3iMh)YH5b end; +}@1X&v: L}7c{6!F7 ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 X`YA JG show "Outputpowers:" !输出字符串Output powers: dcew`$SJp show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ?aR)dQ show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) %{Ez0XwGCn )o-rg
I'%vN^e^ ; ------------- x<W`2Du diagram 1: !输出图表1 R/&Bze n@r'b{2;l "Powers vs.Position" !图表名称 _1S^A0ft Ju4={^# x: 0, L_f !命令x: 定义x坐标范围
K6d9[;F "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 o*& D; y: 0, 15 !命令y: 定义y坐标范围 $)t ]av y2: 0, 100 !命令y2: 定义第二个y坐标范围 ^dj
avJ frame !frame改变坐标系的设置 K"B2
SsC legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) bR"hl? &c hx !平行于x方向网格 U`Bw2Vdk]S hy !平行于y方向网格 Rl@k~;VV x2/L`q"M?= f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 u?6L.^Op color = red, !图形颜色 2YI#J.6]H width = 3, !width线条宽度 8:E)GhX "pump" !相应的文本字符串标签 :d\ne f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 sJu^deX
color = blue, o\6A]T=R width = 3, ^o^[p % "fw signal" R%B"Gtl) f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Gu?OyL color = blue, OW!cydA- style = fdashed, %v
0 I;t width = 3, r6k0=6i "bw signal" O&h3=?O&B b /65Q&g' f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 H=b54.J8& yscale = 2, !第二个y轴的缩放比例 z9OhY]PPF color = magenta, Rrh?0qWs width = 3, ?\[2Po]n style = fdashed, ti$d.Kc( "n2 (%, right scale)" 0Yk@O)
x aD)XxXwozm f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 VQA}! p yscale = 2, 6M^P]l color = red, g_ 'F(An width = 3, 49.
@Uzo style = fdashed, MR:GH.uM: "n3 (%, right scale)" WrWJ!
n-iy;L^b >b9nc\~ ; ------------- n/*BK; diagram 2: !输出图表2 v[4A_WjT Zqwxi1 "Variation ofthe Pump Power" e_mUO" m]LR4V6k| x: 0, 10 /'vCO
|?L "pump inputpower (W)", @x `
O;+N"v y: 0, 10 1NJ,If] y2: 0, 100 EAiE@r>4 frame 5m2`$y-nb hx g+shz{3zvz hy \Y;LbB8D
legpos 150, 150 \GA6;6%Oo Mle@.IIT f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 d#~^)r step = 5, }py6H[ color = blue, ?M2#fD]e width = 3, n27df9L "signal output power (W, leftscale)", !相应的文本字符串标签 LObS
7U finish set_P_in(pump, P_pump_in) 9nW/pv %N}OMc.W f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 UG)J4ZX yscale = 2, #H]b Xr step = 5, dV+%x"[: color = magenta, iaShxoIV width = 3, ] Tc!=SV "population of level 2 (%, rightscale)", F!v`._] finish set_P_in(pump, P_pump_in) )na8a! /58]{MfrJ f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 F3k]*pk8w yscale = 2, %4X#|22n step = 5, S0X%IG color = red, M#v#3:&5 width = 3, Bl,rvk2 "population of level 3 (%, rightscale)", a`SQcNBf* finish set_P_in(pump, P_pump_in) NpS*]vSO "&jWC ziFg+i%s ; ------------- ,PG d diagram 3: !输出图表3 pUs:r0B (#zSVtZ "Variation ofthe Fiber Length" :^
9sy XL@Y! x: 0.1, 5 |Ld/{&Qr "fiber length(m)", @x [Yt!uhww y: 0, 10 :4o08M% "opticalpowers (W)", @y &V.ps1 frame I'"b3]DXG hx w h4WII hy
5p9zl=mT 8Lm}x_
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响
OC0dAxq step = 20, V0'T) color = blue, e_Cns& width = 3, ` oBlv "signal output" c;M7[y& gO
C5 ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 >3R%GNw step = 20, color = red, width = 3,"residual pump" 1PwqWg-\\ ppv/A4Kv ! set_L(L_f) {restore the original fiber length } ?NazfK 5)=XzO0 Vf
Jpiv1 ; ------------- $@8$_g|Wz diagram 4: !输出图表4 FScE3~R B?}ZAw> "TransverseProfiles" ^QX3p,Y UNc!6Q-. I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) GyE-fB4C [Tha
j x: 0, 1.4 * r_co /um SG6@Rn*^ "radialposition (µm)", @x H^Th]-Zl y: 0, 1.2 * I_max *cm^2 C^uH]WO "intensity (W/ cm²)", @y :5/P{Co( y2: 0, 1.3 * N_Tm {~=Edf
frame p h[
^ve hx ~b}@*fq hy zE"ME*ou zu6Y*{$>g f: N_dop(1, x * um,0), !掺杂浓度的径向分布 e}qG _* yscale = 2, IvLo&6swW color = gray, oH/6 width = 3, <|= UrG maxconnect = 1, 2i+'?.P "N_dop (right scale)" eT??F x"kc:F f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 Lb# e color = red, @^Tof5?F? maxconnect = 1, !限制图形区域高度,修正为100%的高度 w6F'rsko] width = 3, ?A|8J5EV "pump" Z
P\A chjXsq#Q^ f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 g(d9=xq@k color = blue, e/@t U'$ maxconnect = 1, xFZA18 width = 3, >YPC&@9
"signal" TV$Pl[m Y)@mL~){ oXA3i ; ------------- p7b`Z>} diagram 5: !输出图表5 2#z 6= M~A \RcB,?OK "TransitionCross-sections" F.P4c:GD hX#s3)87 I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) n-m+@jR z &
[)1LRt_ x: 1450, 2050 w9D<^(_}/ "wavelength(nm)", @x J(*QtF y: 0, 0.6 x\ieWF1 "cross-sections(1e-24 m²)", @y E\N?D frame (17%/80-J hx D[. ; H)V hy .k5
TQt G#.(%, f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 \Q.Qos color = red, oY@4G)5 width = 3, h>v;1QO9D "absorption" [uxhdR`T f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 DXPiC[g] color = blue, V"n0"\k, width = 3, /H+br_D9 "emission" tqLn A 2.)@u~^Q
|
|