| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* R<n8M"B Demo for program"RP Fiber Power": thulium-doped fiber laser, 1P[I}GW# pumped at 790 nm. Across-relaxation process allows for efficient "ib K1}- population of theupper laser level. _l24Ba$F6 *) !(* *)注释语句 P9
{}&z%: i7S>RB diagram shown: 1,2,3,4,5 !指定输出图表 ig{A[7qN ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 6CcB-@n4 ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 -Q<z1vz ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 bGZhUEq ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 22)0zY%\ ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Jh37pI a&$Zpf!! include"Units.inc" !读取“Units.inc”文件中内容
E
fP>O 6Gs{nFw include"Tm-silicate.inc" !读取光谱数据 K-2.E 4*0:bhhhf_ ; Basic fiberparameters: !定义基本光纤参数 v2/yw, L_f := 4 { fiberlength } !光纤长度 zyaW3th No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 z$9@j2
r_co := 6 um { coreradius } !纤芯半径 rQ`\JE&` N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ~A8qeaP d{QMST2& ; Parameters of thechannels: !定义光信道 BCBEX&0hk{ l_p := 790 nm {pump wavelength } !泵浦光波长790nm %/UV_@x& dir_p := forward {pump direction (forward or backward) } !前向泵浦 X}zX`]:I' P_pump_in := 5 {input pump power } !输入泵浦功率5W nGq]$h w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ! 9d_Gf- I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ~gu=x&{ loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 u|(Ux~O
J+{Ou rWt l_s := 1940 nm {signal wavelength } !信号光波长1940nm b->eg 8| w_s := 7 um !信号光的半径 n11LxGwk I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 -h>Z,-DE6 loss_s := 0 !信号光寄生损耗为0 \:]DFZ= ! yOX&cZ[ R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 ~c9>Nr9|` L/H v4={ ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 rpUy$qrRc calc 6D/uo$1Y begin <KKDu$W|T global allow all; !声明全局变量 Wt>J` set_fiber(L_f, No_z_steps, ''); !光纤参数 TG1P=g5h add_ring(r_co, N_Tm); SXQ@;=]xV def_ionsystem(); !光谱数据函数 Dq?E\ pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 &svx@wW signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 $[[?;g signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 RG&I\DTyt set_R(signal_fw, 1, R_oc); !设置反射率函数 T
|37#*c finish_fiber(); 24//21m end; `q%U{IR '9 'l=Sh ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 },rav] show "Outputpowers:" !输出字符串Output powers: 9*4 . show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ovo/!YJ2 show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ar Q)%W <O.Kqk*
nq +fM&su=wl ; ------------- #;`Oj diagram 1: !输出图表1 L~IE,4 K]X`sH: "Powers vs.Position" !图表名称 gc##V]OD ZI,j?i6\ x: 0, L_f !命令x: 定义x坐标范围 /?Vdqci "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 J7:9_/e0T y: 0, 15 !命令y: 定义y坐标范围 W]_g4,T> y2: 0, 100 !命令y2: 定义第二个y坐标范围 [q1Unm frame !frame改变坐标系的设置 :V-k'hm
& legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) "#2pT H~ hx !平行于x方向网格 f27)v(EJ hy !平行于y方向网格 6JSY56v (%bE~Q2P*< f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 UgR:qjI color = red, !图形颜色 R"Kz!NTB width = 3, !width线条宽度 X'f)7RbT "pump" !相应的文本字符串标签 ]BfS270 f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 _%{0?|= color = blue, 'G8 ?'u_) width = 3, OqBC/p
B "fw signal" @TysXx f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 )|pU.K9qZ color = blue, h$pk<< style = fdashed, 3htq[Ren width = 3, fJy)STQ4 "bw signal" B!}BM}r `a
>?UUT4 f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 0oSQY[ht/ yscale = 2, !第二个y轴的缩放比例 X'x3esw w color = magenta, 9/@ &* width = 3, ? Vp%=E style = fdashed, 1[ SA15h "n2 (%, right scale)" m;o4Fu Iyyo3awc f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 P$ucL~r yscale = 2, =WK04\H color = red, n(>C'<otj width = 3, p x#suy style = fdashed, =IZ[_ /@ "n3 (%, right scale)" @}DFp`~5| ;1`!wG-DD #byJqy&e ; ------------- O9^T3~x[V diagram 2: !输出图表2 .x-J44i@/ _R^y\1Qu "Variation ofthe Pump Power" ?YBaO,G9o X?/Lz;,& x: 0, 10 vk'rA{x "pump inputpower (W)", @x L^FcS\r; y: 0, 10
$:EG%jl y2: 0, 100 j (ygQ4T frame jj,r <T hx w"8V0z hy _ie.| 4k legpos 150, 150 Vb!O8xV4;+ \u M? S f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 V_"f|[1 step = 5, pOA!#Aj) color = blue, ".P){Dep$4 width = 3, ! E0!-UpY "signal output power (W, leftscale)", !相应的文本字符串标签 Kkv<"^H finish set_P_in(pump, P_pump_in) -V5w]F' OJ1tV% E f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 %>zjGF< yscale = 2, OlY$v@| step = 5, <a|@t@R color = magenta, %e?fH.) width = 3, m`}{V5; "population of level 2 (%, rightscale)", #U ASH& finish set_P_in(pump, P_pump_in) E\M-k\cSj x[i `S8D f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 BStk&b yscale = 2, K_ke2{4Jm step = 5, 5=L} \ankn color = red, h@1!T width = 3, ]
fwZAU "population of level 3 (%, rightscale)", !SxG(*u finish set_P_in(pump, P_pump_in) _<*Hv*Zm P@0Y./Ds LFf`K)q ; ------------- M%`\P\A diagram 3: !输出图表3 h|)vv4-d| :]WqfR)# "Variation ofthe Fiber Length" mLyBm BKIjNV3 x: 0.1, 5 [6tSYUZs "fiber length(m)", @x $yu?.b
9H# y: 0, 10 wtH~-xSB| "opticalpowers (W)", @y p&Ed\aQ%z; frame rHz||jjU hx _}gtcyx hy )uheV,ZnY T
.n4TmF f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Or0O/\D) step = 20, '@=PGpRF color = blue, L,LNv width = 3, 6b=q-0yj "signal output" ~Z)/RT/ szmmu*F,U: ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 s?C&s|'. step = 20, color = red, width = 3,"residual pump" =#xK=pRy; sa&) #Z: ! set_L(L_f) {restore the original fiber length } .iwZ*b{ j/!H$0PN /)L
0`:I# ; ------------- `T&jPA9eY diagram 4: !输出图表4 @It>*B yB. }q[Bd "TransverseProfiles" O7G"sT1Dv 6iA( o*'Yn I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) L{fFC%|l2L u bW]-U=T x: 0, 1.4 * r_co /um d+fSoSjX8 "radialposition (µm)", @x ~d
>W?A y: 0, 1.2 * I_max *cm^2 gVR@&bi7 "intensity (W/ cm²)", @y +&=?BC}L9^ y2: 0, 1.3 * N_Tm jp2Q9Z frame B&?sF" Y hx Af(WV>' hy pY"O9x , X{> f: N_dop(1, x * um,0), !掺杂浓度的径向分布 L=;
-x9 yscale = 2, |CFRJN-J" color = gray, 9i q"" width = 3, p{$p
$/A maxconnect = 1, b;cMl' "N_dop (right scale)" G&f8n pv)`%< f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 \}0-^(9zd color = red, \;X+X,M maxconnect = 1, !限制图形区域高度,修正为100%的高度 dt\jGD width = 3, 2}U!:bn( "pump" &HZmQ>!R D Di.3113t f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 %/%UX{8R color = blue, C~%
1w%nn maxconnect = 1, }2 8= width = 3, 7V7zGx+Z7 "signal" ?#A]{l eGL1 oXsL9, ; ------------- J9~i%hzr diagram 5: !输出图表5 I0'WOV70 m"eteA,"k_ "TransitionCross-sections" kS5_
KJn!Ap I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) O`1! ),:c+~@@kT x: 1450, 2050 (rtY!<|p "wavelength(nm)", @x 1 T<+d5[C y: 0, 0.6 K>:]Bx#F7 "cross-sections(1e-24 m²)", @y ]y{WD=T frame qy1F*kY hx +0wT!DZW\= hy igL<g <6TT)t<h f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 *A 'FC|\ color = red, ,8'>R@o width = 3, yM.IxpT#$ "absorption" "ICC
B1N| f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 oTjyN\?H color = blue, ;h=*!7:
width = 3, VXBY8;+Yp "emission" D1
Z{W Oc].@Jy
|
|