| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* 5gSylts8 Demo for program"RP Fiber Power": thulium-doped fiber laser, '0]r<O pumped at 790 nm. Across-relaxation process allows for efficient B1E$v(P3M population of theupper laser level. N*Yy&[ *) !(* *)注释语句 4avc=Y5 a>U6Ag< diagram shown: 1,2,3,4,5 !指定输出图表 @c Z\*,T ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 q %>7L<r ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 G%S6$@: ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 C)OG62 ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 'qjX$]H ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 @@Q6TB 3 -tO;GKb include"Units.inc" !读取“Units.inc”文件中内容 %MN.O-Lc Rv,82iEKs include"Tm-silicate.inc" !读取光谱数据 kQLT$8io zDB"r ; Basic fiberparameters: !定义基本光纤参数 (VyA6a8 L_f := 4 { fiberlength } !光纤长度 s
_~IZ%+<. No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 R"Kz!NTB r_co := 6 um { coreradius } !纤芯半径 X'f)7RbT N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 _wz2 _%{0?|= ; Parameters of thechannels: !定义光信道 'G8 ?'u_) l_p := 790 nm {pump wavelength } !泵浦光波长790nm OqBC/p
B dir_p := forward {pump direction (forward or backward) } !前向泵浦 @TysXx P_pump_in := 5 {input pump power } !输入泵浦功率5W je,c7ZFO w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ?W!ry7gXO I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 +i. u< T loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 b,Ke>.m xdZ<|
vMR l_s := 1940 nm {signal wavelength } !信号光波长1940nm oSY7IIf%L w_s := 7 um !信号光的半径 Wwhgo.Wx I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 o&z!6"S< loss_s := 0 !信号光寄生损耗为0 C',6%6P 3rNc1\a; R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 -IU4#s T#@{G,N ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 cvfUyp;P calc eLV.qLBUs begin J=iRul^S global allow all; !声明全局变量 8}BS2C%P set_fiber(L_f, No_z_steps, ''); !光纤参数 #Ao !>qCE add_ring(r_co, N_Tm); _{$fA6C def_ionsystem(); !光谱数据函数 >F[GVmC pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 2Lfah?Tx~C signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ?v4E<iXs signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 "Zcu[2, set_R(signal_fw, 1, R_oc); !设置反射率函数 &yU>2=/T finish_fiber(); ARF\fF|<2 end; $7NCb7%/L Jf_%<\ O ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ,q#2:b<E show "Outputpowers:" !输出字符串Output powers: q@l(Qol show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) <6jFKA< show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ` 1+%}}!$u u,o1{%O . I==-| ; ------------- aGK@)&h$ diagram 1: !输出图表1
ZzcPiTSO oa`#RC8N "Powers vs.Position" !图表名称 6G of.:"f 0%<+J;'o x: 0, L_f !命令x: 定义x坐标范围 G\=_e8( "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 | -+zofx y: 0, 15 !命令y: 定义y坐标范围 GeV+/^u y2: 0, 100 !命令y2: 定义第二个y坐标范围 eT[&L @l]b frame !frame改变坐标系的设置 F*` t"7Lm legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) W5SN I>|E hx !平行于x方向网格 SK
R1E];4 hy !平行于y方向网格 >c~RI7uu {@.Vh] f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 y=Q!-~5|fF color = red, !图形颜色 x2W#ROfg width = 3, !width线条宽度 66\jV6eH7L "pump" !相应的文本字符串标签 V%NeZ1{ e f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 EzpFOqJG color = blue, (=c1 width = 3, u9Y3?j,oC "fw signal" q
\O
Ou f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 `1+F,&e color = blue, 9Ah[rK*} style = fdashed, !{Z~<Ky width = 3, `A)"%~ "bw signal" Vn|1v4U! RMP9y$~3pU f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 2@khSWV yscale = 2, !第二个y轴的缩放比例 ke%pZ7{u color = magenta, ;Ii1B{W width = 3, :O-1rD style = fdashed, `u
XQ z7 "n2 (%, right scale)" :a0zT#u _O]xey^r f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 M 2q"dz yscale = 2, v }\,o%t^ color = red, L{&U V0q! width = 3, 1^G{tlA- style = fdashed, M.[rLJZ4 "n3 (%, right scale)" T!|=El> M;.ZM<Ga L'Q<>{;Ig ; ------------- GTl
xq%?b diagram 2: !输出图表2 1/Zh^foG @xAfZb2 E "Variation ofthe Pump Power" e0HfP v_ 3tAU?sV! x: 0, 10 pA}S5x "pump inputpower (W)", @x <AoXEuD y: 0, 10 rcN 9.1 y2: 0, 100 z(13~38+ frame #,NvO!j<4 hx bPbb\|u0d hy k cuzB+ legpos 150, 150 =O$M_1lp q_[G1&MC f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 xTz%nx step = 5, PnYBy| yl color = blue, v&
$k9)] width = 3, +^|iZbZKx "signal output power (W, leftscale)", !相应的文本字符串标签 }6u2*(TmD finish set_P_in(pump, P_pump_in) b Bc- ^ f!_
ctp f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 pY"O9x yscale = 2, 3'`dFY, step = 5, 9 ;i\g= color = magenta, s>n(`?@L width = 3, r' Z3
"population of level 2 (%, rightscale)", 3L5r*fa finish set_P_in(pump, P_pump_in) e^1uVN u9qMqeF f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 eD?3"!c! yscale = 2, 9ooY?J step = 5, iEyeX0nm color = red, KKe8
ly, width = 3, <@v]H@E "population of level 3 (%, rightscale)", )?! [}t finish set_P_in(pump, P_pump_in) PJ4(}a i5}4(sV 9LJZ-/Wq ; ------------- \*t~==WB diagram 3: !输出图表3 ,M5}4E7L%s "/{RhY< "Variation ofthe Fiber Length" XRN+`J ~wm;;#_O x: 0.1, 5 ;E^K.6 "fiber length(m)", @x 6A
R2htN^ y: 0, 10 B=f,QU "opticalpowers (W)", @y -e GL) M frame gY-5_Ab hx #]WqM1u hy 1Tp/MV/> da!P0x9p f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Io`P,l: step = 20, _*M42<wcO color = blue, CTa#Q, width = 3, B5%n(,Lx "signal output" jhgX{xc iSLGwTdLn ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 n{0Ld -zH step = 20, color = red, width = 3,"residual pump" ZFm`UXS +avMX&% ! set_L(L_f) {restore the original fiber length } :(|'S4z ?tdd3ai> VZka}7a ; ------------- ?
8aaD>OR$ diagram 4: !输出图表4 7R.Q
Ql W<ZK,kv "TransverseProfiles" .0 )Y rHge~nY< I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) /hrT 1+;C`bnA x: 0, 1.4 * r_co /um _Q%vK*n "radialposition (µm)", @x 8F(h*e_? y: 0, 1.2 * I_max *cm^2 }kHdK vZ "intensity (W/ cm²)", @y Jq.lT(E8D y2: 0, 1.3 * N_Tm \`<cH# frame <:>SGSE9 hx j1 q[2' hy 2aZw[7s Di_2Plo)4 f: N_dop(1, x * um,0), !掺杂浓度的径向分布 )4U>!KrY yscale = 2, rPNb\Ri color = gray, gJiK+&8I width = 3, 8(g:HR*; maxconnect = 1, 8b.u'r174 "N_dop (right scale)" kv,%(en] AE`We$! f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 yq-=],h color = red, ,d+fDmm3 maxconnect = 1, !限制图形区域高度,修正为100%的高度 0 S_ ':r width = 3, 'TC/vnM "pump" up3O|lj4 '3]p29v{ f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 {CG_P,FO color = blue, &c(WE
RW?- maxconnect = 1, 7'-Lp@an width = 3, =p^He! "signal" v[@c*wo "vYE+ ,t{,_uPJY ; ------------- iqQUtE]E_ diagram 5: !输出图表5 aV o;~h~ l.\re"Q "TransitionCross-sections" P7ph}mB P&d"V< I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Q-Ux<# [3l*F x: 1450, 2050 [ xOzzp4 "wavelength(nm)", @x bPD`+:A_ y: 0, 0.6 M/?KV9Xk2 "cross-sections(1e-24 m²)", @y x^|V af frame IKtB; hx N"/-0(9[ hy G2LK] &R|/t:DN f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 _rV 5E color = red, Qu5UVjbE, width = 3, {e|*01hE "absorption" G$'jEa<:u f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 SvN9aD1 color = blue, 9!9Z~/*m width = 3, ;N B:e "emission" svelYe#9z }pk#!N
|
|