| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* vpZu.#5c Demo for program"RP Fiber Power": thulium-doped fiber laser, v[0DE*p pumped at 790 nm. Across-relaxation process allows for efficient G3 Idxs population of theupper laser level. ^L>MZA
? *) !(* *)注释语句 Gg
7WmL Fpy6"Z?z diagram shown: 1,2,3,4,5 !指定输出图表 \[Sm2/9v ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 Dj-\))L ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 1{SrHdD= ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 k98< s ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置
FY1},sq ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 w8eG; g*:ae;GP include"Units.inc" !读取“Units.inc”文件中内容
`_NnQ% jF%)Bhn( include"Tm-silicate.inc" !读取光谱数据 CL)1Q \_m\U.* ; Basic fiberparameters: !定义基本光纤参数 tYI]LL L_f := 4 { fiberlength } !光纤长度 AzLbD2Pl No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ga4/, r_co := 6 um { coreradius } !纤芯半径 (z8]FT N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 -/(DPx 3q~":bpAp ; Parameters of thechannels: !定义光信道 M/::`yJQu l_p := 790 nm {pump wavelength } !泵浦光波长790nm p)?qJ2c| dir_p := forward {pump direction (forward or backward) } !前向泵浦 yt/20a P_pump_in := 5 {input pump power } !输入泵浦功率5W sDLVYD w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um !ol hZ I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 `jD8(}_ loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 @A~B
, uE,i-g0$Id l_s := 1940 nm {signal wavelength } !信号光波长1940nm WUE)SVf w_s := 7 um !信号光的半径 8ktjDs$=.: I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Nz(c"3T; loss_s := 0 !信号光寄生损耗为0 SR&(HH$ kPx]u\ R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 }<(
"0jC l _kg3e4 ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 otmIu` h calc y1,?ZWTayr begin E5,%J global allow all; !声明全局变量 <GL}1W"Ay set_fiber(L_f, No_z_steps, ''); !光纤参数 Zd[y+$> add_ring(r_co, N_Tm); FbNH+? def_ionsystem(); !光谱数据函数 !(MA5L- pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 ,XWay%8{E signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ZI2K-z'e signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 /t$+Af,} set_R(signal_fw, 1, R_oc); !设置反射率函数 W%Y.SP$Y finish_fiber(); i#pjv'C end; p=8M0k E)&NP}k-P ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 )1ZJ show "Outputpowers:" !输出字符串Output powers: @1pW!AdN show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) &X#x9|=&O show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) _/QKWk&j ?MV[=LPL ^F0k2pB ; ------------- 'NQMZfz diagram 1: !输出图表1 7
SjF9x OBKC$e6I "Powers vs.Position" !图表名称 %8Z|/LGg C|.$L<` x: 0, L_f !命令x: 定义x坐标范围 bik] JIM "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 k=h/i8i2z y: 0, 15 !命令y: 定义y坐标范围 7`u A y2: 0, 100 !命令y2: 定义第二个y坐标范围 2-"Lxe65f frame !frame改变坐标系的设置 ),D`ZRXS legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) h8iaJqqvJ hx !平行于x方向网格 ohQz%?r hy !平行于y方向网格 0,vj,ic*WX mR"2 f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 )M&Azbu color = red, !图形颜色 zn2"swhq\V width = 3, !width线条宽度 ~n8Oyr "pump" !相应的文本字符串标签 nU?Xc(Xy f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 {Gk}3u/ color = blue, 8^P2GG'+- width = 3, 8r`VbgI& "fw signal" *hk{q/*Qw f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ?vht~5' color = blue, +s+PnZ%0V style = fdashed, OVQxZ~uQ width = 3, T;:',T[G "bw signal" yO$r'9?,* T0*TTB&b f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 $ sA~p_] yscale = 2, !第二个y轴的缩放比例 #cp$ltY color = magenta, ;:-2~z~~ width = 3, zal3j^ style = fdashed, A_6/umF[ZA "n2 (%, right scale)" |04}zU%N lk+=26> f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 4Rrw8Bw yscale = 2, 3-9J"d! color = red, AT8B!m width = 3, Ybn=Gy style = fdashed, mTXNHvv "n3 (%, right scale)" +X%fcoc ?VOs:sln $E4O^0%/p ; ------------- e%@[d<Ta\ diagram 2: !输出图表2 eHnei F )K\k6HC. "Variation ofthe Pump Power" QX.F1T2e? Be14$7r x: 0, 10 J<5vs3[9 "pump inputpower (W)", @x RqX4ep5j y: 0, 10 ?^G$;X7B y2: 0, 100
6>N u=~ frame [hv3o0". hx o{-USUGj7 hy 6Ymo%OT legpos 150, 150 qRP8dH !g8.8(/t) f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 9%)& }KK| step = 5,
8tFyNl`c color = blue, ]uj.uWD width = 3, xt<,
(4u "signal output power (W, leftscale)", !相应的文本字符串标签 g6a3MJV` finish set_P_in(pump, P_pump_in) u
UVV>An a,0o{*(u$ f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 ;ijfI yscale = 2, P+zI9~N[ step = 5, z7l;|T color = magenta, n
nnA, width = 3, Nh7!Ah "population of level 2 (%, rightscale)", {'wU&! finish set_P_in(pump, P_pump_in) T=f;n;/> 4iPua"8 f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 KJvJUq yscale = 2, Fp|rMq step = 5, W%jX- color = red, rbJ)RN^. width = 3, ;~1/eF "population of level 3 (%, rightscale)", S>ylA U;N finish set_P_in(pump, P_pump_in) :#&U95EC0 '`goy%Wd b8b PK< ; ------------- :PjUl diagram 3: !输出图表3 $d??( %},S#5L3 "Variation ofthe Fiber Length" sp|y/r# ks` x: 0.1, 5 JpHsQ8< "fiber length(m)", @x !\k#{
1[! y: 0, 10 sxQ ,x/O "opticalpowers (W)", @y 4[EO[x4C frame vM3|Ti>a' hx 6~Oje>w; hy @XG`D>%k yI|?iBc7nC f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 +MoxvW6 step = 20, AU?YZEAei color = blue, <!HDtN width = 3, tIy/QN_42 "signal output" .STf Zz*mf+ ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 9kg>)ty@ step = 20, color = red, width = 3,"residual pump" u$/2XO ZxeE6M^w ! set_L(L_f) {restore the original fiber length } FCB/FtI0 c"&!=@ IEsD= ; ------------- P :h4 diagram 4: !输出图表4 >`V|`Zi ? iU+,Jeu "TransverseProfiles" X qva&/- r_<i*l. I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Hf]}OvT>Z /Ta0}Y(y x: 0, 1.4 * r_co /um Ecl7=-y "radialposition (µm)", @x Jz8#88cY y: 0, 1.2 * I_max *cm^2 ZC-evy "intensity (W/ cm²)", @y o>rlrqr?_ y2: 0, 1.3 * N_Tm >33b@) frame <EN[s hx (2\ekct ^ hy `e;Sjf< [ Zqg"` f: N_dop(1, x * um,0), !掺杂浓度的径向分布 0YRYCO$ yscale = 2, r|BKp,u9 color = gray, :<3;7R'5 width = 3, (S 3kP5:F maxconnect = 1, ' g!_Flk "N_dop (right scale)" LO*a>9LI >oYwzK0& f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 MP&4}De color = red, {"AYOc>2| maxconnect = 1, !限制图形区域高度,修正为100%的高度 n8D;6#P^ width = 3, %z_b/yG "pump" zYJ`.,#C 5 w}<I\*\`! f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 UdgI<a~`k6 color = blue, m`0{j1K maxconnect = 1, 6C}Z1lZl width = 3, uXa}<=O "signal" T $]L 5 ebwoMG,B- T<,tC" ; ------------- APm[)vw#f diagram 5: !输出图表5 AQGE(%X g[)hm`{? "TransitionCross-sections" u<r('IW0 XE%6c3s I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) A^7Zy79 ?Og ;W9i x: 1450, 2050 e';c8WF3E "wavelength(nm)", @x UsKn4Kh y: 0, 0.6 5 :> "cross-sections(1e-24 m²)", @y pl/$@K?L frame G2k71{jK hx SvJ8Kl OV hy j`hbQp\` WuXRL}!\, f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 X2 kLbe color = red, r/:'}os; width = 3, pMrfi}esx "absorption" Cagq0-:(p f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 Y0'^S<ox color = blue, QNBzc {XB width = 3, 0kEq|k9 "emission" t$%}*@x7 Ki\jiflc7
|
|