| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* Zc
|/{$>:W Demo for program"RP Fiber Power": thulium-doped fiber laser, |sZ! pumped at 790 nm. Across-relaxation process allows for efficient (KZHX5T= population of theupper laser level. ,h\s F#| *) !(* *)注释语句 8 #X5K )Dp/('Z2 diagram shown: 1,2,3,4,5 !指定输出图表 @pI5lh ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 $P7iRM] ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 plu$h-$d ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 pu!d qF< ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 GhY1k"; ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 l:6,QaT1 0qjXQs} include"Units.inc" !读取“Units.inc”文件中内容 '/Bidb? uJR%0 E7! include"Tm-silicate.inc" !读取光谱数据 jJ4qR:] D9mz9
; Basic fiberparameters: !定义基本光纤参数 Ed0I WPx L_f := 4 { fiberlength } !光纤长度 ki0V8]HP No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 WD;Y~| r_co := 6 um { coreradius } !纤芯半径 ._wkj N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 t&5%?QyM B()/.w?A ; Parameters of thechannels: !定义光信道 =z?%;4'| l_p := 790 nm {pump wavelength } !泵浦光波长790nm OX%MP!#KU dir_p := forward {pump direction (forward or backward) } !前向泵浦 Iq+>qX P_pump_in := 5 {input pump power } !输入泵浦功率5W kpbm4t w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 3Y)PU= I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ]Q
"p\@\! loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 -S,ln ;
UiwH l_s := 1940 nm {signal wavelength } !信号光波长1940nm %;D+k w_s := 7 um !信号光的半径 @`-[;?> I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 {ng"=3+n loss_s := 0 !信号光寄生损耗为0 T&T/C@z'R Ov-b:lH R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 !|2VWI} ]Ni$.@Hu$ ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 $rXh0g calc 7@.cOB`y@3 begin ;v17K global allow all; !声明全局变量 }
B396X set_fiber(L_f, No_z_steps, ''); !光纤参数 ky>wOaTmN6 add_ring(r_co, N_Tm); %8aC1x def_ionsystem(); !光谱数据函数 <?D[9Mk$ pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 ]maYUKqv}' signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 zPEg signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Cp^@zw*/ set_R(signal_fw, 1, R_oc); !设置反射率函数 Y\],2[liF finish_fiber(); iFSJL,QZ3 end; #jpoHvth 6b8;}],| ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 %or,{mmiM: show "Outputpowers:" !输出字符串Output powers: #{r#;+ show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ULc`~] show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) "I;C;}! >$gG/WD?KR l?Y_~Wuw ; ------------- ` b !5^W diagram 1: !输出图表1 gIR^)m %xwIt~Y "Powers vs.Position" !图表名称 n}A\2bO OQ :dJe6 x: 0, L_f !命令x: 定义x坐标范围 #8{F9w<Rf "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 @=w<B4L y: 0, 15 !命令y: 定义y坐标范围 [w
-{r+[ y2: 0, 100 !命令y2: 定义第二个y坐标范围 6,1b=2G frame !frame改变坐标系的设置 ]U[X1W+@ legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) $=sXAK9 hx !平行于x方向网格 ;E~4)^ hy !平行于y方向网格 NRnRMY- rdJm{< f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率
zJa)* N color = red, !图形颜色 [LT^sb width = 3, !width线条宽度 ogM%N "pump" !相应的文本字符串标签 ]!:oYAm f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 E}CiQUx color = blue, k)S.]!u&G width = 3, f0+2t.tj "fw signal" @vgG1w f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 VS#wl|b8 color = blue, u^I(Ny style = fdashed, 6nDV1O5 width = 3, Gx?+9CV "bw signal" /|{,sWf2 {-9jm%N f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 LL!.c yscale = 2, !第二个y轴的缩放比例 QH4wUU3X color = magenta, z2ms^Y=j width = 3, mtic> style = fdashed, C2]Kc{4 "n2 (%, right scale)" +i `*lBup$ F0~k1TDw f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 vv6$>SU yscale = 2, 0uVv<Q~ color = red, nGZX7Fx5 width = 3, 7RU}FE style = fdashed, :/YO ni1h "n3 (%, right scale)" MFJE6ei z;]CmR@Ki >1L=,M ; ------------- n9LGP2#! diagram 2: !输出图表2 m!XI {F@x @
\.;b9 "Variation ofthe Pump Power" _\5~>g_ TL= YQA x: 0, 10 sfp,Lq` "pump inputpower (W)", @x G"
b60RQ y: 0, 10 ?{o/I\\ y2: 0, 100 >QQ(m\a$ frame m:tiY
[c>W hx FHy76^h>e hy NCeaL-y7 legpos 150, 150 <Pqv;WI|R u'Q?T7 f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 OL59e%X step = 5, 3K/Df# color = blue, $<@\-vYvr@ width = 3, :L?_Y/K "signal output power (W, leftscale)", !相应的文本字符串标签 4z7G2 finish set_P_in(pump, P_pump_in) \v@({nB8 .W\ve>; f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 yT OyDm- yscale = 2, 4FeEGySow step = 5, 8$P>wCK\l color = magenta, 1ZJ4*b n width = 3, 9G?ldp8 "population of level 2 (%, rightscale)", AH7L.L+$M finish set_P_in(pump, P_pump_in) H{ M)- =?}twC$ f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 )9"oL!2h yscale = 2, 8``;0}'PC step = 5, 2f, B$-# color = red, 8"'x)y width = 3, UgHf*m "population of level 3 (%, rightscale)", $FM'
3%B[ finish set_P_in(pump, P_pump_in) $Ptk|qFe 'E;W 3&&+YX ; ------------- mxTk+j= diagram 3: !输出图表3 f*((;*n; \9c$`nn "Variation ofthe Fiber Length" g1m-+a Bl.u=I:Y4 x: 0.1, 5 U)jUq_LX "fiber length(m)", @x vL_zvXA y: 0, 10 ^%bBW6eZ "opticalpowers (W)", @y 85U.wpG frame |g)FA_#|< hx sLh0&R7 hy =iz,S:[ B:oF;~d/, f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 N{akg90 step = 20, vS;'}N color = blue, wvc>0?t' width = 3, 3><u*0qe%I "signal output" \^532 FIw6 nnCug ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 S)\8|ym6! step = 20, color = red, width = 3,"residual pump" ^[# &
^[-V s3t!<9[m ! set_L(L_f) {restore the original fiber length } Ueyw;Y =V $j6 iLq#\8t^ ; ------------- *K!++k!Ixa diagram 4: !输出图表4 -e>|kPfv! B!,yfTk] "TransverseProfiles" hb^!LtF#Y <)#kq1b? I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Cw1(5 $C_M&O} x: 0, 1.4 * r_co /um Y(i?M~3\t "radialposition (µm)", @x rg&+ y: 0, 1.2 * I_max *cm^2 \2DE==M)P "intensity (W/ cm²)", @y g'lT y2: 0, 1.3 * N_Tm `.BR=['O frame Q_P5MLU> hx !Tfij(91 hy ?ApRJm:T D1"7s,Hmu f: N_dop(1, x * um,0), !掺杂浓度的径向分布 M []OHw yscale = 2, 'V!kL,
9ES color = gray, d79N-O- width = 3, J/Q|uRpmqr maxconnect = 1, Z;<ep@gy~ "N_dop (right scale)" 7kz-V. pCt}66k} f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 'DAltr< color = red, 1L[S*X maxconnect = 1, !限制图形区域高度,修正为100%的高度 0=[0|`x width = 3, Npa-$N&P{S "pump" ^
}#f() b=LF%P f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 c^S&F9/U* color = blue, -9G]x{> maxconnect = 1, 9*_uCPR width = 3, R;THA! "signal" -CU,z|g+ T-P@u-DU Z=9dMND ; ------------- i$O#%12l diagram 5: !输出图表5 JuJ5qIal `Cj,HI_/* "TransitionCross-sections" 37>MJ i QqbzOY I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) r<(kLpOH% <nA3Sd"QfV x: 1450, 2050 NgxO&Zp "wavelength(nm)", @x bOXh|u_3i y: 0, 0.6 SJ(9rhB5*. "cross-sections(1e-24 m²)", @y g{a d0.y, frame a;p6?kv hx M(S{1|,V hy z(UX't (q ngqUH f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ~7BX@? color = red, ayH>XwY6 width = 3, h544dNo& "absorption" >@Khm"/T f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 yS"0/Rm} color = blue, a}D&$yz2 width = 3, EG1x "emission" qS82/e)7 L&HzN{K
|
|