| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* VfU"%0x Demo for program"RP Fiber Power": thulium-doped fiber laser, xSY"Ru pumped at 790 nm. Across-relaxation process allows for efficient qTsy'y;Z population of theupper laser level. 8Qv s\TY *) !(* *)注释语句 yRXML\Ge o'2eSm0H diagram shown: 1,2,3,4,5 !指定输出图表 $n<a`PdH ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 t. P@Ba^ ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 C- .;m ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 GJ9>i)+h; ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 F!+1w(b: ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Z?)g'n Ss[[V(- include"Units.inc" !读取“Units.inc”文件中内容 ;V,L_"/X ,#Z%0NLe include"Tm-silicate.inc" !读取光谱数据 Xa[k=qFo ;aQ``B ; Basic fiberparameters: !定义基本光纤参数 WZQ2Mi<&1' L_f := 4 { fiberlength } !光纤长度 bzr2Zj{4 No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 oE 'P r_co := 6 um { coreradius } !纤芯半径 nI:M!j5s` N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 4]o+)d.`( qTJhYxm ; Parameters of thechannels: !定义光信道 y:'Ns$+ l_p := 790 nm {pump wavelength } !泵浦光波长790nm hGtz[u#p dir_p := forward {pump direction (forward or backward) } !前向泵浦 ]]j^ P_pump_in := 5 {input pump power } !输入泵浦功率5W \^)i!@v w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um }c/p;< I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 f-%M~: loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 2KLMFI.F %"WENa/t l_s := 1940 nm {signal wavelength } !信号光波长1940nm {4J. w_s := 7 um !信号光的半径 ~[;r)
g\ I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 2e_ Di(us loss_s := 0 !信号光寄生损耗为0 )eZK/>L& k]m ~DVS R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 wf8{v b-u@?G|< ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 JduO^Fit calc x^ `/&+m begin E)-;sFz global allow all; !声明全局变量 A
\/~u"Y set_fiber(L_f, No_z_steps, ''); !光纤参数 uu6 JZp add_ring(r_co, N_Tm); #9,8{ O" def_ionsystem(); !光谱数据函数 q T6y& pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 nxZz{& signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 T}fo signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 :\^b6"}8 set_R(signal_fw, 1, R_oc); !设置反射率函数 Qs1CK;+zU finish_fiber(); O#)1zD} end; ~1O|4mssS QAkK5,`vV. ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 *w0!C:mL& show "Outputpowers:" !输出字符串Output powers: VrIN.x show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Z9vMz3^N show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) C.?^] Y ^lp=4C9 ?I+{S ; ------------- vl:~&I&y;R diagram 1: !输出图表1 1KZigeHXI #)'Iqaq7 "Powers vs.Position" !图表名称 =@U5/J ;EBKzB x: 0, L_f !命令x: 定义x坐标范围 )Rn\6ka "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ZID- ~
6 y: 0, 15 !命令y: 定义y坐标范围 u+8"W[ZULq y2: 0, 100 !命令y2: 定义第二个y坐标范围 |]G%b[ frame !frame改变坐标系的设置 SH)-(+72d legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) k[f2`o= hx !平行于x方向网格 [/a
AH<9b hy !平行于y方向网格 JCcYFtW j|KDgI<0 f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 oJA_"xp color = red, !图形颜色 )0/9
L width = 3, !width线条宽度 }u;K<<h: "pump" !相应的文本字符串标签 Jl_W6gY"Z f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 a3 }V/MY color = blue, 3dN`Q:1R9 width = 3, [H*JFKpx "fw signal" jL-2
}XrA f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 |OeWM color = blue, UF-&L:s[ style = fdashed, ~dS15E4-Pp width = 3, D>|`+=1'0" "bw signal" 4aArxJ ao)';[%9s f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 T\9[PX< yscale = 2, !第二个y轴的缩放比例 }U8v
~wcd color = magenta, DQGrXMpV0 width = 3, 26p[x'W style = fdashed, YZ>L_$:q "n2 (%, right scale)" 0`"oR3JY p3vf7 eqn f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 PA'&]piPl: yscale = 2, x'g4DYl color = red, o8X_uKEI width = 3, \-yI
dKj style = fdashed, rfk{$g "n3 (%, right scale)" x3i}IC ]EKg)E Y\9}LgIvr ; ------------- Qs\a&Q=0H diagram 2: !输出图表2 fG1iq<~ x*H#?.E "Variation ofthe Pump Power" G4'Ia$ Lf((
zk:pt x: 0, 10 5,
$6mU#= "pump inputpower (W)", @x ~B|m"qY{i y: 0, 10 nF'YG+;|@ y2: 0, 100 n~UI47 frame ^i|R6oO_5 hx g
`s|]VNt hy D^4nT,&8 legpos 150, 150 36Lkcda[ q;,lv3I f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 l WYp step = 5, :|n[z jK/S color = blue, 'S3<' X width = 3, LWCFCkx% "signal output power (W, leftscale)", !相应的文本字符串标签 R%KF/1;/ finish set_P_in(pump, P_pump_in) A1/@KC"&{G QdgJNT<=H, f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 @dv8 F
"v yscale = 2, 0Agse) step = 5, "r46Rfa color = magenta, %[|^7 width = 3, d@ K-ZMq "population of level 2 (%, rightscale)", ]JkEf?;. finish set_P_in(pump, P_pump_in) estiS by<@\n2B:U f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 l$&~(YE f yscale = 2, 36{GZDGQ step = 5, Wu
0:X*>}p color = red, p=:Vpg<! width = 3, :\|A.#
U "population of level 3 (%, rightscale)", 7(1`,Y
finish set_P_in(pump, P_pump_in) 3SIqod;% 0Ncpi=6 -8^qtB ; ------------- @[lMh9` diagram 3: !输出图表3 ES4Wtc)& ],SQD3~9 "Variation ofthe Fiber Length" o=R(DK# U 7}VqXUwabx x: 0.1, 5 fz^j3'!\ "fiber length(m)", @x 5;}W=x^$a y: 0, 10 T^7Cv{[ "opticalpowers (W)", @y M/6Z,oOU frame ol"|?*3q hx G{!er:Vwdh hy
E4 eXfu 44}5o f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 _nqnO8^IG4 step = 20, Ip'tB4Mq color = blue, J> width = 3, 0FOB5eBR "signal output" O=3/qs6m s A,bR| ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 QP%_2m>yhl step = 20, color = red, width = 3,"residual pump" '|4+<# }AS/^E ! set_L(L_f) {restore the original fiber length } #Kb /tOp1 6|NH*#s !vnC-&G ; ------------- rk8pL[| diagram 4: !输出图表4 r""rJzFz' F_*']:p "TransverseProfiles" [@Ac# lndz I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) -!XG>Z T2Yf7Szp x: 0, 1.4 * r_co /um Z
i6s0Uck "radialposition (µm)", @x -iiX!@ y: 0, 1.2 * I_max *cm^2 !ekByD "intensity (W/ cm²)", @y [8Pt$5]^ y2: 0, 1.3 * N_Tm *Y(59J2 frame b11I$b
# hx zhw*Bed< hy Y2DL%'K^ OV]xo8a; f: N_dop(1, x * um,0), !掺杂浓度的径向分布
^f,4=- yscale = 2, ;}+M2Ec51 color = gray, ,LA'^I? width = 3, (C.
$w maxconnect = 1, iI<c "N_dop (right scale)" 2G~{x7/[@ w80X~ f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 LWM<[8wJ4 color = red, 9;L 4\ maxconnect = 1, !限制图形区域高度,修正为100%的高度 WPRk>j width = 3, sa8O<Ab "pump" ]W?cy H=BI%Z f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 nG'Yo8I^5 color = blue, \na$Sb+ maxconnect = 1, 5b:1+5iF- width = 3, 'mZv5? "signal" Sl8+A+ ]ltCJq <~dfp ; ------------- +DRt2a# diagram 5: !输出图表5 fJ/INL [k$GUU,jY "TransitionCross-sections" %:~Ah6R1 3g;Y I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) qefp3&ls oSrA4g x: 1450, 2050 {Z/iYHv~#c "wavelength(nm)", @x 'f{13-#X@ y: 0, 0.6 X}Q4;='C- "cross-sections(1e-24 m²)", @y 8~(,qU8- N frame =u2~=t=LV hx ~S('\h)1 hy 0cG[<\qT 2-'_Nwkl* f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ~a_hOKU5 color = red, m^oG9&"; width = 3, _AF$E"f@ "absorption" gqv+|:# f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ]lA}5 color = blue, _zDS-e@ width = 3, j(y<oxh "emission" 7D<Aa?cv_l +}m`$B}mJ
|
|