| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* m@`8A Demo for program"RP Fiber Power": thulium-doped fiber laser, /WV7gO&L1 pumped at 790 nm. Across-relaxation process allows for efficient @pI5lh population of theupper laser level. `dMqe\o%! *) !(* *)注释语句 rKHY?{! ]{
BEr* diagram shown: 1,2,3,4,5 !指定输出图表 {*ZY(6^ ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 Ogt]_ ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Kz<@x`0 ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 2-zT$`[]J ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 3lLMu B+ ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 }),w1/#5u8 Bx"7%[ include"Units.inc" !读取“Units.inc”文件中内容 =z?%;4'| nhSb~QqEh include"Tm-silicate.inc" !读取光谱数据 .,~(%#Wl$ p_ Fy>j ; Basic fiberparameters: !定义基本光纤参数 V>64/ L_f := 4 { fiberlength } !光纤长度 z|?R/Gf8 No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 bsxTqJ r_co := 6 um { coreradius } !纤芯半径 iyVB3:M N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 q'oMAM f} FVv8-- ; Parameters of thechannels: !定义光信道 H* ,,^ l_p := 790 nm {pump wavelength } !泵浦光波长790nm Y
$g$x<7 dir_p := forward {pump direction (forward or backward) } !前向泵浦 wdzOFDA P_pump_in := 5 {input pump power } !输入泵浦功率5W '^%~JyU w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um %8aC1x I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 Xd:7"/:r loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 juAMAplf ?::NO Dg l_s := 1940 nm {signal wavelength } !信号光波长1940nm D2YZ9e
w_s := 7 um !信号光的半径 3:"]Rn([P I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 eMOD;{Q?X loss_s := 0 !信号光寄生损耗为0 t3Z_Dp~\ FZd.L6q R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 KPSh#x&I RjJU4q ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 &"_u}I&\ calc ?^'
7+8C*J begin nfb]VN~( global allow all; !声明全局变量 7;.xc{ set_fiber(L_f, No_z_steps, ''); !光纤参数 UH@as add_ring(r_co, N_Tm); }14{2=!Q def_ionsystem(); !光谱数据函数 eLwTaW !C pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 \&V0vN1 signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 DfJ2PX}q signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 , xx6$uZ set_R(signal_fw, 1, R_oc); !设置反射率函数 @RD+xYm finish_fiber(); k<w(i
k1bi end; *IlaM'[* uBg 8h{> ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 {vaaFs show "Outputpowers:" !输出字符串Output powers: j^`X~gE show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) {-9jm%N show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) D/(L Q8p&Ki;i C7T(+Wd!, ; ------------- LW#M@ diagram 1: !输出图表1 LiDvaF:@L! ?wMHS4 "Powers vs.Position" !图表名称 J?)RfK|! Xog/O i x: 0, L_f !命令x: 定义x坐标范围 ~:;3uLs,8 "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 zHB_{(o7 y: 0, 15 !命令y: 定义y坐标范围 Auy".br' y2: 0, 100 !命令y2: 定义第二个y坐标范围 m!XI {F@x frame !frame改变坐标系的设置 !yjo legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) z
`8cOK- hx !平行于x方向网格 mOll5O7VW hy !平行于y方向网格 BOlAm*tFt m:tiY
[c>W f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Itm8b4e9; color = red, !图形颜色 Qx|H1_6 width = 3, !width线条宽度 |wxGpBau "pump" !相应的文本字符串标签 78#!Q.## f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 I"L;L?\S color = blue, TmRxKrRs width = 3, L/}iy} "fw signal" BJjx|VA+ f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 4FeEGySow color = blue, =Je>`{J style = fdashed, UyYfpL"$A" width = 3, ul7o%Hs "bw signal" r >{G`de4 ?4t-caK^u f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 `qpc*enf0 yscale = 2, !第二个y轴的缩放比例 '3tw<k!1{. color = magenta, O0l^*nZ46t width = 3, E+_&HG}a style = fdashed, mxTk+j= "n2 (%, right scale)" qV1O-^&[f= S*W;%J5 f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 5vp|?-\h> yscale = 2, pck >;V color = red, wJ"ev.A) width = 3, 'E]A.3-Mt style = fdashed, </oY4$ l' "n3 (%, right scale)" ,4F,:w `_AM` >_ VC&c)X ; ------------- _."E%|5 diagram 2: !输出图表2 ?qHF}k| V%
axeqs "Variation ofthe Pump Power" kl7A^0Qrz s3t!<9[m x: 0, 10 83;IyvbL "pump inputpower (W)", @x &~~s6
y: 0, 10 f@z*3I; y2: 0, 100 L/r{xS frame >q( 5ir hx `| 9K u hy Y(i?M~3\t legpos 150, 150 Vu]h4S : X-Ycz 5? f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 vZjZb(jlN step = 5, _vrWj<wyf color = blue, i ^|@"+ width = 3, |O (G nsZ "signal output power (W, leftscale)", !相应的文本字符串标签 y4F^|kS) [ finish set_P_in(pump, P_pump_in) qi=3L jxY-u+B f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 !WKk=ysFS yscale = 2, sbla`6Fb step = 5, Y6eEGo"K.+ color = magenta, 'j79GC0 width = 3, rx:lKoOnB "population of level 2 (%, rightscale)", &BgU:R, finish set_P_in(pump, P_pump_in) \Hum }0[ zqGYOm$r f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 XZO<dhZX: yscale = 2, XiG88Kwv step = 5, &&C~@WY,r color = red, lIq~~cv) width = 3, 7Po/_% "population of level 3 (%, rightscale)", L?f qcW{ finish set_P_in(pump, P_pump_in) \Da~p9T& g{a d0.y, dofR)"<p,^ ; ------------- l$`G:%qHj diagram 3: !输出图表3 VRhRwdC LW?2}`+ "Variation ofthe Fiber Length" \>[gl!B_Rr IMR$x(g=
F x: 0.1, 5 N7B}O*; "fiber length(m)", @x g.&\6^)8p y: 0, 10 *]9XDc]{j1 "opticalpowers (W)", @y ^V,@=QL3U frame 2o}8W7y hx HjPH hy EEg O <^'{ G f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Y;PDZbK3 step = 20, 4+,*sn color = blue, =z%s8D2 width = 3, Q,TaJ] "signal output" "U{mMd!9L a!{hC)d* ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 'Sk6U]E~ step = 20, color = red, width = 3,"residual pump" ,dq`EsHg`M 9&[\*{ ! set_L(L_f) {restore the original fiber length } 1r&AB!Z # ~M(pCSJ[ /iTH0@Kw; ; ------------- c{ZqQtfM diagram 4: !输出图表4 6UtG-WHHt LDSbd,GF "TransverseProfiles" ,7/\&X<`B Xek E#?. I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) gB'`I(q5. f61]`@Bk x: 0, 1.4 * r_co /um $Jt8d|UP "radialposition (µm)", @x Y-?51g [u y: 0, 1.2 * I_max *cm^2 a:wJ/ p "intensity (W/ cm²)", @y +# A|Zp< y2: 0, 1.3 * N_Tm y0lL Fe~ frame FkLQBpp(x hx I%C]>ZZh hy I-j(e)P(o_ vsxvHot= f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ei(|5h yscale = 2, .kz(V5 color = gray, 15RI(BN width = 3, !;6W!%t.| maxconnect = 1, S;G"L$&\ "N_dop (right scale)" N2 M?5fF 1j_aH#Fz: f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 @|JPE%T color = red, })Ix.!p maxconnect = 1, !限制图形区域高度,修正为100%的高度 9}IVNZc width = 3, U!3uaz' "pump" sf=%l10Fk# :C}KI) f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 i|::vl color = blue, hPNQGVv maxconnect = 1, PkZf(=-X
width = 3, %`8KG(F^ "signal" #w[q.+A 4C2>0O<^s MV:<w3! ; ------------- e\+~ diagram 5: !输出图表5 |>m# m*{S 98<bF{#0WM "TransitionCross-sections" %m0L!|E !kjr>:)x I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) w7.?zb !N !nqm ;96 x: 1450, 2050 .T
N`p* "wavelength(nm)", @x )U3 H15 y: 0, 0.6 ;NN(CKZ9A "cross-sections(1e-24 m²)", @y 2!"\;/ frame l%Fse&4\ hx ft.}$8vIT hy ;^*+:e 2rE~V.)% f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 _sCJ3ZJ color = red, 0'`8HP width = 3, 8 MACbLY "absorption" V+@%(x@D_ f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 u3v6$CD? color = blue, olQ8s* width = 3, dp%pbn6w "emission" JWm^RQ +H m+#o
|
|