| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* 3 *g>kRMJ Demo for program"RP Fiber Power": thulium-doped fiber laser, 8gIf pumped at 790 nm. Across-relaxation process allows for efficient s+omCr|H;A population of theupper laser level. _`Lv@T. *) !(* *)注释语句 'Edm /+ &N+i3l6` diagram shown: 1,2,3,4,5 !指定输出图表 iCZuE:I1K, ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 $F#eD0| ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 <meQ ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 ~R+,4 ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 s%Y8;D,~+ ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Kn#CIFbBN ;"R1>tw3) include"Units.inc" !读取“Units.inc”文件中内容 /%F}vW(! g##yR/L include"Tm-silicate.inc" !读取光谱数据 rYn)E=FG/ hKjG/g:#G ; Basic fiberparameters: !定义基本光纤参数 9CNeMoA$p: L_f := 4 { fiberlength } !光纤长度 B3';Tcs No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 FdcmA22k* r_co := 6 um { coreradius } !纤芯半径 9!>Ks8'.d N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 C{<dzooz
2m8|0E|@ ; Parameters of thechannels: !定义光信道 E&_q"jJRi l_p := 790 nm {pump wavelength } !泵浦光波长790nm <0h,{28 dir_p := forward {pump direction (forward or backward) } !前向泵浦 #
9@K P_pump_in := 5 {input pump power } !输入泵浦功率5W 3!*qB-d w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um +U^H`\EUr I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 :T9 P9< loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 d"nms\=p t`!@E#VK l_s := 1940 nm {signal wavelength } !信号光波长1940nm Ij{ K\{y w_s := 7 um !信号光的半径 *ujJpJZ2 I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 $E@U-=m loss_s := 0 !信号光寄生损耗为0 ]*&`J4i 86f8b{_e" R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 pH/_C0e`7 ZQ)vvD< ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 v1aE[Q calc bQ`|G(g-d begin K2@],E?e%| global allow all; !声明全局变量 IW$ qP&a set_fiber(L_f, No_z_steps, ''); !光纤参数 9\S,$A{{* add_ring(r_co, N_Tm); 2,^U8/ def_ionsystem(); !光谱数据函数 IA3m.Vxj ^ pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 0qSf7"3f signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 3;<Vv*a"Dm signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 NxGSs_7 set_R(signal_fw, 1, R_oc); !设置反射率函数 3jzmiS] finish_fiber(); JF6=0 end;
m.b}A'GT 6Z>G%yK ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 #J`MR05 show "Outputpowers:" !输出字符串Output powers: 3:mZ1+ show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Dwa.ZY}- show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) =>Q$S ]z#9)i_l3 +d'1 ; ------------- r-'CB diagram 1: !输出图表1 1F]jy
8 \Uy "Powers vs.Position" !图表名称 Fu\!'\6 ,(v=ZeI x: 0, L_f !命令x: 定义x坐标范围 XQI!G_\+C "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ]uZaj?%J< y: 0, 15 !命令y: 定义y坐标范围 lDVw2J'p y2: 0, 100 !命令y2: 定义第二个y坐标范围 3ahbv%y frame !frame改变坐标系的设置 .:9XpKbt legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) R^Y>v5jAe hx !平行于x方向网格 w%uM=YmuT hy !平行于y方向网格 Sh;Z\nj YGsg0I't f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 myqQqVW color = red, !图形颜色 3(
o~|% width = 3, !width线条宽度 D`hg+64} "pump" !相应的文本字符串标签 Rd|M) f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 #p7_\+&5s color = blue, Tr$37suF width = 3, y*vg9`$k "fw signal" 0kxe5*-| f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 f=kt0 color = blue, v%4zP%4Ak[ style = fdashed, R&@NFin width = 3, wCw_aXqq "bw signal" :)j& t>aP +OeoA{-W f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 kB]?95>Wx yscale = 2, !第二个y轴的缩放比例 @s8wYcW color = magenta, #]}]ZE width = 3, }@<Ru style = fdashed, -oB`v' "n2 (%, right scale)" 5$%CRm flS_rY5 f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Ox^VU2K;&. yscale = 2, ofy)}/i color = red, V\P
.uOI width = 3, -5u. Ix3
style = fdashed, (&oT6Ji "n3 (%, right scale)" ~=/.ZUQNX ds:&{~7L<T nV>=n,+s" ; ------------- sUN9E4 diagram 2: !输出图表2 k56*eEc |l673FcJ "Variation ofthe Pump Power" <I.{meDg ^.u
J]k0 x: 0, 10 C sx
EN4 "pump inputpower (W)", @x wd<jh,Y y: 0, 10 C3-I5q(V] y2: 0, 100 \$Aw[
5&t frame 9YVr9BM'K hx =0_((eXwf hy ~09k IO) legpos 150, 150 ucX!6)Op Z1sRLkR^ f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 KYC<*1k step = 5,
dEK bB color = blue, *#; width = 3, an,JV0 "signal output power (W, leftscale)", !相应的文本字符串标签 Oz4yUR finish set_P_in(pump, P_pump_in) T~)zgu%q_ ]:Sb#=,!&! f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 `(VVb@:o yscale = 2, 2PQY+[jx step = 5, ggHz-oNY color = magenta, 3im2
`n width = 3, tN-B`d1 "population of level 2 (%, rightscale)", +9]CGYj finish set_P_in(pump, P_pump_in) Ep8 y jOU1F1 f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 4S*7*ak{ yscale = 2, ydf;g5OZ step = 5, "= >8UR color = red, EBx!q8zz width = 3, K?H(jP2mpM "population of level 3 (%, rightscale)", DP=\FG"}x finish set_P_in(pump, P_pump_in) p^U#1c H;Cv]- w_9[y ; ------------- {!37w[s~ diagram 3: !输出图表3 7!('+x(> eZ;DNZK av "Variation ofthe Fiber Length" #}aBRKZf6 "-A@d&5. x: 0.1, 5 eN-lz_..7 "fiber length(m)", @x $[g8j`or! y: 0, 10 6M X4h "opticalpowers (W)", @y =(Wl'iG frame *}Nh7>d( hx W;ADc2#) hy nWsR;~pK &~sk7iGi f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 y];@ M<<?e step = 20, 66MWOrr color = blue, .R{+Pz D width = 3, ~=9]M.$ "signal output" w$FN(BfA TDY =! ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 (5&l<u"K~ step = 20, color = red, width = 3,"residual pump" -`d(>ok sZYTpZgW4L ! set_L(L_f) {restore the original fiber length } jWJ/gv~ $ "7_qB8\ +e( (! ; ------------- un(fr7NW diagram 4: !输出图表4 jW0aIS2O Ps9YP B- "TransverseProfiles" Uiu9o]n w"?E=RS I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) OvtiFN^s' O>sE~~g]? x: 0, 1.4 * r_co /um V9<CeTl' "radialposition (µm)", @x +d/^0^(D\5 y: 0, 1.2 * I_max *cm^2 iBPx97a "intensity (W/ cm²)", @y hP26 Bb1 y2: 0, 1.3 * N_Tm 8!VFb+ frame }*3#*y " hx ~#V1Gunq hy z{dn 3:G94cp5 f: N_dop(1, x * um,0), !掺杂浓度的径向分布 9Qhk~^ngg yscale = 2, X^ZUm color = gray, } P/
x@N width = 3, :h)A/k_ maxconnect = 1, `8N],X "N_dop (right scale)" *r]Mn~3 f+Da W f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 dI|`"jl# color = red, ?UV^6 maxconnect = 1, !限制图形区域高度,修正为100%的高度 NP5;&}uv*! width = 3, sKuPV "pump" o= N_0. I6,sN9`
K f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 V;SXa|, color = blue, |?
l6S maxconnect = 1, UONW3}- width = 3, ."\&;:ZNv "signal" -(YdK8 a?QDf5Cq w=S7zzL) ; ------------- Ro oem dCM diagram 5: !输出图表5 MX#MDA-4 |`yzH$,F "TransitionCross-sections" mQ]wLPP{1 x#s=eeP1 I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) (6Sf#M .+TriPL x: 1450, 2050 2eh j2T "wavelength(nm)", @x U<lCK!85[ y: 0, 0.6 :g[G&Ds8 "cross-sections(1e-24 m²)", @y $6]7>:8mz frame wc5OK0| hx DG
$._ hy [F<Tl = MJ:>ZRXCE f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 `X7ns? color = red, )!``P?3? width = 3, Aa;s.:? "absorption" H21\6 GY f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 fC4D# color = blue, Z 7M%}V% width = 3, De*Z UN|< "emission" (mJqI)m8 Eb<iR)e H=
|
|