| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* #$>m`r Demo for program"RP Fiber Power": thulium-doped fiber laser, RnkrI~x pumped at 790 nm. Across-relaxation process allows for efficient 0~XZ population of theupper laser level. ZA4vQDW *) !(* *)注释语句 Vz&!N/0i [&
&9F}; diagram shown: 1,2,3,4,5 !指定输出图表 2^7VDqLc ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 i/UHDqZ ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 1e#}+i!a ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 J;g+ ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 'e>0*hF[ ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 wGf SVA-q\ uD''0G\ include"Units.inc" !读取“Units.inc”文件中内容 3 tp'}v 3Ga!) include"Tm-silicate.inc" !读取光谱数据 H?>R#Ds- 8?O6IDeW ; Basic fiberparameters: !定义基本光纤参数 x-/ `c L_f := 4 { fiberlength } !光纤长度 R"=pAO.4l No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 !7lS=D(? r_co := 6 um { coreradius } !纤芯半径 zj^Ys`nl N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 E(oI0*S.5 X)|b_ 3Z ; Parameters of thechannels: !定义光信道 QuJ)WaJkC l_p := 790 nm {pump wavelength } !泵浦光波长790nm ]?`t
spm<t dir_p := forward {pump direction (forward or backward) } !前向泵浦 tPHDnh^n] P_pump_in := 5 {input pump power } !输入泵浦功率5W +idj,J| w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um qffXm`k I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 g3(fhfR'RN loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 !(soMv Q!:J.J l_s := 1940 nm {signal wavelength } !信号光波长1940nm gI
qYIt w_s := 7 um !信号光的半径 I7hE(2!$ I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 [s4lSGh loss_s := 0 !信号光寄生损耗为0 .ns1;8 c6;tbL R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 T^ ^o Lh6G"f(n ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 &C+pen)Z calc /,z4tf begin "3A.x1uQ global allow all; !声明全局变量 !K#Q[Ee set_fiber(L_f, No_z_steps, ''); !光纤参数 Ax4nx!W, add_ring(r_co, N_Tm); eEkFZx def_ionsystem(); !光谱数据函数 Yqy7__vm pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 3EN?{T<yf signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 D}wM$B@S signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 "]81+
D set_R(signal_fw, 1, R_oc); !设置反射率函数 V_?5 cwZ finish_fiber(); z )2h\S end; k1HukGa |"vUC/R2& ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 N*N@wJy:5 show "Outputpowers:" !输出字符串Output powers: @54D<Lj show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) `g&<7~\=A show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) A=/|f$s+ 'Jww}^h1 QXnL(z ; ------------- 'PF?D~ diagram 1: !输出图表1 vd>X4e^j JB~79Lsdz "Powers vs.Position" !图表名称 AXhV#nZt0 .V9/0 x: 0, L_f !命令x: 定义x坐标范围 sXdNlR& "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 A"8`5qa y: 0, 15 !命令y: 定义y坐标范围 #8G(r9 y2: 0, 100 !命令y2: 定义第二个y坐标范围 ~{hcJ:bI frame !frame改变坐标系的设置 JW ;DA E< legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) u;m[, hx !平行于x方向网格 6C>"H hy !平行于y方向网格 5"=qVmT) 1-4iy_d f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 wiXdb[[# color = red, !图形颜色 ?r"'JO.w width = 3, !width线条宽度 S+G!o]&2 "pump" !相应的文本字符串标签 &)@|WLW f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 fJ_d,4 color = blue, M[N$N`9 width = 3, M}E0Msq_o "fw signal" KiU/N$E f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 <\<[J0 color = blue, 3VZeUOxY\W style = fdashed, '`$z!rA width = 3, X(nbfh?n "bw signal" bLyU; \M-}(>Pfk f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 }=CL/JHz yscale = 2, !第二个y轴的缩放比例 T >XnVK color = magenta, u-g2*(ZT width = 3, y%A!|aBu style = fdashed, =c
3;@CO "n2 (%, right scale)" @~v|t{G eHUr!zH: f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 bM[!E 8dF yscale = 2, .}W#YN$ color = red, m%Ah]x; width = 3, B2\R#&X. style = fdashed, x9Veg4Z7 "n3 (%, right scale)" X_yAx)Do
<WN? gPs%v`y)*D ; ------------- +cS%b}O`$ diagram 2: !输出图表2 ?}4 =A&][ ag Za+a "Variation ofthe Pump Power" 0Q^ -d+! (\^| @ x: 0, 10 ^V]DQ%v"I "pump inputpower (W)", @x GRV#f06 y: 0, 10 Y)*5M y2: 0, 100 @Sb 86Ee frame 9aYDi) hx tHlKo0S$0 hy oxkA+}^j8M legpos 150, 150 <i9pJGW ;8z40cD f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 tmM8YN| step = 5, ~ZbEKqni2 color = blue, [C)JI; \ width = 3, ^MJT lRUb "signal output power (W, leftscale)", !相应的文本字符串标签 {k.Dy92 finish set_P_in(pump, P_pump_in) @]$qJFXx M>H4bU( f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 ?M'_L']N[ yscale = 2, .I%p0ds1r step = 5, %YjZF[P color = magenta, q:A{@kFq_ width = 3, `uRf*- "population of level 2 (%, rightscale)", VO"f=gFg finish set_P_in(pump, P_pump_in) Hd)z[6u8eT A#&Q(g\YE f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 tEEeek(! yscale = 2, o(iv=(o step = 5, |~Q`DdkX color = red, b"x[+&%i width = 3, TE+d? "population of level 3 (%, rightscale)", rG7S^,5o finish set_P_in(pump, P_pump_in) WU oGIT' \Kh@P*7 y>+xdD0+ ; ------------- s':fv[% diagram 3: !输出图表3 !_{2\& +QS7F`O "Variation ofthe Fiber Length" Efo,5 E8]PV,#xY x: 0.1, 5 UPtWj8h "fiber length(m)", @x Y XC?q y: 0, 10 ni @Mqb "opticalpowers (W)", @y cZ$!_30N+ frame rTJv>Jjld hx mG,%f"b0 hy J)6A,:wt QW~-+BD f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 \VW&z:/*pZ step = 20, }Ip"j]h color = blue, **I9Nw!IH width = 3, RfPRCIo "signal output" QInow2/u ~i)O^CKq ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 @d5G\1(% step = 20, color = red, width = 3,"residual pump" rVLUT Ydv\a6 ! set_L(L_f) {restore the original fiber length } C9oF*{ Kgi| 7w i?^Cc\gH ; ------------- U'iL|JRF diagram 4: !输出图表4 j\w>}Pc :P$I;YY=A "TransverseProfiles" p{:r4!*L QiU!;!s I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Ck,.4@\tK , WF)GS|7V x: 0, 1.4 * r_co /um "P:kZ=M
Q "radialposition (µm)", @x }`/wj y: 0, 1.2 * I_max *cm^2 .ON+ (
#n "intensity (W/ cm²)", @y *qcL(] Yq y2: 0, 1.3 * N_Tm C7=Q!UK`\ frame +~ro*{3 hx f[)_=T+ hy ^
K8JE, #80*3vi~F f: N_dop(1, x * um,0), !掺杂浓度的径向分布 *"E?n>b yscale = 2, &k3'UN!&Ix color = gray, I>b-w;cC width = 3, )2X ng_, maxconnect = 1, "AjtNL5 "N_dop (right scale)" DI=Nqa)r t;+6>sTu f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 NEQcEUd? color = red, lj"L Q(^ maxconnect = 1, !限制图形区域高度,修正为100%的高度 Fi{~UOZg width = 3, xh>/bU!> "pump" ;??wLNdf- sY,!Ir`/` f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 hoASrj{s color = blue, n5_r
3{ maxconnect = 1, JH!qGV1 width = 3, ;%
*e}w0 "signal" v>Il# 9/w'4bd <p(&8P ; ------------- :=04_5 z diagram 5: !输出图表5 zY8"\ZB lh*m( "TransitionCross-sections" RVfRGc^lK $4kc i@. I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) G#'3bxI{f+ B$7m@|p! x: 1450, 2050 c1/Gyq "wavelength(nm)", @x uAyj##H y: 0, 0.6 :o$ R@l "cross-sections(1e-24 m²)", @y H<`[,t frame <W,k$|w hx #ITx[X89| hy vnz.81OR eEJ8j_G f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 SPsq][5eR color = red, .]Z M2 width = 3, (?R "absorption" ZP?k |sEH f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 9G_=)8sOV color = blue, 1L'[DKb' width = 3, oO @6c % "emission" ^iubqtT] S^)r,cC
|
|