首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> OptiSystem,PhotonDesign,Rsoft -> RP Fiber Power仿真设计掺铥光纤激光器代码详解 [点此返回论坛查看本帖完整版本] [打印本页]

小火龙果 2020-05-28 16:28

RP Fiber Power仿真设计掺铥光纤激光器代码详解

(* =)2sehU/  
Demo for program"RP Fiber Power": thulium-doped fiber laser, (eG9b pqr  
pumped at 790 nm. Across-relaxation process allows for efficient A<1:vV  
population of theupper laser level. 'T '&OA  
*)            !(*  *)注释语句 h6yXW! 8  
Y`O"+Jr  
diagram shown: 1,2,3,4,5  !指定输出图表 7lC );  
; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 /uh?F  
; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 'V*ixK8R0  
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 F7FUoew<  
; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 MM+xm{4l  
; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面  ?^8CD.|  
,C=Lu9  
include"Units.inc"         !读取“Units.inc”文件中内容 AM[#AZv  
2/T4.[`t  
include"Tm-silicate.inc"    !读取光谱数据 C\Y%FTS:  
??'>kQ4  
; Basic fiberparameters:    !定义基本光纤参数 S\,~6]^T  
L_f := 4 { fiberlength }      !光纤长度 o~aK[   
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Xscm>.di  
r_co := 6 um { coreradius }                !纤芯半径 3U_-sMOB|  
N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 xg|\\i  
k3pY3TA@w+  
; Parameters of thechannels:                !定义光信道 ut<0-  
l_p := 790 nm {pump wavelength }                !泵浦光波长790nm jHU5>Gt-}  
dir_p := forward {pump direction (forward or backward) }   !前向泵浦 N=JZtf/i  
P_pump_in := 5 {input pump power }                    !输入泵浦功率5W oPqWL9]  
w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um p4Wy2.&Q  
I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 ~36)3W[4  
loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 l/wdu(  
?!uj8&yyf  
l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm )1EF7.|  
w_s := 7 um                          !信号光的半径 }o'WR'LX  
I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 ~]d3 f  
loss_s := 0                            !信号光寄生损耗为0 Epl\(  
]c Or$O*  
R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 9{A[n}  
U= Gw(  
; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ']x`d  
calc r?:zKj8/u  
  begin (=T%eJ61  
    global allow all;                   !声明全局变量 z;V Ai=m q  
    set_fiber(L_f, No_z_steps, '');        !光纤参数 nx2iEXsa  
    add_ring(r_co, N_Tm); 'l&),]|$)  
    def_ionsystem();              !光谱数据函数 hHu?%f*  
    pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 !"G|y4O  
    signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 e hgUp =  
    signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 ~!PaBS3A  
    set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 [myIcLp^aP  
    finish_fiber();                                   _#SCjFz  
  end; +s`HTf  
~"Q24I  
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 77]6_  
show "Outputpowers:"                                   !输出字符串Output powers: UhI T!x  
show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) 5Nt40)E}sN  
show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 68!W~%?pR  
.8v[ss6:  
?k}"g$JFn  
; ------------- S5,y!K]C~  
diagram 1:                   !输出图表1 %mO.ur>21  
=!~6RwwwY  
"Powers vs.Position"          !图表名称 C{5bG=Sg~  
) ]y^RrD  
x: 0, L_f                      !命令x: 定义x坐标范围 8F;r$i2  
"position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 fx"~WeVcO  
y: 0, 15                      !命令y: 定义y坐标范围 Yu`KHvur  
y2: 0, 100                    !命令y2: 定义第二个y坐标范围 8iIz!l%O  
frame          !frame改变坐标系的设置 4e0/Q!o,  
legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) bMrR  
hx             !平行于x方向网格 }(yX$ 3?`  
hy              !平行于y方向网格 hd'JXKMy  
D2@J4;UW*W  
f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Cb1fTl%  
  color = red,  !图形颜色 ]E:P-xTwaI  
  width = 3,   !width线条宽度 [8Yoz1(smA  
  "pump"       !相应的文本字符串标签  g%.;ZlK  
f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 0C,2gcq  
  color = blue,     0&W*U{0F\  
  width = 3, 0o>l+c  
  "fw signal" c:@lR/oe"  
f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 k7R}]hq]""  
  color = blue, U.kTdNSp  
  style = fdashed, 9[9 ZI1*s  
  width = 3, vz *'1ugaA  
  "bw signal" &l<~Xd#  
z+=wql*Eo  
f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ]i@WZ(  
  yscale = 2,            !第二个y轴的缩放比例 Wb;x eG  
  color = magenta, q ?qpUPzD  
  width = 3, Yqz B="  
  style = fdashed, 50?5xSEM0_  
  "n2 (%, right scale)" 4b}94e@(N  
$yi[wwf 4  
f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 m|%L[h1  
  yscale = 2, 5{.g~3"  
  color = red, ?%]?#4bkc  
  width = 3, 8euh]+  
  style = fdashed, t#eTn";  
  "n3 (%, right scale)" WNa#X]*E)  
A $GiO  
>+3tOv3:  
; ------------- Bt?.8H6Y  
diagram 2:                    !输出图表2 Y;B#_}yF  
fN-y8  
"Variation ofthe Pump Power" q]}1/JZS  
Qt VZ)777  
x: 0, 10 KD*q|?Z  
"pump inputpower (W)", @x UomO^P  
y: 0, 10 pRTdP/(OQ  
y2: 0, 100 &# w~S~  
frame /Sn>{ &  
hx l}aJRG6U  
hy z"*$ .  
legpos 150, 150 0D=7Mef  
OZc.Rtgc  
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 I~f8+DE)  
  step = 5, a=%QckR*  
  color = blue, f|cF [&wo  
  width = 3, d$O)k+j  
  "signal output power (W, leftscale)",     !相应的文本字符串标签 BGSqfr1F  
  finish set_P_in(pump, P_pump_in) 2TZ+R7B?  
'aAay*1  
f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 Q&;d7A.@  
  yscale = 2, 8>(DQ"h  
  step = 5, ~p'DPg4  
  color = magenta, h5>38Kd  
  width = 3, aN}l&4d  
  "population of level 2 (%, rightscale)", FE[{*8  
  finish set_P_in(pump, P_pump_in) l*0`{R  
J@4,@+X  
f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 ="Edt+a)t  
  yscale = 2, @m99xF\e  
  step = 5, VJ'bS9/T  
  color = red, G1`H H&  
  width = 3, Pp9nilb_(  
  "population of level 3 (%, rightscale)", Pqc +pE  
  finish set_P_in(pump, P_pump_in) (9X>E+0E  
{+.ai8  
SyWLPh  
; ------------- x.:k0;%Q  
diagram 3:                         !输出图表3 (q|EC;   
Db5y";T  
"Variation ofthe Fiber Length" -Z/'kYj?U  
oO 8opS7F  
x: 0.1, 5 $[NC$*N7  
"fiber length(m)", @x i( l'f#  
y: 0, 10 `Y5{opG7-  
"opticalpowers (W)", @y mEM/}]2  
frame M^$liS.D  
hx z$q:Y g  
hy Ue8k9%qV  
_?IP}}jA:  
f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 CaV>\E)  
  step = 20,             w&E*{{otJ  
  color = blue, @jp}WwC/  
  width = 3, = IkG;gg  
  "signal output" ,7{}}l  
bR*/d-v^  
;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 mI[$c"!BD  
   step = 20, color = red, width = 3,"residual pump" H |K}m,g  
(fYrb# ]!y  
! set_L(L_f) {restore the original fiber length } Q:+cLl&;hB  
6}>:sr  
\B<A.,i4  
; ------------- vMQvq9T}  
diagram 4:                                  !输出图表4 ny,a5zEnF  
f/VrenZ_  
"TransverseProfiles" 5 1\N+  
9u->.O: p  
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) =?, dX  
)ZI9n7  
x: 0, 1.4 * r_co /um -}W `  
"radialposition (µm)", @x ZMVQo -=  
y: 0, 1.2 * I_max *cm^2 iQI$Y]Y7  
"intensity (W/ cm&sup2;)", @y b[MdA|C%j  
y2: 0, 1.3 * N_Tm ;~>E^0M  
frame KP[H&4eoC  
hx eZr}xo@9  
hy MDo4{7  
GG}(*pOr  
f: N_dop(1, x * um,0),      !掺杂浓度的径向分布  EK:s#  
  yscale = 2, #{t?[JUn  
  color = gray, P 3CzX48^  
  width = 3, njk1x  
  maxconnect = 1, U;_b4S:  
  "N_dop (right scale)" A|D]e)/6+B  
LD~s@}yH>  
f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 aC&ZV}8of  
  color = red, .kGlUb?^Q  
  maxconnect = 1,           !限制图形区域高度,修正为100%的高度 @"`{gdB$  
  width = 3, 3]X9 z  
  "pump" 2|1s!Q  
&d`z|Gx9  
f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 MWHGB")J  
  color = blue, B3P#p^  
  maxconnect = 1, SQZUkKfb  
  width = 3, #()u=)  
  "signal" l[2 d{r  
]vPa A  
b$24${*'  
; ------------- eDm~B (G$  
diagram 5:                                  !输出图表5 vlD!YNy  
w :w  
"TransitionCross-sections" g* NKY`,  
Ua@rp3fr  
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) }^Unx W  
R7L:U+*V"  
x: 1450, 2050 >t/P^fr_F  
"wavelength(nm)", @x Kzs]+Cl  
y: 0, 0.6 pLFJ"3IJB  
"cross-sections(1e-24 m&sup2;)", @y lD8&*5tDmP  
frame da[u@eNrnX  
hx Z(S=2r.  
hy +G!N@O  
!*0\Yi,6  
f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 zs@#.OEH  
  color = red, 2 NgEzY 5  
  width = 3, 5!55v  
  "absorption" s7FJJTn  
f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 (;V=A4F-D  
  color = blue, b"ypS7 _  
  width = 3, ,_ XDCu @  
  "emission" |EJ&s393&  
:%dIX}F  
lileisgsz 2021-09-28 09:47
感谢,视频上有点看不清楚
查看本帖完整版本: [-- RP Fiber Power仿真设计掺铥光纤激光器代码详解 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计