| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* Z]~) ->=} Demo for program"RP Fiber Power": thulium-doped fiber laser, ?hC,49 pumped at 790 nm. Across-relaxation process allows for efficient -- >q=hlA population of theupper laser level. 9Sey&x *) !(* *)注释语句 |Eyn0\OA cFD3 diagram shown: 1,2,3,4,5 !指定输出图表 l('@~-Zy ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 EvP\;7B ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 \rpXG9 ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 SSQB1c ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 0s$;3qE ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 `=Z3X(Kc wU}%]FqtZ= include"Units.inc" !读取“Units.inc”文件中内容 5+DId7d'n <jAn~=Uq[, include"Tm-silicate.inc" !读取光谱数据 saa3BuV 6 %lK/2- ; Basic fiberparameters: !定义基本光纤参数 Q"vhl2RX L_f := 4 { fiberlength } !光纤长度 ~T^,5Tz1j No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 iSP}kM} r_co := 6 um { coreradius } !纤芯半径 <B&vfKO^h N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ,f@\Fs~n ]N;\AXZ7 ; Parameters of thechannels: !定义光信道 (Q?@LzCjy l_p := 790 nm {pump wavelength } !泵浦光波长790nm dW5@Z-9 dir_p := forward {pump direction (forward or backward) } !前向泵浦 j 06mky P_pump_in := 5 {input pump power } !输入泵浦功率5W Y*QoD9<T?; w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um J#?`l, I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 9;7|MPbR loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 Z mc" Di"Tv<RlQ l_s := 1940 nm {signal wavelength } !信号光波长1940nm ]3Y J a w_s := 7 um !信号光的半径 .<zN/&MXf I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 &_$0lIDQ loss_s := 0 !信号光寄生损耗为0 eH]9"^>
o Nu;?})tF R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 )^`V{iD Sby(?yg ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 0N87G}Xu calc _)S['[ begin w9w=2 * global allow all; !声明全局变量 X #>:9 set_fiber(L_f, No_z_steps, ''); !光纤参数 YSB~04 add_ring(r_co, N_Tm); 5AK@e|G$w def_ionsystem(); !光谱数据函数
^o87qr0g] pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 d{Cg3v` Rd signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 7J;\&q' signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 RT.
%\))) set_R(signal_fw, 1, R_oc); !设置反射率函数 \iRmGvT finish_fiber(); 7<ZGNxZ~ end; D(WdI 2~l +2.. ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 tIT/HG_o show "Outputpowers:" !输出字符串Output powers: Urz9S3#\ show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) fcTg/EXn show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) GOsOFs "I ;efF]") VGf&'nL@, ; ------------- }` YtXD-o diagram 1: !输出图表1 mX%T"_^ T/PmT:Qg` "Powers vs.Position" !图表名称 zZW5M^z8 \fsNI T/ x: 0, L_f !命令x: 定义x坐标范围 <@$+uZt+ "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 vaLP_V y: 0, 15 !命令y: 定义y坐标范围 A%cJ5dF8~ y2: 0, 100 !命令y2: 定义第二个y坐标范围 >0UY,2d frame !frame改变坐标系的设置 l{gR6U{e legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) I7\T :Q[ hx !平行于x方向网格 :PK2!
0nK hy !平行于y方向网格 q|}O-A*wa Y!`pF f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 `-.6;T}2U color = red, !图形颜色 3+\Zom4 width = 3, !width线条宽度 UIkO_/} "pump" !相应的文本字符串标签 *'*,mfk[ f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 8!b>[Nsc color = blue, /
*/"gz% width = 3, -Q/wW4dE= "fw signal" ma xpR>7`j f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 v
8EI color = blue, /#z"c]# style = fdashed, C[';B)a width = 3, 9{}"tk5$h "bw signal" K_n
GZ/`[ KF1Zy; f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 iaJLIr l yscale = 2, !第二个y轴的缩放比例 LM(r3sonb color = magenta, 4:Oq(e_( width = 3, ,|GjrT{vf style = fdashed, +^jm_+ "n2 (%, right scale)" ^ p7z3ng oVr:ZwkG3 f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 >X*G6p yscale = 2, |S~$IFN4 color = red, 3ZN\F width = 3, x:Q$1&3N style = fdashed, 6b%IPbb "n3 (%, right scale)" }]M'f:%b )w5!'W4Z8 Nobu=
Z ; ------------- *8+HQ[[# diagram 2: !输出图表2 q{%~(A5*H E,dUO; "Variation ofthe Pump Power" t>OEzUd9 0176 x: 0, 10 Mnk-"d "pump inputpower (W)", @x b@Dt]6_UL y: 0, 10 >K&chg@Hv y2: 0, 100 fq4uiFi< frame *VHWvj hx ^QjkZ^<dD hy ;at1|E* legpos 150, 150 9KB}?~Nx4 Z4:^#98c. f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 R+t]]n6# step = 5, [c -|`d^ color = blue, &*E! %57 width = 3, +J~%z*A "signal output power (W, leftscale)", !相应的文本字符串标签 MIyT9",Pl finish set_P_in(pump, P_pump_in) EiaP1o "Bwmq9Jq f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 LitdO>%#2 yscale = 2, H |7XfM step = 5, 6tjV^sjs color = magenta, WgG$ r width = 3, {LVA_7@ "population of level 2 (%, rightscale)", @h_ bXo finish set_P_in(pump, P_pump_in) @nMVs6 wW8[t8%43 f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 s|:1z"q yscale = 2, x%O6/rl step = 5, c10$5V&@ color = red, /2hRLyeAZ width = 3, ZR-64G=L, "population of level 3 (%, rightscale)", X h}D_c finish set_P_in(pump, P_pump_in) #0Uz1[ -"{g kjuv )FmIL(vu ; ------------- 'x<oILOG diagram 3: !输出图表3 -j2y#aP k4!_(X%8 "Variation ofthe Fiber Length" e ky1} l!KPgRw x: 0.1, 5 [k(b<' "fiber length(m)", @x qJf\,7mi y: 0, 10 Vp0_R9oQ "opticalpowers (W)", @y fLd2{jI, frame !*HJBZ]q hx r b\t0tg hy ~t/i0pKq. 1c429&- f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 KZ%us 6 step = 20, U 8p %MFD color = blue, IbJl/N%o width = 3, '-J<ib
t "signal output" _d!o,=} C@Go]*c ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 nHH
FHnFf step = 20, color = red, width = 3,"residual pump" h^qZi@L : vx<m_ ! set_L(L_f) {restore the original fiber length } [~RO9=;L &l!T2PX! _Gaem"k| ; ------------- ?Yf
v^DQ5 diagram 4: !输出图表4 Ewq@>$_! cDzb}W*UM "TransverseProfiles" '1xhP}'3) 'RF`XX I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) -:"KFc8A q8-hbWNm4 x: 0, 1.4 * r_co /um -Ah&|!/ "radialposition (µm)", @x dKC*QHU y: 0, 1.2 * I_max *cm^2 p >ua{}!L "intensity (W/ cm²)", @y vD:J!|hs( y2: 0, 1.3 * N_Tm 4[JF.O6} frame %.]#3tW hx tPN CdA hy j;V\~[I^u ,bIJW]h0 f: N_dop(1, x * um,0), !掺杂浓度的径向分布 <|?)^;R5! yscale = 2, aaw[ia_E L color = gray, bu <d>XR width = 3, sQ^t8Y9 maxconnect = 1, E{e "N_dop (right scale)" g6P^ JW}. >;Vfs{Z(q f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 +kEM%z color = red, :).NA
] maxconnect = 1, !限制图形区域高度,修正为100%的高度 <6Y;VH^_ width = 3, #Ha"rr46p "pump" ={
-kQq @9n|5.i f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 T0"nzukd color = blue, E8"&gblg maxconnect = 1, j[FB*L1!D width = 3, 2#3`[+g<n "signal" c}|.U ]B3+&g 1%R${Qhr ; ------------- M*D_pn& diagram 5: !输出图表5 |2n*Ds' (VI(Nv:o@ "TransitionCross-sections" ZI qXkD w+)wrJTtm I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) UBM#~~sM 3D!7,@&>3 x: 1450, 2050 3)LS#= "wavelength(nm)", @x 4F0w+wJD y: 0, 0.6 (Cq 38~mR "cross-sections(1e-24 m²)", @y D|m0Vj b frame V9}\0joM hx `Npo|.?= hy ;-Os~81o? +v5f-CBu f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 =54D#,[B color = red, ZsXw]Wa width = 3, s_RK x)w@ "absorption" "DGap*=J
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 E'D16Rhp color = blue,
Rx"+i0 width = 3, DbB<8$ "emission" ~"vS$>+ z;e@m2.IM
|
|