| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* +pPfvE` Demo for program"RP Fiber Power": thulium-doped fiber laser, A^ofs*"Y pumped at 790 nm. Across-relaxation process allows for efficient )x+P9| population of theupper laser level. 'Zs3b4n8 *) !(* *)注释语句 .0YcB WD55( diagram shown: 1,2,3,4,5 !指定输出图表 =(+]ee!Ti ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 A(_HMqA] ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 {p.^E5& ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 3n,jrX75u ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 qv^P ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 9(3]t}J5
d xkC M*5: include"Units.inc" !读取“Units.inc”文件中内容 8WE@ X)e en>n\;U include"Tm-silicate.inc" !读取光谱数据 IClw3^\l a,36FF~& ; Basic fiberparameters: !定义基本光纤参数 U&i#cF L_f := 4 { fiberlength } !光纤长度 oam$9 q No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 zLgc j(; r_co := 6 um { coreradius } !纤芯半径 $DXO7;# N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 0K'{w]Q 5dGfO:Dy_ ; Parameters of thechannels: !定义光信道 NH;e|8 l_p := 790 nm {pump wavelength } !泵浦光波长790nm &gJ1*"$9 dir_p := forward {pump direction (forward or backward) } !前向泵浦 r+8)<Xt+p P_pump_in := 5 {input pump power } !输入泵浦功率5W egK~w8`W% w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um !Q WNHL I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 jzJQ/ZFS loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 Iprt
ZqiL SwsJ<Dq^z l_s := 1940 nm {signal wavelength } !信号光波长1940nm ~s-bA#0S w_s := 7 um !信号光的半径 ht*N[Pi4; I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ftvu69f
loss_s := 0 !信号光寄生损耗为0 eL>wKu:r tm/=Oc1p R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 8 :WN@ vf zC2 ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 4[i 3ckFT, calc ^KdT,^6T begin v4Wq0>o global allow all; !声明全局变量 &\I<j\F2/ set_fiber(L_f, No_z_steps, ''); !光纤参数 \6 1H(, add_ring(r_co, N_Tm); <THwl/a def_ionsystem(); !光谱数据函数 +m]-) pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 o{>4PZ}=g signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 #1%ahPhR+ signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 }W@refS set_R(signal_fw, 1, R_oc); !设置反射率函数 8nng^ finish_fiber(); /lbj!\~ end; T ay226 tmOy"mq67 ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Y(t/=3c[ show "Outputpowers:" !输出字符串Output powers: "f8,9@ show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) KTt+}-vP^ show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 3b\s;! ]h~F%
IqV" 4 ; ------------- k>F!S`a&m diagram 1: !输出图表1 CcW3o"=4 YzQ(\._s "Powers vs.Position" !图表名称 9+MW13? %19~9Tw x: 0, L_f !命令x: 定义x坐标范围 %f'=9pit "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 qtdkK LT y: 0, 15 !命令y: 定义y坐标范围 t{yj`Vg y2: 0, 100 !命令y2: 定义第二个y坐标范围 b1>]?. frame !frame改变坐标系的设置 o2B|r`R legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) oexTz[ hx !平行于x方向网格 @54$IhhT~ hy !平行于y方向网格 b+q'xnA=> 8G3 Z,8P4( f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 -<k)|]8 color = red, !图形颜色 xI<B)6D;f width = 3, !width线条宽度 sxA]o| "pump" !相应的文本字符串标签 cLp_\\ f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 utRO?]%d
! color = blue, Zyr|J!VF width = 3, cWyf04-? "fw signal" `q\F C[W f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 8\9W:D@"x color = blue, 7FkiT style = fdashed, VRgckh
m width = 3,
Ip`1Wv_ "bw signal" 7XT(n v wl%ysM|x f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 %
>a
/m.$ yscale = 2, !第二个y轴的缩放比例 Ym"^Ds} color = magenta, jl}!UG width = 3, *;Mc X style = fdashed, *g
%bdO "n2 (%, right scale)" !~RK2d _VjaTw8iM f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 @YRy)+ yscale = 2, gx^_bHh color = red, cAGM|% width = 3, 6HJsIeQ style = fdashed, L4T\mP7D7* "n3 (%, right scale)" Jw}&[ nC
!NZ Cq7 uy ; ------------- 1c@S[y diagram 2: !输出图表2 !5h-$; zt9A-%
\R "Variation ofthe Pump Power" UroC8Tm }@jJv|| x: 0, 10 Z_dL@\#| "pump inputpower (W)", @x 6:8Nz y: 0, 10 Vv5T(~ y2: 0, 100 6<
-Cpc frame Avyer/{ hx XYD-5pG hy ~iiDy;" legpos 150, 150 ;5$ GJu( 8[t*VIXI f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 q9VBK(,X step = 5, N}[!QE color = blue, A.7lo width = 3, ki2`gLK "signal output power (W, leftscale)", !相应的文本字符串标签 +\dKe[j{g finish set_P_in(pump, P_pump_in) \+/ciPzA- !a\HdQ f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 sK9RViqF\ yscale = 2, i4WHjeo\ step = 5, _
M B/p color = magenta, #u+qV!4 width = 3, 'qde#[VB "population of level 2 (%, rightscale)", -vc$I=b; finish set_P_in(pump, P_pump_in) 9C Ki$L m:~y:. f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 5 A5t yscale = 2, I1s= = step = 5, #h9Gl@| color = red, vF~q ".imC width = 3, &w`Ho)P "population of level 3 (%, rightscale)", O8v9tGZoh finish set_P_in(pump, P_pump_in) 7B5b
+ XhWo~zh" 1=9GV+`n ; ------------- S1~K.<B diagram 3: !输出图表3 ypemp=+(r p/7'r "Variation ofthe Fiber Length" +eKLwM @;y@Hf'Jv x: 0.1, 5 XDyo=A] "fiber length(m)", @x UQYHR+ y: 0, 10 aMkuyqPf{ "opticalpowers (W)", @y xI#rnx* frame ei=u$S. hx 3,*A VcQA hy 4m=0e aTvLQ@MQ f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ZWjje6 step = 20, >o&%via} color = blue, 7i02M~*uS width = 3, L*4=b
(3 "signal output" y@2"[fo3~ BXxJra/V ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 q&NXF( step = 20, color = red, width = 3,"residual pump" dN:^RCFzS QGGBI Ku
! set_L(L_f) {restore the original fiber length } =,qY\@fq -'WR9M?fq z-"P raP ; ------------- #(a ;w diagram 4: !输出图表4 s,/C^E =eDC{/K "TransverseProfiles" *r9D+}Y(4 k{lX K\zN I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) n? =O@yq A5 4u} x: 0, 1.4 * r_co /um Y<N#{)Q "radialposition (µm)", @x 8-kR {9r y: 0, 1.2 * I_max *cm^2 !B9Yw/Ba "intensity (W/ cm²)", @y )7P>Hj y2: 0, 1.3 * N_Tm < %<nh`D frame TC=>De2; hx E6T=lwOZ hy ^Mhh2v ]z=dRq f: N_dop(1, x * um,0), !掺杂浓度的径向分布 K9nW"0> yscale = 2, HB.:/5\ color = gray, sE{5&aCSR width = 3, ~rXLb: maxconnect = 1, NQiu>Sg "N_dop (right scale)" qkC{IBN92 .]<gm9l f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 UxMei color = red, sdd%u~4,X maxconnect = 1, !限制图形区域高度,修正为100%的高度 qzZ;{>_f
width = 3, }#=t%uZ/ "pump" ku>Bxau4> W!=ur,F+ f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 v=&xiw | |