| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* W!g
, Demo for program"RP Fiber Power": thulium-doped fiber laser, ^VQiq7 xm pumped at 790 nm. Across-relaxation process allows for efficient 8cHZBM7' population of theupper laser level. "F^EfpcJ{9 *) !(* *)注释语句 IKt9=Tx p w,.*N3P diagram shown: 1,2,3,4,5 !指定输出图表 Aq-v3$XL ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 shD$,!
k ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 b$BUo8O} ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 cWi2Sls ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 ; -3M ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 aaBBI S WJ%b9{< include"Units.inc" !读取“Units.inc”文件中内容 N4Ym[l -Bc.<pFqp include"Tm-silicate.inc" !读取光谱数据 [4gv_g *m;L.r`5[ ; Basic fiberparameters: !定义基本光纤参数 =J:~AD# L_f := 4 { fiberlength } !光纤长度 4P.ry|2 No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 $]_=B Jyu r_co := 6 um { coreradius } !纤芯半径 m+L:\mvA N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 )}EwEM ,Vogo5~X ; Parameters of thechannels: !定义光信道 "/q6E l_p := 790 nm {pump wavelength } !泵浦光波长790nm %Z.!Bm: dir_p := forward {pump direction (forward or backward) } !前向泵浦 >+1bTt/-F P_pump_in := 5 {input pump power } !输入泵浦功率5W vO\CPb
%/ w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um @8 pRIS"V I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 SXhJz=h loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 vt1!|2{
h i}Y:o} l_s := 1940 nm {signal wavelength } !信号光波长1940nm $HaM,
Oh;i w_s := 7 um !信号光的半径 ]$7|1-&Y I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 -+z^{*\;N loss_s := 0 !信号光寄生损耗为0 (*p |Kzu n9#@
e}r R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 Q<M>+U;t )t|M)z J ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 =lzjMRX(? calc %rf<YZ.\ begin ~ >6(@~6 global allow all; !声明全局变量 !$O +M# set_fiber(L_f, No_z_steps, ''); !光纤参数 8r~4iVwg add_ring(r_co, N_Tm); 1(-)$m8} def_ionsystem(); !光谱数据函数 J~~WV<6 pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 rTx]%{ signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 oRCj]9I$ signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 I!{5*~ 3 set_R(signal_fw, 1, R_oc); !设置反射率函数 +Ix;~ finish_fiber(); s01n[jQ end; (*#S%4(YX J"|o g|Tz ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 &n['#7 <(! show "Outputpowers:" !输出字符串Output powers: lLnD%*03 show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) IF<jq\M show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) H=*;3gM,' O5E \#*<K ,}J(& ; ------------- \h :$q E7 diagram 1: !输出图表1 o_{-X 1w JVN0];IL} "Powers vs.Position" !图表名称 qg|SBQ?6 BeBa4s x: 0, L_f !命令x: 定义x坐标范围 O}2;>eH "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 Mu TlN y: 0, 15 !命令y: 定义y坐标范围 ) !3sB{H y2: 0, 100 !命令y2: 定义第二个y坐标范围 'v?Z~"w= frame !frame改变坐标系的设置 3d[fP#NY7 legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) +dlN^P647 hx !平行于x方向网格 <&B)i\j8=b hy !平行于y方向网格 &S/KR$^ % h^cM#L^B f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 {ymD.vf=9+ color = red, !图形颜色 J#MUtpPdQ width = 3, !width线条宽度 $vx]\`
^ "pump" !相应的文本字符串标签 af.yC[ f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 86oa>#opU color = blue, ZPRkk?M}. width = 3, %R." "fw signal" Z!DGCw f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 EP,lT.u3 color = blue, Db@$' style = fdashed, |BN^5mqP6 width = 3, .O@T#0&=_ "bw signal" 4 1q|R[js! ]U82A**n f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 4'[/gMUkw yscale = 2, !第二个y轴的缩放比例 l%L..WCT] color = magenta, :A"GOc, width = 3, 'Y`or14E style = fdashed, /d*d'3{c "n2 (%, right scale)" ,Tjc\;~% OF-$* f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 "=@X>jUc yscale = 2, ^-Bx zOp color = red, q-}qrg width = 3, {W,&jC style = fdashed, r1ao=N "n3 (%, right scale)" ?cF`T/z]" bL-+ Dn~c ; ------------- J#ujI e diagram 2: !输出图表2 U4M}E h8 HHzAmHt "Variation ofthe Pump Power" vq/3a b1\.hi x: 0, 10 SJ8Ax_9{q "pump inputpower (W)", @x ,v ,#f
. y: 0, 10 05hjC y2: 0, 100 X;'H@GU0 frame (ZSd7qH" hx ip8%9fG\> hy wwaw|$ legpos 150, 150 &L`^\B]k| :8=7)cW f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 P.aN4 9`= step = 5, #83`T&Xw* color = blue, }JI@f14 width = 3, H< 51dJn~ "signal output power (W, leftscale)", !相应的文本字符串标签 %[B^b)2 finish set_P_in(pump, P_pump_in) 5v5)vv.kd Sq:,6bcG f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 5Q7Z$A1a
9 yscale = 2, [3 D*DyQt step = 5, M47t(9krV color = magenta, 4]G J+a width = 3, l$Y*ii "population of level 2 (%, rightscale)",
w#}[=jy finish set_P_in(pump, P_pump_in) duQ,6 u43W.4H13 f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 !{q_Q ! yscale = 2, m)Ta5w^ step = 5, =aB c.PJ^ color = red, qBF6LhR width = 3, &$yxAqdab "population of level 3 (%, rightscale)", Q%r KKOX8 finish set_P_in(pump, P_pump_in) Lo,uH`qU 3FY87R 45Hbg ; ------------- tJ$gH; diagram 3: !输出图表3 %\^VxM q?y-s "Variation ofthe Fiber Length" ;"B@QPX F/
o }5H x: 0.1, 5 r(j :C%?}C "fiber length(m)", @x AcP d(Pc y: 0, 10 \&/V p` "opticalpowers (W)", @y <c% frame @)XR hx
SwE bVwB hy C <Pd_& (}m2} f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响
XFSHl[uS1 step = 20, =O%'qUj`q color = blue, IFsh"i
width = 3, a(IUAh*mO "signal output" @d|3c7` A Gv&%cq1 ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 dWTc3@xd step = 20, color = red, width = 3,"residual pump" J4%"38l `ztp u
~? ! set_L(L_f) {restore the original fiber length } `{%ImXQF @4G{L8Q} } `Cc-X7 ; ------------- 5[LDG/{Tys diagram 4: !输出图表4 a$K6b5`>Rs MzMVs3w| "TransverseProfiles" +,]_TxL|C "m>BE I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) MFn\[J`Ra ioBYxbY` x: 0, 1.4 * r_co /um {ub'
"radialposition (µm)", @x .On3ZN y: 0, 1.2 * I_max *cm^2 !Qq~lAJO; "intensity (W/ cm²)", @y ;#L]7ZY9:- y2: 0, 1.3 * N_Tm Vkfc&+ frame &o]fBdn hx O{p7I& hy 3N?"s1U }Te+Rv7{E f: N_dop(1, x * um,0), !掺杂浓度的径向分布 .P#t"oW} yscale = 2, ]?T,J+S color = gray, rgo!t028^ width = 3, wbB\~*Z) maxconnect = 1, +~EnrrT+W "N_dop (right scale)" c*r@QmB: r 6&+pSA> f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 %%9T-+T color = red, H2'djZ maxconnect = 1, !限制图形区域高度,修正为100%的高度 Y() ZM width = 3, =zR9^k "pump" @~&|BvK% \ liBFx6\"S f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 GL _hRu color = blue, wlQ
@3RN> maxconnect = 1, 85q!FpuH width = 3, Y.q$"lm7k "signal" !$/P8T``M xt6%[) v%kl*K`* ; ------------- e5D\m g) diagram 5: !输出图表5 O;$}j:;KF 1)5/a5 "TransitionCross-sections" H
vHy{S4 b'I@TLE') I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) J3XG?'
} @YVla!5O@ x: 1450, 2050 &UVqFo "wavelength(nm)", @x N/[!$B0H@ y: 0, 0.6 zDBm^ s "cross-sections(1e-24 m²)", @y ps^["3e frame >%5GMx>m hx If8Lt}- hy .$1S-+(kV qC-4X"y+ f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ix38|G9U color = red, Vh^ :.y width = 3, t qUBl?i "absorption" 2Sk hBb=d f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ~.#57g F" color = blue, N'PK4: width = 3, 7q:;3;"9 "emission" |WNI[49 %0({MU
|
|