| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* ;`CNe$y
Demo for program"RP Fiber Power": thulium-doped fiber laser, 6|{$]<' pumped at 790 nm. Across-relaxation process allows for efficient >o45vB4o population of theupper laser level. 6B pm+} *) !(* *)注释语句 i7 *cpNPO 7"|j.Yq$H{ diagram shown: 1,2,3,4,5 !指定输出图表 R\VM6>SN'S ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 dF
(m!P/R ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ]Sl]G6#Iwv ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 f*uD9l%/ ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 c+_F}2)
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 V(/=0H/ F $d[ -feU include"Units.inc" !读取“Units.inc”文件中内容 ~-dL #; #"3az8u include"Tm-silicate.inc" !读取光谱数据 b0vbE8wa J3;dRW ; Basic fiberparameters: !定义基本光纤参数 ? FlV<nE"J L_f := 4 { fiberlength } !光纤长度 aucQZD-_" No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ?M02|8- r_co := 6 um { coreradius } !纤芯半径 h3z=tu[' N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 E\ 'X|/$a BAQ;.N4 ; Parameters of thechannels: !定义光信道 BUp,bJpO l_p := 790 nm {pump wavelength } !泵浦光波长790nm q%^vx%aL\ dir_p := forward {pump direction (forward or backward) } !前向泵浦 Y64B"J=P9 P_pump_in := 5 {input pump power } !输入泵浦功率5W \K,piCVViN w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um "q'9-lk I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 uI'g]18Hi loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 [u=DAk?8 eqFOPK5q l_s := 1940 nm {signal wavelength } !信号光波长1940nm *`(/wE2v] w_s := 7 um !信号光的半径 0xNlO9b/ I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 DJm/:td loss_s := 0 !信号光寄生损耗为0 Q<e`0cu|p OP-%t\sj> R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 1.5lJ:[G .x^`y2'U ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 guD?~-Q calc 8/4Gr8o begin Xc^7 global allow all; !声明全局变量 =XT'D@q~W set_fiber(L_f, No_z_steps, ''); !光纤参数 _`Abz2s add_ring(r_co, N_Tm); $_.m< def_ionsystem(); !光谱数据函数 .QhH!#Y2D pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 l5jW`cl1 signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 /@*J\0h(- signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 r7I,%}k set_R(signal_fw, 1, R_oc); !设置反射率函数 /&+6nOP finish_fiber(); rLzYkZ end; E9Q?@' h ? }k~>. \ ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 I)-u)P?2x show "Outputpowers:" !输出字符串Output powers: ^z[-pTY show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) UJ0Dy` f show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) R.g'&_zx
J{Z-4y 0shNwV1zF ; ------------- j=^b'dyL diagram 1: !输出图表1 9u 'hCi( WAj26";M( "Powers vs.Position" !图表名称 @'EP$!c v!;E1 x: 0, L_f !命令x: 定义x坐标范围 TwZvz[u "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 [xXml On! y: 0, 15 !命令y: 定义y坐标范围 @UO=)PxN3 y2: 0, 100 !命令y2: 定义第二个y坐标范围 }G8RJxy frame !frame改变坐标系的设置 tk^1Ga3 legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ))n7.pB9/ hx !平行于x方向网格 Lp \%-s#5s hy !平行于y方向网格 y\
nR0m ]`D(/l' f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 n7vLw7 color = red, !图形颜色 F_SkS?dB width = 3, !width线条宽度 cLQvzd:h= "pump" !相应的文本字符串标签 y*M,&,$ f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ;+-$=l3[a color = blue, }*n(RnCn width = 3,
-=E/_c; "fw signal" K/~+bq#+ f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 (BC3[R@/l color = blue, &DX9m4,y style = fdashed, vf@d(g width = 3, 9 Byk/&$U "bw signal" [Cz.K?+#M lLHHuQpuj f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 DytOS}/^9 yscale = 2, !第二个y轴的缩放比例 7"f$;CN?~ color = magenta, m_H$fioha, width = 3, ,q#^_/? style = fdashed, M* W=v "n2 (%, right scale)" x8T5aS SaEe7eHd f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 O.=~/!( yscale = 2, Gvt.m&_ color = red, xPh%?j?*v width = 3, xZ@H{): style = fdashed, Y*``C):K% "n3 (%, right scale)" "b*.>QuZ n@BE*I<" ^(8 i``V ; ------------- |xH"Xvp: diagram 2: !输出图表2 ?B %y)K t8s1d "Variation ofthe Pump Power" RlX;c!K 5;V#Z@S x: 0, 10 IxCEE5+`% "pump inputpower (W)", @x v,RLN`CID y: 0, 10 Ms(;B* y2: 0, 100 iQ-;0< | |