| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* fhIj+/{_O Demo for program"RP Fiber Power": thulium-doped fiber laser, Ny,A#-? pumped at 790 nm. Across-relaxation process allows for efficient F%Umau*1 population of theupper laser level. 8t:h *) !(* *)注释语句 3(})uV CU1\C* diagram shown: 1,2,3,4,5 !指定输出图表 vLFaZ^( ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 S{i@=: ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 G4%M$LJh ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 dIa(</ } ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 |4> r" ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 3J~kiy.nfW V/9"Xmv75 include"Units.inc" !读取“Units.inc”文件中内容 ,9tbu!Pvq U"y'Kd include"Tm-silicate.inc" !读取光谱数据 J*~2:{=% ,x"yZ ; Basic fiberparameters: !定义基本光纤参数 >l< ~Z; L_f := 4 { fiberlength } !光纤长度 ?Ga2K No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 <ivqe"m r_co := 6 um { coreradius } !纤芯半径 n vpPmc N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 -C-OG}XjI 1;kG[z=A ; Parameters of thechannels: !定义光信道 z5&%T}$tJ l_p := 790 nm {pump wavelength } !泵浦光波长790nm nR@,ouB-$ dir_p := forward {pump direction (forward or backward) } !前向泵浦 u~- fK'/!| P_pump_in := 5 {input pump power } !输入泵浦功率5W JlDDM
% w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ?WQd I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 #w,WwL! loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 U]! .~ji3
]AZ\5C-J l_s := 1940 nm {signal wavelength } !信号光波长1940nm 2u*h*/ w_s := 7 um !信号光的半径 {I9N6BQ& I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Hdbnb[e loss_s := 0 !信号光寄生损耗为0 3pTS@ _{*$>1q R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 K[LVT]3 n ?F87C[o ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 AJ?}Hel[0 calc }y-;>i#m=g begin Z"n'/S:q global allow all; !声明全局变量 :
>wQwf set_fiber(L_f, No_z_steps, ''); !光纤参数 ()nKug`.@ add_ring(r_co, N_Tm); VU`z|nBW@ def_ionsystem(); !光谱数据函数 by|?g8 pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 FJd8s* signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 3:~l2KIP4 signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 v(Bp1~PPZM set_R(signal_fw, 1, R_oc); !设置反射率函数 [Zt#
c C+ finish_fiber(); gN, k/U8 end; _/jUs_W s
la*3~?* ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 /nY).lSH show "Outputpowers:" !输出字符串Output powers: 9QOr,~~s show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) AFINm%\/0 show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) KcmDF4C2 65waq~# _z<Y#mik ; ------------- ^x_ >r6 diagram 1: !输出图表1 @[5_C?2 j(Fa=pi "Powers vs.Position" !图表名称 (zS2Ndp 4/HY[FT x: 0, L_f !命令x: 定义x坐标范围 9 wSl,B- "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 =GH@.3`X y: 0, 15 !命令y: 定义y坐标范围 c_qcb7<~. y2: 0, 100 !命令y2: 定义第二个y坐标范围 6^]`-4*W frame !frame改变坐标系的设置 '0CXHjZN legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ^sT+5M^ hx !平行于x方向网格 l$qStL*8O hy !平行于y方向网格 XN~#gm#
Th7wP:iDP f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ` $.X [\*U color = red, !图形颜色 %z-dM` i width = 3, !width线条宽度 8S.')<-f "pump" !相应的文本字符串标签 QmH/yy3.% f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 i!SW?\ color = blue, ;OQ'B=uK width = 3, I;kf
#nvao "fw signal" pAJ=f}",]E f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 iO%Zd[ color = blue, gro7*< style = fdashed, JHvFIo width = 3, Y]+e
Df "bw signal" 5E]UI YAkV !y>lOw})Q f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 3AdP^B< yscale = 2, !第二个y轴的缩放比例 '^Pq(b~ color = magenta, wUru1_zjO width = 3, q4sl=`L5Sp style = fdashed, c&Gz>
L "n2 (%, right scale)" j}|N^A_ S y\F`B0#$ f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 K[Yc<Q yscale = 2, =w',-+@ color = red, S}zC3 width = 3, f![xn2T style = fdashed, gq
H`GI "n3 (%, right scale)" F3r S6_ %'{V%IXQ I$aXnd6) ; ------------- #'J~Xk diagram 2: !输出图表2 5h|'DOx|o -;+m%"k5 "Variation ofthe Pump Power" &q4ox7 1 DapQ}2'_ x: 0, 10 ky'|Wk6 "pump inputpower (W)", @x W.yV/fu y: 0, 10 pGY [f@_x- y2: 0, 100 r@|R-Binz frame r> Fec hx 6b%`^B\ hy !?BW_vY legpos 150, 150 h^%GE;N xh{mca>?G f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 5+y@ ]5&g step = 5, ow-+>Y[qZ color = blue, ^Lsc`<xC width = 3, |tG05 +M "signal output power (W, leftscale)", !相应的文本字符串标签 +7Sf8tg\ finish set_P_in(pump, P_pump_in) ])N|[ |$ >ysriPnQ f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 btUq yscale = 2, |)^clkuGX step = 5, k|^vCZ<(x color = magenta, ;JAK[o8i width = 3, |$M@09,F" "population of level 2 (%, rightscale)", /r>IV`n{ finish set_P_in(pump, P_pump_in) kXigX- 6e,Apj 0 f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 .JNcY]V# yscale = 2, 'n>K^rA step = 5, vB Sm=M color = red, ~q{\; width = 3, {*sGhGwr "population of level 3 (%, rightscale)", ';_1rh finish set_P_in(pump, P_pump_in) IS-}:~Pi (gLea k - FB ; ------------- "PMO diagram 3: !输出图表3 3b#L17D3_ +IvNyj| "Variation ofthe Fiber Length" R_maNfS]Z |Es0[cU x: 0.1, 5 37#cx)p^f "fiber length(m)", @x T]^?l y: 0, 10 $?-7OXj< "opticalpowers (W)", @y Xc{ZN1 4n frame 9`&?hi49nK hx B
i'd5B5 hy yXkt:O,i gRHtgR)T3 f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 5;}2[3}[ step = 20, { AFf:[G color = blue, {JXf*IJ width = 3, $Ru&>D#stK "signal output" qbH%Hx V)=Z6 ti ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 >A<Df step = 20, color = red, width = 3,"residual pump" L,#^&9bHa# z23#G>I& ! set_L(L_f) {restore the original fiber length } NJk)z&M ;r3}g"D@ )u<eO FI+ ; ------------- 2_wvC diagram 4: !输出图表4 w:v=se"U ka/nQ~_#< "TransverseProfiles" /\d(c/, 4 [M`=HhJ4 I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ,'=hjIel MBlBMUJk x: 0, 1.4 * r_co /um ea2 `q "radialposition (µm)", @x 04~}IbeJ y: 0, 1.2 * I_max *cm^2 &m'?*O | "intensity (W/ cm²)", @y GKCM|Y y2: 0, 1.3 * N_Tm ;ed#+$Na frame w\Iqzpikr hx as(; ] hy 6s5yyy=L%~ wE?CvL f: N_dop(1, x * um,0), !掺杂浓度的径向分布
>9{zQf! yscale = 2, vmLpmxS color = gray, a#$N% =j width = 3, Yc|uD-y maxconnect = 1, 0 k9<& "N_dop (right scale)" EsTB(9c? 5?w.rcN[j f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 bi.wYp(*6L color = red, a_MFQf&KV maxconnect = 1, !限制图形区域高度,修正为100%的高度 ';Nu&D#Ph width = 3, lY8`5Uz "pump" YtpRy%
R S@Iw;V f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 #~S>K3( color = blue, =HS4I.@c_5 maxconnect = 1, \ADLMj`F| width = 3, $R?@L "signal" e?P%wqB x)_r@l`$ix 4vLw?_". ; ------------- Wxn#Rk#> diagram 5: !输出图表5 z+
ZG1\ #3+~.,X9 "TransitionCross-sections" {yS;NU`2 )b9_C
O} I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) `c9'0*- -=a[J;'q x: 1450, 2050 nE$
f "wavelength(nm)", @x 0<Q*7aY y: 0, 0.6 !b63ik15O~ "cross-sections(1e-24 m²)", @y |mOMRP#' frame ^KbL
,T hx A?r^V2+j hy [~)x<=H8{ _C$X04bU3V f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 #Kl}= 1
4 color = red, @vt$MiOi width = 3, 6@YH#{~Zpv "absorption" *V DVC0R f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 dlR_ckp color = blue, `XgFga) width = 3, wDKELQ(yH "emission" kC`Rd:5 1qZG`Vz
|
|