| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* Kk>qgi$ Demo for program"RP Fiber Power": thulium-doped fiber laser, U%DF!~n pumped at 790 nm. Across-relaxation process allows for efficient cXcx_- population of theupper laser level. %Z[/U *) !(* *)注释语句 &}0wzcMg 2 dD<] diagram shown: 1,2,3,4,5 !指定输出图表 AC:s4iacC ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 G'2=jHzMF ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 h
^h-pd ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 bmVgTm& ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 4l}M
i ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 D}/=\J/ {!1n5a3" 1 include"Units.inc" !读取“Units.inc”文件中内容 bo;pj$eR3R sV^h#g~Zb include"Tm-silicate.inc" !读取光谱数据 @zynqh ~}IvY?!; ; Basic fiberparameters: !定义基本光纤参数 C^" Hj L_f := 4 { fiberlength } !光纤长度 y)/$ge_U No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 2^bpH% r_co := 6 um { coreradius } !纤芯半径 '?G[T28 N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 .Spi$>v cL)rjty2 ; Parameters of thechannels: !定义光信道 =x0"6gTz> l_p := 790 nm {pump wavelength } !泵浦光波长790nm id tQXwa dir_p := forward {pump direction (forward or backward) } !前向泵浦 `Kc %S^C' P_pump_in := 5 {input pump power } !输入泵浦功率5W e#6&uFce w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 8gtCY~m I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 "56?/ jF loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 aY[ 0A_ l?JO8^Nn l_s := 1940 nm {signal wavelength } !信号光波长1940nm #1't"R+3M w_s := 7 um !信号光的半径 (L0hS' I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 {#*? S>DA loss_s := 0 !信号光寄生损耗为0 rZ.a>'T4 d0A\#H_& R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 sK 1m9 LbV]JP ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ^[seK)S= calc I4<{R begin {|5$1v global allow all; !声明全局变量 Wt+y-ES set_fiber(L_f, No_z_steps, ''); !光纤参数 ui56<gI- add_ring(r_co, N_Tm); ?St=7a(D def_ionsystem(); !光谱数据函数 4ljvoJ}xjr pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 ^?6
W< signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 XW~ BEa signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 38U5^` set_R(signal_fw, 1, R_oc); !设置反射率函数 2[LX\ finish_fiber(); W\>^[c/ end; GIC"-l1\ ?BDlB0jxzi ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 O&3r*vd show "Outputpowers:" !输出字符串Output powers: -[f"r` show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Tw}?(\ya show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) Z9"{f)T AY&9JSu6 $&= 4.7Yt ; ------------- AU\xNF3 diagram 1: !输出图表1 w%8ooQ|C <t[Z9s$n "Powers vs.Position" !图表名称 1=/doo{^ &N/|(<CB x: 0, L_f !命令x: 定义x坐标范围 )4!CR /ao "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 rysP)e y: 0, 15 !命令y: 定义y坐标范围 B_."?*|w y2: 0, 100 !命令y2: 定义第二个y坐标范围 q'%[[< frame !frame改变坐标系的设置 "$~}'`(] legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) _OJ0 < {E hx !平行于x方向网格 5w,lw hy !平行于y方向网格 ;z.6'EYMG ;!l*7}5X= f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 {WYu0J@ color = red, !图形颜色 U^[cYTG width = 3, !width线条宽度 <OR.q "pump" !相应的文本字符串标签 <}28=d f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ~j/bCMEf! color = blue, P\q <d width = 3, lBlSNDs "fw signal" zj~nnfoys f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 $f<eq7rRe color = blue, ]5} -y3 style = fdashed, Em~7D]Y width = 3, t4f
(Y,v "bw signal" bU;}!iVc] lfxuc7Rdla f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 -TzI>Fz yscale = 2, !第二个y轴的缩放比例 935-{h@k color = magenta, o,S!RG& width = 3, v%H"_T style = fdashed, r/mA2 "n2 (%, right scale)" :`+|'*b(A <O \tC81 f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 F^.om2V|9 yscale = 2, Q3'fz 9v color = red, V*6l6-y~Ih width = 3, W<\ kf4Y style = fdashed, Z"6 2#VM "n3 (%, right scale)" Y3vX)D} =dgo!k RDUT3H6~ ; ------------- p+orBw3 diagram 2: !输出图表2 Z{Vxr*9oO FX%t "Variation ofthe Pump Power" J"%8:pL 0zg 2g!lh x: 0, 10 69t7=r "pump inputpower (W)", @x wVx,JL5Jr y: 0, 10 W3De|V^ y2: 0, 100 ]YCPyc: frame $T"h";M)s hx 1i4WWK7k hy *-?Wcz legpos 150, 150 y\^@p=e >F/XZC f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 L/H v4={ step = 5, rpUy$qrRc color = blue, 6D/uo$1Y width = 3,
WHp97S'd "signal output power (W, leftscale)", !相应的文本字符串标签 F(d:t! finish set_P_in(pump, P_pump_in) Wu4ot0SZ JDkCUN 5 f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 bsB},pc yscale = 2, r)gCTV(kb step = 5, <v]z6B@9! color = magenta, ^:m^E0(H width = 3, #X#8ynt "population of level 2 (%, rightscale)", 8jRs=I finish set_P_in(pump, P_pump_in) yC
W*fIaq d'ZS;l f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ):3MYSqX yscale = 2, A'GlCp step = 5, (@+h5@J[`I color = red, #S%4? width = 3, 0Y7$d` "population of level 3 (%, rightscale)", kB8
M i finish set_P_in(pump, P_pump_in) tE[H8 Vr 8:nP: W$r^ ; ------------- #>=8w9] diagram 3: !输出图表3 Mal <iNN u+m4!` "Variation ofthe Fiber Length" 4:D:| r 8q0I:SJy x: 0.1, 5 ?{eY\I "fiber length(m)", @x _m Xs4 y: 0, 10 D z@1rc<B "opticalpowers (W)", @y 0E-pA3M6 frame flP>@i:e6 hx !x7o|l|cP hy :/6()_>bO COSTV>s; f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 6a*83G,k step = 20, '99@=3AB:` color = blue, \ZMP_UU( width = 3, UgC)7
K1 "signal output" z$|;-u| za T_d/?J ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 I+|uUg5 step = 20, color = red, width = 3,"residual pump" T^]7R4Fg ?W!ry7gXO ! set_L(L_f) {restore the original fiber length } +i. u< T b,Ke>.m ox[ .)v ; ------------- qp>N^)> diagram 4: !输出图表4 K\(6rS}N v5T`K=qC "TransverseProfiles" paWxanSt 0Gsu I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) L+.H z&*@ )t%h[0{{ x: 0, 1.4 * r_co /um @r<b:?u "radialposition (µm)", @x $3k
"WlRG y: 0, 1.2 * I_max *cm^2 \lEkfcc "intensity (W/ cm²)", @y q>-R3HB y2: 0, 1.3 * N_Tm DtI$9`~ frame 4&{!M
_ hx PO o%^'( hy u]M\3V. |@RpWp>2 f: N_dop(1, x * um,0), !掺杂浓度的径向分布 s?c JV` yscale = 2, \GL*0NJ color = gray, $7NCb7%/L width = 3, % :/_ f maxconnect = 1, SE)nD@: "N_dop (right scale)" @?Zf-. 9i=B f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 (.?ZKL color = red, Od{jt7 <j# maxconnect = 1, !限制图形区域高度,修正为100%的高度 O~PChUU*Y width = 3, fx)KNm8Lx "pump" ?:igumeYX _TUm$#@Y` f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 !D:Jbt@R<n color = blue, BpH%STEN maxconnect = 1, 9I.^LZ" width = 3, {kL&Rv%' "signal" H)>sTST( .z-UOyer P!e= b-T ; ------------- wL3,g2- L diagram 5: !输出图表5 0V`[Zgf 3^wC<ZXcD "TransitionCross-sections" S6sq#kcH "0Q1qZ I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ashar&' zN!j%T.e
x: 1450, 2050 9v?l "wavelength(nm)", @x 6B6vP%H# y: 0, 0.6 g"K>5Cb "cross-sections(1e-24 m²)", @y =&vFVIhWcf frame 5 1dSFr<# hx hXB|g[zT hy fS=hpL6]@ lH2wG2 f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 >jTp6tu, color = red, wCCV2tk width = 3, Vrkf(E3_V "absorption" {mTytT f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 \/5RL@X} color = blue, f.6~x$:)`E width = 3, $yu?.b
9H# "emission" X2yTlLdY 27A!\pn
|
|