| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* T(2*P5%& Demo for program"RP Fiber Power": thulium-doped fiber laser, Bq4^nDK pumped at 790 nm. Across-relaxation process allows for efficient O|I)HpG; population of theupper laser level. ZxvBo4>tH *) !(* *)注释语句 i^2-PKPg{ uk=f /nT
diagram shown: 1,2,3,4,5 !指定输出图表 |fhYft ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 M'-Z" ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 : 7Jpt3 ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度
0V[`zOO(o ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 q9iHJ'lMD* ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 z(g6$Y{ S?K x:] include"Units.inc" !读取“Units.inc”文件中内容 |w3b! }I>h<O include"Tm-silicate.inc" !读取光谱数据 $9}jU#Z|hd Oi-=
Fp ; Basic fiberparameters: !定义基本光纤参数 !Un&OAy.! L_f := 4 { fiberlength } !光纤长度 JNk6:j&Pf No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 o~ J~-$T{ r_co := 6 um { coreradius } !纤芯半径 NL}Q3Vv1. N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 aRE%(-5 :N>n1tHL;A ; Parameters of thechannels: !定义光信道 2?)8s"Y l_p := 790 nm {pump wavelength } !泵浦光波长790nm PqVz^(Wz dir_p := forward {pump direction (forward or backward) } !前向泵浦 }Md5a%s< P_pump_in := 5 {input pump power } !输入泵浦功率5W 5[5|_H+0 w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um Y~"5HP| I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 Wv7hY" loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 wJMk%N~R: $z48~nu@j l_s := 1940 nm {signal wavelength } !信号光波长1940nm _6!@>`u~ w_s := 7 um !信号光的半径 w8iXuRv I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布
A\:u5( loss_s := 0 !信号光寄生损耗为0 B+r$_L&I .4O~a R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 r~q3nIe/, 2PTAIm Rq ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 UEeq@ot/ 4 calc }|u>b!7_. begin 7GG:1:2+> global allow all; !声明全局变量 ,d`6
{ll set_fiber(L_f, No_z_steps, ''); !光纤参数 Ahf71YP add_ring(r_co, N_Tm); z`esst\aV def_ionsystem(); !光谱数据函数 e~P4>3 pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 UVlh7w jg signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 =;A>1g$ signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Bj*\)lG<
set_R(signal_fw, 1, R_oc); !设置反射率函数 WNo7`)Kx finish_fiber(); ec3zoKtV end; [~{'"-3L0 X`JoXNqm ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 v9
*WM3 show "Outputpowers:" !输出字符串Output powers: =lZtI6tZ show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) $eiW2@ show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) LTWiCI A~M .v0 ?DgeKA"A ; ------------- CEh!X=Nn diagram 1: !输出图表1 X+[h]A twP%+/g]< "Powers vs.Position" !图表名称 w:nLm, SbXV'&M2AT x: 0, L_f !命令x: 定义x坐标范围 )o`[wq "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 Y.
Uca<{.[ y: 0, 15 !命令y: 定义y坐标范围 ~+S,`8-P y2: 0, 100 !命令y2: 定义第二个y坐标范围 ?<efKs frame !frame改变坐标系的设置 >J) 9&? legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ?*L{xNC# hx !平行于x方向网格 (i;,D- hy !平行于y方向网格 X4CiVV noZ!j>f{@l f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Mb:> color = red, !图形颜色 }uiD8b{I width = 3, !width线条宽度 rH$M6S "pump" !相应的文本字符串标签 I3;03X<2 f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Ejt?B')aB5 color = blue, "h7Np/ m3 width = 3, {HbSty "fw signal" wnjAiIE5 f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 66{Dyn7J~ color = blue, Vy 7 )_D style = fdashed, q+ 2v9K@ width = 3, PwnfXsR "bw signal" N nq r{ub QB"+B]rV f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 vD76IG j m yscale = 2, !第二个y轴的缩放比例 _[h!r;DsG color = magenta, q}gM2Ia'vY width = 3, nm,(Wdr style = fdashed, KGrYF "n2 (%, right scale)" E<'V6T9bi *nB-]
w/ f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 8Om4G]*|, yscale = 2, ($Q|9>5, color = red, L| ]fc9W: width = 3, d)kOW!5\ style = fdashed, cb }OjM F "n3 (%, right scale)" L KLLBrm: {~`{bnx^]7 rN'8,CV ; ------------- C9 j{:& diagram 2: !输出图表2 U>0bgL v >cPr( "Variation ofthe Pump Power" !NMiWG4R K0|:+s@u x: 0, 10 umN4|X "pump inputpower (W)", @x '.]<lh! y: 0, 10 K=>j+a5$ y2: 0, 100 9^E!2CJ frame 45H9pY w hx 5DJ!:QY! hy tA^CuJR legpos 150, 150 S^iT&;, )JhB!P( f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 T%aM~dp step = 5, _k#!^AJ}x color = blue, Z|xgZG{ width = 3, C=t9P#g*. "signal output power (W, leftscale)", !相应的文本字符串标签 j>G|Xv finish set_P_in(pump, P_pump_in) |3g'~E?$ '4}8WYKQ f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 5p ,HkV yscale = 2, XB]>Z) step = 5, a,h]DkD color = magenta, y"k%Wa`* width = 3, |CAMdU "population of level 2 (%, rightscale)", /vpwpVHIpG finish set_P_in(pump, P_pump_in) =s9*=5r 8 xT-`dS0u f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 (9b%'@A@m yscale = 2, thz[h5C?C step = 5, [x'D+! color = red, vy-q<6T}:p width = 3, rDGrq9 "population of level 3 (%, rightscale)", #'n.az=1 finish set_P_in(pump, P_pump_in) v8zO Y#? :3{n(~ HX ,\a` ; ------------- }*S`1IWMj diagram 3: !输出图表3 @|{8/sOq YMVmpcz "Variation ofthe Fiber Length" 3R)|DGql=1
Tj}%G x: 0.1, 5 4'td6F "fiber length(m)", @x mY]o_\` y: 0, 10 +No` 89Y "opticalpowers (W)", @y (\nEU! Y frame ab`9MJc; hx DVf}='en8 hy /qFY$vj G
@EEh.s9 f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 yCuLo` step = 20, G cB<i color = blue, (}s& 84! width = 3, z]D/Qr "signal output" egH,7f(yP lbPn< ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 5F!i%{XQvm step = 20, color = red, width = 3,"residual pump" _#
cM vlk pfw`<*e' ! set_L(L_f) {restore the original fiber length } Yj'"Wg 0O>M/ *W ,3!TyQ\m' ; ------------- nw#AKtd@x diagram 4: !输出图表4 9_8\xLk e,d}4 jy "TransverseProfiles" {,1>( 9|Ylv:sR I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 5,-:31(j\ bYqv)_8 x: 0, 1.4 * r_co /um \.>7w 1p "radialposition (µm)", @x y:_>R=sw y: 0, 1.2 * I_max *cm^2 o ZQ@ Yu3 "intensity (W/ cm²)", @y A8-a}0Gh y2: 0, 1.3 * N_Tm /qMiv7m~Q frame PjXiYc& hx P1)87P hy g<7Aln}Nl\ 0g HV(L?
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 7{7Y[F0 yscale = 2, %dzO*/8cWo color = gray, 7SNdC8GZ~ width = 3, \En"=)A maxconnect = 1, u,{R,hTDS "N_dop (right scale)" @/:7G. O#p_rfQ f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 qz2`%8}F) color = red, HXC\``E maxconnect = 1, !限制图形区域高度,修正为100%的高度 %yd(=%)fMB width = 3, 5g
O9 < "pump" g4YlG"O[~ ;$e)r3r`LV f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 LbYIRX color = blue, \m+=| maxconnect = 1, wLb:FB2 width = 3, DuT6Od/f "signal" f=VlO d oI'& &Bt w%..*+P ; ------------- G e5Yz.Qv diagram 5: !输出图表5 q2'}S
A/ J*Ie# :J] "TransitionCross-sections" "K$c 9Z8 hc3tzB I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Lusd kc7 }fv7WhQ x: 1450, 2050 uPapINj "wavelength(nm)", @x Dsn=fht y: 0, 0.6 ;yyR_NS "cross-sections(1e-24 m²)", @y
+ u*Pi frame 4_sJ0 =z- hx pLCS\AUTsv hy D$>&K& _}ii1fLv f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 +a%D+ color = red, >)G[ww[ width = 3, ;\6@s3 "absorption" #5kclu%L$ f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 7Z~JuTIZ color = blue, V5i}^%QSs width = 3, fR~0Fy Gp "emission" Q672iR\#) j@^zK!mO
|
|