| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* y||RK`H Demo for program"RP Fiber Power": thulium-doped fiber laser, `=#jWZ.8m pumped at 790 nm. Across-relaxation process allows for efficient -mRgB"8 population of theupper laser level. 0<~~0US *) !(* *)注释语句 [yQ%g;m e]88 4FP diagram shown: 1,2,3,4,5 !指定输出图表 ;2&" ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 O |P<s+ ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 QNU~G3 ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 |H_WY# ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 J({D~ ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 I(pq3_9$ =tt3nfZ9 include"Units.inc" !读取“Units.inc”文件中内容 [tfB*m5 -#;xfJE include"Tm-silicate.inc" !读取光谱数据 ~,1Sw7rE b6f OHy ; Basic fiberparameters: !定义基本光纤参数 ~YCH5, L_f := 4 { fiberlength } !光纤长度 Ta?}n^V?; No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 +@3+WD r_co := 6 um { coreradius } !纤芯半径 *1`X} N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 0,ryy,2 iUR ij@ ; Parameters of thechannels: !定义光信道 jD9u(qAlH l_p := 790 nm {pump wavelength } !泵浦光波长790nm XxmWj-=qO dir_p := forward {pump direction (forward or backward) } !前向泵浦 Jk\-e`eE P_pump_in := 5 {input pump power } !输入泵浦功率5W #c@&mus w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um H2R3I<j I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 #vV]nI<MF. loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 t
sUu rn*'[i? l_s := 1940 nm {signal wavelength } !信号光波长1940nm pz['o w_s := 7 um !信号光的半径 JXU?'@QY I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 k B]`py! loss_s := 0 !信号光寄生损耗为0 H"AL@= B1nm?E 0i R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 %w65)BFQ j%nN*ms ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ZJBb%d1; calc [h;I)ug[o( begin VrZfjpV global allow all; !声明全局变量 \~,\| set_fiber(L_f, No_z_steps, ''); !光纤参数 2'S&%UyP add_ring(r_co, N_Tm); ~bb6NP;'L def_ionsystem(); !光谱数据函数 :\"0jQ.y| pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 -GPBX? signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 vNs%e/~vj signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 _<.VP set_R(signal_fw, 1, R_oc); !设置反射率函数 IXa~,a H71 finish_fiber(); )>FAtE end;
p)/e;q^ 3i!a\N4 K ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 d|NW&PG show "Outputpowers:" !输出字符串Output powers: L4/ns@e show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) (X"5x]7] show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 1}=D ^ul1{ R'c dEoy ; ------------- JL87a^ro diagram 1: !输出图表1 mgx|5Otg cl^UFlf[ "Powers vs.Position" !图表名称 d5gwc5X :;eOhZ=_ x: 0, L_f !命令x: 定义x坐标范围 La1:WYt "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 L!Y|`P#Yr y: 0, 15 !命令y: 定义y坐标范围 qco'neR"z y2: 0, 100 !命令y2: 定义第二个y坐标范围 }NC$Ce frame !frame改变坐标系的设置 iw,uwh|L
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) PDD2ouv4 hx !平行于x方向网格 /r~2KZE hy !平行于y方向网格 #0<pRDXj a[~[lk=7 f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 .2@T|WD!Ah color = red, !图形颜色 sX~E ~$_g width = 3, !width线条宽度 Q*#Lr4cm{ "pump" !相应的文本字符串标签 )m7%cyfC f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 7Fo^:" color = blue, C:Rs~@tl
width = 3, U!|)M "fw signal" PxrT@.T$ f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 c.]QIIdK color = blue, O6y:e#0z style = fdashed, :.g/=Q(T~ width = 3, 7/<~s]D[% "bw signal" GW>F:<p <<d # f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 md{nHX& yscale = 2, !第二个y轴的缩放比例 ZXQ5fBx color = magenta, (9%?ik width = 3, g]&fyB# style = fdashed, 3 twA5)v "n2 (%, right scale)" 30^q_|l:] $jh$nMx)! f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 >WLX5i& yscale = 2, _?"y1L. color = red, N/0aO^"V width = 3, 4Px|:7~wT8 style = fdashed, G;cC!x< "n3 (%, right scale)" PzKTEYJL `e'wWV m^L !_~ ; ------------- )KFxtM- diagram 2: !输出图表2 e:
Sd#H! ~2rQ80_ "Variation ofthe Pump Power" l3b=8yn. [6l0|Y x: 0, 10 > .NLmzUX "pump inputpower (W)", @x bI0xI[#Q y: 0, 10 Lm}.+.O~d y2: 0, 100 +&u/R')?6r frame "W+>?u ) hx F,S)P`? hy Y(6evo&IR legpos 150, 150 $rW(*#C 26aDPTP $< f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 _(J#RH step = 5, MUl7o@{' color = blue, =!SV;^-q width = 3, If'2
m_ "signal output power (W, leftscale)", !相应的文本字符串标签 LI.WcI3uS finish set_P_in(pump, P_pump_in) Vc5>I_ !o`7$`%Wz\ f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 Ci-Ze j yscale = 2, tUH?N/qn step = 5, )lLeL#]FLO color = magenta, fmK~? width = 3, AcuZ?LYzK "population of level 2 (%, rightscale)", pdJ]V`m finish set_P_in(pump, P_pump_in) +r"}@8/\1 ?u:`?(\ f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 t!3s@ yscale = 2, R4 eu,,J step = 5, 39O rY color = red, X7-*`NI^ width = 3, "[7-1} l "population of level 3 (%, rightscale)", /v9qrZ$$ finish set_P_in(pump, P_pump_in) }.045 Wuu ;8PO}{rD GFLat ; ------------- 0'6ai=W diagram 3: !输出图表3 4F.,Y3 +0U=UV)U "Variation ofthe Fiber Length" o#6QwbU25 M`al~9 x: 0.1, 5 !dwZ` D "fiber length(m)", @x s?;8h &]= y: 0, 10 yq|yGf(4& "opticalpowers (W)", @y gk| %
4. frame 2F*>&n&Db7 hx J|{50?S{^ hy OR6vA5J
T1$p%yQH f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 rM.Pc?Z step = 20, nZnqXclzxn color = blue, .?s jr4 width = 3,
3}s]F/e "signal output" G@Z%[YNw )B
$Q ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 wi+Qlf step = 20, color = red, width = 3,"residual pump" Pl/Xh03E U&6A)SW,k ! set_L(L_f) {restore the original fiber length } az![u) ^G`6Zg;
}*rS g . ; ------------- eik_w(xPT diagram 4: !输出图表4 ,gZp/ yJ; wipl5O@L "TransverseProfiles" !%M,x~H v@Eb[7Kq/1 I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) \:Tq0|]Px @2.
:fK x: 0, 1.4 * r_co /um -h7ssf'u[ "radialposition (µm)", @x # *pB"L y: 0, 1.2 * I_max *cm^2 *cM=>3ws/ "intensity (W/ cm²)", @y ds+K7B$ y2: 0, 1.3 * N_Tm `XE>Td>Bs frame D+;4|7s+ hx @,1_CqV hy WqefH{PB T8\@CV! f: N_dop(1, x * um,0), !掺杂浓度的径向分布 l (rm0_ yscale = 2, LE{@J0r#n color = gray, zqt<[=O width = 3, cO{NiRIb maxconnect = 1, {sB-"NR`K "N_dop (right scale)" Bj4c_YBte N KgEs f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 k-3;3Mq color = red, 9^g8VlQdT maxconnect = 1, !限制图形区域高度,修正为100%的高度 2~hdJ/ width = 3, ):hz/vZ "pump" CC!`fX6z>h \?v&JmEU f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 >WZ%Pv* color = blue, 'fK=;mM maxconnect = 1, IWi0? V width = 3, $:5h5Y#z "signal" KB~1]cYMp gzi=+oJ|4 N)cODy([ ; ------------- !bLCha\ diagram 5: !输出图表5 j%3$ytf|p yx`@f8Kr "TransitionCross-sections" !-T#dU "k+ :!D I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) H#GR*4x h(nE)j x: 1450, 2050 p&Nav,9x "wavelength(nm)", @x }Y.@:v
j y: 0, 0.6 VB |k "cross-sections(1e-24 m²)", @y 2u_=i$xW frame .T8^>z1/\F hx v,ecNuy*d hy rMWvW(@@D +,"[0RH f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 a9lYX*: color = red, hU( width = 3, +e>G V61 "absorption" yD3vq}U! f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 "fNv(> -7s color = blue, _6.@^\; width = 3, o|n;{zT" "emission" B YB9M u*iqwm.
|
|