| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* x-i1:W9; Demo for program"RP Fiber Power": thulium-doped fiber laser, @)>Z+g pumped at 790 nm. Across-relaxation process allows for efficient UZ<K'H,q population of theupper laser level. )j;^3LiV3 *) !(* *)注释语句 |]-Zz7N) \'~
E%=Q diagram shown: 1,2,3,4,5 !指定输出图表 Zn9tG:V ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 :
UeK0 ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 }=X: F1S ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 oC`F1!SfOO ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 `cp\UH@
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面
3\W/VBJJ [9
MH"\ include"Units.inc" !读取“Units.inc”文件中内容 6Vnq|;W3Zv W
^'|{9&m include"Tm-silicate.inc" !读取光谱数据 pGD@R=8 W>#yXg9 ; Basic fiberparameters: !定义基本光纤参数 "$(+M t^ L_f := 4 { fiberlength } !光纤长度 &tH?m;V No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 a&>NuMDI r_co := 6 um { coreradius } !纤芯半径 {+9RJmZg N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 M50I.Rd u1meysa{0 ; Parameters of thechannels: !定义光信道 P<g(i 6] l_p := 790 nm {pump wavelength } !泵浦光波长790nm 0&s6PS% dir_p := forward {pump direction (forward or backward) } !前向泵浦 i#-v4g P_pump_in := 5 {input pump power } !输入泵浦功率5W v+LJx w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ;VE y{%nF I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 rZ?:$],U! loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ^m z9sV %u!=<yn' l_s := 1940 nm {signal wavelength } !信号光波长1940nm ET.jjV w_s := 7 um !信号光的半径 @v2<T1UC I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ?%5VaxWJ loss_s := 0 !信号光寄生损耗为0 8m")
)i- tA#Pc6zBuC R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 2 GRI<M Jk*cuf`rq ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Uxjc&o calc f\_RW;y|m begin ]s=|+tz\V global allow all; !声明全局变量 !JA;0[;l= set_fiber(L_f, No_z_steps, ''); !光纤参数 Gd!-fqNa'x add_ring(r_co, N_Tm); 9rEBq& def_ionsystem(); !光谱数据函数 ~
*&\5rPb pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 `n$Ak5f signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 sqKx?r72 signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 L('1NN2 set_R(signal_fw, 1, R_oc); !设置反射率函数 wsmgkg finish_fiber(); ^Wld6:L{I end; '?C6P5fm .?{no}u. ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 V}V->j* show "Outputpowers:" !输出字符串Output powers: ! VR&HEru show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) u=0O3-\h show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) %}@iz(*}> P3"R2- ,'
k?rQ ; ------------- !R8%C!=a diagram 1: !输出图表1 d<-f:}^k0 akvi^]x "Powers vs.Position" !图表名称 g`pq*D h,{Q%sqO x: 0, L_f !命令x: 定义x坐标范围 YF{MXK} "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ZN8j})lE y: 0, 15 !命令y: 定义y坐标范围 g@#he95 } y2: 0, 100 !命令y2: 定义第二个y坐标范围 dWd%>9}
frame !frame改变坐标系的设置 _=$~l^Y[ legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) )M0`dy{1 hx !平行于x方向网格 PIH\*2\/ hy !平行于y方向网格 MT/jpx \dHqCQ f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 =7V4{|ESfy color = red, !图形颜色 ^
9+
Qxv width = 3, !width线条宽度 7 z "pump" !相应的文本字符串标签 _9>,9aL f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ExG(*[l color = blue, OQumAj width = 3, 9\ "\7S/Z "fw signal" QVjHGY*R f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 O=A R`r# u color = blue, Pk;w.)kT style = fdashed, x;[ . ZzQ width = 3, eKr>>4,-P "bw signal" PtkMzhX }sxs- f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 Bj7*2} yscale = 2, !第二个y轴的缩放比例 !` 1h *} color = magenta, I<2`wL= width = 3, c~U0&V_`j style = fdashed, w>2lG3H< "n2 (%, right scale)" Vq3 NjN!+5 pwN2Nzski f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 >7BP}5`.; yscale = 2, jgE{JK\n4 color = red, Lc~m`=B width = 3, M!6Fnj style = fdashed, *fm?"0M5 "n3 (%, right scale)" JA4Zg*7I p&Qb&nWk< Kyh6QA^ ; ------------- ,t 2CQ diagram 2: !输出图表2 tz]0F5 QjLU@?& "Variation ofthe Pump Power" IGTO|sT" 1te^dh:Vp x: 0, 10 $tu "pump inputpower (W)", @x 4(\1z6?D y: 0, 10 }#1. $a y2: 0, 100 jN+`V)p frame )FwOg;=3M" hx ftY&Q#[ hy R"OT&:0/ legpos 150, 150 4&NB xe Mg\588cI f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 KJFQ)#SW! step = 5, gp9O%g3' color = blue, DAq
H width = 3, |Kd6.Mx "signal output power (W, leftscale)", !相应的文本字符串标签 @zS/J,:v} finish set_P_in(pump, P_pump_in) P{dR
pH| 8nI~iN?" f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 <uIPv
Zsx yscale = 2, ~"S5KroN step = 5, #xmiUN,| color = magenta, ?e-rwaW width = 3, ANPG3^w "population of level 2 (%, rightscale)", >> cW0I/` finish set_P_in(pump, P_pump_in) xLIyh7$t pW ~;B*hF f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 KdR\a&[MA yscale = 2, ybJa: step = 5, "|i1 AR:I color = red, Rb<|
<D+ width = 3, Yy
4Was# "population of level 3 (%, rightscale)", cY} jPDH finish set_P_in(pump, P_pump_in) ;2h"YU-b 0(&uH0x M(8xwo-W ; ------------- >]}VD "\ diagram 3: !输出图表3 36'J9h\ b5g^{bzwu "Variation ofthe Fiber Length" F@/syX;bb5 8;=?F>]xn x: 0.1, 5 % /zHL?RqJ "fiber length(m)", @x W9cvxsox y: 0, 10 &/EZn xl "opticalpowers (W)", @y 3>(~5 frame f~d=1 hx R(Vd[EGY hy *QW.#y>"j >ptI!\i} f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ,hK
=x step = 20, LzXIqj'H7T color = blue, Wm8BhO width = 3, WV}pE~ "signal output" 1slt[&4N fR.raI4et ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 rGH7S!\AM step = 20, color = red, width = 3,"residual pump" }J5iY0 z"5e3w ! set_L(L_f) {restore the original fiber length } o\j<EQb. ?Wt_Obl 7({.kD6 ; ------------- -eSI"To L< diagram 4: !输出图表4 \l6mXIn=> @Ng q+uXm "TransverseProfiles" ku^2K u@wQ )^ I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) .hvn/5s _}Gs9sHr0K x: 0, 1.4 * r_co /um fv3)#>Dgp> "radialposition (µm)", @x 0txSF^x y: 0, 1.2 * I_max *cm^2 jM@@N. "intensity (W/ cm²)", @y 8/34{2048 y2: 0, 1.3 * N_Tm y(#F&^| frame p|Fhh\,*`X hx I@a7!ugU65 hy -JF|770i DA4!-\bt@ f: N_dop(1, x * um,0), !掺杂浓度的径向分布 U|h@Pw z yscale = 2, Q!%CU8!`& color = gray, E{9{%J width = 3, \;tKss!| maxconnect = 1, "ZVBn!
"N_dop (right scale)" ZoC?9=k ^?[^o\/@R f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 .uagD[${ color = red, B<'V7#L_ maxconnect = 1, !限制图形区域高度,修正为100%的高度 4sK|l|W width = 3, T{K+1SPy4 "pump" ;v+CQx s.dn~|a f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 {_MU0=7c\ color = blue, s: q15" maxconnect = 1, tbv6-)Hs width = 3, !c`Q?aGV) "signal" "/XS3sv"s < | |