小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* 6 #-6Bh)>4 Demo for program"RP Fiber Power": thulium-doped fiber laser, 1P+Mv^%I pumped at 790 nm. Across-relaxation process allows for efficient mfu*o0 population of theupper laser level. ?@3#c *) !(* *)注释语句 c"sj)-_ 0[V&8\S~'T diagram shown: 1,2,3,4,5 !指定输出图表 }A^1q5 ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 rn5"o8| ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 .Ln;m8 ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 yT[Lzv# ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 K~`n}_: ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 l. XknF \R6;Fef include"Units.inc" !读取“Units.inc”文件中内容 \Y51KB\ _= o1?R include"Tm-silicate.inc" !读取光谱数据 ;[FW! [u/zrpTk ; Basic fiberparameters: !定义基本光纤参数 t9?R/:B% L_f := 4 { fiberlength } !光纤长度 O3_D~O
." No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Tg3:VD r_co := 6 um { coreradius } !纤芯半径 8]sTX9 N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 R#"U/8b>z ]jHgo](% ; Parameters of thechannels: !定义光信道 IUluJ.sXIf l_p := 790 nm {pump wavelength } !泵浦光波长790nm V<7R_}^_7 dir_p := forward {pump direction (forward or backward) } !前向泵浦 fKPiRlLS P_pump_in := 5 {input pump power } !输入泵浦功率5W !T<z'zZU w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um +L^A:}L( I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ybD{4&ZE loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 3C>2x(]M -s9 Y(> l_s := 1940 nm {signal wavelength } !信号光波长1940nm =nJOaXR0 w_s := 7 um !信号光的半径 c+@d'yR I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 % MfGVx}nG loss_s := 0 !信号光寄生损耗为0 t7{L[C$ 9X
5*{f Y R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 k)N2 +/ e#l*/G*, ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 )m|X;eEo calc Vpug"aR&_ begin yf
`.% global allow all; !声明全局变量 UI|v/(_^F set_fiber(L_f, No_z_steps, ''); !光纤参数 ^/_\etV add_ring(r_co, N_Tm); r!{w93rPX def_ionsystem(); !光谱数据函数 y+K7WUwhq pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 #2_o[/&}x@ signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 p<Zs*
@ signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 B'G*y2UnG set_R(signal_fw, 1, R_oc); !设置反射率函数 "wT~$I" finish_fiber(); 7sQ]w
end; ^/`#9]<% p{mxk)A ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ^ 4u3Q show "Outputpowers:" !输出字符串Output powers: @D.R0uM show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) tx:rj6-z show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) /3)YWFZZc ATYQ6E[{MV *kX3sG$8 ; ------------- GNhtnB diagram 1: !输出图表1 Ee t+ w5dIk]T "Powers vs.Position" !图表名称 n:5O9,umZ Z$OF|ZZQ x: 0, L_f !命令x: 定义x坐标范围 s=^r/Sz902 "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ,Az`6PW y: 0, 15 !命令y: 定义y坐标范围 &rl]$Mtt y2: 0, 100 !命令y2: 定义第二个y坐标范围 "!%w9 frame !frame改变坐标系的设置 4i+PiD:H legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 68&6J's; hx !平行于x方向网格 0[Xt,~ hy !平行于y方向网格 %{N$1ht^ >gX0Ij#G f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 BNL8hK`D color = red, !图形颜色 yNhscAMNn width = 3, !width线条宽度 Y{Y;EY4 "pump" !相应的文本字符串标签 cXLV"d f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 "Cyo<| color = blue, VgFF+Eg width = 3,
wzHjEW "fw signal" `_ J^g&y~ f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 l6&v}M color = blue, .R$+#_ style = fdashed, a`EGx{q( width = 3, LH3N}J({ "bw signal" *! r\GGb |
Q1ubS f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 v
GR
\GFm yscale = 2, !第二个y轴的缩放比例 h9Tf@]W
color = magenta, &J6o$i width = 3, 5O;a/q8" style = fdashed, !_XU^A> "n2 (%, right scale)" F9u:8;\@` u/!mN2{Rd f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 4,w{rmj yscale = 2, e\d5SKY color = red, <iXS0k width = 3, D_yY0rRM style = fdashed, /+<%,c$n "n3 (%, right scale)" ;G4HMtL 7/^TwNsv [/+dHW| ; ------------- X>6~{3 diagram 2: !输出图表2 r'9=kx -KIVnV=&m "Variation ofthe Pump Power" j^aQ>(t(9 U>L=.\\| x: 0, 10 48~m=mI "pump inputpower (W)", @x L6rs9su=7 y: 0, 10 Lilk8|?#W y2: 0, 100 ^O$[Y9~*
frame `G ;Lz^ hx w}U5dM` hy (v'lb!j^# legpos 150, 150 H%01&u =|6^)lt$ f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 G3_mWppH step = 5, ~G{$ P'[ color = blue, Hz3 S^o7 width = 3, U&w5&W{F} "signal output power (W, leftscale)", !相应的文本字符串标签 MOqA$b finish set_P_in(pump, P_pump_in) CJ}@R.Zy ?9('o\N: f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 OO !S
w yscale = 2, \6`%NhkM_ step = 5, {o5K?Pb color = magenta, j6R{ width = 3, }lNufu "population of level 2 (%, rightscale)", H%NLL4&wu finish set_P_in(pump, P_pump_in) ,3@15j Yyo9{4v+p{ f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 Z z;<P yscale = 2, '#4mDz~ step = 5, ,a]~hNR*X color = red, zFdz]z3 width = 3, ,],JI|Rl8c "population of level 3 (%, rightscale)", /H;kYx finish set_P_in(pump, P_pump_in) @8<uAu% -4^@)~Y dnX`F5zd ; ------------- ' ! UF& diagram 3: !输出图表3 i3kI2\bd/ ~g4rGz "Variation ofthe Fiber Length" oVEr {K) %\{?(baOA x: 0.1, 5 !iitx U "fiber length(m)", @x R 6yvpH y: 0, 10 [>J~M!yu:r "opticalpowers (W)", @y 2`FsG/o\T~ frame ANpY qV hx |L_g/e1 A3 hy Ay"2W%([` VrGb;L'[ f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 KEVy%AP=*h step = 20, 0Li'a{n 2 color = blue, :AE;x& width = 3, ?9r,Y;,H "signal output" 3~3(G[w QRmQ> ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 }b]y
0" step = 20, color = red, width = 3,"residual pump" iJaNP%N 9uq+Ve> ! set_L(L_f) {restore the original fiber length } /DG`Hg +SA<0l 2wuW5H8w{ ; ------------- u FYQ^ diagram 4: !输出图表4 8.Own=G? W$MEbf%1 "TransverseProfiles" xc]C#q q(ET)xCeD I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) )|^<woli, >->xhlL* x: 0, 1.4 * r_co /um b} U&bFl "radialposition (µm)", @x 8.%a"sxr y: 0, 1.2 * I_max *cm^2 -IsdU7} "intensity (W/ cm²)", @y |8U7C\S[ y2: 0, 1.3 * N_Tm ie)1 h frame _:=OHURc hx dR, NC-* hy +i_f.Ipp .6Lhy3x f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ttq< )4 yscale = 2, #z^1)7 color = gray, JX@6Sg< width = 3, 19-yM`O maxconnect = 1, {6y.%ysU "N_dop (right scale)" 1>@| k$x
'v# f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 FQ~ead36C color = red, TYS\:ZdXF maxconnect = 1, !限制图形区域高度,修正为100%的高度 dpn&)?f width = 3, `"=L "pump" (xSi6EZ6; *rFbehf H f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 rMg{j
gD color = blue, Hkz~9p maxconnect = 1, {f-/,g~ width = 3, 2l/5i]Tq "signal" Yl~?MOk iGeT^!N -5_xI)i ; ------------- Qnb?hvb"d diagram 5: !输出图表5 Eno2<< )qP{X,Uf "TransitionCross-sections" B';>Hk iK:qPrk- I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Vh9s.=*P@ vyOC2c8 x: 1450, 2050 -%gd')@SfD "wavelength(nm)", @x L.%~?T[F y: 0, 0.6 M "P "cross-sections(1e-24 m²)", @y o^"3C1j frame z,x"vK( hx QpTNU.v5f hy #5:A?aj '\E{qlI f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 Vyq<T(5 color = red, ~Q9)Q width = 3, ;Y&?ixx "absorption" [QN7+#K, f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 m+^;\DFJ, color = blue, k^\&.63( width = 3, /IW=+ri "emission" QuRg(K%: "LIii1]k
|
|