| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* #!p=P<4M
Demo for program"RP Fiber Power": thulium-doped fiber laser, ?]gZg[ pumped at 790 nm. Across-relaxation process allows for efficient 0P`wh=") population of theupper laser level. Li ,B, *) !(* *)注释语句 =jD[A>3I h"VQFqQy diagram shown: 1,2,3,4,5 !指定输出图表 0
eZfHW& ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 R`=3lY; ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 K%LDOVE8e ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 xw: v|( ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 Hv%(9)-8 ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 CCKg,v ja$>>5<q include"Units.inc" !读取“Units.inc”文件中内容
?7-#iC` ~45u
a include"Tm-silicate.inc" !读取光谱数据 :1u>T3L.z 7SzY0})<U ; Basic fiberparameters: !定义基本光纤参数 N_<sCRd]9 L_f := 4 { fiberlength } !光纤长度 bb;fV No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 )gdv! r_co := 6 um { coreradius } !纤芯半径 8)/i\=N3; N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 WrbDB-uM oR}ir ; Parameters of thechannels: !定义光信道 AIsM:sV] l_p := 790 nm {pump wavelength } !泵浦光波长790nm +C7
1".i- dir_p := forward {pump direction (forward or backward) } !前向泵浦 Pg[zRRf< P_pump_in := 5 {input pump power } !输入泵浦功率5W b3b 4'l w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 5_Yv>tx I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 6h>8^l loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 THHrGvb <[C9F1]Ya l_s := 1940 nm {signal wavelength } !信号光波长1940nm kF'^!Hp w_s := 7 um !信号光的半径 R#~}ZUk2 I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 vZ
4Z+;. loss_s := 0 !信号光寄生损耗为0 c5P52_@ VL5kjF3/ R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 )DMu`cD , >Y.! ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 (PGmA>BT calc `.;7O27A^% begin LoHWkNZ5: global allow all; !声明全局变量 a#H=dIj set_fiber(L_f, No_z_steps, ''); !光纤参数 [e)81yZG> add_ring(r_co, N_Tm); Wy#`*h, def_ionsystem(); !光谱数据函数 r0G#BPgdR pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 Af=%5% signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 q" wi.&| signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 MSeO#X set_R(signal_fw, 1, R_oc); !设置反射率函数 t^?8Di\ finish_fiber(); EC1q#;: end; y:4Sw#M%( N-^\X3X ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 g|<)J-`Q show "Outputpowers:" !输出字符串Output powers: CkoPno show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) 7tAWPSwf show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ~p;<H dQM# -t4* 4:r^6m%% ; ------------- |UnTd$m diagram 1: !输出图表1 +azPpGZ= +^YV>; "Powers vs.Position" !图表名称 ?Z4&j'z< OpxVy _5, x: 0, L_f !命令x: 定义x坐标范围 3+A 0O%0* "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 x|0Q\<mEe y: 0, 15 !命令y: 定义y坐标范围 6(9Ta'ywZ y2: 0, 100 !命令y2: 定义第二个y坐标范围 d\;M F frame !frame改变坐标系的设置 rShi"Yw legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ("/*k hx !平行于x方向网格 !P@u4FCs hy !平行于y方向网格 vzi=[A QN_5q5 f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 @<vDR"> color = red, !图形颜色 ^%_B'X9 width = 3, !width线条宽度 ^e@c
Ozt "pump" !相应的文本字符串标签 R5]R
pW=G f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 lG#&Pv>- color = blue, Byldt width = 3, q4Ye "fw signal" 4n3QW%# f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 )\mklM9Z color = blue, um,/^2A style = fdashed, hph 3kfR width = 3, pvmm" f "bw signal" ]?``*{Zqy l^$:R~gS f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 q<c).4 yscale = 2, !第二个y轴的缩放比例 7h&xfrSrD color = magenta, Br#]FB|tD width = 3, Slv}6at5 style = fdashed, hNx`=D9[7 "n2 (%, right scale)" *otJtEI>6 8w2+t>? f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 &}T`[ d_Z yscale = 2, EVq<gGy color = red, SNK+U"Q width = 3, WDzov9ot style = fdashed, 44%::Oh "n3 (%, right scale)" <R3S{ty )%^ oR5W `n^jU92 ; ------------- a*SJHBB diagram 2: !输出图表2 *[.\S3K` [j93Mp "Variation ofthe Pump Power" 6bb=; 8 6L&u:o: x: 0, 10 _^a.kF "pump inputpower (W)", @x :~T:&;q0 y: 0, 10 W:5m8aE\ y2: 0, 100 kJDMIh|g frame ;U20g:K hx gVG :z_6 hy Opjt? ] legpos 150, 150 <EBp X .f jM9G# f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 }1_gemlf
step = 5, i( c2NPbX color = blue, MH !CzV& width = 3, 3Ji,n;QLm "signal output power (W, leftscale)", !相应的文本字符串标签 %{HqF>=~ finish set_P_in(pump, P_pump_in) 'kh%^_FH7 r`S]`&#}( f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 ~(%G;fZ?x yscale = 2, mDM]RAub) step = 5, @Rx/]wyH color = magenta, ?<nz2 piP, width = 3, "%.#/!RG "population of level 2 (%, rightscale)", C62<pLJf finish set_P_in(pump, P_pump_in) *E$D, ]AHUo;(f% f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 }VFSF/\^ yscale = 2, 2}}~\C}o+ step = 5, gsU&}R1*h color = red, g` h>:5] width = 3, '6xn!dK "population of level 3 (%, rightscale)", QPFpGS{d finish set_P_in(pump, P_pump_in) *50Ykf ,$}Q#q ;l`8w3fDt ; ------------- _O rE{ diagram 3: !输出图表3 (+^1'?C8 xE)pj| "Variation ofthe Fiber Length" H/L3w|2+ +6;OB@ x: 0.1, 5 IvO3*{k, "fiber length(m)", @x -_314j=`/ y: 0, 10 \4vFEJSh "opticalpowers (W)", @y He]F~GXP frame sP+S86
u hx ' l!QGKz hy ~z
aV.3# ]3I_H+hU f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 T4f:0r;^f* step = 20, [2FXs52 color = blue, k[zf`x^ width = 3, CY7REF "signal output" kh5V&%>?
A{c6XQR~z ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 =k8A7P step = 20, color = red, width = 3,"residual pump" 9<YB&:< 3{_+dE"9 ! set_L(L_f) {restore the original fiber length } '{+hti,Lh ?_^9e J`V6zGgW ; ------------- _ Po9pZ diagram 4: !输出图表4 P;y/`_jo s e1ipn_A "TransverseProfiles" au7BqV!uL %!=YNm I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) x[?_F eU12*( x: 0, 1.4 * r_co /um /J6CSk "radialposition (µm)", @x 1";~"p2( y: 0, 1.2 * I_max *cm^2 MUo?ajbqOd "intensity (W/ cm²)", @y 4Cfwz-Qo y2: 0, 1.3 * N_Tm r'!l`
gm,S frame ^Uf`w7"iY hx E?zp?t:a hy
Kr#=u~~M "E8!{ f: N_dop(1, x * um,0), !掺杂浓度的径向分布 3a5H<3w_ yscale = 2, >:xnjEsi$/ color = gray, cK258mY width = 3, J)-owu; maxconnect = 1, k]JLk"K "N_dop (right scale)" Oh^X^*I$@
[:k'VXL f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 F+6ZD5/ color = red, H}@|ucM"\ maxconnect = 1, !限制图形区域高度,修正为100%的高度 v_ J.M ] width = 3,
jab]!eY "pump" F;ZLoG*U Zb1v f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 oO|^ [b# color = blue, s,}<5N]U maxconnect = 1, jmb\eOq+~V width = 3, @Yg7F>s "signal" &l.^UQ b'&pJ1]]} $-y+97 ; ------------- L=p.@VSZ diagram 5: !输出图表5 l?~ci
;lG <hea%6 "TransitionCross-sections" 0g+@WK6y Brl6r8LGi I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) s%:fB( a~%ej.)l x: 1450, 2050 A/QVotcU "wavelength(nm)", @x T'V(%\w y: 0, 0.6 m^=,
RfUUd "cross-sections(1e-24 m²)", @y 06`__$@h frame i-<=nD&?t hx (kHR$8GFM hy JTI m`t"d= wv7jh~x(4 f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 x
B?:G color = red, `~RV width = 3, {,
|"Rpd "absorption" QA3l:D}u f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 <Hp"ZCN color = blue, ^"Y'zIL width = 3, !G,$:t1-=V "emission" Yyo|W;a] epL[PL}
|
|