| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* F_Q?0 Do0' Demo for program"RP Fiber Power": thulium-doped fiber laser, l&z)Q/>?pZ pumped at 790 nm. Across-relaxation process allows for efficient W|PKcZ ]Uc population of theupper laser level. nj7wc9z4 *) !(* *)注释语句 }wJDHgt]-p f8Xe%"< diagram shown: 1,2,3,4,5 !指定输出图表 tsFwFB* ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ml|[xM8 ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 95,{40;X7 ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 I.<>6ISI@ ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 ?5%|YsJP_ ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ?\QEK }<EA)se" include"Units.inc" !读取“Units.inc”文件中内容 0.^9)v*i n%Vt r include"Tm-silicate.inc" !读取光谱数据 ?w}E/(r Fn8d;%C ; Basic fiberparameters: !定义基本光纤参数 '~^3 =[Z L_f := 4 { fiberlength } !光纤长度 w/KCuW< No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 8q6b3q:c r_co := 6 um { coreradius } !纤芯半径 ?U:LAub N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 {-sy,EYcw w%no6 ; ; Parameters of thechannels: !定义光信道 x+}6qfc$9k l_p := 790 nm {pump wavelength } !泵浦光波长790nm !!=%ty
dir_p := forward {pump direction (forward or backward) } !前向泵浦 J^@0Ff;=5^ P_pump_in := 5 {input pump power } !输入泵浦功率5W DcN s`2 w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um #-9;Hn4x I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ])=k";76 loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 fz`+j
-u C(:tFuacpw l_s := 1940 nm {signal wavelength } !信号光波长1940nm <}c`jN!z. w_s := 7 um !信号光的半径 t(4%l4i;X I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 U!"+~d) loss_s := 0 !信号光寄生损耗为0 silTL_$ P5+FZzQ R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 Z6}B}5@y [~;#]az ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 "+js7U- calc "YlN_U begin 1;p'2-x global allow all; !声明全局变量 V~+{douq set_fiber(L_f, No_z_steps, ''); !光纤参数 8J:6uO
c| add_ring(r_co, N_Tm); %y~=+Sm%m def_ionsystem(); !光谱数据函数 dkuB{C, pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 Q(-:)3g[aL signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 %f.(^<Gu signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 jUq^$+N set_R(signal_fw, 1, R_oc); !设置反射率函数 xf8C$|, finish_fiber(); 8>TDrpT} end; =GpO}t"> EPCu ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 k`W.tMo show "Outputpowers:" !输出字符串Output powers: .y {qsL^P show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) `z$<1QT show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) r'/7kF- 5 OLc/Vij; y< hIXC ; ------------- '&5A*X]d diagram 1: !输出图表1 [-cYFdt"V L&F0^ "Powers vs.Position" !图表名称 dA[Z\ Oslbt8)U6 x: 0, L_f !命令x: 定义x坐标范围 xBhfC!AK} "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 |1G /J[E y: 0, 15 !命令y: 定义y坐标范围 c+/SvRx^> y2: 0, 100 !命令y2: 定义第二个y坐标范围 (!Q^.C_m frame !frame改变坐标系的设置 ![Z'jCpy legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) !o2lB^e8 hx !平行于x方向网格 6elmLDMni\ hy !平行于y方向网格 0nS69tH ~Rx[~a f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 tWYKW 3~] color = red, !图形颜色 mh>)N" width = 3, !width线条宽度 4,kT4_&, "pump" !相应的文本字符串标签 k#TonT f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Bry\"V"'g color = blue, $D8eCjUm width = 3, MoN;t; "fw signal" X#<#7. f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 -E#!`~&V color = blue, f5+a6s9 style = fdashed, +1Oi-$
2- width = 3, U]lXw+& "bw signal" /i|T \ <;:M:{RZY f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 I ;N)jj`b yscale = 2, !第二个y轴的缩放比例 {w.rcObIw+ color = magenta, :e:jILQ[ width = 3, MV5'&" ,oB style = fdashed, |?0Cm|? "n2 (%, right scale)" !']=7It{ w+bQpIPM f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 3!^5a%u yscale = 2, ]%m0PU# color = red, I~EQuQ >= width = 3, LbDhPG`u style = fdashed, y\b.0-z "n3 (%, right scale)" T<06y3sN /w{DyHT ,9gyHQ~ ; ------------- S`TP#uzKu] diagram 2: !输出图表2 L3P _ u1O?` "Variation ofthe Pump Power" g?!vRid@S C)/uX5 x: 0, 10 Y[9x\6
_E "pump inputpower (W)", @x YbF}(iM y: 0, 10 EO$_]0yI;_ y2: 0, 100 Asicf{HaX frame 9:CJl6~N)# hx 3}}~( hy "0Uh(9Fv legpos 150, 150 j8nG
Gx 0PD]#.+ f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 6,)!\1k step = 5, 7%L%dyN color = blue, f m.-*`ax width = 3, w}^z1n "signal output power (W, leftscale)", !相应的文本字符串标签 a(s}Ec${Z finish set_P_in(pump, P_pump_in) &bBK#d*-u? B\A2Vm`& f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 'n%Ac&kk yscale = 2, :\x53-&hO4 step = 5, &=5 color = magenta, Gd1%6}<~ width = 3, 4A.ZMH "population of level 2 (%, rightscale)", #~%tdmGuL finish set_P_in(pump, P_pump_in) VYI%U'9Q X6%w6%su5 f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 :ak D yscale = 2, w35r\x + step = 5, Y15KaoK? color = red, ao>bnRXR width = 3, !tBNA "population of level 3 (%, rightscale)", ?I&ha-." finish set_P_in(pump, P_pump_in) <_-&{Pv ivsp):W SC)4u l% ; ------------- -Czq[n=0( diagram 3: !输出图表3 R X:wt !xyO "Variation ofthe Fiber Length" "&%:
9O ~>zml1aJ6 x: 0.1, 5 _XIls*6AK "fiber length(m)", @x W@v@|D@ y: 0, 10 3/mVdU?U "opticalpowers (W)", @y mz;S*ONlV frame uhvmh hx (-Rh%ZHH hy rMAH YH9 [,)yc/{* f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 1$oVcDLl step = 20, |9ro&KA color = blue, b}4k-hZL width = 3, :#v8K;C "signal output" #<|5<U j$<uE{c ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 \)859x&( step = 20, color = red, width = 3,"residual pump"
9H:5XR Bi2be$nV ! set_L(L_f) {restore the original fiber length } =SPuOy8 HubSmbS1 ei'=%r8~ ; ------------- %:oyHlz% diagram 4: !输出图表4 0 ;kcSz ;mH1J'.(a "TransverseProfiles" r1&b#r>
]bCeJE.+) I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) iaO;i1K5U wOQ-sp0q0 x: 0, 1.4 * r_co /um HVaWv ]. "radialposition (µm)", @x |$@/
Z+ y: 0, 1.2 * I_max *cm^2 QxCZ<| "intensity (W/ cm²)", @y .CH0PK=l y2: 0, 1.3 * N_Tm 0.S].Y[ frame |1J=wp)# hx d
(]t} hy .kh%66: e:}8|e~T f: N_dop(1, x * um,0), !掺杂浓度的径向分布 7qSlqA<Hs yscale = 2, J,;[n*s color = gray, qp
(ng8%c width = 3, ?PORPv# maxconnect = 1, Zy^mSI4i "N_dop (right scale)" MN\/F4Io v<iMlOEt f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 [tDUR color = red, Wh[+cH"M maxconnect = 1, !限制图形区域高度,修正为100%的高度 `C"Slz:: width = 3, Ao)hb4ex "pump" /=Bz[O
@>f]0,"( f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 ']^e,9=Q color = blue, Ry*NRP; maxconnect = 1, X1G[& width = 3, Vt{C80n&N "signal" /9dV!u!; $@d`Kz; cC
w,b] ; ------------- YAnt}]u!" diagram 5: !输出图表5 R L/~E
xYC Q(h,P+ "TransitionCross-sections" "Q9S<O8) 4S|! iOY I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 'JY*K:- fVv#| x: 1450, 2050 *>%34m93 "wavelength(nm)", @x Z'dY,<@ y: 0, 0.6 1)
V,>)Ak "cross-sections(1e-24 m²)", @y =Run frame ElAJR4'{*i hx m! &bK5+* hy K6=-Zf ?cdSZ'49[ f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ; iQ@wOL] color = red, , M$*c width = 3, x-+[gNc
6 "absorption" :Bp{yUgi@ f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 84tuN color = blue, f ^mxj/%L width = 3, |o~<Ti6] "emission" x^_Wfkch] VHVU*6_w
|
|