| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* r
:MaAT< Demo for program"RP Fiber Power": thulium-doped fiber laser, lO[jf6gB pumped at 790 nm. Across-relaxation process allows for efficient YPJx/@Z` population of theupper laser level. CR8r|+(8 *) !(* *)注释语句 =A&*SE o5 yp/V8C diagram shown: 1,2,3,4,5 !指定输出图表 j
&[WE7wf ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 %Fm;LQa ] ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ';T5[l, ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 H2R^t{w ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 VNEZBy"F ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 aKFA&Xnsl |>fS"u include"Units.inc" !读取“Units.inc”文件中内容 3Os3=Ix t>|N4o include"Tm-silicate.inc" !读取光谱数据 KJ{F,fr+v gm\o>YclS ; Basic fiberparameters: !定义基本光纤参数 $iz pH L_f := 4 { fiberlength } !光纤长度 L-:L=
snO No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 o0+BQ&A)s* r_co := 6 um { coreradius } !纤芯半径 Y\9*e5?`I3 N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ``)1`wx$ $m0x8<7nu ; Parameters of thechannels: !定义光信道 |l \/ {F l_p := 790 nm {pump wavelength } !泵浦光波长790nm nX aX= dir_p := forward {pump direction (forward or backward) } !前向泵浦 ?g#t3j>zoF P_pump_in := 5 {input pump power } !输入泵浦功率5W j I@$h_n w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um NHVx!Kc I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 z ex.0OT; loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 zZ0V6T} Zgf||, l_s := 1940 nm {signal wavelength } !信号光波长1940nm K[yJu 4 w_s := 7 um !信号光的半径 F,2#;t4 I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ?-& D' loss_s := 0 !信号光寄生损耗为0 yzzre>F |a:VpM R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 ^* v{t?u '#
2J?f' ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 v 5ddb) calc gbv[*R{<% begin naCI55Wx global allow all; !声明全局变量 G9":z| set_fiber(L_f, No_z_steps, ''); !光纤参数 s31_3?Vdf, add_ring(r_co, N_Tm); hg/&[/eodm def_ionsystem(); !光谱数据函数 9NXiCP9A pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 (mr`?LI} signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 /
H/Ne
)r signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Sq]1SW3
set_R(signal_fw, 1, R_oc); !设置反射率函数 L"<Eov6 finish_fiber(); ;pK"N:| end; j?) `VLZ _rh.z_a7w ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 2l4 i-; show "Outputpowers:" !输出字符串Output powers: /4BXF4ksi, show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ^G<M+RF2J show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) p<['FRf" zszx@`/3 U>jk`?zW ; ------------- MpvA-- diagram 1: !输出图表1 &b8D'XQu 'MlC
1HEp "Powers vs.Position" !图表名称 g7yHhF>%X -T6%3>h x: 0, L_f !命令x: 定义x坐标范围 ,IB)Kk2 "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 KA2B3\ y: 0, 15 !命令y: 定义y坐标范围 ?kefRev<#h y2: 0, 100 !命令y2: 定义第二个y坐标范围 n=MYv(Pp} frame !frame改变坐标系的设置 5E(P,!-. legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) Gnq~1p5^ hx !平行于x方向网格 <xNM@!'\h hy !平行于y方向网格 yKhzymS}T y_r6T
XnGL f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 f#MN-1[67 color = red, !图形颜色 +'4 dP# width = 3, !width线条宽度 )fr\V." "pump" !相应的文本字符串标签 +38P$Koz{r f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 x" T^>Q color = blue, O:R{4Q*5 width = 3, Ik)Q0_<a "fw signal" bJ}+<## f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 tTamFL6 color = blue, ]gk1h=Y~h style = fdashed, h2<$L width = 3, KPqI( "bw signal" :M`BVZ1t 5E|2S_)G f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 }H.vH yscale = 2, !第二个y轴的缩放比例 ((q(Q9(F color = magenta, :]jtV~E\ width = 3, AV!
cCQ style = fdashed, gC 4#!P "n2 (%, right scale)" $^>vJk< g/gLG:C f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 .[A S yscale = 2, 5E=Odep` color = red, gC- 0je width = 3, [%Xfl7;Wh style = fdashed, WRM}gWv* "n3 (%, right scale)" N*W.V,6yH Dh<e9s: ^f]pK&MAmN ; ------------- .ji%%f diagram 2: !输出图表2 (
PlNaasV `-m7CT sA "Variation ofthe Pump Power" voE c'JET (H^o8J
x: 0, 10 GK+w1%6) "pump inputpower (W)", @x .}s a2- y: 0, 10 _aYQ(FO y2: 0, 100 :8
:>CHa frame \PJ89u0 hx `!N?#N:b) hy ]ghPbS@ legpos 150, 150 *uR'eXW iYkNtqn/ f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 l:HuG! step = 5, )-gyDA color = blue, 9:s!#FYFM width = 3, ipG+qj/= "signal output power (W, leftscale)", !相应的文本字符串标签 l"CONzm!
finish set_P_in(pump, P_pump_in) O8%/Id fJKOuFK f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 ]vMft? yscale = 2, hrK^oa_[W step = 5, C.O-iBVe# color = magenta, Vv]mME@ width = 3, |n;7fqK "population of level 2 (%, rightscale)", Re_.<_$ finish set_P_in(pump, P_pump_in) A[MEtI=Q J A\>qoR!Y f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 aoN[mV' yscale = 2, }J1#UH_E step = 5, t*#T~3p color = red, ::6@mFL R width = 3, {1[8,Ho "population of level 3 (%, rightscale)", ifUgj8i_ finish set_P_in(pump, P_pump_in) .E(Ucnz/ IV76#jL Sj\8$QIXC ; ------------- zQ~nS diagram 3: !输出图表3 $v,_8{ ! 3c)xNXq m "Variation ofthe Fiber Length" %?ad.F+7 p6p_B x: 0.1, 5 ! WNr09` "fiber length(m)", @x y$rp1||lH y: 0, 10 3f0RMk$pH "opticalpowers (W)", @y 3 }XS|Y frame x\WKsc hx 38F8(QU{ hy 70@:!HI] zKo,B/Ke4 f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 {dDU^7O step = 20, G9;WO* color = blue, =>9`qcNW_ width = 3, gU:jx "signal output" ^+88z> {.v+ iSM ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 1jR<H$aS step = 20, color = red, width = 3,"residual pump" w5p+Yx=q /n_N`VJ7H ! set_L(L_f) {restore the original fiber length } z@ 2NAC o&zeOJW )9s[-W,e ; ------------- k#
/_Zd diagram 4: !输出图表4 %j
yLRT]H EG,RlmcPp "TransverseProfiles" qbjRw!2?w 9kcAMk1K I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) &W1c#]q@r !^w+<p x: 0, 1.4 * r_co /um @<_4Nb "radialposition (µm)", @x 3/iGSG` y: 0, 1.2 * I_max *cm^2 q*>`HTPcU "intensity (W/ cm²)", @y d:3G4g y2: 0, 1.3 * N_Tm vq|W& frame HghNI hx rxO|k0x^C hy DF<_Ns! Q!c*2hI f: N_dop(1, x * um,0), !掺杂浓度的径向分布 I_Q '+d yscale = 2, ^XV$J- color = gray, "!2Fy-Y width = 3, Xr-eDUEi maxconnect = 1, h/d&P "N_dop (right scale)" |VIBSty2d t<rhrW75P f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 f5AK@]4G color = red, bV}43zI. maxconnect = 1, !限制图形区域高度,修正为100%的高度 n(&6E3ZcI width = 3, N]gdS]pP2{ "pump" QHOem=B P7Kp*He) f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 C]82Mt color = blue, ^J?I-LG maxconnect = 1, M%Ov6u<I8 width = 3, bX8Bn0#a+ "signal" ~)ls.NXI %c):^;6p 'F1NBL ; ------------- 't]=ps diagram 5: !输出图表5 1qtu,yIf nI&Tr_"tm "TransitionCross-sections" C,.$g>)MZK k? X7h2 I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Iq MXd K| |oa9 g2 x: 1450, 2050 \)pk/ "wavelength(nm)", @x 52=?!
JM y: 0, 0.6 lIz"mk
"cross-sections(1e-24 m²)", @y 1-4W4"# frame Ry8@U9B6,t hx 0@vSl%I+ hy y]yp8Bs+ Gz@'W%6yaV f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 "9aiin color = red, 'Tj9btM*cL width = 3, gq!|0 "absorption" /aP4'U8ov f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 x
xWnB color = blue, YLk/16r width = 3, HsO4C)/ "emission" adRvAq]mA L'M'I0"/
|
|