| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* $"}[\>e*{ Demo for program"RP Fiber Power": thulium-doped fiber laser, x8C
* pumped at 790 nm. Across-relaxation process allows for efficient P)hGe3 population of theupper laser level. -G'3&L4
D *) !(* *)注释语句 t!u>l kw7E<aF! diagram shown: 1,2,3,4,5 !指定输出图表 &m]jYvRc ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 $" =3e]< ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 /%F,
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 0zsmZ]b5E ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 [r9HYju= ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 &' y}L' b`Jsu!?{ include"Units.inc" !读取“Units.inc”文件中内容 - (q7"h @3U=kO(^+\ include"Tm-silicate.inc" !读取光谱数据 CL?=j| Ea T[ g(S0dz ; Basic fiberparameters: !定义基本光纤参数 h&!$ `) L_f := 4 { fiberlength } !光纤长度 !CY*SGO No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 0Pt%(^ r_co := 6 um { coreradius } !纤芯半径 <K>qK]|C N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 eOfVBF<C2 H|MAbx
7 ; Parameters of thechannels: !定义光信道 _Kh8
<$h l_p := 790 nm {pump wavelength } !泵浦光波长790nm v-"nyy-&Z dir_p := forward {pump direction (forward or backward) } !前向泵浦 r
Cz,XYV P_pump_in := 5 {input pump power } !输入泵浦功率5W >7cDfv" w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 3{Zd<JYg4- I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 \NKw,`/ loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 xJFcW+ HV]u9nrt# l_s := 1940 nm {signal wavelength } !信号光波长1940nm 9C!b
f \ w_s := 7 um !信号光的半径 SP>&+5AydX I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 9/I
xh? loss_s := 0 !信号光寄生损耗为0 MOi1+`kwh !\OX}kHX5 R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 ivt ~S VCIV*5
P ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 /#q6.du calc `_]Ul I_h begin A ^zd:h- global allow all; !声明全局变量 Im]6-#(9\| set_fiber(L_f, No_z_steps, ''); !光纤参数 2p58_^l add_ring(r_co, N_Tm); $U)nrni def_ionsystem(); !光谱数据函数 ]mC5Z6,1s pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 kjOkPp signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ?N@[R]; signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 K*p3#iB set_R(signal_fw, 1, R_oc); !设置反射率函数 glBS|b$\: finish_fiber(); GNHW bC6_m end; ,s:viXk dVn_+1\L ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 F%O+w;J4 show "Outputpowers:" !输出字符串Output powers: gr# |ZK.` show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) j6L (U~% show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) f9)0OHa lvLz){ wLvM<p7OX ; ------------- 4[Wwm diagram 1: !输出图表1 oR3t vw. lB8gD "Powers vs.Position" !图表名称 i|28:FJA mMO]l(a& x: 0, L_f !命令x: 定义x坐标范围 ,rNud]NM8 "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 2R;#XmKS y: 0, 15 !命令y: 定义y坐标范围 ),^pi? y2: 0, 100 !命令y2: 定义第二个y坐标范围 rfr]bq5 frame !frame改变坐标系的设置 M)H*$!x}> legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) +Y$EZL.A hx !平行于x方向网格 E Q:6R|L hy !平行于y方向网格 fX>y^s?y FJT0lC f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 vskp1 Wi( color = red, !图形颜色 /a6i` width = 3, !width线条宽度 SzfMQ@~ "pump" !相应的文本字符串标签 ^ohIJcI- f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 vTIRydg2b color = blue, 3UUN@Tx width = 3, O]Yz7 "fw signal" Ynp#3 r f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 o%0To{MAF- color = blue, da@W6Ov x style = fdashed, _6g(C_m'T? width = 3, _~S[ "bw signal" vF/wV'Kk jvo^I$|2h f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 r d)W+W9 yscale = 2, !第二个y轴的缩放比例 9\0$YY% color = magenta, imKMPO= width = 3, QV4FA&f& style = fdashed, eo.B0NZsF "n2 (%, right scale)" wyXQP+9G sk
AF6n f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 X}g3[ yscale = 2, z<.?8bd color = red, zJ@^Bw;A^@ width = 3, ~qK/w0=j style = fdashed, kv;P2:"| "n3 (%, right scale)" Ch:EL-L <d >!% q>5j (,6F ; ------------- '|<S`,'#hg diagram 2: !输出图表2 2.MY8}&WBu z\woTL6D] "Variation ofthe Pump Power" !(Y,2{ ;k,@^f8 x: 0, 10 BfD& | |