首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> OptiSystem,PhotonDesign,Rsoft -> RP Fiber Power仿真设计掺铥光纤激光器代码详解 [点此返回论坛查看本帖完整版本] [打印本页]

小火龙果 2020-05-28 16:28

RP Fiber Power仿真设计掺铥光纤激光器代码详解

(* l~cT]Ep  
Demo for program"RP Fiber Power": thulium-doped fiber laser, &DUt`Dr w  
pumped at 790 nm. Across-relaxation process allows for efficient Q#wl1P  
population of theupper laser level. RA5*QW  
*)            !(*  *)注释语句  (C1@f!Z  
\1^qfw  
diagram shown: 1,2,3,4,5  !指定输出图表 r$=YhI/=  
; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 Y(:.f-Du  
; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 SL( WE=H  
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 sg=mkkD!g  
; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 n aQ0TN,  
; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 WKHEU)'!  
lDBn3U&z>  
include"Units.inc"         !读取“Units.inc”文件中内容 k{{iF  
Ng;K-WB\  
include"Tm-silicate.inc"    !读取光谱数据 p-KMELB  
ow,4'f!d  
; Basic fiberparameters:    !定义基本光纤参数 )JYt zc  
L_f := 4 { fiberlength }      !光纤长度 {e>E4(  
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 #5Zf6w  
r_co := 6 um { coreradius }                !纤芯半径 mAI<zh&SQ  
N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 >Ei-Spy>Xl  
=|@%5&.P  
; Parameters of thechannels:                !定义光信道 z } L3//  
l_p := 790 nm {pump wavelength }                !泵浦光波长790nm uTSTBI4t  
dir_p := forward {pump direction (forward or backward) }   !前向泵浦 y)5U*\b  
P_pump_in := 5 {input pump power }                    !输入泵浦功率5W M*& tVG   
w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um 2f;fdzjk8K  
I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 9PpPAF  
loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 $U{ \T4  
> x$eKN  
l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm  :RYh@.  
w_s := 7 um                          !信号光的半径 |C MKY  
I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 3A~53W$M  
loss_s := 0                            !信号光寄生损耗为0 . q=sC?D  
dc ]+1 A  
R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 09_L^'`  
1|+Z mo"  
; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 (k@%04c  
calc ]#UyYgPk  
  begin 6NvdFss'A{  
    global allow all;                   !声明全局变量 pi'w40!:  
    set_fiber(L_f, No_z_steps, '');        !光纤参数 OS X5S:XS  
    add_ring(r_co, N_Tm); FG?69b>  
    def_ionsystem();              !光谱数据函数 q. %[!O  
    pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 W6b5elH@  
    signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 h4j{44MT  
    signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 h{ &X`$  
    set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 (#4   
    finish_fiber();                                   ]yTMWIx#  
  end; ql|ksios  
HJ&|&tT  
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 D@M ZTb  
show "Outputpowers:"                                   !输出字符串Output powers: JWu^7}@~=  
show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) [Rqv49n*V  
show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) w(sD}YA)  
nm!5L[y!0  
?qn0].  
; ------------- Bf&,ACOf  
diagram 1:                   !输出图表1 |j[=uS  
Y#'?3  
"Powers vs.Position"          !图表名称 YKjm_)8]w  
1NP(3yt%  
x: 0, L_f                      !命令x: 定义x坐标范围 yJt0KUw@!  
"position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 +/g/+B_b  
y: 0, 15                      !命令y: 定义y坐标范围 8P wobln  
y2: 0, 100                    !命令y2: 定义第二个y坐标范围 Z3ucJH/)V  
frame          !frame改变坐标系的设置 ^|z  
legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) ;P` z ?>J:  
hx             !平行于x方向网格 V b=Oz  
hy              !平行于y方向网格 0?D`|x_  
07zbx6:t  
f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 0>uMR{ #  
  color = red,  !图形颜色 MX=mGfoa  
  width = 3,   !width线条宽度 yQ33JQr  
  "pump"       !相应的文本字符串标签 MKad 5gD*<  
f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 RCFocOOn  
  color = blue,     BE54^U  
  width = 3, MroJ!.9  
  "fw signal" 6K/j,e>L  
f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 P= e3f(M2  
  color = blue, V!eq)L  
  style = fdashed, Ms^U`P^V~P  
  width = 3, {Z>OAR#   
  "bw signal" &cty&(2p  
ZH9sf~7  
f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 \r_-gn'1b  
  yscale = 2,            !第二个y轴的缩放比例 hOI| #(-  
  color = magenta, &ukYTDM  
  width = 3, &N{XLg>  
  style = fdashed, PD @]2lY(  
  "n2 (%, right scale)" a$ f$CjQ  
={Bcbj{  
f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ,a N8`M  
  yscale = 2, 1^G*)Qn5Df  
  color = red, .xR J )9q  
  width = 3, K{]!hm,[3  
  style = fdashed, {uO=Wkp~7  
  "n3 (%, right scale)" HPGMR4=ANS  
@M[t|  
+tbG^w %  
; ------------- ;\P\0pI50  
diagram 2:                    !输出图表2 5iE-$,7#L  
efj[7K.h  
"Variation ofthe Pump Power" }O_kbPNw  
xPFNH`O&  
x: 0, 10 3I87|5V,Z  
"pump inputpower (W)", @x -L;sv0  
y: 0, 10 y be:u  
y2: 0, 100 _*d8:|qw  
frame u n{LwZH  
hx MP5 vc5[  
hy i%jti6z$Hr  
legpos 150, 150 89*txYmx  
4Wz@^7|V5  
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 &xK ln1z'  
  step = 5, +Y7"!wYR>  
  color = blue, W@R\m=e2  
  width = 3, lTl-<E;  
  "signal output power (W, leftscale)",     !相应的文本字符串标签 5)g6yV'  
  finish set_P_in(pump, P_pump_in) #t.)4$  
3lw KV  
f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 ,{"%-U#z  
  yscale = 2, Gqe?CM  
  step = 5, c{YBCWA  
  color = magenta, ^gP pmb<x  
  width = 3, Y?cdm}:Ou  
  "population of level 2 (%, rightscale)", V)[ta`9  
  finish set_P_in(pump, P_pump_in) :~K c"Pg  
F` /mcyf  
f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 4bV&U=  
  yscale = 2, blbL49;  
  step = 5, ~s#vP<QHa  
  color = red, #\15,!*a=  
  width = 3, FW](GWp`:  
  "population of level 3 (%, rightscale)", ZCdlTdY   
  finish set_P_in(pump, P_pump_in) F:p'%#3rU/  
0L3v[%_j"  
5](-(?k}~  
; ------------- 74Fv9  
diagram 3:                         !输出图表3 du,mbTQib  
dMo456L  
"Variation ofthe Fiber Length" L'=mDb  
{bQi z  
x: 0.1, 5 ${(c `X  
"fiber length(m)", @x * z,] mi%  
y: 0, 10 BSe{HmDq  
"opticalpowers (W)", @y H0!W:cIS;l  
frame ;5i~McH# t  
hx woQ UrO(  
hy (jR7D"I  
7x 6q:4Ep\  
f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 @xKfqKoqg  
  step = 20,             I_QWdxn  
  color = blue, nT(Lh/  
  width = 3, *@2+$fgz  
  "signal output" BZ2frG\0&I  
^oykimYI-  
;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 w(>mP9Cb  
   step = 20, color = red, width = 3,"residual pump" ~"eQPTd  
A6ar@$MZ  
! set_L(L_f) {restore the original fiber length } I.C,y\  
y(^hlX6gQ  
FLWQY,  
; ------------- qFqK. u  
diagram 4:                                  !输出图表4 puv/+!q  
`5J`<BPs  
"TransverseProfiles" M/!5r  
Xs,[Z2_iq  
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ';HNQe?vT  
E{):z g  
x: 0, 1.4 * r_co /um A>0wqT  
"radialposition (µm)", @x wD*z >v$  
y: 0, 1.2 * I_max *cm^2 z}772hMB  
"intensity (W/ cm&sup2;)", @y G<dWh.|`=  
y2: 0, 1.3 * N_Tm TGSUbBgU  
frame u]<7}R@s  
hx <1^\,cI2  
hy Cob<N'.  
g8+Ke'=_  
f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 $|0?$U7!  
  yscale = 2,  Sj,>O:p  
  color = gray, n]K`ofjl^  
  width = 3, ZxvqLu  
  maxconnect = 1, E%+aqA)f  
  "N_dop (right scale)" 58vq5j<V  
.u<i<S  
f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 V~9vf*X  
  color = red, G1 :*F8q  
  maxconnect = 1,           !限制图形区域高度,修正为100%的高度 I;=HXL  
  width = 3, :)djHPP*  
  "pump" ].A>ORS/  
|i/Iv  
f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 FQ" ;v"  
  color = blue, X+R?>xq{=h  
  maxconnect = 1, :!fP~(R'm  
  width = 3, 2D?V0>/  
  "signal" G!%Cc0d"7  
(toN? ?r  
TgDx3U[  
; ------------- ;z>?- j  
diagram 5:                                  !输出图表5 #3+-vyZm  
K6 {0`'x  
"TransitionCross-sections" Boi?Bt  
|aaoi4OJ  
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) RhL!Z z  
N9|v%-_?)  
x: 1450, 2050 )`4g,W  
"wavelength(nm)", @x |Z"5zL10  
y: 0, 0.6 ~_;x o?@ba  
"cross-sections(1e-24 m&sup2;)", @y f^EDiG>b`  
frame h 8ND=(  
hx CyWaXp65  
hy KRL9dD,&  
Msk^H7  
f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 .b3c n  
  color = red, e>GX]tK  
  width = 3, ;$0)k(c9  
  "absorption" nMBKZ  
f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 & rsNB:!  
  color = blue, f{[] m(X;  
  width = 3, O<H5W|cM  
  "emission" GadZ!_.f  
b }^ylm  
lileisgsz 2021-09-28 09:47
感谢,视频上有点看不清楚
查看本帖完整版本: [-- RP Fiber Power仿真设计掺铥光纤激光器代码详解 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计