小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* _B4N2t$ Demo for program"RP Fiber Power": thulium-doped fiber laser, 0a?[@ -Sz pumped at 790 nm. Across-relaxation process allows for efficient 5=<fJXf5y population of theupper laser level. g$=']A?W_ *) !(* *)注释语句 4tiCxf) *bcemH8f diagram shown: 1,2,3,4,5 !指定输出图表 F%ukT6xp ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 Ov:U3P?% ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 `sdbo](76 ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 sZa>+ ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 6XhS
g0s ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 's8LrO(= YTe8C9eO include"Units.inc" !读取“Units.inc”文件中内容 pkIJbI{aS O[}2 include"Tm-silicate.inc" !读取光谱数据 )Zyw^KN^ B`%%,SLJ ; Basic fiberparameters: !定义基本光纤参数 a,t]> z95 L_f := 4 { fiberlength } !光纤长度 &C/,~pJ1S No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 >va9*pdJ r_co := 6 um { coreradius } !纤芯半径 :n}t7+(>U N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 L~M6ca" #=fd8}9 ; Parameters of thechannels: !定义光信道 XKBQH( l_p := 790 nm {pump wavelength } !泵浦光波长790nm w\a9A#v, dir_p := forward {pump direction (forward or backward) } !前向泵浦 o[G,~f\- P_pump_in := 5 {input pump power } !输入泵浦功率5W Zg;Ht w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um Y,%G5X@S< I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 F>q%~ loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 wGpw+O H? pWyc<, l_s := 1940 nm {signal wavelength } !信号光波长1940nm mhnK{M @56 w_s := 7 um !信号光的半径 0 KWi<G1 I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 %X\rP, loss_s := 0 !信号光寄生损耗为0 74Il]i1= J@9E20$ R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 9TE-'R@ WB|SXto%4D ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 z:tu_5w!, calc ZsDn`8 begin ~ @s$ global allow all; !声明全局变量 +(2mHS0_a set_fiber(L_f, No_z_steps, ''); !光纤参数 _i&awm/U add_ring(r_co, N_Tm); NB/ wJ3 F def_ionsystem(); !光谱数据函数 WXE{uGc pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 T EqCoeR signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 h3L{zOff signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 D\GP+Ota set_R(signal_fw, 1, R_oc); !设置反射率函数 uw&'=G6v finish_fiber(); .zyi'Kj end; 8:0.Pi(ln@ ZTSNM)f ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 -Z%B9ql' show "Outputpowers:" !输出字符串Output powers: :~]ha show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) yn5yQ; show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 2f@gR9T )0Lv-Gs VFwp .1oa! ; ------------- IE9A _u* diagram 1: !输出图表1 {p(.ckze+ i;B)@op.# "Powers vs.Position" !图表名称 H@,(
Vg4N7i x: 0, L_f !命令x: 定义x坐标范围 :<Y, f(c "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 m-No 8)2yA y: 0, 15 !命令y: 定义y坐标范围 "# mr?h_ y2: 0, 100 !命令y2: 定义第二个y坐标范围 PYz^9Ud 6g frame !frame改变坐标系的设置 x+7jJ=F legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) '|i<?]U hx !平行于x方向网格 +V6N/{^5 hy !平行于y方向网格 <}$o=>' Y/_b~Ahn f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ?-0>Wbg color = red, !图形颜色 q.>{d%? width = 3, !width线条宽度 L?e N(L "pump" !相应的文本字符串标签 J0M7f] f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 \{[Gdj` color = blue, ?F9:rUyN width = 3, N&t+*kF_ "fw signal" dRXF5Ox5K} f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 a:tCdnK/ color = blue, |};P"& style = fdashed, 2!b+}+: width = 3, s`G3SE "bw signal" |Tp>,\:5 G-]ndrTn f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比
.* xaI+: yscale = 2, !第二个y轴的缩放比例 iIoeG_^*Y color = magenta, 'e;]\<
0z width = 3, 257pO9] style = fdashed, /=}w%-;/; "n2 (%, right scale)" aoh"<I%]>4 "-+5`!Y f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 7 Ld5 yscale = 2, ~I%m[fQ S color = red, WBgS9qiB width = 3, |Psi?'4 style = fdashed, $ Aw"?&d" "n3 (%, right scale)" emo@&6* !A
)2<<4 3%G>TB ; ------------- _>8ZL)NQQ diagram 2: !输出图表2 ^b]h4z$ c|%.B2 "Variation ofthe Pump Power" %># VhK c_e2'K: x: 0, 10 >M\3tB2C "pump inputpower (W)", @x I65W^b4y y: 0, 10 ;x*_h y2: 0, 100 9H9 P'lx9 frame ^#T@NN0T hx #MbkU]) hy VFj}{Y legpos 150, 150 Qx-/t 9`!Z |^^'GZ%a f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 TzT(aWP" step = 5, XjL)WgQ{i color = blue, ?32gug\i'} width = 3, Z6eM~$Y "signal output power (W, leftscale)", !相应的文本字符串标签 X\:;A { finish set_P_in(pump, P_pump_in) )_eEM1 ]Z?y\L*M- f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 cRm+?/ yscale = 2, 88]V6Rm9[* step = 5, AM4lAq_ color = magenta, K!c "g,S width = 3, eM";P/XaX "population of level 2 (%, rightscale)", t'e1r&^:r~ finish set_P_in(pump, P_pump_in) n.&z^&$w\) RjC3wO:: f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 uHj"nd13 yscale = 2, ^Oy97Y step = 5, v803@9@ color = red, ZS*PY, width = 3, X}@^$'W "population of level 3 (%, rightscale)", SJg4P4| finish set_P_in(pump, P_pump_in) &M p??{g hXBAs*4DV8 W rB:)Q(8= ; ------------- V2As 5 diagram 3: !输出图表3 k1l\Rywp eD4D<\* "Variation ofthe Fiber Length" 'MLp*3djF, $T.u Iq x: 0.1, 5 37OU "fiber length(m)", @x ^U"$uJz!c y: 0, 10 0w M2v[^YO "opticalpowers (W)", @y ME.l{?v frame wKxw|Fpn hx 6#[ hy s!WGs_1@ <'n'>@ f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 `1}WQS step = 20, T_\Nvzb} color = blue, SlU?,)J} width = 3, GM_~2Er] "signal output" sIUhk7Cd8 -|K^!G ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 bTBV:]w step = 20, color = red, width = 3,"residual pump" O+iNR9O ?4k/V6n@y ! set_L(L_f) {restore the original fiber length } WP*xu-(: %rE:5) _C`&(?} ; ------------- ;Gc,-BDFw diagram 4: !输出图表4 I+08tXO ( *~ '#k "TransverseProfiles" tx` Z?K[ /b&ka&|t
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ,7HlYPec {5 V@O_*{ x: 0, 1.4 * r_co /um O*Gg57a "radialposition (µm)", @x W&g | |