| 小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* ]3,9."^ Demo for program"RP Fiber Power": thulium-doped fiber laser, G.L}VpopM pumped at 790 nm. Across-relaxation process allows for efficient :atd_6 population of theupper laser level. ldp9+7n~ *) !(* *)注释语句 a"YVr'| GO2q"a diagram shown: 1,2,3,4,5 !指定输出图表 <S7SH-{_\ ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 C@ q#s ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Hl%Og$q3 ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 =TEe:%mN ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 h9m|f|cH ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ;0m J4G M/.M~/~ include"Units.inc" !读取“Units.inc”文件中内容 /dg?6XT/ J/Y9 X, include"Tm-silicate.inc" !读取光谱数据 25`W"x_ dpS@: ; Basic fiberparameters: !定义基本光纤参数 WG A&Lr L_f := 4 { fiberlength } !光纤长度 LvS5N)[ No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 \,/ozfJ7dT r_co := 6 um { coreradius } !纤芯半径 yc]_ ?S>9 N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 9*FA=E \; '#8 ; Parameters of thechannels: !定义光信道 g,WTXRy l_p := 790 nm {pump wavelength } !泵浦光波长790nm <7ANXHuSW dir_p := forward {pump direction (forward or backward) } !前向泵浦 r1IvA^X P_pump_in := 5 {input pump power } !输入泵浦功率5W z6M5'$\y w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um m[y~-n I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 FLQke"6i0: loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ]aMDx>OE rz|Sjtq l_s := 1940 nm {signal wavelength } !信号光波长1940nm 8iD7K@ w_s := 7 um !信号光的半径 8wd["hga<% I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 B0yGr\KJ loss_s := 0 !信号光寄生损耗为0 _z%\53h H74'I} R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 p@Os q7aqbkwz} ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 '=+N
)O calc Rh6CV begin Q`J U[nY global allow all; !声明全局变量 @eBo7#Zr set_fiber(L_f, No_z_steps, ''); !光纤参数 [V?HK_~ add_ring(r_co, N_Tm); rC|nE=i def_ionsystem(); !光谱数据函数 -}T7F+ pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 ]g9SUFM signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 BR@gJ(2 signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 l<=k#d set_R(signal_fw, 1, R_oc); !设置反射率函数 -6_<] finish_fiber(); /KnIU|; end; `R
(N3 In%FOPO ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ]5*H/8Ke7 show "Outputpowers:" !输出字符串Output powers:
l8+1{6xP show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) C<:wSS^@1 show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ={o4lFe3v( /-lW$.+{? lws.;abm%n ; ------------- 7?k3jDK
diagram 1: !输出图表1 U<XfO'XJ aW|=|K "Powers vs.Position" !图表名称 j3w~2q"r %CQa8<q x: 0, L_f !命令x: 定义x坐标范围 dQH8s "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 h-Ks:pcR y: 0, 15 !命令y: 定义y坐标范围 G
DBV y2: 0, 100 !命令y2: 定义第二个y坐标范围 obbg#, frame !frame改变坐标系的设置 |iSwG=& legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ScInOPb'K hx !平行于x方向网格 Tp~Qg{%Og hy !平行于y方向网格 m#Z9wf] F JT6Be8
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 90JWU$K color = red, !图形颜色 UZiL NKc width = 3, !width线条宽度 1M_6X7PH "pump" !相应的文本字符串标签 qS}{O0 f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 +('xzW color = blue, pkG8g5(w width = 3, H_Hr=_8}- "fw signal" _8`S&[E? f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 lnMU5[g{ color = blue, t]3:vp5N] style = fdashed, I)%bOK] width = 3, g rQ,J "bw signal" 4yMi9Ri4H XI ><;# f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 #cD$
DA yscale = 2, !第二个y轴的缩放比例 %AT/g&M&1# color = magenta, HuA4eJ(2 width = 3, -DZ5nx style = fdashed, 7we='L&R "n2 (%, right scale)" 8*VQw?{Uee N-p||u f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 V+})$m*> yscale = 2, 54]UfmT%I color = red, _!vuDv% width = 3, rP(;^8l" style = fdashed, JGhK8E
"n3 (%, right scale)" vvG*DGL)qL Yv{$XI7 'OhGSs| ; ------------- FV OPC:}bj diagram 2: !输出图表2 _lH:%E* ZS&+<kGD "Variation ofthe Pump Power" \<}e?Yx% uqBV KE x: 0, 10 wUS w9xg "pump inputpower (W)", @x FYg{IKg y: 0, 10 T}'*Gry y2: 0, 100 \3rgwbF frame ?%>S5,f_ hx >T14
J'\ hy H7 {kl legpos 150, 150 o8A(Cg} ? a*yK8S f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 tg2+Z\0)4g step = 5, p@YbIn color = blue, \gir width = 3, ;
jJ%< "signal output power (W, leftscale)", !相应的文本字符串标签 '_n$xfH finish set_P_in(pump, P_pump_in) c5eimA%` 2) Q/cH\g f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 dP/1E6*m yscale = 2, .T~Oc'wGo step = 5, nG|
NRp color = magenta, .k5&C/jv width = 3, )*BG-nM u "population of level 2 (%, rightscale)", vri<R8 finish set_P_in(pump, P_pump_in) ir;az{T#U lxLEYDGFS f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 {%Q+Pzl. yscale = 2, u-wj\BU step = 5, n--s[Kdo8 color = red, )f`oCXh width = 3, /yO0Z1G "population of level 3 (%, rightscale)", l.SoiFDd finish set_P_in(pump, P_pump_in) Q,>]f@m ~Y7:08 K3J,f2Cn$ ; ------------- @$|bMH*1: diagram 3: !输出图表3 5&Le? -/\ Bc?KAK "Variation ofthe Fiber Length" Vfr.Yoy 8SO(pw9 x: 0.1, 5 ekSSqj9"; "fiber length(m)", @x JHsxaX;c y: 0, 10 x?G"58 "opticalpowers (W)", @y ;<K#h9#*7
frame &>Nw>V hx V.kf@ hy yT C+5_7 K!|J/W f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 WQltUaF step = 20, PCiwQ4~ color = blue, s>e)\9c width = 3, 3TnrPO1E "signal output" ks(BS k4 EpH\;25u ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 u'"]{.K>fb step = 20, color = red, width = 3,"residual pump" 2fMKS r[KX"U- ! set_L(L_f) {restore the original fiber length } 9h0Y">}`b mqoB]H, IFW"SfdZk ; ------------- ]9$^=z%SE diagram 4: !输出图表4 T5+9# /9@VnM "TransverseProfiles" O g!SFg* 5P![fX|5 I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 63pd W/\j ]R]%c*tA x: 0, 1.4 * r_co /um @*5(KIeeC> "radialposition (µm)", @x %bgUU|CdA y: 0, 1.2 * I_max *cm^2 (Ujry =f "intensity (W/ cm²)", @y '>#8
F. y2: 0, 1.3 * N_Tm V*F |Yo: frame KWiP`h8 hx qPgny/( hy o9c?)KQ -~`)V`@ f: N_dop(1, x * um,0), !掺杂浓度的径向分布 qW|_|%{U+ yscale = 2, k[]2S8K2 color = gray, AkVgFQg"
n width = 3, _+}#
maxconnect = 1, gH|:=vfYUR "N_dop (right scale)" em?Q4t }o@Dsx5 f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 2 UPG8] color = red, d2X?^ maxconnect = 1, !限制图形区域高度,修正为100%的高度 wYN/ }>M width = 3, t`E e/L% "pump" v8
pOA<s 4>(rskl_ f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 z?'z{+HY color = blue, b VcA#7
uA maxconnect = 1, @5*$yi 'Cp width = 3, g0:{{w "signal" ^BhS* sTw+.m{F /G= ?E]^ ; ------------- Y@2yV(m)o diagram 5: !输出图表5 B PG&R 80 ckh "TransitionCross-sections" q:u,)6 J1@skj4#\~ I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) G]O5irsV |Jny0a/0 x: 1450, 2050 FPukV^ "wavelength(nm)", @x ].Xh=7&2{ y: 0, 0.6 )_SpY\J "cross-sections(1e-24 m²)", @y xt1\Sie frame U}DLzn|w hx Y |9 hy !uqp?L^; D4$2'h f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 &6nLnMF8x color = red, s%^@@Dk width = 3, q@vqhE4 "absorption" j?1wP6/NP f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 d8K|uEHVz color = blue, %#C9E kr width = 3, PP8627uP "emission" w$"^)EG,7 y'(a:.%I
|
|