songshaoman |
2020-05-25 15:25 |
在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解
%无中间像,焦距输入为负数 iph}!3f function sjr=nfdre(~) A5?q&VS}p "X,*VQl: %系统焦距及各镜间距输入,间距取负正负 FW)VyVFmk &(X 67 f=input('f:'); 9|NH5A"H. d1=input('d1:'); OWT|F0.1$k d2=input('d2:'); yZQcxg% d3=input('d3:'); {@ Z=b5/P zyP9
n[eZ A=f^2/(d3*d2)-f/d1; Fxv5kho B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); 2Og<e| C=d3/d2-f/d1; i!;9A6D <rxtdI"3 a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 )=pa* a2=d3/(a1*f);%α2 Q)Q1a;o b2=a1*(1-a2)*f/d2;%β2 sf"vi i,1A b1=(1-a1)*f/(d1*b2);%β1 ;cfPS K$I`&M( 'Y0h w %曲率半径 6uIgyO*;k DM,)nh6' R1=2*f/(b1*b2) qs!A)H# R2=2*a1*f/(b2*(1+b1)) JFFluL=- R3=2*a1*a2*f/(1+b2) "p]!="\ spT$}F2n A1=b2^3*(a1-1)*(1+b1)^3; V5' (op / B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; WG*),P? C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; #Q'#/\5 xVk5% A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); }0,dG4Oo= B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); i>O8q%BnJ C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); 54].p7 P^AI*tH"m CB=[C1 B1;C2 B2]; RT|1M"?$ AB=[A1 B1;A2 B2]; ;Z); k`j AC=[A1 C1;A2 C2]; JOH\K0=e 0D Lw %非球面系数 RM;Uq>l k2=-(det(CB)/det(AB)); P$Q,t2$A k3=-(det(AC)/det(AB)); }N&?8s= k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 Z/czAr@4 k2=k2 G*_qqb{B k3=k3 0S96x}]J B sI.p(
-KQ end d$"?8r4:K ST2:&xH( %有中间像,焦距输入为正数 H:S<O%f i+F*vTM2, function sjr=yfdre(~) JIIc4fyy8s rp+]f\]h f=input('f:');
T%Bz >K d1=input('d1:'); D|*yeS4> d2=input('d2:'); HX)]@qL d3=input('d3:'); zhJ0to[%? 70'gVCb A=f^2/(d3*d2)-f/d1; a@J/[$5 B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); wJD'q\n C=d3/d2-f/d1; 3b|=V H32o7]lT a1=(-B-sqrt(B^2-4*A*C))/(2*A); {Kf5a
m a2=d3/(a1*f); AOJ[/YpM b2=a1*(1-a2)*f/d2; e{9~m b1=(1-a1)*f/(d1*b2); G<*
Iw>ep .9N7` %曲率半径 zk"8mTg U>OAtiq JX R1=2*f/(b1*b2) Z~<=I }@ R2=2*a1*f/(b2*(1+b1)) BeN]D R3=2*a1*a2*f/(1+b2) }LeS3\+UHl IJt'[&D A1=b2^3*(a1-1)*(1+b1)^3; &_u.q/~ B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; ^Ua6.RH8 C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; l4dG=x}M] N:+)6a A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); \Z,{De% B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); S~hu(x# C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); X&kp1Ih<^ KyyVO" CB=[C1 B1;C2 B2]; x NjQ"'i8 AB=[A1 B1;A2 B2]; 5\=
y9Z- x AC=[A1 C1;A2 C2]; $8xb|S[ jJ-C\
v %二次系数 TQmrL C JER&"em7 k2=-(det(CB)/det(AB)); #UhH k3=-(det(AC)/det(AB)); R :(-"GW' k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 l?
U!rFRq` k2=k2 ".%d{z}vz k3=k3 nJGs ,~" El@*Fo end
|
|