songshaoman |
2020-05-25 15:25 |
在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解
%无中间像,焦距输入为负数 QTrlQH&p function sjr=nfdre(~) ,&zjOc_v [EW$7 se~ %系统焦距及各镜间距输入,间距取负正负 Tvksf!ba 1b
%T_a f=input('f:'); &?5{z\;1" d1=input('d1:'); }
Khq d2=input('d2:'); S,)|~#5x d3=input('d3:'); Ok~W@sYST jmk*z(}#: A=f^2/(d3*d2)-f/d1; fa*H cz B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); 9 z8<[> C=d3/d2-f/d1; a|6x!p2X $<>EwW a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 DS,FVh".| a2=d3/(a1*f);%α2
6Qzu- b2=a1*(1-a2)*f/d2;%β2 +DbWMm b1=(1-a1)*f/(d1*b2);%β1 5M\=+5wB h^ecn-PC _w5~/PbWt %曲率半径 EV?47\~ VM V]TPks> R1=2*f/(b1*b2) BJ.8OU*9]S R2=2*a1*f/(b2*(1+b1)) ]zwqG A R3=2*a1*a2*f/(1+b2) u6S0t?Udap $bi_i|? A1=b2^3*(a1-1)*(1+b1)^3; 2dd:5L, B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; _{Q?VQvZ C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; ,wb|?>Y v(Zi;?c A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); yzM+28}L<I B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); ?od}~G4s# C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); DP6{HR$L g0:4zeL CB=[C1 B1;C2 B2]; !qw=I( AB=[A1 B1;A2 B2]; ch,Zk )y:_ AC=[A1 C1;A2 C2]; :!iPn% ?lwQne8/ %非球面系数 EDidg"0p k2=-(det(CB)/det(AB)); kFIB lPV k3=-(det(AC)/det(AB)); QY\wQjwuW k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 j'40>Ct=i k2=k2 C"Y]W-Mgg k3=k3 %}ApO{ ]20"la5 end /E4 }d=5L ]-5jgz" %有中间像,焦距输入为正数 Ualq>J5-m- T;[c<gc/ function sjr=yfdre(~) e9_O/i N lKhh=Pc2 f=input('f:'); ~j&:)a'^
d1=input('d1:'); \Af|$9boHz d2=input('d2:'); ,fG_'3wb d3=input('d3:'); cV_IG}LJ =E~5&W7 A=f^2/(d3*d2)-f/d1; ?5YmE(v7 B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); U1HD~ C=d3/d2-f/d1; :k )<1ua F3 l^^Mc a1=(-B-sqrt(B^2-4*A*C))/(2*A); j]l}K*8( a2=d3/(a1*f); PUZXmnB b2=a1*(1-a2)*f/d2; \;:@=9` b1=(1-a1)*f/(d1*b2); Is6']bYh aq,)6P` %曲率半径 u r.T YKF ]vkHU6d R1=2*f/(b1*b2) )4_6\VaM R2=2*a1*f/(b2*(1+b1)) A{Htpm ~ R3=2*a1*a2*f/(1+b2) '/Cz{<, 1gy}E=noP A1=b2^3*(a1-1)*(1+b1)^3; AW&s-b%P B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; y3[)zv C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; 9PGR#!!F$ - QI`npsnV A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); V1 #aDfiW B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); 6ym)F!t8l C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); d<'Yt|zt *n_4Rr CB=[C1 B1;C2 B2]; f uNXY-; AB=[A1 B1;A2 B2]; rHBjR_L.2 AC=[A1 C1;A2 C2]; 27 TZ+? Bpo68%dx89 %二次系数 TIhzMW\/K z slEUTj) k2=-(det(CB)/det(AB)); wBHDof
xX k3=-(det(AC)/det(AB)); ZpctsCz] k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 *#^1rKGWK k2=k2 OHnjI>/ k3=k3 ]bE?n.NwZ 7c]Ai end
|
|