| 
| songshaoman | 2020-05-25 15:25 |  
| 在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解
%无中间像,焦距输入为负数 [!{*)4$6 function sjr=nfdre(~) !@-j!Ub
 KdFQlQaj
 %系统焦距及各镜间距输入,间距取负正负 	#{(?a.:
 wP1dPl_j:0
 f=input('f:'); b@N|sXt&C
 d1=input('d1:'); '6{q;Bxo
 d2=input('d2:'); D0PP
 d3=input('d3:'); 4UoUuKzt
 )8&Q.? T
 A=f^2/(d3*d2)-f/d1; @{.rDz
 B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); 6KhHS@Z
 C=d3/d2-f/d1; \~xsBPX+x
 xXZ$#z\Z,
 a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 uf`o\wqU
 a2=d3/(a1*f);%α2 8x'rNb
 b2=a1*(1-a2)*f/d2;%β2 -w	2!k
 b1=(1-a1)*f/(d1*b2);%β1 133lIX+(k
 dk({J
 }*$-rieg
 %曲率半径 Y,WcHE
 3z:
rUhA
 R1=2*f/(b1*b2) IJq$GR
 R2=2*a1*f/(b2*(1+b1)) [x!T<jJ
 R3=2*a1*a2*f/(1+b2) u4$d#0sA
 ]V]~I.
 A1=b2^3*(a1-1)*(1+b1)^3; M	O* m@
 B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; 6luCi$bL
 C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2;  "eI-Y`O,
 dz5bW>
 A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); OjMDxG
w
 B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); 3-32q)8
 C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); uVDB;6
 `;*=2M<c
 CB=[C1 B1;C2 B2]; /c/!13|
 AB=[A1 B1;A2 B2]; &z{oVU+mA
 AC=[A1 C1;A2 C2]; LLgN%!&
 1$@k@*u\
 %非球面系数 dSIMwu6u
 k2=-(det(CB)/det(AB)); ]|Vm!Q
 k3=-(det(AC)/det(AB)); "5XD+qi
 k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 ;  {I{X}b
 k2=k2 g  IX"W;
 k3=k3  iv#9{T
 J;m[1Mae&
 end 3m7$$N|
 j(nPWEyJM
 %有中间像,焦距输入为正数 v .r$]O
 [p4a\Qg0
 function sjr=yfdre(~) .vQ2w
 qcQ`WU{
 f=input('f:'); 7jts;H=
 d1=input('d1:'); n{4&('NRFP
 d2=input('d2:'); e;rs!I!Yw
 d3=input('d3:'); cty~dzX^
 %l:%c
 A=f^2/(d3*d2)-f/d1; E6)FYz7x
 B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); 1%EY!14G+
 C=d3/d2-f/d1; Bu!Gy8\
 n)`*{uv$
 a1=(-B-sqrt(B^2-4*A*C))/(2*A); WHE*NWz>q
 a2=d3/(a1*f);  webT
 b2=a1*(1-a2)*f/d2; A|RAMO@le
 b1=(1-a1)*f/(d1*b2); 0C3Yina9
*
 H7qda'%>
 %曲率半径 Mv4JF(,S
 =N7N=xY
 R1=2*f/(b1*b2) X$JKEW;0BP
 R2=2*a1*f/(b2*(1+b1)) ^o?.Rph|i]
 R3=2*a1*a2*f/(1+b2) #B+2qD>E
 /	d6mlQS
 A1=b2^3*(a1-1)*(1+b1)^3; kP8Ypw&
 B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; 5^*
d4[&+
 C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2;  db#y]>^l
 lZn <v'y
 A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); Grjm9tbX}
 B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); Q~-g tEv+&
 C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); m"U\;Mw?
 l[\[)X3$
 CB=[C1 B1;C2 B2]; zKiKda%)
 AB=[A1 B1;A2 B2]; (x.K%QC)
 AC=[A1 C1;A2 C2]; 2d$hgR#v
 TC	R(
 %二次系数 Z71"d"
 W&bh&KzCW
 k2=-(det(CB)/det(AB)); 4|++0=#D$
 k3=-(det(AC)/det(AB)); R
)?8A\<E
 k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 H3a}`3}U
 k2=k2 ?'h@!F%R'
 k3=k3  Ns1u0$fg
 '{OZ[$E
 end
 |  |