首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [点此返回论坛查看本帖完整版本] [打印本页]

songshaoman 2020-05-25 15:25

在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解

%无中间像,焦距输入为负数 "574%\#4z  
function sjr=nfdre(~) b")O#v.  
jM-7  
%系统焦距及各镜间距输入,间距取负正负 DUSQh+C  
"Lyb4#M  
f=input('f:'); Kum" }ux  
d1=input('d1:'); 4B9D  
d2=input('d2:'); i[4!% FxB  
d3=input('d3:'); 7~r_nP_  
 HzL~B#  
A=f^2/(d3*d2)-f/d1; u+y3( 0  
B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); s",G w]8  
C=d3/d2-f/d1; nq,:UYNJ  
T_q M@/f  
a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 ?\I@w4  
a2=d3/(a1*f);%α2 XqU0AbQ  
b2=a1*(1-a2)*f/d2;%β2 DR @yd,  
b1=(1-a1)*f/(d1*b2);%β1 HWIn.ij  
guVuO  
1Vkb}A,'  
%曲率半径 )gz]F_  
>(_2'c*[w  
R1=2*f/(b1*b2) qu.AJ*  
R2=2*a1*f/(b2*(1+b1)) G5|'uKz2"  
R3=2*a1*a2*f/(1+b2) 1h|qxYO  
<I*N=;7  
A1=b2^3*(a1-1)*(1+b1)^3; Q8A+\LR~)  
B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; *ZV3]ig2$  
C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; Lxn-M5RPQ  
@#*{* S8  
A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); PdEPDyFkh  
B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); -aLM*nIoe  
C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); W0;QufV  
v-8{mK`9\  
CB=[C1 B1;C2 B2]; S?zP; iFj  
AB=[A1 B1;A2 B2]; !acuOBv,  
AC=[A1 C1;A2 C2]; ~Y{]yBGoF  
[?=DPE%  
%非球面系数 GO"E>FyB  
k2=-(det(CB)/det(AB)); elR1NhB|p  
k3=-(det(AC)/det(AB)); ?&!!(dWFH  
k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 QkWEVL@uM  
k2=k2 -tx%#(?wH  
k3=k3 'SXLnoeTa  
oGyoU#z#  
end N A_8<B^  
2"k|IHs1  
%有中间像,焦距输入为正数 RameaFX8  
O2"@09:  
function sjr=yfdre(~) i!fk'Yt%  
\),zDO+  
f=input('f:'); :?}> Q  
d1=input('d1:'); SmRFxqtN  
d2=input('d2:'); t|9vb  
d3=input('d3:'); v9!] /]U^  
ks69Z|D  
A=f^2/(d3*d2)-f/d1; Y] UoV_  
B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); <WbO&;%  
C=d3/d2-f/d1; `Ba?4_>k  
0C3Y =F  
a1=(-B-sqrt(B^2-4*A*C))/(2*A); >p#_ L^oZ%  
a2=d3/(a1*f); "r8N- h/P  
b2=a1*(1-a2)*f/d2; asE.!g?  
b1=(1-a1)*f/(d1*b2); f =A#:d  
&_s^C?x  
%曲率半径 AFeFH.G6Jr  
.g7\+aiTUd  
R1=2*f/(b1*b2) nEP3B '+  
R2=2*a1*f/(b2*(1+b1)) :o87<) _F  
R3=2*a1*a2*f/(1+b2) tkff\W[JU  
k py)kS  
A1=b2^3*(a1-1)*(1+b1)^3; <[T{q |*  
B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; Ef@)y&hn  
C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; &LG|YvMY6  
t\PSB  
A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); 1(_[awBx  
B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); DwK$c^2q{.  
C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); {9) HB:  
Q'hs,t1<  
CB=[C1 B1;C2 B2]; sO!m,pK(  
AB=[A1 B1;A2 B2]; * bhb=~  
AC=[A1 C1;A2 C2]; (dy:d^  
7VdxQ T  
%二次系数 bYX.4(R  
}[PC YnS  
k2=-(det(CB)/det(AB)); A;6ew4  
k3=-(det(AC)/det(AB)); C1qlB8(Wh>  
k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1  @k#xr  
k2=k2 gKmF#Z"\  
k3=k3 U-$nwji  
\/nSRAk  
end
doushan 2023-03-01 14:29
谢谢分享,学习一下 d+5v[x~'  
查看本帖完整版本: [-- 在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 --] [-- top --]

Copyright © 2005-2026 光行天下 蜀ICP备06003254号-1 网站统计