songshaoman |
2020-05-25 15:25 |
在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解
%无中间像,焦距输入为负数 ^*ezj1 function sjr=nfdre(~) (Cd{#j< jy@i(@Z %系统焦距及各镜间距输入,间距取负正负 EQOP?>mWx!
R{KIkv f=input('f:'); \ j X N*A d1=input('d1:'); +ls*//R d2=input('d2:'); 7O9hn2?e d3=input('d3:'); n,:.]3v% [x p,& A=f^2/(d3*d2)-f/d1; %x8`fm B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); a(DZGQ-as
C=d3/d2-f/d1; u#@{%kPW hd
;S>K/C a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 >aC\_Mc a2=d3/(a1*f);%α2 ;zE5(3x b2=a1*(1-a2)*f/d2;%β2 Z t+FRR= b1=(1-a1)*f/(d1*b2);%β1 N|O]z ^N2M/B|0 sqpOS!] %曲率半径 )!}-\5F Ao,!z R1=2*f/(b1*b2) 1H,tP|s R2=2*a1*f/(b2*(1+b1)) .i&ZT}v3 R3=2*a1*a2*f/(1+b2) $7DcQ b9 pz35trW A1=b2^3*(a1-1)*(1+b1)^3; Ag4Ga?&8ec B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; 6+B{4OY C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; H~dHVQtJZ hKZ`DB4 A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); KA-/k@1& B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); vG<pc_ak C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); [&pW&>p3 c6Aut`dK CB=[C1 B1;C2 B2]; %X"m/4c8} AB=[A1 B1;A2 B2]; lHKf#| AC=[A1 C1;A2 C2]; ZAX0n!db3 4o4 = %非球面系数 W\qLZuQ k2=-(det(CB)/det(AB)); Z 5)_B,E:X k3=-(det(AC)/det(AB)); 'LbeL1ca k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1
GKyG
#Fl k2=k2 B&i0j5L k3=k3 Q-8'?S t.E4Tqzc> end w &|R5Q 9XoQO 9*Q %有中间像,焦距输入为正数 8L-4}!~C JpxbB)/ function sjr=yfdre(~) W[>iJJwz R{)
Q1~H=q f=input('f:'); /j' B\, d1=input('d1:'); Wyq~:vU.S d2=input('d2:'); ran^te^Ks( d3=input('d3:'); J}(6>iuQY? {+"g':>< A=f^2/(d3*d2)-f/d1; sp=OT-Pfp B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); AUxM)H C=d3/d2-f/d1; )>y
k- N~):c2Kp<9 a1=(-B-sqrt(B^2-4*A*C))/(2*A); iIsEQh a2=d3/(a1*f); \+iu@C b2=a1*(1-a2)*f/d2; ms}f>f= b1=(1-a1)*f/(d1*b2); @q&|MMLt =9pw uH %曲率半径 l@N;sI<O- 3a#PA4Ql R1=2*f/(b1*b2) [6; N3?+ R2=2*a1*f/(b2*(1+b1)) ]am~aJ|L
R3=2*a1*a2*f/(1+b2) pd4cg?K &:c:9w A1=b2^3*(a1-1)*(1+b1)^3; tx0Go'{ B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; Mny'9hsl C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; #M5_em4kN IV{FH&t^T" A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); wfxOx$]zK B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); ge0's+E+1 C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); EJZ@p7*Oj xMDrE? CB=[C1 B1;C2 B2]; z wL3,!t AB=[A1 B1;A2 B2]; ,AH0*L AC=[A1 C1;A2 C2]; a`H\-G N%9h~G %二次系数 z,{e]MB)M JbE?a[Eg? k2=-(det(CB)/det(AB)); d/XlV]#2x\ k3=-(det(AC)/det(AB)); lDW!Fg k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 #B @X k2=k2 gbm0H-A:* k3=k3 *Ph]F$ZP `gBD_0<T7 end
|
|