songshaoman |
2020-05-25 15:25 |
在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解
%无中间像,焦距输入为负数 PQ" Dl=, function sjr=nfdre(~) t [f] +FI]0r %系统焦距及各镜间距输入,间距取负正负 nM#\4Q[}Jh utv.uwfat f=input('f:'); V!p;ME d1=input('d1:'); f|!zjX` d2=input('d2:'); #\qES7We6 d3=input('d3:'); ,b{4GU$3 HXX"B,N A=f^2/(d3*d2)-f/d1; c)?y3LX B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); V.qB3V$ C=d3/d2-f/d1; $|KbjpQ GI/o!0"_ a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 3~ylBJJ a2=d3/(a1*f);%α2 hz!.|U@,{< b2=a1*(1-a2)*f/d2;%β2 Yyf8B b1=(1-a1)*f/(d1*b2);%β1 G9;WO* =>9`qcNW_ idHBz*3~ps %曲率半径 Onao'sjY yd$y\pN=< R1=2*f/(b1*b2) pnWDsC~) R2=2*a1*f/(b2*(1+b1)) pV_2JXM~@ R3=2*a1*a2*f/(1+b2) d}1R<Q;F ;-59#S&?tB A1=b2^3*(a1-1)*(1+b1)^3; bLg1Dd7Q B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; x(A.^Yz C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; k#
/_Zd ?o2L A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); EG,RlmcPp B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); ]`%cTdpLj C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); 9kcAMk1K -70Ut
4B CB=[C1 B1;C2 B2]; :EZTJu AB=[A1 B1;A2 B2]; rc"yEI-``" AC=[A1 C1;A2 C2]; 5bk5EE` :%R3(
& %非球面系数 |#k1a:
k2=-(det(CB)/det(AB)); |,o!O39}> k3=-(det(AC)/det(AB)); Y:O%xtGi k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 V}& k2=k2 3vx?x39*Y k3=k3 }JS?42CTaV 6u7>S? end n<MH\.!tM C Z|R-ky6p %有中间像,焦距输入为正数 p\Jz<dkN1 YDP< function sjr=yfdre(~) S>nM&758 LbnR=B! f=input('f:'); IL\#!|> d1=input('d1:'); WSL_Dc d2=input('d2:'); E}UlQq d3=input('d3:'); {{j?3O // ?_IRO| A=f^2/(d3*d2)-f/d1; 1N2s[ \q$ B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); 7^=O^!sa C=d3/d2-f/d1; 6#v"+V YoJN.],gf a1=(-B-sqrt(B^2-4*A*C))/(2*A); &q>=6sQvf a2=d3/(a1*f); BDpeAF8z b2=a1*(1-a2)*f/d2; V1M oW;& b1=(1-a1)*f/(d1*b2); |dK_^~;o '6WaG
hvO %曲率半径 n>{>3? +v/_R{ M R1=2*f/(b1*b2) ]oj
2 R2=2*a1*f/(b2*(1+b1)) {2A/ @$? R3=2*a1*a2*f/(1+b2) 7i`8 c =.
d x?4)lb A1=b2^3*(a1-1)*(1+b1)^3; \f.ceh;! B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; ZdfIe~Oni C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; #7GbG\ ~]3y667 A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); p \1-. B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); .>_p7=a C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); r!'\$(m E x pT85D CB=[C1 B1;C2 B2]; $3k5hDA0e AB=[A1 B1;A2 B2]; mJp)nF8r~ AC=[A1 C1;A2 C2]; &^92z:? 4gzrxV %二次系数 Y;G+jC8
Vv#|%^0 k2=-(det(CB)/det(AB)); ND77(I$3s k3=-(det(AC)/det(AB)); \:, dWLu k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1
G<U MZg k2=k2 A46Xei:Ow k3=k3 jw]~g+x#$ >d%;+2 end
|
|