首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [点此返回论坛查看本帖完整版本] [打印本页]

songshaoman 2020-05-25 15:25

在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解

%无中间像,焦距输入为负数 -M4VC^_  
function sjr=nfdre(~) kUr/*an  
/"^XrVi-  
%系统焦距及各镜间距输入,间距取负正负 8A u W>7_  
\XfLTv  
f=input('f:'); ^),;`YXZ  
d1=input('d1:'); h8;H<Y;yQ  
d2=input('d2:'); R0G!5>1i  
d3=input('d3:'); }1Q> A 5e  
ofsLx6Po  
A=f^2/(d3*d2)-f/d1; xqauSW  
B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); n;~'W*Ln0  
C=d3/d2-f/d1; K~fWZT3]  
-U\s.FI.AR  
a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 OM`Ws5W}f  
a2=d3/(a1*f);%α2 5v sn'=yN  
b2=a1*(1-a2)*f/d2;%β2 BL-7r=Z  
b1=(1-a1)*f/(d1*b2);%β1 #RKd >ig%  
Z|A+\#'  
+ +Eu.W;&#  
%曲率半径 Ri*mu*r\}  
vYq"W%  
R1=2*f/(b1*b2) Or55_E  
R2=2*a1*f/(b2*(1+b1)) [fs.D /  
R3=2*a1*a2*f/(1+b2) Fc|N6I'o  
:4LWm<P  
A1=b2^3*(a1-1)*(1+b1)^3; N(O* "1b  
B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; ]?NiY:v  
C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; G-#rWZ&  
f>m ! }F:  
A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); u)%/df qzZ  
B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); f=Oj01Ut*  
C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); 8?w#=@s  
`trcYmR=k  
CB=[C1 B1;C2 B2]; HHOqJb{8S  
AB=[A1 B1;A2 B2]; t"5ZYa  
AC=[A1 C1;A2 C2]; @ *5+ZAF  
(-@I'CFd  
%非球面系数 UlPGB2B  
k2=-(det(CB)/det(AB)); h dqr~9  
k3=-(det(AC)/det(AB)); F'@ 9kdp  
k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 S8C} C#  
k2=k2 urQ<r{$x0  
k3=k3 vtc%MG1  
7dOpJjv?)  
end CX ; m8  
*zdUCX  
%有中间像,焦距输入为正数 =p dLh  
y!|4]/G]?t  
function sjr=yfdre(~) a|k*A&5u2  
*T.V5FB0S  
f=input('f:'); di<g"8  
d1=input('d1:'); TiJ \J{  
d2=input('d2:'); %UG|R:  
d3=input('d3:'); []?*}o5&>T  
_*xY>?Aq  
A=f^2/(d3*d2)-f/d1; n>)h9q S  
B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); ^Of\l:q*  
C=d3/d2-f/d1; ?Iag-g9#=m  
pezfB{x?  
a1=(-B-sqrt(B^2-4*A*C))/(2*A); 7324#HwS  
a2=d3/(a1*f); Vw`%|x"Xz  
b2=a1*(1-a2)*f/d2; \vuWypo  
b1=(1-a1)*f/(d1*b2);  Gc;-zq  
%2^V.`0T  
%曲率半径 6H0aHCM  
Z}3;Ych  
R1=2*f/(b1*b2) iaQFVROu  
R2=2*a1*f/(b2*(1+b1)) N5tFEV'G  
R3=2*a1*a2*f/(1+b2) :]LW,Eql  
51ILR9 Bc_  
A1=b2^3*(a1-1)*(1+b1)^3; JtF)jRB0,  
B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; g<:TsP'|  
C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; cVSns\QO  
xX8 c>p  
A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); ppeF,Q  
B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); 7}(YCZny5  
C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); @scSW5+  
6}*4co  
CB=[C1 B1;C2 B2]; @}' ?o_/C  
AB=[A1 B1;A2 B2]; 8A 'SMJi  
AC=[A1 C1;A2 C2]; U?Vik  
r'@7aT&_  
%二次系数 SXV2Y-  
r/QI-Cf&  
k2=-(det(CB)/det(AB)); _J,*0~O$  
k3=-(det(AC)/det(AB)); ?}C8_I|4~  
k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 f3<253 1/}  
k2=k2 DP!8c  
k3=k3 BM87f:d  
Z'd]oNF  
end
doushan 2023-03-01 14:29
谢谢分享,学习一下 Q{~;4+ZD  
查看本帖完整版本: [-- 在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 --] [-- top --]

Copyright © 2005-2026 光行天下 蜀ICP备06003254号-1 网站统计