songshaoman |
2020-05-25 15:25 |
在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解
%无中间像,焦距输入为负数 97Qng*i function sjr=nfdre(~) (K+TqJw ?Ib/}JST %系统焦距及各镜间距输入,间距取负正负 R6Cm:4m}I _|Ml6;1aZ f=input('f:'); #?i#q%q d1=input('d1:'); 8P!dk5,,O d2=input('d2:'); MOG[cp d3=input('d3:'); morI'6N D.<CkDB A=f^2/(d3*d2)-f/d1; 0{Kl5>Z9M B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); dTaR8i C=d3/d2-f/d1; 7`tnoTUv -i'T!Qg1 a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 ZjEO$ts=@ a2=d3/(a1*f);%α2 BQBO]<99 b2=a1*(1-a2)*f/d2;%β2 fT8Id\6js b1=(1-a1)*f/(d1*b2);%β1 IO xj$ ?%l c`X'Q)c&K fwAN9zs %曲率半径 %i%Xi+{3 J6 [x(T R1=2*f/(b1*b2) ja7Zv[ R2=2*a1*f/(b2*(1+b1)) 0 \LkJ*i R3=2*a1*a2*f/(1+b2) >Fld7;L?< 7Nwi\#o A1=b2^3*(a1-1)*(1+b1)^3; >W'SG3Hmc B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; 9v
cUo?/ C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; \Zf&&7v u."fJ2}l0X A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); Z{p6Q1u B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); B@zJ\Ir[ C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); SC2C%.%l` N`Bt|#R CB=[C1 B1;C2 B2]; "}SERC7 AB=[A1 B1;A2 B2]; v[a#>!;s AC=[A1 C1;A2 C2]; <YeF?$S} FYcMvY %非球面系数 N@MeaO k2=-(det(CB)/det(AB)); pXFNK"jm k3=-(det(AC)/det(AB));
GoEIY k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 FOk @W& k2=k2 k) v[/#I k3=k3 )i_FU~ LRq 5h:SH]tn8] end jm-0]ugY&` &YT7>z, %有中间像,焦距输入为正数 }uHc7gTBF7 h{* O9O< function sjr=yfdre(~) ZHC sv]l k@8#By l| f=input('f:'); 3yKI2en" d1=input('d1:'); k9Sqp:l, d2=input('d2:'); (J$A d3=input('d3:'); "}OFwes |~HlNUPR A=f^2/(d3*d2)-f/d1; xu:m~8% B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); ;n;^f&;sJ C=d3/d2-f/d1; 68HX,t f]'@Vt> a1=(-B-sqrt(B^2-4*A*C))/(2*A); 9wq%Fnt a2=d3/(a1*f); /5x`TT b2=a1*(1-a2)*f/d2; KFZ[gqW8YY b1=(1-a1)*f/(d1*b2); xapkhIW2\ @zJI0_Bp %曲率半径 H~ZSw7!M8 sRZ:9de+ R1=2*f/(b1*b2) 4iLU "~ R2=2*a1*f/(b2*(1+b1)) M)J *Df0@ R3=2*a1*a2*f/(1+b2) W1@;94Sb~ sd[QtK^ A1=b2^3*(a1-1)*(1+b1)^3; wFJK!9KA8 B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; Dz50,*}J C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; gNqV>p w//w$}v A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); P+b^;+\1s B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); llleo8 C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); 4w
z
6% *SY4lqN CB=[C1 B1;C2 B2]; 'u3+k. AB=[A1 B1;A2 B2]; vv0zUvmT AC=[A1 C1;A2 C2]; WvJ?e +E [b Lz^ %二次系数 $0*47+f O5{XT]: k2=-(det(CB)/det(AB)); s =5H.q%PV k3=-(det(AC)/det(AB)); iTt=aQjd k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 |f:d72{Qr k2=k2 W<LaR,7 k3=k3 _Y|kX2l
S@ @
RI^wZ-; end
|
|