| songshaoman |
2020-05-25 15:25 |
在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解
%无中间像,焦距输入为负数 k#eH
Q! function sjr=nfdre(~) _&(\>{pm o#"U8N%r %系统焦距及各镜间距输入,间距取负正负 3,ihVVr&P / // f=input('f:'); R07]{ d1=input('d1:'); (p19"p d2=input('d2:'); pUcN-WA d3=input('d3:'); Lud[.>i UL{+mp A=f^2/(d3*d2)-f/d1;
6tx5{Xl-o B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); lu_kir~ C=d3/d2-f/d1; OC?a[^hB^) +9^V9]{Vo a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 .uh>S!X, ] a2=d3/(a1*f);%α2 fL^$G;_?3 b2=a1*(1-a2)*f/d2;%β2 iXoEdt) b1=(1-a1)*f/(d1*b2);%β1 /)%$xi O/XG}G.x| (vR9vOpJ %曲率半径 AvmI<U dd+hX$, R1=2*f/(b1*b2) lfJvN R2=2*a1*f/(b2*(1+b1)) aru;yR R3=2*a1*a2*f/(1+b2) &i(\g7%U ?\Bm>p%+ A1=b2^3*(a1-1)*(1+b1)^3; #QUQC2P(~ B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; u=6LPwiI C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; D`Cy]j 7@W}>gnf A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); B*OEG*t B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); {4F=].! C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); Ad}Nc"O gLDO|ADni CB=[C1 B1;C2 B2]; q`Rc \aWB% AB=[A1 B1;A2 B2]; 5cUz^ > AC=[A1 C1;A2 C2]; '?Jz8iu- |e QwI& %非球面系数 `i `F$ ; k2=-(det(CB)/det(AB));
|F}6Zv k3=-(det(AC)/det(AB)); 'bQjJRq! k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 !g.?+~@ k2=k2 B>;`$- k3=k3 5!s7`w]8*0 g1H$wU3eu end ;f!}vo<; ,q K'! %有中间像,焦距输入为正数 p!o?2Lbiw )MWbZAI function sjr=yfdre(~) @oNYMQ@)d _x` oab0@ f=input('f:'); tqFE>ojlI d1=input('d1:'); _'mK=`>u d2=input('d2:'); b Y2:g ) d3=input('d3:'); 4=nh'
U38 9
df GV!Z A=f^2/(d3*d2)-f/d1; oHPh2b0 B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); D[
v2#2 C=d3/d2-f/d1; PL|ea~/ iw{rns a1=(-B-sqrt(B^2-4*A*C))/(2*A); yog( a2=d3/(a1*f); 6n?0MMtR b2=a1*(1-a2)*f/d2; ["H2H rI2 b1=(1-a1)*f/(d1*b2); 3P *[!KI c }7gHud %曲率半径 wBlo2WY +C36OcmT~ R1=2*f/(b1*b2) 0K(&EpVE R2=2*a1*f/(b2*(1+b1)) adtgNwg R3=2*a1*a2*f/(1+b2) [gIvB<Uv XY,!vLjL A1=b2^3*(a1-1)*(1+b1)^3; 7PbwCRg B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; (:>Sh0. C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; Rd;^ fBx gl~9|$ivj> A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); E h+m|A B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); @:/H)F^x C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); ++!'6!l yIu_DFq% CB=[C1 B1;C2 B2]; em9nuXG AB=[A1 B1;A2 B2]; FL[,?RU?2 AC=[A1 C1;A2 C2]; -`CE; nC}Y+_wo0 %二次系数 ?$6(@>`f&t %$&_! k2=-(det(CB)/det(AB)); ROJ=ZYof k3=-(det(AC)/det(AB)); /^9=2~b k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 >ra)4huZ k2=k2 HP,{/ $i: k3=k3 wz{&0-md*' {#,?K end
|
|