songshaoman |
2020-05-25 15:25 |
在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解
%无中间像,焦距输入为负数 ;7Okyj6EP function sjr=nfdre(~) ?Vc0) MQ` %`` %系统焦距及各镜间距输入,间距取负正负 ]-:6T0JuS k!3 cq) f=input('f:'); VRbQdiZ{ d1=input('d1:'); {x{H$ f d2=input('d2:'); &94W-zh d3=input('d3:'); &RO7{,`
gn)R^ A=f^2/(d3*d2)-f/d1; pOA!#Aj) B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); ()\jCNLT C=d3/d2-f/d1; .'T 40=7 Kkv<"^H a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 -V5w]F' a2=d3/(a1*f);%α2 OJ1tV% E b2=a1*(1-a2)*f/d2;%β2 P!e= b-T b1=(1-a1)*f/(d1*b2);%β1 1nI^-aQ3 1e}8LH7 IQnIaZ %曲率半径 `}fw1X5L C:i|-te R1=2*f/(b1*b2) U>F{?PReA? R2=2*a1*f/(b2*(1+b1)) ~<)vKk R3=2*a1*a2*f/(1+b2) HBiBv-=, ->gZ)?Fqy A1=b2^3*(a1-1)*(1+b1)^3; gU;&$ B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; |=K_F3aJ C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; hXB|g[zT 2K{6iw"h A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); qP1FJ89H B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); 41Ve}% C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); &<]<a_pw R_N:#K.M CB=[C1 B1;C2 B2]; QDTNx!WL AB=[A1 B1;A2 B2]; gl7|H&&xV AC=[A1 C1;A2 C2]; Y)|N"f; 27A!\pn %非球面系数 %d;ezY '2 k2=-(det(CB)/det(AB)); -VT+O+9_A k3=-(det(AC)/det(AB)); u:dx;* k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 9 OT,TpA k2=k2 GP a`e k3=k3 /*rhtrS) k'3Wt*i end t ^SzqB Z(GfK0vU %有中间像,焦距输入为正数 (zcLx;N
](jFwxU function sjr=yfdre(~) yj_4gxJ\ tTanW2C f=input('f:'); !L24+ $ d1=input('d1:'); W+=o&V d2=input('d2:'); A1i!F?X d3=input('d3:');
V
9;[M; *rh,"Zo A=f^2/(d3*d2)-f/d1; $8~e}8dt| B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); jZ*WN|FK? C=d3/d2-f/d1; k G0Yh2;# $E!J:Y= a1=(-B-sqrt(B^2-4*A*C))/(2*A); vVxD!EL a2=d3/(a1*f); |`/TBQz:r b2=a1*(1-a2)*f/d2; cr;`Tl~}s b1=(1-a1)*f/(d1*b2); gm"#:< ) f 2YLk %曲率半径 R.9V,R5 SPkn3D6 R1=2*f/(b1*b2) >QkP7Kb R2=2*a1*f/(b2*(1+b1)) 98XVa\|tl R3=2*a1*a2*f/(1+b2) fS&6 ??&<k A1=b2^3*(a1-1)*(1+b1)^3; 3G}AH E4 B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; #]Y>KX2HG C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; K }$&:nao E%N2k|%8d_ A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); 4Y \wnwI B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); RP4Ku9hk C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); LW)H"6v Vr.Y/3N&' CB=[C1 B1;C2 B2]; *#
{z 3{+ AB=[A1 B1;A2 B2]; V^s0fWa AC=[A1 C1;A2 C2]; qQ]]~F }f}}A= %二次系数 PJ4(}a i5}4(sV k2=-(det(CB)/det(AB)); 9LJZ-/Wq k3=-(det(AC)/det(AB)); ;]2s,za)qs k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 Ol_q{^ k2=k2 AnBJ(h k3=k3 8 .>/6M Z~ end
|
|