xunjigd |
2018-09-03 13:37 |
100 Gbps DP-QPSK
应用 Uty(sDtu x1:Pj •骨干网聚合取代N * 10 G LAG。 RUk<=!U •数据中心网络聚合和企业计算。 `@$"L/AJ
•在100 G以太网中的传输和以太网融合。 Z0"& 4/2RfDp 概述 F7Dc!JNa a\&(Ua 偏振复用和正交相移键控(PM-QPSK或DP-QPSK)的组合正在成为达到100 Gbps或更高比特率的最有前景的解决方案之一。在接收器端,数字信号处理(DSP)的使用导致相对于传统实现的显著部署改进。本案例介绍了100 Gbps DP-QPSK传输系统的实际设计,该系统使用数字信号处理的相干检测进行失真补偿。 RZd4(7H=q /%uZKGP 100 Gbps DP-QPSK布局 I#S~ O~#uQm
[attachment=86229] iVKbGgA 优点 *{.&R9#7U' • 通过全面的设计环境显著降低产品开发成本并提高生产力,从而帮助规划,测试和模拟现代光网络传输层中的光链路。 ^\vfos • 用户能够分析电子均衡的不同算法,(例如Gram-Schmidt正交化程序(GSOP),椭圆校正方法(EC),横向数字滤波器) +f\pk \Ith • 与流行的设计工具接口。 %on9C`/ [attachment=86230] xS~yH[k • 新的BER测试装置可以模拟数百万比特直接误差计数。 X40la_[. • FEC F9k
I'<Q • 多参数扫描使系统设计人员能够研究与感兴趣的参数相关的权衡,并为部署选择最佳设计。 s3Krob`C5 • 探索100G的不同调制格式:DQPSK,相干DP-QPSK,相干OFDM和相干M-QAM。 S< EB&P fXu~69_ 模拟说明 4>$
;gH 100 Gbps DP-QPSK系统可分为五个主要部分:DP-QPSK发送器,传输链路,相干接收器,数字信号处理和检测和解码(后面是直接误差计数)。信号由光学DP-QPSK发射器产生,然后通过光纤环路传播,在光纤中会发生色散和偏振效应。然后它通过相干接收器进入DSP进行失真补偿。使用简单的横向数字滤波器补偿光纤色散,并且通过恒模算法(CMA)实现自适应偏振解复用。然后使用改进的Viterbi-Viterbi相位估计算法(在两个极化上共同工作)来补偿发射器和本地振荡器(LO)之间的相位和频率失配。数字信号处理完成后,信号被发送到检测器和解码 器,然后发送到BER测试装置进行直接误差计数。 K=m9H=IX~T 下面是发射机后100 Gbps DP-QPSK信号的光谱图像,以及相干DP-QPSK接收机后获得的RF频谱。 Nxbd~^j ^<>Jw%H
[attachment=86231] e7XsyL'|p DSP模块的内部结构如下所示: A]Q1&qM% PTzp;.
[attachment=86232] z;bH<cQ DSP之前和之后的电子星座图(极化X)如下: lPRdwg- .7pGx*WH^Y
[attachment=86233] SRt$4EL21 用于数字信号处理的算法通过Matlab组件实现。通过将Matlab组件设置为调试模式,每个步骤(CD补偿,偏振解复用和载波相位估计)后生成的电子星座图如下所示: (o x4K{ BrNG%%n
[attachment=86234] z"6ZDC6 {t844La" (来源:讯技光电)
|
|