| zebra |
2007-02-01 00:44 |
"Modern Lens Design" 2nd Edition by Warren J. Smith 4D)M_O 0u}+n+\g Contents of Modern Lens Design 2nd Edition }Jo}K)>! T&ib]LmR 1 Introduction sjy/[.4- 1.1 Lens Design Books R+# g_"1@p 1.2 Reference Material m^$KDrkD 1.3 Specifications tq=7HM 1.4 Lens Design >)t-Zh:n 1.5 Lens Design Program Features 9}T(m(WQVu 1.6 About This Book ]|QA`5=$ &SMM<^P. 2 Automatic Lens Design RPw1i* 2.2 The Merit Function +2#pP 2.3 Local Minima Bo4iX,zu 2.4 The Landscape Lens Ow0( q^H< 2.5 Types of Merit Function ra
F+Bt` 2.6 Stagnation =zW`+++3 2.7 Generalized Simulated Annealing W~& QcSWqD 2.8 Considerations about Variables for Optimization %Vb~}sT: 2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems E?h'OR@_ L 2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits 8Xa{.y" 2.11 Spectral Weighting F%I*m^7d 2.12 How to Get Started $Yj4&Two< ~.Er 3 Improving a Design |@rYh-5 3.1 Lens Design Tip Sheet: Standard Improvement Techniques QSx4M 3.2 Glass Changes ( Index and V Values ) r!c7{6N 3.3 Splitting Elements 3oC^"723 3.4 Separating a Cemented Doublet Q"k #eEA 3.5 Compounding an Element obK6GG?ZE 3.6 Vignetting and Its Uses yK>s]65& 3.7 Eliminating a Weak Element; the Concentric Problem Na.)!h_Kn' 3.8 Balancing Aberrations ]t-B-(D 3.9 The Symmetrical Principle u>.>hQ 3.10 Aspheric Surfaces rsD?
;XzH /Z2 g> 4 Evaluation: How Good is This Design 7
V=%&+ 4.1 The Uses of a Preliminary Evaluation (,['6k< 4.2 OPD versus Measures of Performance S[y?> 4.3 Geometric Blur Spot Size versus Certain Aberrations *#Iqz9X.Y3 4.4 Interpreting MTF - The Modulation Transfer Function \4|osZ0y 4.5 Fabrication Considerations Ym
wb2]M SJO^.[ 5 Lens Design Data nXW]9zC"/ 5.1 About the Sample Lens Designs ?Lem|zo 5.2 Lens Prescriptions, Drawings, and Aberration Plots b/UjKNf@ 5.3 Estimating the Potential of a Redesign *40Z}1ng 5.4 Scaling a Desing, Its Aberrations, and Its MTF J5zu}U? 5.5 Notes on the Interpretation of Ray Intercept Plots L8cPNgZ
5.6 Various Evaluation Plot ;'oi7b (!koz'f 6 Telescope Objective +~?K@n 6.1 The Thin Airspaced Doublet ?>iZ){0, 6.2 Merit Function for a Telescope Objective 89fl\18% 6.3 The Design of an f/7 Cemented Doublet Telescope Objective @l?2", 6.4 Spherochromatism t_iZ\_8 6.5 Zonal Spherical Aberration J
Sms
\ 6.6 Induced Aberrations S^ JUQx7 6.7 Three-Element Objectives HE*P0Yf= 6.8 Secondary Spectrum (Apochromatic Systems) h<FEe~ 6.9 The Design of an f/7 Apochromatic Triplet vW03nt86 6.10 The Diffractive Surface in Lens Design <Q?_],ip 6.11 A Final Note Iq(;?_ *Vp$#Rb 7 Eyepieces and Magnifiers $F~hL?"? 7.1 Eyepieces (Ek=0;Cr 7.2 A Pair of Magnifier Designs `bEum3l\6] 7.3 The Simple, Classical Eyepieces !gG\jC~n 7.4 Design Story of an Eyepiece for a 6*30 Binocular Kvh6D" 7.5 Four-Element Eyepieces 23gJD8i8 7.6 Five-Element Eyepieces ]]_H|tO 7.7 Very High Index Eyepiece/Magnifier vQL)I 7.8 Six- and Seven-Element Eyepieces ;/ao3Q Xj;5i
Vq 8 Cooke Triplet Anastigmats i
,g<y 8.1 Airspaced Triplet Anastigmats E3E$_<^ 8.2 Glass Choice et :v4^*f 8.3 Vertex Length and Residual Aberrations c$]NXKcA 8.4 Other Design Considerations *,oZ]! 8.5 A Plastic, Aspheric Triplet Camera Lens fSzX /r 8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet O:(%m 8.7 Possible Improvement to Our “Basic” Triplet 'gv7&$X}4 8.7 The Rear Earth (Lanthanum) Glasses T(6B, 8.9 Aspherizing the Surfaces 2`w\<h
8.10 Increasing the Element Thickness oxL4* bqZ O7\)C]A 9 Split Triplets pd
X"M> a3oSSkT 10 The Tessar, Heliar, and Other Compounded Triplets /pDI
\] 10.1 The Classic Tessar >zWVM1\\j 10.2 The Heliar/Pentac d
3}'J 10.3 The Portrait Lens and the Enlarger Lens o*1t)HL < 10.4 Other Compounded Triplets [EV}P&U 10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar S~4HFNe^& #L,5;R{` 11 Double-Meniscus Anastigmats d<l-Ldle 11.1 Meniscus Components b3!,r\9V 11.2 The Hypergon, Totogon, and Metrogon 7&9'=G 11.3 A Two Element Aspheric Thick Meniscus Camera Lens r.;(Kx/M 11.4 Protar, Dagor, and Convertible Lenses hDs.4MZC` 11.5 The Split Dagor
@OPyT 11.6 The Dogmar WS)u{
or 11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens mLn =SU{# ))>)qav 12 The Biotar or Double-Gauss Lens $\@yH^hL 12.1 The Basic Six-Element Version T4{&@b
0* 12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens DeTZl+qm1E 12.3 The Seven-Element Biotar - Split-Rear Singlet GQ8r5V4: 12.4 The Seven-Element Biotar - Broken Contact Front Doublet $0K%H 12.5 The Seven-Element Biotar - One Compounded Outer Element D;Jb'Be 12.6 The Eight-Element Biotar DqHVc)9 12.7 A “Doubled Double-Gauss” Relay |79!exVMBp !S',V&Yb 13 Telephoto Lenses q>q@ztt 13.1 The Basic Telephoto <ST#<
$% 13.2 Close-up or Macro Lenses ?$^qcpJCp 13.3 Telephoto Designs 4GRmo"S 13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch mckrR$> S,,3h0$X U;:,$]+ 14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses :22IY>p 14.1 The Reverse Telephoto Principle ^50/.Z> 14.2 The Basic Retrofocus Lens a;`-LOO5& 14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses $V)LGu2(m 8EPV\M1% 15 Wide Angle Lenses with Negative Outer Lenses ]Zim8^n?`. Yn}_"FO' 16 The Petzval Lens; Head-up Display Lenses {P#&e>)v{ 16.1 The Petzval Portrait Lens , &HZvU& 16.2 The Petzval Projection Lens FBcF 16.3 The Petzval with a Field Flattener _ QM 16.4 Very Height Speed Petzval Lenses EhybaRy;C 16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems X?.bE!3= gH0B[w ] 17 Microscope Objectives QWf)5S 17.1 General Considerations 0\jOg 17.2 Classic Objective Design Forms; The Aplanatic Front J7.bFW' 17.3 Flat-Field Objectives OR^Wd 17.4 Reflecting Objectives K`FgU7g{ 17.5 The Microscope Objective Designs k[Iwxl;/ v[6 BESu 18 Mirror and Catadioptric Systems u
hP0Zwn 18.1 The Good and Bad Points of Mirrors \wNn c" 18.2 The Classic Two-Mirror Systems = sIR[V'( 18.3 Catadioptric Systems 8y!fqXm%) 18.4 Aspheric Correctors and Schmidt Systems 38Z"9 18.5 Confocal Paraboloids H+3I[`v 18.6 Unobscured Systems Em@h5V 18.7 Design of a Schmidt-Cassegrain “from Scratch” Ik1,?A (`18W1f5W 19 Infrared and Ultraviolet Systems tb0XXEE 19.1 Infrared Optics 3_T'TzQu 19.2 IR Objective Lenses u6y\ GsM.a 19.3 IR Telescope c)SSi@<
cv 19.4 Laser Beam Expanders Ytx+7OLe 19,5 Ultraviolet Systems "`"j2{9|e! 19.6 Microlithographic Lenses S53%*7K. _u;^w}0 20 Zoom Lenses Xx|&%b{{r 20.1 Zoom Lenses dtM@iDljj 20.2 Zoom Lenses for Point and Shoot Cameras n/?5[O-D] 20.3 A 20X Video Zoom Lens B;;D(NH 20.4 A Zoom Scanner Lens \MtiLaI" 20.5 A Possible Zoom Lens Design Procedure e|Sg?ocR <\^X,,WtO 21 Projection TV Lenses and Macro Lenses *-|+phim 21.1 Projection TV Lenses AD?DIE(v 21.2 Macro Lenses #4//2N Q'+N72= 22 Scanner/ , Laser Disk and Collimator Lenses MmWJYF= 22.1 Monochromatic Systems h0.Fstf] 22.2 Scanner Lenses `6mHt6"h 22.3 Laser Disk, Focusing, and Collimator Lenses \ @N> 38M &ApJ'uC 23 Tolerance Budgeting 1wc
-v@E 23.1 The Tolerance Budget :GK{JP 23.2 Additive Tolerances D hZtiqL#_ 23.3 Establishing the Tolerance Budget N0vd>b @L<[38 24 Formulary fSqbGoIQ 24.1 Sign Conventions, Symbols, and Definitions NxXVW 24.2 The Cardinal Points eF8`an5S 24.3 Image Equations :LBe{Jbw 24.4 Paraxial Ray Tracing (Surface by Surface) cZ!s/^o?f 24.5 Invariants }=;>T)QmMO 24.6 Paraxial Ray Tracing (Component by Component) OaCL'! 24.7 Two-Componenet Relationships BXfaqYb;Q 24.8 Third-Order Aberrations – Surface Contributions b(Z%#*e 24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs =(n'#mV 24.10 Stop Shift Equations z t,-O7I'1 24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces .@6]_h; 24.12 Conversion of Aberrations to Wavefront Deformation (OPD) "{x~j\< %UQ?k:aWp| @6j*XF Glossary W;N/Y3Lb Reference L|q<Bpz Index
|
|