| zebra |
2007-02-01 00:44 |
"Modern Lens Design" 2nd Edition by Warren J. Smith Y=4
7se=h" -uxU[E Contents of Modern Lens Design 2nd Edition H~TuQ pSb tm74 1 Introduction x|yJCs> 1.1 Lens Design Books Yj'9|4%+| 1.2 Reference Material (uDAdE5 1.3 Specifications (3K3)0fy 1.4 Lens Design G pI4QzR 1.5 Lens Design Program Features oN[}i6^,e 1.6 About This Book nw\C+1F B$6KI 2 Automatic Lens Design 0zA;%oP 2.2 The Merit Function eAo+w*D( 2.3 Local Minima SswcO9JCX3 2.4 The Landscape Lens ;<q2 2.5 Types of Merit Function 78{9@\e"0 2.6 Stagnation 2Mk;r*FT 2.7 Generalized Simulated Annealing ?QmtZG.$ 2.8 Considerations about Variables for Optimization (c)=Do= 2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems !(7m/R 2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits ^8EW/$k 2.11 Spectral Weighting g5y`XFY 2.12 How to Get Started pbEWnx_ :{N*Z }] 3 Improving a Design &ocuZ-5` 3.1 Lens Design Tip Sheet: Standard Improvement Techniques " >.tPn 3.2 Glass Changes ( Index and V Values ) YHO}z}f[! 3.3 Splitting Elements rH!sImz, 3.4 Separating a Cemented Doublet -yB}(69 3.5 Compounding an Element A"ATtid 3.6 Vignetting and Its Uses v@|<. 3.7 Eliminating a Weak Element; the Concentric Problem F{;#\Ob 3.8 Balancing Aberrations R;!@
xy 3.9 The Symmetrical Principle CV\^gTPmx 3.10 Aspheric Surfaces &:5*^1oP McN[ 4 Evaluation: How Good is This Design r&m49N,d 4.1 The Uses of a Preliminary Evaluation rbnAC*y8'L 4.2 OPD versus Measures of Performance Mib.,J~ 4.3 Geometric Blur Spot Size versus Certain Aberrations ^7wqb'xg 4.4 Interpreting MTF - The Modulation Transfer Function
NdRcA 4.5 Fabrication Considerations i_Hm?Bi!F zwZvKV/g 5 Lens Design Data +HBizJ9K 5.1 About the Sample Lens Designs ~1D^C |% 5.2 Lens Prescriptions, Drawings, and Aberration Plots l>K+4 5.3 Estimating the Potential of a Redesign z`IW[N7Z 5.4 Scaling a Desing, Its Aberrations, and Its MTF ':fp|m)M 5.5 Notes on the Interpretation of Ray Intercept Plots ru@#s2 5.6 Various Evaluation Plot {7ji m g%l ,a3" 6 Telescope Objective x)*Lu"> 6.1 The Thin Airspaced Doublet aSvv(iV 6.2 Merit Function for a Telescope Objective beBG40 6.3 The Design of an f/7 Cemented Doublet Telescope Objective }ofb]_C, 6.4 Spherochromatism UP^8Yhdo 6.5 Zonal Spherical Aberration :c~SH/qS 6.6 Induced Aberrations 5aizWz 6.7 Three-Element Objectives ?VNtT/ 6.8 Secondary Spectrum (Apochromatic Systems) .*x: 6.9 The Design of an f/7 Apochromatic Triplet $uHQl#!; 6.10 The Diffractive Surface in Lens Design z
)'9[t 6.11 A Final Note
-DdHl8 oh< -&3Jn 7 Eyepieces and Magnifiers YK)m6zW5 7.1 Eyepieces qg& /!\ 7.2 A Pair of Magnifier Designs #vBrRHuA#" 7.3 The Simple, Classical Eyepieces HP.=6bJWi 7.4 Design Story of an Eyepiece for a 6*30 Binocular >t3_]n1e 7.5 Four-Element Eyepieces KE3`5Y! 7.6 Five-Element Eyepieces sNDo@u7 7.7 Very High Index Eyepiece/Magnifier e&;e<6l&{ 7.8 Six- and Seven-Element Eyepieces 04-_ K Z?{\34lPj 8 Cooke Triplet Anastigmats E%bhd4$G 8.1 Airspaced Triplet Anastigmats KM wV;r 8.2 Glass Choice E`oA(x7l 8.3 Vertex Length and Residual Aberrations ?9()ya-TE 8.4 Other Design Considerations QCW4gIp 8.5 A Plastic, Aspheric Triplet Camera Lens 3W7^,ir 8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet $_"u2"p 8.7 Possible Improvement to Our “Basic” Triplet U`qkeNd 8.7 The Rear Earth (Lanthanum) Glasses qR'FbI 8.9 Aspherizing the Surfaces =$J(]KPv!? 8.10 Increasing the Element Thickness zbxW
U]<S? &`I(QY 9 Split Triplets \:4*h k`m7j[A]l 10 The Tessar, Heliar, and Other Compounded Triplets %3a-@!|1< 10.1 The Classic Tessar ML_VD*t9 10.2 The Heliar/Pentac m`-);y 10.3 The Portrait Lens and the Enlarger Lens Qb^G1#r@C 10.4 Other Compounded Triplets @!P2f
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar 3:x(2 A }n==^2 11 Double-Meniscus Anastigmats %Xd*2q4* 11.1 Meniscus Components 3 09
pl 11.2 The Hypergon, Totogon, and Metrogon G x[ZHpy; 11.3 A Two Element Aspheric Thick Meniscus Camera Lens gTho:;q7a 11.4 Protar, Dagor, and Convertible Lenses 0(7 IsG=t 11.5 The Split Dagor
77@N79lqO 11.6 The Dogmar m=01V5_ 11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens /Sj~lHh "Au4&Fu 12 The Biotar or Double-Gauss Lens \C3I6Qx 12.1 The Basic Six-Element Version b)I-do+ 12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens |/gt;H~:
12.3 The Seven-Element Biotar - Split-Rear Singlet E%`J=C} 12.4 The Seven-Element Biotar - Broken Contact Front Doublet 6j(/uF4!# 12.5 The Seven-Element Biotar - One Compounded Outer Element 5*%Gh&) 12.6 The Eight-Element Biotar r"dIB@ 12.7 A “Doubled Double-Gauss” Relay >R F|Q EH|+S 13 Telephoto Lenses j?2~6W/[ 13.1 The Basic Telephoto Wi&v?nm 13.2 Close-up or Macro Lenses 2l)"I 13.3 Telephoto Designs %)lp]Y33 13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch [7@g*!+d 3NpB1lgh&: "|8oFf)l@B 14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses =npE?wK 14.1 The Reverse Telephoto Principle 0#]fEi 14.2 The Basic Retrofocus Lens cT'Bp)a 14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses N1~bp?$1 OMLU ;,4 15 Wide Angle Lenses with Negative Outer Lenses 8TP$ ?8l t*(bF[? 16 The Petzval Lens; Head-up Display Lenses (TT=i 16.1 The Petzval Portrait Lens A"JdG%t>.h 16.2 The Petzval Projection Lens XG/xMz~ 16.3 The Petzval with a Field Flattener h]oUY.Pf 16.4 Very Height Speed Petzval Lenses &ys>z<Z
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems /L^g. ~ FHOw ]"# 17 Microscope Objectives t$!zgUJ 17.1 General Considerations =
7y-o 17.2 Classic Objective Design Forms; The Aplanatic Front yvB]rz} i 17.3 Flat-Field Objectives RAO+<m 17.4 Reflecting Objectives >-MnB 17.5 The Microscope Objective Designs Ms!EK '8q3ub<\ 18 Mirror and Catadioptric Systems H+[?{+"#@l 18.1 The Good and Bad Points of Mirrors kOQ)QX 18.2 The Classic Two-Mirror Systems B(W~]i 18.3 Catadioptric Systems Av.tr&ZNb 18.4 Aspheric Correctors and Schmidt Systems \L*%?~ 18.5 Confocal Paraboloids \jC) ;mk 18.6 Unobscured Systems /z-rBfdy^ 18.7 Design of a Schmidt-Cassegrain “from Scratch” j[r}!;O s%D%c;.| 19 Infrared and Ultraviolet Systems <&E}db 19.1 Infrared Optics tRoSq;VrS 19.2 IR Objective Lenses d {!P
c< 19.3 IR Telescope KR?;7*qF 19.4 Laser Beam Expanders eGEwXza 4 19,5 Ultraviolet Systems %>
XsKXj 19.6 Microlithographic Lenses ^EUR#~b5iy \}b2oiY 20 Zoom Lenses );0 20.1 Zoom Lenses ,XT,t[w 20.2 Zoom Lenses for Point and Shoot Cameras Vh\_Ko\V5 20.3 A 20X Video Zoom Lens ~wa4kS<> 20.4 A Zoom Scanner Lens .\XRkr'- 20.5 A Possible Zoom Lens Design Procedure SP%X@~d |Rfj
0+ 21 Projection TV Lenses and Macro Lenses oZ%uq78#[% 21.1 Projection TV Lenses V(&L 21.2 Macro Lenses P'<i3#;7X lju5+0BSb 22 Scanner/ , Laser Disk and Collimator Lenses puOtF YZ\ 22.1 Monochromatic Systems u2#q7} 22.2 Scanner Lenses qR@ESJ_ 22.3 Laser Disk, Focusing, and Collimator Lenses ']nIa7 .V;,6Vq 23 Tolerance Budgeting e1Db
+ QBV 23.1 The Tolerance Budget a OmG, +o 23.2 Additive Tolerances 9~UR(Ts}l 23.3 Establishing the Tolerance Budget 31G:[;g $wM..ee 24 Formulary H9T~7e+ 24.1 Sign Conventions, Symbols, and Definitions k[x-O?$O@ 24.2 The Cardinal Points }_lG2#Ll5 24.3 Image Equations p\[!=ZXFr\ 24.4 Paraxial Ray Tracing (Surface by Surface) Z|qI[ui O 24.5 Invariants ,buX| 24.6 Paraxial Ray Tracing (Component by Component) 8-G )lyfj 24.7 Two-Componenet Relationships =zn'0g,J4 24.8 Third-Order Aberrations – Surface Contributions {7e(0QK 24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs Gpu[<Z4 24.10 Stop Shift Equations ]xvA2!)Q 24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces V[.{cY?6 24.12 Conversion of Aberrations to Wavefront Deformation (OPD) *B&P[n "Da1BuX\ %wbdg&^ Glossary 12^uu)6Xm, Reference :-x?g2MY Index
|
|