| zebra |
2007-02-01 00:44 |
"Modern Lens Design" 2nd Edition by Warren J. Smith Dtk=[;"k2a C]6O!Pb0 Contents of Modern Lens Design 2nd Edition #e"[^_C@! L,\Iasv 1 Introduction qm}@!z^ 1.1 Lens Design Books ^c|/*u 1.2 Reference Material /wp6KXm 1.3 Specifications )GpK@R]{ 1.4 Lens Design Ac@VGT:9 1.5 Lens Design Program Features 7dWS 1.6 About This Book K0~rN.C!0 It(_v 2 Automatic Lens Design A^g(k5M* 2.2 The Merit Function h{Y",7]! 2.3 Local Minima e+WNk
2 2.4 The Landscape Lens s;e\ pt 2.5 Types of Merit Function @{Q4^'K" 2.6 Stagnation 1M 6D3d_ 2.7 Generalized Simulated Annealing <I?Zk80 2.8 Considerations about Variables for Optimization ]Ze1s02( 2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems o&%g8=n% 2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits $FV NCFN% 2.11 Spectral Weighting q~3>R=t 2.12 How to Get Started **%37 }vuO$j 3 Improving a Design -n
1v3 3.1 Lens Design Tip Sheet: Standard Improvement Techniques V
gWRW7Se 3.2 Glass Changes ( Index and V Values ) 1}x%%RD_ 3.3 Splitting Elements /m1\ iM\ 3.4 Separating a Cemented Doublet Cdn J&N{ 3.5 Compounding an Element +7Gwg 3.6 Vignetting and Its Uses Ud?Q%)X 3.7 Eliminating a Weak Element; the Concentric Problem .('SW\u- 3.8 Balancing Aberrations K-v#.e4 3.9 The Symmetrical Principle B\~}3!j 3.10 Aspheric Surfaces vh^VxS 9[4xFE?| 4 Evaluation: How Good is This Design y[;>#j$ 4.1 The Uses of a Preliminary Evaluation Q,g\ 4.2 OPD versus Measures of Performance <'u'#E@"sl 4.3 Geometric Blur Spot Size versus Certain Aberrations m
O_af 4.4 Interpreting MTF - The Modulation Transfer Function BPrt'Nc 4.5 Fabrication Considerations IGl9g_18 KlEpzJ98 5 Lens Design Data N2G{<>= 5.1 About the Sample Lens Designs V3Bz
Mw\9r 5.2 Lens Prescriptions, Drawings, and Aberration Plots f*Hr^b}`8 5.3 Estimating the Potential of a Redesign 3";q[&F9y 5.4 Scaling a Desing, Its Aberrations, and Its MTF Rcuz(yS8 5.5 Notes on the Interpretation of Ray Intercept Plots "oyo#-5z 5.6 Various Evaluation Plot 5P2K5,o|n~ =X}J6|>X 6 Telescope Objective OUnA;_ 6.1 The Thin Airspaced Doublet 4W75T2q# 6.2 Merit Function for a Telescope Objective -"x$ZnHU 6.3 The Design of an f/7 Cemented Doublet Telescope Objective _ q"Gix 6.4 Spherochromatism :gv"M8AP 6.5 Zonal Spherical Aberration ).O)p9 6.6 Induced Aberrations }MySaL> 6.7 Three-Element Objectives &]Tmxh( 6.8 Secondary Spectrum (Apochromatic Systems) 0-gAyiKx? 6.9 The Design of an f/7 Apochromatic Triplet 5P bW[ 6.10 The Diffractive Surface in Lens Design UKGPtKE< 6.11 A Final Note F4QVAOM]U '/p4O2b, 7 Eyepieces and Magnifiers Wwo0%<2y 7.1 Eyepieces u8^lB7!e/ 7.2 A Pair of Magnifier Designs T{"(\X$ 7.3 The Simple, Classical Eyepieces A/(a`"mK|' 7.4 Design Story of an Eyepiece for a 6*30 Binocular )J |6 -C 7.5 Four-Element Eyepieces Z+SRXKQ 7.6 Five-Element Eyepieces hH.G#-JO 7.7 Very High Index Eyepiece/Magnifier GgU/!@ 7.8 Six- and Seven-Element Eyepieces _1^'(5f$ /Oono6j 8 Cooke Triplet Anastigmats z?zL9 7H 8.1 Airspaced Triplet Anastigmats l;U?Z'n 8.2 Glass Choice P>T"cv 8.3 Vertex Length and Residual Aberrations `cO:<^% 8.4 Other Design Considerations iU-j"&L5 8.5 A Plastic, Aspheric Triplet Camera Lens {g6%(X\r.r 8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet f1? >h\F8 8.7 Possible Improvement to Our “Basic” Triplet XW9!p.*.U 8.7 The Rear Earth (Lanthanum) Glasses Bvj0^fSm 8.9 Aspherizing the Surfaces MD]>g> 8.10 Increasing the Element Thickness PF2nLb2- Dq xs+ 9 Split Triplets 1YA% -~ Xj*Wu_ 10 The Tessar, Heliar, and Other Compounded Triplets |ZBw<f 10.1 The Classic Tessar iLT}oKF2N; 10.2 The Heliar/Pentac p_ =z# 10.3 The Portrait Lens and the Enlarger Lens <3iMRe 10.4 Other Compounded Triplets H]s.=.Ki 10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar ?%86/N> ^.tg 7%dJ 11 Double-Meniscus Anastigmats 0x7'^Z>-oe 11.1 Meniscus Components dx]>(e@(t{ 11.2 The Hypergon, Totogon, and Metrogon TC. ,V_ 11.3 A Two Element Aspheric Thick Meniscus Camera Lens R]dg_Da 11.4 Protar, Dagor, and Convertible Lenses VQI3G 11.5 The Split Dagor ivPg9J1S 11.6 The Dogmar V)^+?B)T 11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens g`^x@rj`E l%ZhA=TKQ 12 The Biotar or Double-Gauss Lens l,
wp4Ll 12.1 The Basic Six-Element Version e)ZUO_Q$ 12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens >/\'zi]L 12.3 The Seven-Element Biotar - Split-Rear Singlet a?.=V 12.4 The Seven-Element Biotar - Broken Contact Front Doublet _wcNgFx 12.5 The Seven-Element Biotar - One Compounded Outer Element H]!"Zq k 12.6 The Eight-Element Biotar h![#;>( 12.7 A “Doubled Double-Gauss” Relay +"(jjxJm uEYtE7 13 Telephoto Lenses *=n:- 13.1 The Basic Telephoto |o@%dH 13.2 Close-up or Macro Lenses %SI'BJ 13.3 Telephoto Designs hSMH,^Io$ 13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch % nIf)/2g HDKbF/ F?cK-. 14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses iLz@5Zj8 14.1 The Reverse Telephoto Principle -/k 3a*$/ 14.2 The Basic Retrofocus Lens F/Pep?' 14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses :EH=_" "ta x? 15 Wide Angle Lenses with Negative Outer Lenses
cAy3^{3: 1cGmg1U; 16 The Petzval Lens; Head-up Display Lenses ~Z+%d9ode 16.1 The Petzval Portrait Lens $N\Ja*g 16.2 The Petzval Projection Lens ]?)TdJ` 16.3 The Petzval with a Field Flattener 7|D +Ihy; 16.4 Very Height Speed Petzval Lenses -+5>|N# 16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems xpI wrJO :jx4{V 17 Microscope Objectives KgG4*< 17.1 General Considerations V:27)]q 17.2 Classic Objective Design Forms; The Aplanatic Front nie% eC&U 17.3 Flat-Field Objectives :!/8Hv 17.4 Reflecting Objectives OH"XrCX7n 17.5 The Microscope Objective Designs B:QHwzd 8[>zG2 18 Mirror and Catadioptric Systems 6Iw\c 18.1 The Good and Bad Points of Mirrors cFv8 Od 18.2 The Classic Two-Mirror Systems 3[&C g 18.3 Catadioptric Systems bi:8(Q$w:` 18.4 Aspheric Correctors and Schmidt Systems 0ksa 18.5 Confocal Paraboloids 5?L<N:;J_ 18.6 Unobscured Systems V+~Nalm O 18.7 Design of a Schmidt-Cassegrain “from Scratch” 5coZ|O&f8 _rYkis^u 19 Infrared and Ultraviolet Systems GF
WA>5n' 19.1 Infrared Optics 3~\[7I/ 19.2 IR Objective Lenses -![|}pX 19.3 IR Telescope f-2c0Bi 19.4 Laser Beam Expanders 5PW^j\G-f 19,5 Ultraviolet Systems &[SC|=U'M 19.6 Microlithographic Lenses X?$_Sd"G+5 <,(,jU)j 20 Zoom Lenses ZC}QId 20.1 Zoom Lenses L+QLLcS~EM 20.2 Zoom Lenses for Point and Shoot Cameras p:%loDk 20.3 A 20X Video Zoom Lens 5-G@L?~Vw 20.4 A Zoom Scanner Lens pNIf=lA 20.5 A Possible Zoom Lens Design Procedure =2 kG%9 \;-|-8Q 21 Projection TV Lenses and Macro Lenses 2
FFD%O05 21.1 Projection TV Lenses cAc@n6[`3 21.2 Macro Lenses d| {r5[& 0^ibNiSP 22 Scanner/ , Laser Disk and Collimator Lenses wf$s*|z 22.1 Monochromatic Systems 0RK!/:' 22.2 Scanner Lenses UDni]P!E 22.3 Laser Disk, Focusing, and Collimator Lenses p$>l7?h ]7mt[2Cd 23 Tolerance Budgeting QIgNsz 23.1 The Tolerance Budget ]tDDq=+v 23.2 Additive Tolerances Faf&U%]*` 23.3 Establishing the Tolerance Budget :c[L3rJl aATA9V 24 Formulary o lxByzTh> 24.1 Sign Conventions, Symbols, and Definitions Yrn)VV[)h 24.2 The Cardinal Points N !|wo: 24.3 Image Equations V_:&S2j 24.4 Paraxial Ray Tracing (Surface by Surface) J")#I91 24.5 Invariants 4H-'Dr=G 24.6 Paraxial Ray Tracing (Component by Component) ?rup/4| 24.7 Two-Componenet Relationships g4@ lM"|S 24.8 Third-Order Aberrations – Surface Contributions z~Q>V]a>; 24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs YDFyX){ 24.10 Stop Shift Equations ,1##p77. 24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces l \?c}7k 24.12 Conversion of Aberrations to Wavefront Deformation (OPD) BCcjK6' _,d~}_$`i \j)E5b+ Glossary l$'wD hN* Reference 6(e>P) Index
|
|