| zebra |
2007-02-01 00:44 |
"Modern Lens Design" 2nd Edition by Warren J. Smith U4mh! *YEIG#` Contents of Modern Lens Design 2nd Edition
=t>`<T|( .J7-4 1 Introduction i,U-H\p& 1.1 Lens Design Books !O%f)v? 1.2 Reference Material TF([yZO' 1.3 Specifications EC\rh](d
1 1.4 Lens Design PauFuzPP 1.5 Lens Design Program Features e[py J. 1.6 About This Book F4aJr%!\6S 802]M 2 Automatic Lens Design *FG4!~<e 2.2 The Merit Function 9iN!hy[ 2.3 Local Minima 4HYH\ey 2.4 The Landscape Lens Y9(i}uTi 2.5 Types of Merit Function 1J!tcj1( 2.6 Stagnation "> 4[+' 2.7 Generalized Simulated Annealing J4R 2.8 Considerations about Variables for Optimization ph|2lLZ 2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems *rMN,B@ 2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits 0"D?.E"$r 2.11 Spectral Weighting Lu$:,^ C 2.12 How to Get Started ?;r7j V/`j D3Ea2}8 3 Improving a Design iz|9a|k6x 3.1 Lens Design Tip Sheet: Standard Improvement Techniques oR%E_g?mI~ 3.2 Glass Changes ( Index and V Values ) d ;Gm {g# 3.3 Splitting Elements 66y ,{t 3.4 Separating a Cemented Doublet ?2bE=| 3.5 Compounding an Element t+Tg@~K2[> 3.6 Vignetting and Its Uses o@V/37! 3.7 Eliminating a Weak Element; the Concentric Problem 3By>t!~Q 3.8 Balancing Aberrations -B++V 3.9 The Symmetrical Principle fqp7a1qQl 3.10 Aspheric Surfaces cqU/Y_%l' U=*q;$L# 4 Evaluation: How Good is This Design YUE1 '} 4.1 The Uses of a Preliminary Evaluation ]8j5Ou6#y 4.2 OPD versus Measures of Performance Z~R/p;@ 4.3 Geometric Blur Spot Size versus Certain Aberrations Z(clw 4.4 Interpreting MTF - The Modulation Transfer Function XS~w_J#q 4.5 Fabrication Considerations 9%hB f\%X7. 5 Lens Design Data :$@zX]?M 5.1 About the Sample Lens Designs :~YyHX 5.2 Lens Prescriptions, Drawings, and Aberration Plots K
{N;k- 5.3 Estimating the Potential of a Redesign LSOwa 5.4 Scaling a Desing, Its Aberrations, and Its MTF jC }u>AB 5.5 Notes on the Interpretation of Ray Intercept Plots Y&:\s8C 5.6 Various Evaluation Plot U";Rp&\3; K`mxb} 6 Telescope Objective 4xC6#:8 6.1 The Thin Airspaced Doublet Fu=VY{U4 6.2 Merit Function for a Telescope Objective 7JK 'vT 6.3 The Design of an f/7 Cemented Doublet Telescope Objective JL*]9$o 6.4 Spherochromatism mgl'
d 6.5 Zonal Spherical Aberration FH@e:-*= 6.6 Induced Aberrations \>CBam8d 6.7 Three-Element Objectives :<|fZa4!" 6.8 Secondary Spectrum (Apochromatic Systems) ,kuFTWB 6.9 The Design of an f/7 Apochromatic Triplet "+OMo-<K7 6.10 The Diffractive Surface in Lens Design 91'^--N 6.11 A Final Note < 2r#vmM M)It(K8R 7 Eyepieces and Magnifiers ~1z8G>R 7.1 Eyepieces +hYmL
Sq 7.2 A Pair of Magnifier Designs "PM:&v 7.3 The Simple, Classical Eyepieces cF6@.) 7.4 Design Story of an Eyepiece for a 6*30 Binocular Wa<NId 7.5 Four-Element Eyepieces O4+w2'., 7.6 Five-Element Eyepieces
rs
KE 7.7 Very High Index Eyepiece/Magnifier %x)U8 7.8 Six- and Seven-Element Eyepieces [&59n,R` Z\yLzy#8 8 Cooke Triplet Anastigmats +Gs;3jC^ 8.1 Airspaced Triplet Anastigmats 5_T>HHR6 8.2 Glass Choice HCCp<2D"C 8.3 Vertex Length and Residual Aberrations ojI"<Q~g 8.4 Other Design Considerations 7
@Qlp$[F 8.5 A Plastic, Aspheric Triplet Camera Lens W5yu`Br 8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet y")>"8H 8.7 Possible Improvement to Our “Basic” Triplet y3$\ m 8.7 The Rear Earth (Lanthanum) Glasses %Y[/Ucdm 8.9 Aspherizing the Surfaces lY8Qy2k| 8.10 Increasing the Element Thickness eHZl-|- x=<>%m5R 9 Split Triplets ",oUVl 3m9E2R, 10 The Tessar, Heliar, and Other Compounded Triplets Z%d4V<fn 10.1 The Classic Tessar h*'5h! 10.2 The Heliar/Pentac YtKX\q^. 10.3 The Portrait Lens and the Enlarger Lens Y\F H4}\S 10.4 Other Compounded Triplets JVYYwA^. 10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar ))zaL2UP. 745PCC'FK 11 Double-Meniscus Anastigmats ,S K6*tpI 11.1 Meniscus Components 6@361f[ 11.2 The Hypergon, Totogon, and Metrogon JVCgYY({KQ 11.3 A Two Element Aspheric Thick Meniscus Camera Lens h(K4AiGE 11.4 Protar, Dagor, and Convertible Lenses |#,W3Ik(l 11.5 The Split Dagor |/ 7's' 11.6 The Dogmar z{_Vn(Kg 11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens D*b|(Oi +OP' / 12 The Biotar or Double-Gauss Lens %Q01EjRes 12.1 The Basic Six-Element Version ?XrTZ{5' 12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens KPrxw }P 12.3 The Seven-Element Biotar - Split-Rear Singlet l$@lk?dc 12.4 The Seven-Element Biotar - Broken Contact Front Doublet 5,fzB~$TX( 12.5 The Seven-Element Biotar - One Compounded Outer Element `2+52q<FO 12.6 The Eight-Element Biotar "lAS
<dq 12.7 A “Doubled Double-Gauss” Relay 8zv6Mx NV ~i4R*# 13 Telephoto Lenses [^P2Kn 13.1 The Basic Telephoto D~);:}}> 13.2 Close-up or Macro Lenses |bUmkw 13.3 Telephoto Designs ou4?`JF)- 13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch |EA1+I.&x eHIC'b. KL{uhb0f 14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses "aH]4DO 14.1 The Reverse Telephoto Principle D]y.!D{l2 14.2 The Basic Retrofocus Lens s47"JKf" 14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses G9%4d;uFT
X:bgY 15 Wide Angle Lenses with Negative Outer Lenses yx4c+(J^8 >eI(M $ 16 The Petzval Lens; Head-up Display Lenses Ue%5
:Sdr 16.1 The Petzval Portrait Lens ,]'!2? 16.2 The Petzval Projection Lens ~<-h# B 16.3 The Petzval with a Field Flattener -hfY:W`Dz 16.4 Very Height Speed Petzval Lenses ~Y[b
QuA=) 16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems J>&GP#7} "=O)2} 17 Microscope Objectives 3iwZUqyq 17.1 General Considerations 4Yk(ldR~ 17.2 Classic Objective Design Forms; The Aplanatic Front *8+YR 17.3 Flat-Field Objectives
w?"l4.E% 17.4 Reflecting Objectives h<q``hn> 17.5 The Microscope Objective Designs Gd 9B 1Zzw|@#>o 18 Mirror and Catadioptric Systems
c7 -j 18.1 The Good and Bad Points of Mirrors > ^}z 18.2 The Classic Two-Mirror Systems Vh&KfYY 18.3 Catadioptric Systems \U8Vsx1tl 18.4 Aspheric Correctors and Schmidt Systems 3._fbAN%e 18.5 Confocal Paraboloids Z]CH8GS~< 18.6 Unobscured Systems L x&ZWF$ 18.7 Design of a Schmidt-Cassegrain “from Scratch” iddT. [)?3Dp|MH 19 Infrared and Ultraviolet Systems (w fZ! 19.1 Infrared Optics ~b/>TKn+ 19.2 IR Objective Lenses 8X5XwFf} 19.3 IR Telescope 4)z](e$ 19.4 Laser Beam Expanders A>k;o0r 19,5 Ultraviolet Systems c+c^F/ 19.6 Microlithographic Lenses J %t1T]y~ Bc@e;k@i 20 Zoom Lenses P^ VNB 20.1 Zoom Lenses a;sZNUSn 20.2 Zoom Lenses for Point and Shoot Cameras J(]nPwm=.- 20.3 A 20X Video Zoom Lens .N 2Yxty8> 20.4 A Zoom Scanner Lens !ywc). ]e 20.5 A Possible Zoom Lens Design Procedure 6=k^gH[g k-/$8C 21 Projection TV Lenses and Macro Lenses PE>_;k-@k 21.1 Projection TV Lenses hb{(r@[WHv 21.2 Macro Lenses 195(Kr<5$ fi)ypv* 22 Scanner/ , Laser Disk and Collimator Lenses ([|M,P6e)U 22.1 Monochromatic Systems i`X{pEKP+ 22.2 Scanner Lenses YL+W4ld 22.3 Laser Disk, Focusing, and Collimator Lenses 4$rO,W/&0 z&8#1' 23 Tolerance Budgeting '1+ Bgf 23.1 The Tolerance Budget pI4<`
K 23.2 Additive Tolerances gQ[4{+DSf 23.3 Establishing the Tolerance Budget "x)W3C%*S l)Hu.1~ 24 Formulary l`k3!EZDS 24.1 Sign Conventions, Symbols, and Definitions //(c 1/s 24.2 The Cardinal Points D+U^ pl- 24.3 Image Equations ME.LS2'n 24.4 Paraxial Ray Tracing (Surface by Surface) 9b0Z
Ey{ 24.5 Invariants AWzpk}\ 24.6 Paraxial Ray Tracing (Component by Component) 0IZV4{ 24.7 Two-Componenet Relationships |N*>K a; 24.8 Third-Order Aberrations – Surface Contributions q)/4i9
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs PSE![whK 24.10 Stop Shift Equations 5BZ5Gl3 24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces c=5$bo]LI 24.12 Conversion of Aberrations to Wavefront Deformation (OPD) JQb]mU%?
Z-:`{dns/ 7Vi[I< * Glossary AQ&;y&+QR Reference t9kgACo/M Index
|
|