zebra |
2007-02-01 00:44 |
"Modern Lens Design" 2nd Edition by Warren J. Smith [;o>q;75Jz `cIeqp Contents of Modern Lens Design 2nd Edition "z=~7g P%
8U 1 Introduction Z`|\%D% 1.1 Lens Design Books q(4Ny<=,'K 1.2 Reference Material P#
U| 1.3 Specifications (f~}5O< 1.4 Lens Design p["pGsf 1.5 Lens Design Program Features A
PrrUo 1.6 About This Book k~F,n UUa@7|x 2 Automatic Lens Design . ~a~(| 2.2 The Merit Function 5+j):_ 2.3 Local Minima de[NIDA;` 2.4 The Landscape Lens L$@+'Qn@: 2.5 Types of Merit Function >%slzr 2.6 Stagnation xsN OjHk 2.7 Generalized Simulated Annealing gvL*]U7 2.8 Considerations about Variables for Optimization G>jC+0nkry 2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems 4Lz[bI 2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits wF59g38[z$ 2.11 Spectral Weighting [HQ/MkP-Z 2.12 How to Get Started J,s:CBCGL %b~ND?nn- 3 Improving a Design : #so"O 3.1 Lens Design Tip Sheet: Standard Improvement Techniques +}:2DXy@ 3.2 Glass Changes ( Index and V Values ) OYb:);o,iE 3.3 Splitting Elements B|{E[]iK 3.4 Separating a Cemented Doublet CkNh3'<wg 3.5 Compounding an Element k![H;}W 3.6 Vignetting and Its Uses QIJ/'72 3.7 Eliminating a Weak Element; the Concentric Problem L"0?g(<
5 3.8 Balancing Aberrations 4r86@^c* 3.9 The Symmetrical Principle rV?@Kgxi 3.10 Aspheric Surfaces
':DL 2Uu!_n}tNF 4 Evaluation: How Good is This Design }wI+eMr 4.1 The Uses of a Preliminary Evaluation %;<g!Vw.k 4.2 OPD versus Measures of Performance B@ msGb C 4.3 Geometric Blur Spot Size versus Certain Aberrations x5rLGt 4.4 Interpreting MTF - The Modulation Transfer Function vj]h[=: 4.5 Fabrication Considerations }([}A`@ /;!I.|j 5 Lens Design Data )h{+pK 5.1 About the Sample Lens Designs 8@RJ> 5.2 Lens Prescriptions, Drawings, and Aberration Plots SwaPRAF 5.3 Estimating the Potential of a Redesign A]drNFE 5.4 Scaling a Desing, Its Aberrations, and Its MTF fvV"H{V, 5.5 Notes on the Interpretation of Ray Intercept Plots d<WNN1f 5.6 Various Evaluation Plot zz(EH<> ,}9
tJY@E 6 Telescope Objective @gM}&G08 6.1 The Thin Airspaced Doublet hF`<I.z} 6.2 Merit Function for a Telescope Objective w@n}DCFt 6.3 The Design of an f/7 Cemented Doublet Telescope Objective #7}YSfm^6 6.4 Spherochromatism !|- U, 6.5 Zonal Spherical Aberration ![J_6f}! 6.6 Induced Aberrations {wDe#c{_ 6.7 Three-Element Objectives 7#7|+%W0 6.8 Secondary Spectrum (Apochromatic Systems) j*;.>akY7 6.9 The Design of an f/7 Apochromatic Triplet -lAY*2Jg 6.10 The Diffractive Surface in Lens Design 7KJ0>0~Et 6.11 A Final Note G)_Zls2; L]&y[/\E1 7 Eyepieces and Magnifiers :_ =YH+bZ 7.1 Eyepieces PSX
o" 7.2 A Pair of Magnifier Designs 4gWlSm) 7.3 The Simple, Classical Eyepieces S/RChg_L5 7.4 Design Story of an Eyepiece for a 6*30 Binocular _}T )\o 7.5 Four-Element Eyepieces >$)~B4 7.6 Five-Element Eyepieces [,MK)7DU 7.7 Very High Index Eyepiece/Magnifier `U>2H4P 7.8 Six- and Seven-Element Eyepieces BQ70<m2D$ wjgF e] 8 Cooke Triplet Anastigmats ` K0PLxSv 8.1 Airspaced Triplet Anastigmats *X}2 8.2 Glass Choice iun_z$I<+Z 8.3 Vertex Length and Residual Aberrations !$!%era` 8.4 Other Design Considerations ]<c\+9 8.5 A Plastic, Aspheric Triplet Camera Lens ^\Q%VTM 8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet %Nob B 8.7 Possible Improvement to Our “Basic” Triplet 7VWy1 8.7 The Rear Earth (Lanthanum) Glasses |YfJ#Agm+ 8.9 Aspherizing the Surfaces /WLZyT2 8.10 Increasing the Element Thickness OPogH=vf >m{>0k(^` 9 Split Triplets 8F's9c, A4b+:MQ*OX 10 The Tessar, Heliar, and Other Compounded Triplets oL<5hN*D 10.1 The Classic Tessar 3"k n5)x 10.2 The Heliar/Pentac -z
se+]O` 10.3 The Portrait Lens and the Enlarger Lens x\VP
X 10.4 Other Compounded Triplets .WuSW[g 10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar O'3/21)|y 9>`dB 11 Double-Meniscus Anastigmats AEElaq.B 11.1 Meniscus Components `VDvxl@1 11.2 The Hypergon, Totogon, and Metrogon |oe 11.3 A Two Element Aspheric Thick Meniscus Camera Lens =En1?3? 11.4 Protar, Dagor, and Convertible Lenses b^P\Q s*m 11.5 The Split Dagor 3a=\$x@ 11.6 The Dogmar crSqbL 11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens GxC\Nj# YQD/vc~8G 12 The Biotar or Double-Gauss Lens J Rj{Q 1J 12.1 The Basic Six-Element Version CJs
~!ww 12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens ;W FiMM\ 12.3 The Seven-Element Biotar - Split-Rear Singlet k72NXagh 12.4 The Seven-Element Biotar - Broken Contact Front Doublet y|3("&)"S 12.5 The Seven-Element Biotar - One Compounded Outer Element iWW
>]3Q 12.6 The Eight-Element Biotar v#: ?:< 12.7 A “Doubled Double-Gauss” Relay W{j(=<|< BqdpJIr 13 Telephoto Lenses [UB*39D7 13.1 The Basic Telephoto |Z+qaq{X 13.2 Close-up or Macro Lenses soX^$l
13.3 Telephoto Designs ^< 13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch PpF`0w=1%l hFhC&2HN cjd-B:l 14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses ocp 14.1 The Reverse Telephoto Principle 0~W6IGE~ 14.2 The Basic Retrofocus Lens $*Wa A`(U 14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses '0&HkM{ D %kgT=<E' 15 Wide Angle Lenses with Negative Outer Lenses :&2%x ZU2D.Kf_: 16 The Petzval Lens; Head-up Display Lenses !X-ThKEq 16.1 The Petzval Portrait Lens WHfl|e 16.2 The Petzval Projection Lens 7vI
ROK~ 16.3 The Petzval with a Field Flattener ^$RpP+d 16.4 Very Height Speed Petzval Lenses P\z1fscnK 16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems {BJH}vV1) h53G$Ol. 17 Microscope Objectives V!e*J,g 17.1 General Considerations -Y N(j\ 17.2 Classic Objective Design Forms; The Aplanatic Front #]^M/y
h 17.3 Flat-Field Objectives qQ,(O5$| 17.4 Reflecting Objectives vVsaGW 17.5 The Microscope Objective Designs -OKXfN] >N}+O<Fc 18 Mirror and Catadioptric Systems vB5mOXGN q 18.1 The Good and Bad Points of Mirrors JxM32?Rm*w 18.2 The Classic Two-Mirror Systems yHZ&5 18.3 Catadioptric Systems %(s2{$3 18.4 Aspheric Correctors and Schmidt Systems $%ww$3 18.5 Confocal Paraboloids WW7E*kc 18.6 Unobscured Systems *ODc[k'( 18.7 Design of a Schmidt-Cassegrain “from Scratch” c]ga)A( <YCR^?hJSi 19 Infrared and Ultraviolet Systems eQqCRXx 19.1 Infrared Optics h_g"F@ 19.2 IR Objective Lenses gAsjkNt? 19.3 IR Telescope (+u&b< <6N 19.4 Laser Beam Expanders UCo<ie\V 19,5 Ultraviolet Systems SLvo)`Nc3- 19.6 Microlithographic Lenses E|6@h8# 'l-VWqR- 20 Zoom Lenses t!>0^['g4 20.1 Zoom Lenses X6?Gxf, 20.2 Zoom Lenses for Point and Shoot Cameras (?.h<v1} 20.3 A 20X Video Zoom Lens yV&]i-ey 20.4 A Zoom Scanner Lens a<((\c_8G 20.5 A Possible Zoom Lens Design Procedure &@PAv5iNf QP@@h4J^ 21 Projection TV Lenses and Macro Lenses jo0XOs 21.1 Projection TV Lenses YC*`n3D|' 21.2 Macro Lenses |UcF%VNnz1 G2:.8ok 22 Scanner/ , Laser Disk and Collimator Lenses 1d&Q
E\2} 22.1 Monochromatic Systems Fg2/rC:_ 22.2 Scanner Lenses Y&i&H=U 22.3 Laser Disk, Focusing, and Collimator Lenses NpA%7Q~B$, bF +d_t 23 Tolerance Budgeting ItAC=/(d 23.1 The Tolerance Budget _e|-O>#pl 23.2 Additive Tolerances W,nn,% 23.3 Establishing the Tolerance Budget b}hQU~,E D2\Ep L/ 24 Formulary |CBJ8],mT 24.1 Sign Conventions, Symbols, and Definitions wFBSux$ 24.2 The Cardinal Points |Y( 24.3 Image Equations #vPk
XcP 24.4 Paraxial Ray Tracing (Surface by Surface) v6T<K)S 24.5 Invariants !~-@sq 24.6 Paraxial Ray Tracing (Component by Component) @DAaCF8 24.7 Two-Componenet Relationships 8,B#W#*{ 24.8 Third-Order Aberrations – Surface Contributions s-l3_210 24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs F@ZB6~T~. 24.10 Stop Shift Equations _Vr}ipx-k 24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces cZw_^@! 24.12 Conversion of Aberrations to Wavefront Deformation (OPD) a1v?{vu\E \@6V{y'Zo 7TZ,bD_ Glossary o;pJjC] Reference #}UI Index
|
|