| cyqdesign |
2006-11-28 12:49 |
光子学的发展对当代信息技术的影响
摘要 :文章介绍了光子学在通信、存储、信息处理和计算中的应用,论述了光子学的开拓对信息技术发展的深远影响,指出了从电子信息时代向光子信息时代发展的趋势。 PvO>}(= WJhI6lu 早期的光学主要研究物质的宏观光学特性,如光的折射、反射、衍射、成像和照明等,较少研究其微观的物理原因。随着本世纪60年代初激光的出现,人们着重于研究光子与物质相互作用、光子的本质。以及光子的产生、传播、探测等微观机制。本世纪下半叶光学向光子学方向的开拓,十分类似于本世纪上半叶电学向电子学的开拓、其科学及技术意义都十分深远。 ~s
!+9\Fi `s.y!(`q 本世纪以来,信息工程依靠电子学和微电子学技术,如通信是从无线电到微波,存储是从磁芯到半导体集成。运算发展是从电子管到大规模集成电路的电子计算机等等,所以。目前谈到信息技术都称为电子信息技术。从技术特征而言,我们正处于电子信息时代,其特征为信息的载体是电子。 Hm*n,8_ l3.HL> o 光子学(photonics)从最早的定义(“光子学是以光子作为信息载体的一门系统性科学“)1970年第九界国际高速摄影会议提出)就已紧密地信息科学技术联系在一起了。当代社会和经济发展中,信息的容量剧增,随着高容量和高速度的信息发展,电子学(electronics)和微电子学(microelectronics)显出局限性。由于光子的速度要快得多,光的频率比无线电的频率高得多,为提高传播速度和载波密度,由电子到光子是发展的必然趋势,它会使信息技术的发展产生突破。目前,信息的探测、传输、存储、显示、运算和处理已由光子和电子共同参于来完成,所产生的光电子学(optoelectronics)技术已应用在信息领域。今后将更注意光子的作用,继光电子学后,光子学技术正在崛起。如美国把“电子和光子材料“、微电子学和光电子学“列为国家关键技术。认为“光子学在国家关键技术,认为“光子学在国家安全与经济竞争方面有着深远的意义和潜力“。通信和计算机研究与发展的末来属于光子学领域“从电子学到光电子学和光子学是跨世纪的发展。 92S<TAdPP dhV=;'
1 光子学器件 uWgY+T K0b(D8! 光子学技术主要包含光子学的产生、探测、传输、控制和处理,因而必须有相应的光子学器件。与电子学器件相比,光子学器件中光子的运用不受回路分布延迟的影响(一般为10-9s),光子在固体中传输速度为10 12cm/s左右,光子学器件的时间响应和单道超大容量要比电子学器件高得多,这对信息技术发展有很大的推动作用。 p>!`JU`{? "y62Wo6m) 高密度高相干性的激光光源始终对光信息工程起重要作用,特别是半导体激光器。人们熟知。由于有了低阈值,低功耗,长寿命及快响应的半导体激光器,使光纤通信成为现实,并以0。8um,1.3um和 1.55um的激光光源形成三个光通信的窗口,由于有高功率单模半导体激光器,才使光盘存储技术实用化,并且目前高密度光存储的发展以半导体激光波长的缩短(从0。8um到0.65um和0.5um)为标志,形成三代光盘存储技术,多量子阱器件,高密度垂直腔面发射器,量子级联器件、微腔辐射与微腔光子动力学器件的发展,可以不断降低激光阈值,提高激光转换效率与输出功率,扩展波段,改善线宽。实现激光光源的阵列化和集成化。 OI1&Z4Lx P=eL24j 非线性波导光学的发展,探索弱光非线性效应和材料,特别是在低维和纳米材料中的光学非线性增强,可以研制出超高速光开关、空间光调制器,集成光子回路和光学双稳态器件等,人工微结构的光子晶体可以用来控制或定域光子态。由此制成光子控制器件。 VFRUiz/C ,%D \ 模拟微电子集成器件,把不同功能的光子器件通过内部光波导互连,制成了一个光子集成芯片,包括激光器与光子接受器、放大器、调制器和光开关等。目前光子集成器件主要应用各种电光效应,也离不开电的操作,因此实用的光子集成芯片必须配之相应的电子回路和成熟的微电子技术于终端处理。即大型的光电子集成系统。 S3.Pqp_< ;i\i+:= 2 光通信 ``0knr < s% I)+| 把光子作为信息载体,是20世纪中的一个划时代变化,就是用光纤通信代替电缆和微波通信,简言之,信息的传输发生了本质性变革。光纤通信产业在国际上目前已有上百亿美元的年产值。在信息高速公路浪潮的推动下、高速公用通信网和数字数据网会很快发展,巨大的信息流多达1000Gb/s,由此对光纤通讯在速度和容量上提出了更高要求。 Vo%@bj~> F2lTDuk>C 本世纪70年代初由于低损耗的熔石英光纤和长寿命的半导体激光器的研制成功,使光通信成为可能。1978年前一条10公里长的光纤,最高传输率为1Gb/s,称为第一代光纤通信;三年以后第二代光纤通信由于应用了单模光纤和处于熔石英光纤最低色散波长(1。3um)的半导体激光器和探测器,光信号可以在光纤内以均匀速度传播,传输容量增加了近10倍;第三代光纤通信由于应用熔石英光纤的最低损耗波长(1。55um),配上该波长的半导体激光器,使无中继传输距离和传输容量又能好几倍的提高。 &;*jMu6 <r_ldkZ 在本世纪末期由于光子学技术的发展,产生了光学放大器,特别是半导体激光器光泵的掺铒的光纤放大器(EDFA),由于光信号的直接放大,放大率达到30dB以上,不受信号偏振方向的影响,有很好的保真度,很快达到实用价值,另一项有重大实用价值的光纤通信的突破是波分复用技术,即同一路光纤中传输若干个不同波长的光信号。用外调制的分布反馈激光器(DFB)达到高的信号传输率,用光纤宽带耦合器将N 种波长的激光信号耦合入一条公用传输光纤,在信号终端用光纤栅滤器,分离出N个波长的载波激光,经检波器将信息解出。这种波分复用技术,使信息传输率增加了N倍。在光子集成回路再加入宽增益频带的铒光纤放大器,就可以达到高传输率容量(100Gb/s)和无中继长距离(>100km)的光纤通信系统,可称为第四代光纤通信。 )6HcPso6 E{1O<qO< | |