结合显微镜技术创造出更强大的成像设备
如果你想象自己通过显微镜凝视,你可能会想象用变形虫,或者人类细胞,甚至是某种小昆虫看着载玻片。 但是显微镜能看到的远不止这些小生物,加州理工学院开发的一种新型显微镜使人们更容易看到构成生物的分子。 在发表在《自然光子学》杂志上的一篇论文中,来自传统医学研究所化学助理教授兼研究员陆伟实验室的研究人员展示了他们所谓的键选择性荧光检测红外激发光谱显微镜或BonFIRE。 BonFIRE将两种显微镜技术结合到一个过程中,具有更高的选择性和灵敏度,使研究人员能够在前所未有的单分子水平上可视化生物过程,并从分子角度了解生物学机制。 研究合著者和化学工程研究生Dongkwan Lee说:“使用我们的新显微镜,我们现在可以用振动对比可视化单个分子,这对于现有技术来说是具有挑战性的”。 BonFIRE涉及的一项技术是荧光显微镜,它通过用荧光化学标记物标记分子和其他微观结构来成像,使它们在成像时发光。 ![]() 博士后学者王浩民(左)和研究生李东宽(右)演示BonFIRE显微镜设备的操作。 另一种技术是振动显微镜,它利用将分子原子结合在一起的键中的自然振动。待成像的样品被光轰击,在这种情况下是红外光。这种轰击导致材料分子的键以可以识别其类型的方式振动。例如,三键的振动“听起来”与单个键的振动不同,例如,一个碳原子与另一个碳原子键合的振动听起来与与氮原子键合的碳原子的振动不同。这与训练有素的吉他手如何通过听它发出的音色来判断吉他上的哪根弦以及它是由什么材料制成的。 Wei说,荧光显微镜可以让研究人员观察单个分子,但它不能提供丰富的化学信息。另一方面,振动显微镜提供了丰富的化学信息,但只有在被成像的分子大量存在时才有效。 BonFIRE通过将振动与荧光耦合来绕过这些限制,有效地结合了这两种技术的优势。该过程的工作原理是这样的:首先用荧光染料染色样品,该染料与要成像的分子结合。然后,样品被红外光脉冲轰击,红外光的频率被调谐以激发该染料中发现的特定键。一旦键被该光的单个光子激发,第二个高能光脉冲就会照射在它上面,并激发它发出荧光,并发出可以被显微镜检测到的光芒。通过这种方式,显微镜可以对整个细胞或单个分子进行成像。 |